1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-10 18:24:11 +01:00
LibrePilot/flight/modules/Stabilization/innerloop.c

390 lines
15 KiB
C
Raw Normal View History

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup StabilizationModule Stabilization Module
* @brief Stabilization PID loops in an airframe type independent manner
* @note This object updates the @ref ActuatorDesired "Actuator Desired" based on the
* PID loops on the @ref AttitudeDesired "Attitude Desired" and @ref AttitudeState "Attitude State"
* @{
*
* @file innerloop.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2014.
* @brief Attitude stabilization module.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <openpilot.h>
#include <pid.h>
2014-10-02 21:28:43 +02:00
#include <sin_lookup.h>
#include <callbackinfo.h>
#include <ratedesired.h>
#include <actuatordesired.h>
#include <gyrostate.h>
#include <airspeedstate.h>
#include <stabilizationstatus.h>
#include <flightstatus.h>
#include <manualcontrolcommand.h>
#include <stabilizationbank.h>
2014-09-06 20:02:22 +02:00
#include <stabilizationdesired.h>
#include <actuatordesired.h>
#include <stabilization.h>
#include <virtualflybar.h>
#include <cruisecontrol.h>
// Private constants
#define CALLBACK_PRIORITY CALLBACK_PRIORITY_CRITICAL
#define UPDATE_EXPECTED (1.0f / PIOS_SENSOR_RATE)
#define UPDATE_MIN 1.0e-6f
#define UPDATE_MAX 1.0f
#define UPDATE_ALPHA 1.0e-2f
// Private variables
static DelayedCallbackInfo *callbackHandle;
static float gyro_filtered[3] = { 0, 0, 0 };
static float axis_lock_accum[3] = { 0, 0, 0 };
static uint8_t previous_mode[AXES] = { 255, 255, 255, 255 };
static PiOSDeltatimeConfig timeval;
static float speedScaleFactor = 1.0f;
// Private functions
static void stabilizationInnerloopTask();
static void GyroStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev);
#ifdef REVOLUTION
static void AirSpeedUpdatedCb(__attribute__((unused)) UAVObjEvent *ev);
#endif
void stabilizationInnerloopInit()
{
RateDesiredInitialize();
ActuatorDesiredInitialize();
GyroStateInitialize();
StabilizationStatusInitialize();
FlightStatusInitialize();
ManualControlCommandInitialize();
2014-09-06 20:02:22 +02:00
StabilizationDesiredInitialize();
ActuatorDesiredInitialize();
#ifdef REVOLUTION
AirspeedStateInitialize();
AirspeedStateConnectCallback(AirSpeedUpdatedCb);
#endif
PIOS_DELTATIME_Init(&timeval, UPDATE_EXPECTED, UPDATE_MIN, UPDATE_MAX, UPDATE_ALPHA);
callbackHandle = PIOS_CALLBACKSCHEDULER_Create(&stabilizationInnerloopTask, CALLBACK_PRIORITY, CBTASK_PRIORITY, CALLBACKINFO_RUNNING_STABILIZATION1, STACK_SIZE_BYTES);
GyroStateConnectCallback(GyroStateUpdatedCb);
// schedule dead calls every FAILSAFE_TIMEOUT_MS to have the watchdog cleared
PIOS_CALLBACKSCHEDULER_Schedule(callbackHandle, FAILSAFE_TIMEOUT_MS, CALLBACK_UPDATEMODE_LATER);
}
2014-09-06 20:02:22 +02:00
static float get_pid_scale_source_value()
{
float value;
switch (stabSettings.stabBank.ThrustPIDScaleSource) {
case STABILIZATIONBANK_THRUSTPIDSCALESOURCE_MANUALCONTROLTHROTTLE:
2014-09-06 20:02:22 +02:00
ManualControlCommandThrottleGet(&value);
break;
case STABILIZATIONBANK_THRUSTPIDSCALESOURCE_STABILIZATIONDESIREDTHRUST:
2014-09-06 20:02:22 +02:00
StabilizationDesiredThrustGet(&value);
break;
case STABILIZATIONBANK_THRUSTPIDSCALESOURCE_ACTUATORDESIREDTHRUST:
2014-09-06 20:02:22 +02:00
ActuatorDesiredThrustGet(&value);
break;
default:
ActuatorDesiredThrustGet(&value);
2014-09-06 20:02:22 +02:00
break;
}
if (value < 0) {
value = 0.0f;
}
return value;
}
typedef struct pid_curve_scaler {
float x;
pointf points[5];
} pid_curve_scaler;
static float pid_curve_value(const pid_curve_scaler *scaler)
{
float y = y_on_curve(scaler->x, scaler->points, sizeof(scaler->points) / sizeof(scaler->points[0]));
return 1.0f + (IS_REAL(y) ? y : 0.0f);
}
static pid_scaler create_pid_scaler(int axis)
{
pid_scaler scaler;
// Always scaled with the this.
