1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-11-30 08:24:11 +01:00
LibrePilot/flight/AHRS/ahrs.c

1077 lines
31 KiB
C
Raw Normal View History

/**
******************************************************************************
* @addtogroup AHRS AHRS Control
* @brief The AHRS Modules perform
*
* @{
* @addtogroup AHRS_Main
* @brief Main function which does the hardware dependent stuff
* @{
*
*
* @file ahrs.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief INSGPS Test Program
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* OpenPilot Includes */
#include "ahrs.h"
#include "ahrs_adc.h"
#include "ahrs_timer.h"
#include "pios_opahrs_proto.h"
#include "ahrs_fsm.h" /* lfsm_state */
#include "insgps.h"
#include "CoordinateConversions.h"
volatile enum algorithms ahrs_algorithm;
// For debugging the raw sensors
//#define DUMP_RAW
//#define DUMP_FRIENDLY
//#define DUMP_EKF
#ifdef DUMP_EKF
#define NUMX 13 // number of states, X is the state vector
#define NUMW 9 // number of plant noise inputs, w is disturbance noise vector
#define NUMV 10 // number of measurements, v is the measurement noise vector
#define NUMU 6 // number of deterministic inputs, U is the input vector
extern float F[NUMX][NUMX], G[NUMX][NUMW], H[NUMV][NUMX]; // linearized system matrices
extern float P[NUMX][NUMX], X[NUMX]; // covariance matrix and state vector
extern float Q[NUMW], R[NUMV]; // input noise and measurement noise variances
extern float K[NUMX][NUMV]; // feedback gain matrix
#endif
/**
* @addtogroup AHRS_Definitions
* @{
*/
// Currently analog acquistion hard coded at 480 Hz
#define ADC_RATE (4*480)
#define EKF_RATE (ADC_RATE / adc_oversampling)
#define VDD 3.3 /* supply voltage for ADC */
#define FULL_RANGE 4096 /* 12 bit ADC */
#define ACCEL_RANGE 2 /* adjustable by FS input */
#define ACCEL_GRAVITY 9.81 /* m s^-1 */
#define ACCEL_SENSITIVITY ( VDD / 5 )
#define ACCEL_SCALE ( (VDD / FULL_RANGE) / ACCEL_SENSITIVITY * 2 / ACCEL_RANGE * ACCEL_GRAVITY )
#define ACCEL_OFFSET -2048
#define GYRO_SENSITIVITY ( 2.0 / 1000 ) /* 2 mV / (deg s^-1) */
#define RAD_PER_DEGREE ( M_PI / 180 )
#define GYRO_SCALE ( (VDD / FULL_RANGE) / GYRO_SENSITIVITY * RAD_PER_DEGREE )
#define GYRO_OFFSET -1675 /* From data sheet, zero accel output is 1.35 v */
#define MAX_IDLE_COUNT 65e3
/**
* @}
*/
/**
* @addtogroup AHRS_Local Local Variables
* @{
*/
struct mag_sensor {
uint8_t id[4];
uint8_t updated;
struct {
int16_t axis[3];
} raw;
};
struct accel_sensor {
struct {
uint16_t x;
uint16_t y;
uint16_t z;
} raw;
struct {
float x;
float y;
float z;
} filtered;
};
struct gyro_sensor {
struct {
uint16_t x;
uint16_t y;
uint16_t z;
} raw;
struct {
float x;
float y;
float z;
} filtered;
struct {
uint16_t xy;
uint16_t z;
} temp;
};
struct attitude_solution {
struct {
float q1;
float q2;
float q3;
float q4;
} quaternion;
};
struct altitude_sensor {
float altitude;
bool updated;
};
struct gps_sensor {
float NED[3];
float heading;
float groundspeed;
float quality;
bool updated;
};
struct mag_sensor mag_data;
volatile struct accel_sensor accel_data;
volatile struct gyro_sensor gyro_data;
volatile struct altitude_sensor altitude_data;
struct gps_sensor gps_data;
