1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-22 07:52:12 +01:00

278 lines
9.1 KiB
C
Raw Normal View History

/**
******************************************************************************
*
* @file actuator.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Actuator module. Drives the actuators (servos, motors etc).
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "openpilot.h"
#include "actuator.h"
#include "actuatorsettings.h"
#include "systemsettings.h"
#include "actuatordesired.h"
#include "actuatorcommand.h"
// Private constants
#define MAX_QUEUE_SIZE 2
#define STACK_SIZE configMINIMAL_STACK_SIZE
#define TASK_PRIORITY (tskIDLE_PRIORITY+4)
#define FAILSAFE_TIMEOUT_MS 100
// Private types
// Private variables
static xQueueHandle queue;
static xTaskHandle taskHandle;
// Private functions
static void actuatorTask(void* parameters);
static int32_t mixerFixedWing(const ActuatorSettingsData* settings, const ActuatorDesiredData* desired, ActuatorCommandData* cmd);
static int32_t mixerFixedWingElevon(const ActuatorSettingsData* settings, const ActuatorDesiredData* desired, ActuatorCommandData* cmd);
static int32_t mixerVTOL(const ActuatorSettingsData* settings, const ActuatorDesiredData* desired, ActuatorCommandData* cmd);
static int16_t scaleChannel(float value, int16_t max, int16_t min, int16_t neutral);
static void setFailsafe();
/**
* Module initialization
*/
int32_t ActuatorInitialize()
{
// Create object queue
queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent));
// Listen for ExampleObject1 updates
ActuatorDesiredConnectQueue(queue);
// Start main task
xTaskCreate(actuatorTask, (signed char*)"Actuator", STACK_SIZE, NULL, TASK_PRIORITY, &taskHandle);
return 0;
}
/**
* Main module task
*/
static void actuatorTask(void* parameters)
{
UAVObjEvent ev;
ActuatorSettingsData settings;
SystemSettingsData sysSettings;
ActuatorDesiredData desired;
ActuatorCommandData cmd;
// Set servo update frequency (done only on start-up)
ActuatorSettingsGet(&settings);
PIOS_Servo_SetHz(settings.ChannelUpdateFreq[0], settings.ChannelUpdateFreq[1]);
// Go to the neutral (failsafe) values until an ActuatorDesired update is received
setFailsafe();
// Main task loop
while (1)
{
// Wait until the ActuatorDesired object is updated, if a timeout then go to failsafe
if ( xQueueReceive(queue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE )
{
setFailsafe();
continue;
}
// Read settings
ActuatorSettingsGet(&settings);
SystemSettingsGet(&sysSettings);
// Reset ActuatorCommand to neutral values
for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n)
{
cmd.Channel[n] = settings.ChannelNeutral[n];
}
// Read input object
ActuatorDesiredGet(&desired);
// Call appropriate mixer depending on the airframe configuration
if ( sysSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWING )
{
if ( mixerFixedWing(&settings, &desired, &cmd) == -1 )
{
AlarmsSet(SYSTEMALARMS_ALARM_ACTUATOR, SYSTEMALARMS_ALARM_CRITICAL);
}
else
{
AlarmsClear(SYSTEMALARMS_ALARM_ACTUATOR);
}
}
else if ( sysSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGELEVON )
{
if ( mixerFixedWingElevon(&settings, &desired, &cmd) == -1 )
{
AlarmsSet(SYSTEMALARMS_ALARM_ACTUATOR, SYSTEMALARMS_ALARM_CRITICAL);
}
else
{
AlarmsClear(SYSTEMALARMS_ALARM_ACTUATOR);
}
}
else if ( sysSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_VTOL )
{
if ( mixerVTOL(&settings, &desired, &cmd) == -1 )
{
AlarmsSet(SYSTEMALARMS_ALARM_ACTUATOR, SYSTEMALARMS_ALARM_CRITICAL);
}
else
{
AlarmsClear(SYSTEMALARMS_ALARM_ACTUATOR);
}
}
// Update servo outputs
for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n)
{
PIOS_Servo_Set( n+1, cmd.Channel[n] );
}
// Update output object
ActuatorCommandSet(&cmd);
}
}
/**
* Mixer for Fixed Wing airframes. Converts desired roll,pitch,yaw and throttle to servo outputs.