scaler.p = scaler.i = scaler.d = speedScaleFactor;
if (stabSettings.thrust_pid_scaling_enabled[axis][0]
|| stabSettings.thrust_pid_scaling_enabled[axis][1]
|| stabSettings.thrust_pid_scaling_enabled[axis][2]) {
const pid_curve_scaler curve_scaler = {
.x = get_pid_scale_source_value(),
.points = {
{ 0.00f, stabSettings.stabBank.ThrustPIDScaleCurve[0] },
{ 0.25f, stabSettings.stabBank.ThrustPIDScaleCurve[1] },
{ 0.50f, stabSettings.stabBank.ThrustPIDScaleCurve[2] },
{ 0.75f, stabSettings.stabBank.ThrustPIDScaleCurve[3] },
{ 1.00f, stabSettings.stabBank.ThrustPIDScaleCurve[4] }
}
};
float curve_value = pid_curve_value(&curve_scaler);
if (stabSettings.thrust_pid_scaling_enabled[axis][0]) {
scaler.p *= curve_value;
}
if (stabSettings.thrust_pid_scaling_enabled[axis][1]) {
scaler.i *= curve_value;
}
if (stabSettings.thrust_pid_scaling_enabled[axis][2]) {
scaler.d *= curve_value;
}
}
return scaler;
2014-09-06 20:02:22 +02:00
}
/**
* WARNING! This callback executes with critical flight control priority every
* time a gyroscope update happens do NOT put any time consuming calculations
* in this loop unless they really have to execute with every gyro update
*/
static void stabilizationInnerloopTask()
{
// watchdog and error handling
{
#ifdef PIOS_INCLUDE_WDG
PIOS_WDG_UpdateFlag(PIOS_WDG_STABILIZATION);
#endif
bool warn = false;
bool error = false;
bool crit = false;
// check if outer loop keeps executing
if (stabSettings.monitor.rateupdates > -64) {
stabSettings.monitor.rateupdates--;
}
if (stabSettings.monitor.rateupdates < -(2 * OUTERLOOP_SKIPCOUNT)) {
// warning if rate loop skipped more than 2 execution
warn = true;
}
if (stabSettings.monitor.rateupdates < -(4 * OUTERLOOP_SKIPCOUNT)) {
// critical if rate loop skipped more than 4 executions
crit = true;
}
// check if gyro keeps updating
if (stabSettings.monitor.gyroupdates < 1) {
// error if gyro didn't update at all!