volatile struct attitude_solution attitude_data;
/**
* @}
*/
/* Function Prototypes */
void process_spi_request(void);
void downsample_data(void);
void calibrate_sensors(void);
void converge_insgps();
volatile uint32_t last_counter_idle_start = 0;
volatile uint32_t last_counter_idle_end = 0;
volatile uint32_t idle_counts;
volatile uint32_t running_counts;
uint32_t counter_val;
/**
* @addtogroup AHRS_Global_Data AHRS Global Data
* @{
* Public data. Used by both EKF and the sender
*/
//! Accelerometer variance after filter from OP or calibrate_sensors
float accel_var[3] = { 1, 1, 1 };
//! Gyro variance after filter from OP or calibrate sensors
float gyro_var[3] = { 1, 1, 1 };
//! Accelerometer scale after calibration
float accel_scale[3] = { ACCEL_SCALE, ACCEL_SCALE, ACCEL_SCALE };
//! Gyro scale after calibration
float gyro_scale[3] = { GYRO_SCALE, GYRO_SCALE, GYRO_SCALE };
//! Magnetometer variance from OP or calibrate sensors
float mag_var[3] = { 1, 1, 1 };
//! Accelerometer bias from OP or calibrate sensors
int16_t accel_bias[3] = { ACCEL_OFFSET, ACCEL_OFFSET, ACCEL_OFFSET };
//! Gyroscope bias term from OP or calibrate sensors
int16_t gyro_bias[3] = { 0, 0, 0 };
//! Magnetometer bias (direction) from OP or calibrate sensors
int16_t mag_bias[3] = { 0, 0, 0 };
//! Filter coefficients used in decimation. Limited order so filter can't run between samples
int16_t fir_coeffs[50];
//! Home location in ECEF coordinates
double BaseECEF[3] = { 0, 0, 0 };
//! Rotation matrix from LLA to Rne
float Rne[3][3];
//! Indicates the communications are requesting a calibration
uint8_t calibration_pending = FALSE;
//! The oversampling rate, ekf is 2k / this
static uint8_t adc_oversampling = 25;
/**
* @}
*/
/**
* @brief AHRS Main function
*/
int main()
{
float gyro[3], accel[3], mag[3];
float vel[3] = { 0, 0, 0 };
gps_data.quality = -1;
ahrs_algorithm = INSGPS_Algo;
/* Brings up System using CMSIS functions, enables the LEDs. */
PIOS_SYS_Init();
/* Delay system */
PIOS_DELAY_Init();
/* Communication system */
PIOS_COM_Init();
/* ADC system */
AHRS_ADC_Config(adc_oversampling);
/* Setup the Accelerometer FS (Full-Scale) GPIO */
PIOS_GPIO_Enable(0);
SET_ACCEL_2G;
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
/* Magnetic sensor system */
PIOS_I2C_Init();
PIOS_HMC5843_Init();
// Get 3 ID bytes
strcpy((char *)mag_data.id, "ZZZ");
PIOS_HMC5843_ReadID(mag_data.id);
#endif
/* SPI link to master */
PIOS_SPI_Init();
lfsm_init();
ahrs_state = AHRS_IDLE;
/* Use simple averaging filter for now */
for (int i = 0; i < adc_oversampling; i++)
fir_coeffs[i] = 1;
fir_coeffs[adc_oversampling] = adc_oversampling;
if (ahrs_algorithm == INSGPS_Algo) {
// compute a data point and initialize INS
downsample_data();
converge_insgps();
}
#ifdef DUMP_RAW
int previous_conversion;
while (1) {
int result;
uint8_t framing[16] =
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15 };
while (ahrs_state != AHRS_DATA_READY) ;
ahrs_state = AHRS_PROCESSING;
if (total_conversion_blocks != previous_conversion + 1)
PIOS_LED_On(LED1); // not keeping up
else
PIOS_LED_Off(LED1);
previous_conversion = total_conversion_blocks;
downsample_data();
ahrs_state = AHRS_IDLE;;
