1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-25 10:52:11 +01:00
LibrePilot/ground/src/libs/utils/coordinateconversions.cpp

139 lines
4.2 KiB
C++
Raw Normal View History

/**
******************************************************************************
*
* @file coordinateconversions.cpp
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief General conversions with different coordinate systems.
* - all angles in deg
* - distances in meters
* - altitude above WGS-84 elipsoid
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "coordinateconversions.h"
#include <QDebug>
#define RAD2DEG (180.0/3.14)
#define DEG2RAD (3.14/180.0)
namespace Utils {
CoordinateConversions::CoordinateConversions()
{
}
/**
* Convert from LLA coordinates to ECEF coordinates
* @param[in] LLA[3] latitude longitude alititude coordinates in
* @param[out] ECEF[3] location in ECEF coordinates
*/
void CoordinateConversions::LLA2ECEF(double LLA[3], double ECEF[3]){
const double a = 6378137.0; // Equatorial Radius
const double e = 8.1819190842622e-2; // Eccentricity
double sinLat, sinLon, cosLat, cosLon;
double N;
sinLat=sin(DEG2RAD*LLA[0]);
sinLon=sin(DEG2RAD*LLA[1]);
cosLat=cos(DEG2RAD*LLA[0]);
cosLon=cos(DEG2RAD*LLA[1]);
N = a / sqrt(1.0 - e*e*sinLat*sinLat); //prime vertical radius of curvature
ECEF[0] = (N+LLA[2])*cosLat*cosLon;
ECEF[1] = (N+LLA[2])*cosLat*sinLon;
ECEF[2] = ((1-e*e)*N + LLA[2]) * sinLat;
}
/**
* Convert from ECEF coordinates to LLA coordinates
* @param[in] ECEF[3] location in ECEF coordinates
* @param[out] LLA[3] latitude longitude alititude coordinates
*/
int CoordinateConversions::ECEF2LLA(double ECEF[3], double LLA[3])
{
const double a = 6378137.0; // Equatorial Radius
const double e = 8.1819190842622e-2; // Eccentricity
double x=ECEF[0], y=ECEF[1], z=ECEF[2];
double Lat, N, NplusH, delta, esLat;
uint16_t iter;
LLA[1] = RAD2DEG*atan2(y,x);
N = a;
NplusH = N;
delta = 1;
Lat = 1;
iter=0;
while (((delta > 1.0e-14)||(delta < -1.0e-14)) && (iter < 100))
{
delta = Lat - atan(z / (sqrt(x*x + y*y)*(1-(N*e*e/NplusH))));
Lat = Lat-delta;
esLat = e*sin(Lat);
N = a / sqrt(1 - esLat*esLat);
NplusH = sqrt(x*x + y*y)/cos(Lat);
iter += 1;
}
LLA[0] = RAD2DEG*Lat;
LLA[2] = NplusH - N;
if (iter==500) return (0);
else return (1);
}
/**
* Get the current location in Longitude, Latitude Altitude (above WSG-48 ellipsoid)
* @param[in] BaseECEF the ECEF of the home location (in cm)
* @param[in] NED the offset from the home location (in m)
* @param[out] position three element double for position in degrees and meters
* @returns
* @arg 0 success
* @arg -1 for failure
*/
int CoordinateConversions::GetLLA(double BaseECEFcm[3], double NED[3], double position[3])
{
int i;
// stored value is in cm, convert to m
double BaseECEFm[3] = {BaseECEFcm[0] / 100, BaseECEFcm[1] / 100, BaseECEFcm[2] / 100};
double BaseLLA[3];
double ECEF[3];
// Get LLA address to compute conversion matrix
ECEF2LLA(BaseECEFm, BaseLLA);
// TODO: Find/derive correct inverse of Rne using LLA
double RnePrime [3][3] =
{{1,0,0},
{0,1,0},
{0,0,1}};
/* P = ECEF + CM * NED */
for(i = 0; i < 3; i++)
ECEF[i] = BaseECEFm[i] + RnePrime[i][0]*NED[0] + RnePrime[i][1]*NED[1] + RnePrime[i][2]*NED[2];
ECEF2LLA(ECEF,position);
return 0;
}
}