error = true;
}
if (stabSettings.monitor.gyroupdates > 1) {
// warning if we missed a gyro update
warn = true;
}
if (stabSettings.monitor.gyroupdates > 3) {
// critical if we missed 3 gyro updates
crit = true;
}
stabSettings.monitor.gyroupdates = 0;
if (crit) {
AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION, SYSTEMALARMS_ALARM_CRITICAL);
} else if (error) {
AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION, SYSTEMALARMS_ALARM_ERROR);
} else if (warn) {
AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION, SYSTEMALARMS_ALARM_WARNING);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_STABILIZATION);
}
}
RateDesiredData rateDesired;
ActuatorDesiredData actuator;
StabilizationStatusInnerLoopData enabled;
FlightStatusControlChainData cchain;
RateDesiredGet(&rateDesired);
ActuatorDesiredGet(&actuator);
StabilizationStatusInnerLoopGet(&enabled);
FlightStatusControlChainGet(&cchain);
float *rate = &rateDesired.Roll;
float *actuatorDesiredAxis = &actuator.Roll;
int t;
float dT;
dT = PIOS_DELTATIME_GetAverageSeconds(&timeval);
for (t = 0; t < AXES; t++) {
bool reinit = (StabilizationStatusInnerLoopToArray(enabled)[t] != previous_mode[t]);
previous_mode[t] = StabilizationStatusInnerLoopToArray(enabled)[t];
if (t < STABILIZATIONSTATUS_INNERLOOP_THRUST) {
if (reinit) {
stabSettings.innerPids[t].iAccumulator = 0;
}
switch (StabilizationStatusInnerLoopToArray(enabled)[t]) {
case STABILIZATIONSTATUS_INNERLOOP_VIRTUALFLYBAR:
stabilization_virtual_flybar(gyro_filtered[t], rate[t], &actuatorDesiredAxis[t], dT, reinit, t, &stabSettings.settings);
break;
case STABILIZATIONSTATUS_INNERLOOP_AXISLOCK:
if (fabsf(rate[t]) > stabSettings.settings.MaxAxisLockRate) {
// While getting strong commands act like rate mode
axis_lock_accum[t] = 0;
} else {
// For weaker commands or no command simply attitude lock (almost) on no gyro change
axis_lock_accum[t] += (rate[t] - gyro_filtered[t]) * dT;
axis_lock_accum[t] = boundf(axis_lock_accum[t], -stabSettings.settings.MaxAxisLock, stabSettings.settings.MaxAxisLock);
rate[t] = axis_lock_accum[t] * stabSettings.settings.AxisLockKp;
}
// IMPORTANT: deliberately no "break;" here, execution continues with regular RATE control loop to avoid code duplication!
// keep order as it is, RATE must follow!
case STABILIZATIONSTATUS_INNERLOOP_RATE:
// limit rate to maximum configured limits (once here instead of 5 times in outer loop)
rate[t] = boundf(rate[t],
-StabilizationBankMaximumRateToArray(stabSettings.stabBank.MaximumRate)[t],
StabilizationBankMaximumRateToArray(stabSettings.stabBank.MaximumRate)[t]
);
pid_scaler scaler = create_pid_scaler(t);
actuatorDesiredAxis[t] = pid_apply_setpoint(&stabSettings.innerPids[t], &scaler, rate[t], gyro_filtered[t], dT);
break;
2014-10-02 21:28:43 +02:00
case STABILIZATIONSTATUS_INNERLOOP_ACRO:
{
float stickinput[3];
stickinput[0] = boundf(rate[0] / stabSettings.stabBank.ManualRate.Roll, -1.0f, 1.0f);
stickinput[1] = boundf(rate[1] / stabSettings.stabBank.ManualRate.Pitch, -1.0f, 1.0f);
stickinput[2] = boundf(rate[2] / stabSettings.stabBank.ManualRate.Yaw, -1.0f, 1.0f);
rate[t] = boundf(rate[t],
-StabilizationBankMaximumRateToArray(stabSettings.stabBank.MaximumRate)[t],
StabilizationBankMaximumRateToArray(stabSettings.stabBank.MaximumRate)[t]
);
pid_scaler ascaler = create_pid_scaler(t);
ascaler.i *= boundf(1.0f - (1.5f * fabsf(stickinput[t])), 0.0f, 1.0f); // this prevents Integral from getting too high while controlled manually
2014-10-02 21:28:43 +02:00
float arate = pid_apply_setpoint(&stabSettings.innerPids[t], &ascaler, rate[t], gyro_filtered[t], dT);
float factor = fabsf(stickinput[t]) * stabSettings.stabBank.AcroInsanityFactor;