// Dump raw buffer
result = PIOS_COM_SendBuffer(PIOS_COM_AUX, &framing[0], 16); // framing header
result += PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & total_conversion_blocks, sizeof(total_conversion_blocks)); // dump block number
result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX,
(uint8_t *) & valid_data_buffer[0],
ADC_OVERSAMPLE *
ADC_CONTINUOUS_CHANNELS *
sizeof(valid_data_buffer[0]));
if (result == 0)
PIOS_LED_Off(LED1);
else {
PIOS_LED_On(LED1);
}
}
#endif
timer_start();
/******************* Main EKF loop ****************************/
while (1) {
// Alive signal
if ((total_conversion_blocks % 100) == 0)
PIOS_LED_Toggle(LED1);
if (calibration_pending) {
calibrate_sensors();
calibration_pending = FALSE;
}
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
// Get magnetic readings
if (PIOS_HMC5843_NewDataAvailable()) {
PIOS_HMC5843_ReadMag(mag_data.raw.axis);
mag_data.updated = 1;
}
#endif
// Delay for valid data
counter_val = timer_count();
running_counts = counter_val - last_counter_idle_end;
last_counter_idle_start = counter_val;
while (ahrs_state != AHRS_DATA_READY) ;
counter_val = timer_count();
idle_counts = counter_val - last_counter_idle_start;
last_counter_idle_end = counter_val;
ahrs_state = AHRS_PROCESSING;
downsample_data();
/***************** SEND BACK SOME RAW DATA ************************/
// Hacky - grab one sample from buffer to populate this. Need to send back
// all raw data if it's happening
accel_data.raw.x = valid_data_buffer[0];
accel_data.raw.y = valid_data_buffer[2];
accel_data.raw.z = valid_data_buffer[4];
gyro_data.raw.x = valid_data_buffer[1];
gyro_data.raw.y = valid_data_buffer[3];
gyro_data.raw.z = valid_data_buffer[5];
gyro_data.temp.xy = valid_data_buffer[6];
gyro_data.temp.z = valid_data_buffer[7];
if (ahrs_algorithm == INSGPS_Algo) {
/******************** INS ALGORITHM **************************/
// format data for INS algo
gyro[0] = gyro_data.filtered.x;
gyro[1] = gyro_data.filtered.y;
gyro[2] = gyro_data.filtered.z;
accel[0] = accel_data.filtered.x,
accel[1] = accel_data.filtered.y,
accel[2] = accel_data.filtered.z,
// Note: The magnetometer driver returns registers X,Y,Z from the chip which are
// (left, backward, up). Remapping to (forward, right, down).
mag[0] = -(mag_data.raw.axis[1] - mag_bias[1]);
mag[1] = -(mag_data.raw.axis[0] - mag_bias[0]);
mag[2] = -(mag_data.raw.axis[2] - mag_bias[2]);
INSStatePrediction(gyro, accel,
1 / (float)EKF_RATE);
process_spi_request();
INSCovariancePrediction(1 / (float)EKF_RATE);
if (gps_data.updated && gps_data.quality == 1) {
// Compute velocity from Heading and groundspeed
vel[0] =
gps_data.groundspeed *
cos(gps_data.heading * M_PI / 180);
vel[1] =
gps_data.groundspeed *
sin(gps_data.heading * M_PI / 180);
// Completely unprincipled way to make the position variance
// increase as data quality decreases but keep it bounded
// Variance becomes 40 m^2 and 40 (m/s)^2 when no gps
INSSetPosVelVar(0.004);
if (gps_data.updated) {
//TOOD: add check for altitude updates
FullCorrection(mag, gps_data.NED,
vel,
altitude_data.
altitude);
gps_data.updated = 0;
} else {
GpsBaroCorrection(gps_data.NED,
vel,
altitude_data.
