1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-11-30 08:24:11 +01:00
LibrePilot/flight/PiOS/STM32F4xx/pios_adc.c

388 lines
11 KiB
C
Raw Normal View History

2011-11-01 07:09:55 +01:00
/**
******************************************************************************
* @addtogroup PIOS PIOS Core hardware abstraction layer
* @{
* @addtogroup PIOS_ADC ADC Functions
* @brief STM32F4xx ADC PIOS interface
* @{
*
* @file pios_adc.c
* @author Michael Smith Copyright (C) 2011.
* @brief Analog to Digital converstion routines
* @see The GNU Public License (GPL) Version 3
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* @note This is a stripped-down ADC driver intended primarily for sampling
* voltage and current values. Samples are averaged over the period between
* fetches so that relatively accurate measurements can be obtained without
* forcing higher-level logic to poll aggressively.
*
* @todo This module needs more work to be more generally useful. It should
* almost certainly grow callback support so that e.g. voltage and current readings
* can be shipped out for coulomb counting purposes. The F1xx interface presumes
* use with analog sensors, but that implementation largely dominates the ADC
* resources. Rather than commit to a new API without a defined use case, we
* should stick to our lightweight subset until we have a better idea of what's needed.
*/
#include "pios.h"
#include <pios_adc_priv.h>
extern struct pios_adc_cfg pios_adc_cfg;
#if defined(PIOS_INCLUDE_ADC)
2011-11-01 07:09:55 +01:00
static void init_pins(void);
static void init_dma(void);
static void init_timer(void);
static void init_adc(void);
#endif
2011-11-01 07:09:55 +01:00
struct dma_config {
GPIO_TypeDef *port;
uint32_t pin;
uint32_t channel;
};
struct adc_accumulator {
uint32_t accumulator;
uint32_t count;
};
#if defined(PIOS_INCLUDE_ADC)
2011-11-01 07:09:55 +01:00
static struct dma_config config[] = PIOS_DMA_PIN_CONFIG;
#define PIOS_ADC_NUM_PINS (sizeof(config) / sizeof(config[0]))
static struct adc_accumulator accumulator[PIOS_ADC_NUM_PINS];
static uint16_t adc_raw_buffer[2][PIOS_ADC_MAX_SAMPLES][PIOS_ADC_NUM_PINS];
#endif
2011-11-01 07:09:55 +01:00
#define PIOS_ADC_TIMER TIM3 /* might want this to come from the config */
#define PIOS_LOWRATE_ADC ADC1
#if defined(PIOS_INCLUDE_ADC)
2011-11-01 07:09:55 +01:00
static void
init_pins(void)
{
/* Setup analog pins */
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
for (int32_t i = 0; i < PIOS_ADC_NUM_PINS; i++) {
GPIO_InitStructure.GPIO_Pin = config[i].pin;
GPIO_Init(config[i].port, &GPIO_InitStructure);
}
}
static void
init_dma(void)
{
/* Disable interrupts */
DMA_ITConfig(pios_adc_cfg.dma.rx.channel, pios_adc_cfg.dma.irq.flags, DISABLE);
/* Configure DMA channel */
DMA_DeInit(pios_adc_cfg.dma.rx.channel);
DMA_InitTypeDef DMAInit = pios_adc_cfg.dma.rx.init;
DMAInit.DMA_Memory0BaseAddr = (uint32_t)&adc_raw_buffer[0];
DMAInit.DMA_BufferSize = sizeof(adc_raw_buffer[0]) / sizeof(uint16_t);
DMAInit.DMA_DIR = DMA_DIR_PeripheralToMemory;
DMAInit.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMAInit.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMAInit.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMAInit.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMAInit.DMA_Mode = DMA_Mode_Circular;
DMAInit.DMA_Priority = DMA_Priority_Low;
DMAInit.DMA_FIFOMode = DMA_FIFOMode_Disable;
DMAInit.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull;