actuatorDesiredAxis[t] = factor * stickinput[t] + (1.0f - factor) * arate;
2014-10-02 21:28:43 +02:00
}
break;
case STABILIZATIONSTATUS_INNERLOOP_DIRECT:
default:
actuatorDesiredAxis[t] = rate[t];
break;
}
} else {
switch (StabilizationStatusInnerLoopToArray(enabled)[t]) {
case STABILIZATIONSTATUS_INNERLOOP_CRUISECONTROL:
actuatorDesiredAxis[t] = cruisecontrol_apply_factor(rate[t]);
break;
case STABILIZATIONSTATUS_INNERLOOP_DIRECT:
default:
actuatorDesiredAxis[t] = rate[t];
break;
}
}
actuatorDesiredAxis[t] = boundf(actuatorDesiredAxis[t], -1.0f, 1.0f);
}
actuator.UpdateTime = dT * 1000;
if (cchain.Stabilization == FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
ActuatorDesiredSet(&actuator);
} else {
// Force all axes to reinitialize when engaged
for (t = 0; t < AXES; t++) {
previous_mode[t] = 255;
}
}
2014-10-02 21:28:43 +02:00
2014-10-02 22:42:08 +02:00
if (stabSettings.stabBank.EnablePiroComp == STABILIZATIONBANK_ENABLEPIROCOMP_TRUE && stabSettings.innerPids[0].iLim > 1e-3f && stabSettings.innerPids[1].iLim > 1e-3f) {
2014-10-02 21:28:43 +02:00
// attempted piro compensation - rotate pitch and yaw integrals (experimental)
2014-10-02 23:38:06 +02:00
float angleYaw = DEG2RAD(gyro_filtered[2] * dT);
float sinYaw = sinf(angleYaw);
float cosYaw = cosf(angleYaw);
2014-10-02 21:28:43 +02:00
float rollAcc = stabSettings.innerPids[0].iAccumulator / stabSettings.innerPids[0].iLim;
float pitchAcc = stabSettings.innerPids[1].iAccumulator / stabSettings.innerPids[1].iLim;
2014-10-02 23:38:06 +02:00
stabSettings.innerPids[0].iAccumulator = stabSettings.innerPids[0].iLim * (cosYaw * rollAcc + sinYaw * pitchAcc);
stabSettings.innerPids[1].iAccumulator = stabSettings.innerPids[1].iLim * (cosYaw * pitchAcc - sinYaw * rollAcc);
2014-10-02 21:28:43 +02:00
}
{
uint8_t armed;
FlightStatusArmedGet(&armed);
float throttleDesired;
ManualControlCommandThrottleGet(&throttleDesired);
if (armed != FLIGHTSTATUS_ARMED_ARMED ||
((stabSettings.settings.LowThrottleZeroIntegral == STABILIZATIONSETTINGS_LOWTHROTTLEZEROINTEGRAL_TRUE) && throttleDesired < 0)) {
// Force all axes to reinitialize when engaged
for (t = 0; t < AXES; t++) {
previous_mode[t] = 255;
}
}
}
PIOS_CALLBACKSCHEDULER_Schedule(callbackHandle, FAILSAFE_TIMEOUT_MS, CALLBACK_UPDATEMODE_LATER);
}
static void GyroStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
GyroStateData gyroState;
GyroStateGet(&gyroState);
gyro_filtered[0] = gyro_filtered[0] * stabSettings.gyro_alpha + gyroState.x * (1 - stabSettings.gyro_alpha);
gyro_filtered[1] = gyro_filtered[1] * stabSettings.gyro_alpha + gyroState.y * (1 - stabSettings.gyro_alpha);
gyro_filtered[2] = gyro_filtered[2] * stabSettings.gyro_alpha + gyroState.z * (1 - stabSettings.gyro_alpha);
PIOS_CALLBACKSCHEDULER_Dispatch(callbackHandle);
stabSettings.monitor.gyroupdates++;
}
#ifdef REVOLUTION
static void AirSpeedUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
// Scale PID coefficients based on current airspeed estimation - needed for fixed wing planes
AirspeedStateData airspeedState;
AirspeedStateGet(&airspeedState);
if (stabSettings.settings.ScaleToAirspeed < 0.1f || airspeedState.CalibratedAirspeed < 0.1f) {
// feature has been turned off
speedScaleFactor = 1.0f;
} else {
// scale the factor to be 1.0 at the specified airspeed (for example 10m/s) but scaled by 1/speed^2
speedScaleFactor = boundf((stabSettings.settings.ScaleToAirspeed * stabSettings.settings.ScaleToAirspeed) / (airspeedState.CalibratedAirspeed * airspeedState.CalibratedAirspeed),
stabSettings.settings.ScaleToAirspeedLimits.Min,
stabSettings.settings.ScaleToAirspeedLimits.Max);
}
}
#endif
/**
* @}
* @}
*/