* @return -1 if error, 0 if success
*/
static int32_t mixerFixedWing(const ActuatorSettingsData* settings, const ActuatorDesiredData* desired, ActuatorCommandData* cmd)
{
// Check settings
if ( settings->FixedWingPitch1 == ACTUATORSETTINGS_FIXEDWINGPITCH1_NONE ||
settings->FixedWingRoll1 == ACTUATORSETTINGS_FIXEDWINGROLL1_NONE ||
settings->FixedWingThrottle == ACTUATORSETTINGS_FIXEDWINGTHROTTLE_NONE )
{
return -1;
}
// Set pitch servo command
cmd->Channel[ settings->FixedWingPitch1 ] = scaleChannel(desired->Pitch, settings->ChannelMax[ settings->FixedWingPitch1 ],
settings->ChannelMin[ settings->FixedWingPitch1 ],
settings->ChannelNeutral[ settings->FixedWingPitch1 ]);
if ( settings->FixedWingPitch2 != ACTUATORSETTINGS_FIXEDWINGPITCH2_NONE )
{
cmd->Channel[ settings->FixedWingPitch2 ] = scaleChannel(desired->Pitch, settings->ChannelMax[ settings->FixedWingPitch2 ],
settings->ChannelMin[ settings->FixedWingPitch2 ],
settings->ChannelNeutral[ settings->FixedWingPitch2 ]);
}
// Set roll servo command
cmd->Channel[ settings->FixedWingRoll1 ] = scaleChannel(desired->Roll, settings->ChannelMax[ settings->FixedWingRoll1 ],
settings->ChannelMin[ settings->FixedWingRoll1 ],
settings->ChannelNeutral[ settings->FixedWingRoll1 ]);
if ( settings->FixedWingRoll2 != ACTUATORSETTINGS_FIXEDWINGROLL2_NONE )
{
cmd->Channel[ settings->FixedWingRoll2 ] = scaleChannel(desired->Roll, settings->ChannelMax[ settings->FixedWingRoll2 ],
settings->ChannelMin[ settings->FixedWingRoll2 ],
settings->ChannelNeutral[ settings->FixedWingRoll2 ]);
}
// Set yaw servo command
if ( settings->FixedWingYaw != ACTUATORSETTINGS_FIXEDWINGYAW_NONE )
{
cmd->Channel[ settings->FixedWingYaw ] = scaleChannel(desired->Yaw, settings->ChannelMax[ settings->FixedWingYaw ],
settings->ChannelMin[ settings->FixedWingYaw ],
settings->ChannelNeutral[ settings->FixedWingYaw ]);
}
// Set throttle servo command
cmd->Channel[ settings->FixedWingThrottle ] = scaleChannel(desired->Throttle, settings->ChannelMax[ settings->FixedWingThrottle ],
settings->ChannelMin[ settings->FixedWingThrottle ],
settings->ChannelNeutral[ settings->FixedWingThrottle ]);
// Done
return 0;
}
/**
* Mixer for Fixed Wing airframes with elevons. Converts desired roll,pitch,yaw and throttle to servo outputs.
* @return -1 if error, 0 if success
*/
static int32_t mixerFixedWingElevon(const ActuatorSettingsData* settings, const ActuatorDesiredData* desired, ActuatorCommandData* cmd)
{
// TODO: Implement elevon mixer
return -1;
}
/**
* Mixer for VTOL (quads and octo copters). Converts desired roll,pitch,yaw and throttle to servo outputs.
* @return -1 if error, 0 if success
*/
static int32_t mixerVTOL(const ActuatorSettingsData* settings, const ActuatorDesiredData* desired, ActuatorCommandData* cmd)
{
// TODO: Implement VTOL mixer
return -1;
}
/**
* Convert channel from -1/+1 to servo pulse duration in microseconds
*/
static int16_t scaleChannel(float value, int16_t max, int16_t min, int16_t neutral)
{
int16_t valueScaled;
// Scale
if ( value >= 0.0)
{
valueScaled = (int16_t)(value*((float)(max-neutral))) + neutral;
}
else
{
valueScaled = (int16_t)(value*((float)(neutral-min))) + neutral;
}
return valueScaled;
}
/**
* Set actuator output to the neutral values (failsafe)
*/
static void setFailsafe()
{
ActuatorSettingsData settings;
ActuatorCommandData cmd;
// Read settings
ActuatorSettingsGet(&settings);
// Reset ActuatorCommand to neutral values
for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n)
{
cmd.Channel[n] = settings.ChannelNeutral[n];
}
// Set alarm
AlarmsSet(SYSTEMALARMS_ALARM_ACTUATOR, SYSTEMALARMS_ALARM_CRITICAL);
// Update servo outputs
for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n)
{
PIOS_Servo_Set( n+1, cmd.Channel[n] );
}
// Update output object
ActuatorCommandSet(&cmd);
}