altitude);
}
gps_data.updated = false;
mag_data.updated = 0;
} else if (gps_data.quality != -1
&& mag_data.updated == 1) {
MagCorrection(mag); // only trust mags if outdoors
mag_data.updated = 0;
} else {
// Indoors, update with zero position and velocity and high covariance
INSSetPosVelVar(0.1);
vel[0] = 0;
vel[1] = 0;
vel[2] = 0;
VelBaroCorrection(vel,
altitude_data.altitude);
// MagVelBaroCorrection(mag,vel,altitude_data.altitude); // only trust mags if outdoors
}
attitude_data.quaternion.q1 = Nav.q[0];
attitude_data.quaternion.q2 = Nav.q[1];
attitude_data.quaternion.q3 = Nav.q[2];
attitude_data.quaternion.q4 = Nav.q[3];
} else if (ahrs_algorithm == SIMPLE_Algo) {
float q[4];
float rpy[3];
/***************** SIMPLE ATTITUDE FROM NORTH AND ACCEL ************/
/* Very simple computation of the heading and attitude from accel. */
rpy[2] =
atan2((mag_data.raw.axis[0]),
(-1 * mag_data.raw.axis[1])) * 180 /
M_PI;
rpy[1] =
atan2(accel_data.filtered.x,
accel_data.filtered.z) * 180 / M_PI;
rpy[0] =
atan2(accel_data.filtered.y,
accel_data.filtered.z) * 180 / M_PI;
RPY2Quaternion(rpy, q);
attitude_data.quaternion.q1 = q[0];
attitude_data.quaternion.q2 = q[1];
attitude_data.quaternion.q3 = q[2];
attitude_data.quaternion.q4 = q[3];
process_spi_request();
}
ahrs_state = AHRS_IDLE;
#ifdef DUMP_FRIENDLY
PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX, "b: %d\r\n",
total_conversion_blocks);
PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX,"a: %d %d %d\r\n",
(int16_t) (accel_data.filtered.x * 1000),
(int16_t) (accel_data.filtered.y * 1000),
(int16_t) (accel_data.filtered.z * 1000));
PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX, "g: %d %d %d\r\n",
(int16_t) (gyro_data.filtered.x * 1000),
(int16_t) (gyro_data.filtered.y * 1000),
(int16_t) (gyro_data.filtered.z * 1000));
PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX,"m: %d %d %d\r\n",
mag_data.raw.axis[0],
mag_data.raw.axis[1],
mag_data.raw.axis[2]);
PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX,
"q: %d %d %d %d\r\n",
(int16_t) (Nav.q[0] * 1000),
(int16_t) (Nav.q[1] * 1000),
(int16_t) (Nav.q[2] * 1000),
(int16_t) (Nav.q[3] * 1000));
#endif
#ifdef DUMP_EKF
uint8_t framing[16] =
{ 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
0 };
extern float F[NUMX][NUMX], G[NUMX][NUMW], H[NUMV][NUMX]; // linearized system matrices
extern float P[NUMX][NUMX], X[NUMX]; // covariance matrix and state vector
extern float Q[NUMW], R[NUMV]; // input noise and measurement noise variances
extern float K[NUMX][NUMV]; // feedback gain matrix
// Dump raw buffer
int8_t result;
result = PIOS_COM_SendBuffer(PIOS_COM_AUX, &framing[0], 16); // framing header
result += PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & total_conversion_blocks, sizeof(total_conversion_blocks)); // dump block number
result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX,
(uint8_t *) & mag_data,
sizeof(mag_data));
result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX,
(uint8_t *) & gps_data,
sizeof(gps_data));
result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX,
(uint8_t *) & accel_data,
sizeof(accel_data));
result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX,
(uint8_t *) & gyro_data,
sizeof(gyro_data));
result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & Q,
sizeof(float) * NUMX * NUMX);
result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & K,
sizeof(float) * NUMX * NUMV);
result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & X,
sizeof(float) * NUMX * NUMX);
if (result == 0)
PIOS_LED_Off(LED1);
else {
PIOS_LED_On(LED1);
}
#endif
}
return 0;
}
/**
* @brief Downsample the analog data
* @return none
*
* Tried to make as much of the filtering fixed point when possible. Need to account
* for offset for each sample before the multiplication if filter not a boxcar. Could
* precompute fixed offset as sum[fir_coeffs[i]] * ACCEL_OFFSET. Puts data into global
* data structures @ref accel_data and @ref gyro_data.
*
* The accel_data values are converted into a coordinate system where X is forwards along
* the fuselage, Y is along right the wing, and Z is down.
*/
void downsample_data()
{
int32_t accel_raw[3], gyro_raw[3];
uint16_t i;
// Get the Y data. Third byte in. Convert to m/s
accel_raw[0] = 0;
for (i = 0; i < adc_oversampling; i++)
accel_raw[0] +=
(valid_data_buffer[0 + i * PIOS_ADC_NUM_PINS] +
accel_bias[1]) * fir_coeffs[i];
accel_data.filtered.y =
(float)accel_raw[0] / (float)fir_coeffs[adc_oversampling] *
accel_scale[1];
// Get the X data which projects forward/backwards. Fifth byte in. Convert to m/s
accel_raw[1] = 0;
for (i = 0; i < adc_oversampling; i++)
accel_raw[1] +=
(valid_data_buffer[2 + i * PIOS_ADC_NUM_PINS] +
accel_bias[0]) * fir_coeffs[i];
accel_data.filtered.x =
(float)accel_raw[1] / (float)fir_coeffs[adc_oversampling] *
accel_scale[0];
// Get the Z data. Third byte in. Convert to m/s
accel_raw[2] = 0;
for (i = 0; i < adc_oversampling; i++)
accel_raw[2] +=
(valid_data_buffer[4 + i * PIOS_ADC_NUM_PINS] +
accel_bias[2]) * fir_coeffs[i];
accel_data.filtered.z =
-(float)accel_raw[2] / (float)fir_coeffs[adc_oversampling] *
accel_scale[2];
// Get the X gyro data. Seventh byte in. Convert to deg/s.