DMAInit.DMA_MemoryBurst = DMA_MemoryBurst_Single;
DMAInit.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_Init(pios_adc_cfg.dma.rx.channel, &DMAInit); /* channel is actually stream ... */
/* configure for double-buffered mode and interrupt on every buffer flip */
DMA_DoubleBufferModeConfig(pios_adc_cfg.dma.rx.channel, (uint32_t)&adc_raw_buffer[1], DMA_Memory_0);
DMA_DoubleBufferModeCmd(pios_adc_cfg.dma.rx.channel, ENABLE);
DMA_ITConfig(pios_adc_cfg.dma.rx.channel, DMA_IT_TC, ENABLE);
/* enable DMA */
DMA_Cmd(pios_adc_cfg.dma.rx.channel, ENABLE);
/* Configure DMA interrupt */
NVIC_InitTypeDef NVICInit = pios_adc_cfg.dma.irq.init;
NVICInit.NVIC_IRQChannelPreemptionPriority = PIOS_IRQ_PRIO_LOW;
NVICInit.NVIC_IRQChannelSubPriority = 0;
NVICInit.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVICInit);
}
static void
init_timer(void)
{
RCC_ClocksTypeDef clocks;
TIM_TimeBaseInitTypeDef TIMInit;
/* get clock info */
RCC_GetClocksFreq(&clocks);
/* reset/disable the timer */
TIM_DeInit(PIOS_ADC_TIMER);
/* configure for 1kHz auto-reload cycle */
TIM_TimeBaseStructInit(&TIMInit);
TIMInit.TIM_Prescaler = clocks.PCLK1_Frequency / 1000000; /* 1MHz base clock*/
TIMInit.TIM_CounterMode = TIM_CounterMode_Down;
TIMInit.TIM_Period = 1000; /* 1kHz conversion rate */
TIMInit.TIM_ClockDivision = TIM_CKD_DIV1; /* no additional divisor */
TIM_TimeBaseInit(PIOS_ADC_TIMER, &TIMInit);
PIOS_COM_SendFormattedString(PIOS_COM_DEBUG, "TIM_Prescaler %d\r\n",TIMInit.TIM_Prescaler);
/* configure trigger output on reload */
TIM_SelectOutputTrigger(PIOS_ADC_TIMER, TIM_TRGOSource_Update);
TIM_Cmd(PIOS_ADC_TIMER, ENABLE);
}
static void
init_adc(void)
{
ADC_DeInit();
/* turn on VREFInt in case we need it */
ADC_TempSensorVrefintCmd(ENABLE);
/* Do common ADC init */
ADC_CommonInitTypeDef ADC_CommonInitStructure;
ADC_CommonStructInit(&ADC_CommonInitStructure);
ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2;
ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled;
ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;
ADC_CommonInit(&ADC_CommonInitStructure);
ADC_InitTypeDef ADC_InitStructure;
ADC_StructInit(&ADC_InitStructure);
ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T3_TRGO;
ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Rising;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfConversion = ((PIOS_ADC_NUM_PINS)/* >> 1*/);
ADC_Init(PIOS_LOWRATE_ADC, &ADC_InitStructure);
/* Enable PIOS_LOWRATE_ADC->DMA request */
ADC_DMACmd(PIOS_LOWRATE_ADC, ENABLE);
/* Configure input scan */
for (int32_t i = 0; i < PIOS_ADC_NUM_PINS; i++) {
ADC_RegularChannelConfig(PIOS_LOWRATE_ADC,
config[i].channel,
i+1,
ADC_SampleTime_56Cycles); /* XXX this is totally arbitrary... */
}
ADC_DMARequestAfterLastTransferCmd(PIOS_LOWRATE_ADC, ENABLE);
/* Finally start initial conversion */
ADC_Cmd(PIOS_LOWRATE_ADC, ENABLE);
}
#endif
2011-11-01 07:09:55 +01:00
/**
* @brief Init the ADC.
*/
void PIOS_ADC_Init()
{
#if defined(PIOS_INCLUDE_ADC)
2011-11-01 07:09:55 +01:00
init_pins();
init_dma();
init_timer();
init_adc();
#endif
2011-11-01 07:09:55 +01:00
}
/**
* @brief Configure the ADC to run at a fixed oversampling
* @param[in] oversampling the amount of oversampling to run at
*/
void PIOS_ADC_Config(uint32_t oversampling)
{
/* we ignore this */
}
/**
* Returns value of an ADC Pin
* @param[in] pin number
* @return ADC pin value averaged over the set of samples since the last reading.
* @return -1 if pin doesn't exist
*/
int32_t PIOS_ADC_PinGet(uint32_t pin)
{
#if defined(PIOS_INCLUDE_ADC)
2011-11-01 07:09:55 +01:00
int32_t result;
/* Check if pin exists */
if (pin >= PIOS_ADC_NUM_PINS) {
return -1;
}
/* return accumulated result and clear accumulator */
result = accumulator[pin].accumulator / (accumulator[pin].count ?: 1);
accumulator[pin].accumulator = 0;
accumulator[pin].count = 0;
2011-11-01 07:09:55 +01:00
return result;
#endif
return -1;
2011-11-01 07:09:55 +01:00
}
/**
* @brief Set a callback function that is executed whenever
* the ADC double buffer swaps
* @note Not currently supported.
*/
void PIOS_ADC_SetCallback(ADCCallback new_function)
{
// XXX might be nice to do something here
}
#if defined(PIOS_INCLUDE_FREERTOS)
/**
* @brief Register a queue to add data to when downsampled
* @note Not currently supported.
*/
void PIOS_ADC_SetQueue(xQueueHandle data_queue)
{
// XXX it might make sense? to do this
}
#endif
/**
* @brief Return the address of the downsampled data buffer
* @note Not currently supported.
*/
float * PIOS_ADC_GetBuffer(void)
{
return NULL;
}
/**
* @brief Return the address of the raw data data buffer
* @note Not currently supported.
*/
int16_t * PIOS_ADC_GetRawBuffer(void)
{
return NULL;
}
/**
* @brief Return the amount of over sampling
* @note Not currently supported (always returns 1)
*/
uint8_t PIOS_ADC_GetOverSampling(void)
{
return 1;
}
/**
* @brief Set the fir coefficients. Takes as many samples as the
* current filter order plus one (normalization)
*
* @param new_filter Array of adc_oversampling floats plus one for the
* filter coefficients
* @note Not currently supported.
*/
void PIOS_ADC_SetFIRCoefficients(float * new_filter)
{
// not implemented
}
/**
* @brief accumulate the data for each of the channels.
*/
void accumulate(uint16_t *buffer, uint32_t count)
{
#if defined(PIOS_INCLUDE_ADC)
2011-11-01 07:09:55 +01:00
uint16_t *sp = buffer;
/*
* Accumulate sampled values.
*/
while (count--) {
for (int i = 0; i < PIOS_ADC_NUM_PINS; i++) {
accumulator[i].accumulator += *sp++;
accumulator[i].count++;
/*
* If the accumulator reaches half-full, rescale in order to
* make more space.
*/
if (accumulator[i].accumulator >= (1 << 31)) {
accumulator[i].accumulator /= 2;
accumulator[i].count /= 2;
}
}
}
#if defined(PIOS_INCLUDE_FREERTOS)
// XXX should do something with this
#if 0
if (pios_adc_devs[0].data_queue) {
static portBASE_TYPE xHigherPriorityTaskWoken;
xQueueSendFromISR(pios_adc_devs[0].data_queue, pios_adc_devs[0].downsampled_buffer, &xHigherPriorityTaskWoken);
portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);
}
#endif
#endif
#endif
2011-11-01 07:09:55 +01:00
// XXX callback?
}
/**
* @brief Interrupt on buffer flip.
*
* The hardware is done with the 'other' buffer, so we can pass it to the accumulator.
*/
void PIOS_ADC_DMA_Handler(void)
{
#if defined(PIOS_INCLUDE_ADC)
2011-11-01 07:09:55 +01:00
/* terminal count, buffer has flipped */
if (DMA_GetITStatus(pios_adc_cfg.dma.rx.channel, pios_adc_cfg.full_flag)) {
DMA_ClearITPendingBit(pios_adc_cfg.dma.rx.channel, pios_adc_cfg.full_flag);
/* accumulate results from the buffer that was just completed */
accumulate(&adc_raw_buffer[DMA_GetCurrentMemoryTarget(pios_adc_cfg.dma.rx.channel) ? 0 : 1][0][0],
PIOS_ADC_MAX_SAMPLES);
// static uint8_t outputcounter = 0;
// if (outputcounter == 0)
// {
// PIOS_COM_SendFormattedString(PIOS_COM_DEBUG, "adc vals %d %d %d %d %d %d\r\n", adc_raw_buffer[0][0][0], adc_raw_buffer[0][0][1], adc_raw_buffer[0][0][2], adc_raw_buffer[0][0][3], adc_raw_buffer[0][0][4], adc_raw_buffer[0][0][5]);
// }
// outputcounter++;
}
#endif
2011-11-01 07:09:55 +01:00
}
/**
* @}
* @}
*/