gyro_raw[0] = 0;
for (i = 0; i < adc_oversampling; i++)
gyro_raw[0] +=
(valid_data_buffer[1 + i * PIOS_ADC_NUM_PINS] +
gyro_bias[0]) * fir_coeffs[i];
gyro_data.filtered.x =
(float)gyro_raw[0] / (float)fir_coeffs[adc_oversampling] *
gyro_scale[0];
// Get the Y gyro data. Second byte in. Convert to deg/s.
gyro_raw[1] = 0;
for (i = 0; i < adc_oversampling; i++)
gyro_raw[1] +=
(valid_data_buffer[3 + i * PIOS_ADC_NUM_PINS] +
gyro_bias[1]) * fir_coeffs[i];
gyro_data.filtered.y =
(float)gyro_raw[1] / (float)fir_coeffs[adc_oversampling] *
gyro_scale[1];
// Get the Z gyro data. Fifth byte in. Convert to deg/s.
gyro_raw[2] = 0;
for (i = 0; i < adc_oversampling; i++)
gyro_raw[2] +=
(valid_data_buffer[5 + i * PIOS_ADC_NUM_PINS] +
gyro_bias[2]) * fir_coeffs[i];
gyro_data.filtered.z =
(float)gyro_raw[2] / (float)fir_coeffs[adc_oversampling] *
gyro_scale[2];
}
/**
* @brief Assumes board is not moving computes biases and variances of sensors
* @returns None
*
* All data is stored in global structures. This function should be called from OP when
* aircraft is in stable state and then the data stored to SD card.
*/
void calibrate_sensors()
{
int i;
int16_t mag_raw[3] = { 0, 0, 0 };
// local biases for noise analysis
float accel_bias[3], gyro_bias[3], mag_bias[3];
// run few loops to get mean
gyro_bias[0] = gyro_bias[1] = gyro_bias[2] = 0;
accel_bias[0] = accel_bias[1] = accel_bias[2] = 0;
mag_bias[0] = mag_bias[1] = mag_bias[2] = 0;
for (i = 0; i < 50; i++) {
while (ahrs_state != AHRS_DATA_READY) ;
ahrs_state = AHRS_PROCESSING;
downsample_data();
gyro_bias[0] += gyro_data.filtered.x;
gyro_bias[1] += gyro_data.filtered.y;
gyro_bias[2] += gyro_data.filtered.z;
accel_bias[0] += accel_data.filtered.x;
accel_bias[1] += accel_data.filtered.y;
accel_bias[2] += accel_data.filtered.z;
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
PIOS_HMC5843_ReadMag(mag_raw);
#endif
mag_bias[0] += mag_raw[0];
mag_bias[1] += mag_raw[1];
mag_bias[2] += mag_raw[2];
ahrs_state = AHRS_IDLE;
process_spi_request();
}
gyro_bias[0] /= i;
gyro_bias[1] /= i;
gyro_bias[2] /= i;
accel_bias[0] /= i;
accel_bias[1] /= i;
accel_bias[2] /= i;
mag_bias[0] /= i;
mag_bias[1] /= i;
mag_bias[2] /= i;
// more iterations for variance
accel_var[0] = accel_var[1] = accel_var[2] = 0;
gyro_var[0] = gyro_var[1] = gyro_var[2] = 0;
mag_var[0] = mag_var[1] = mag_var[2] = 0;
for (i = 0; i < 500; i++) {
while (ahrs_state != AHRS_DATA_READY) ;
ahrs_state = AHRS_PROCESSING;
downsample_data();
gyro_var[0] +=
(gyro_data.filtered.x -
gyro_bias[0]) * (gyro_data.filtered.x - gyro_bias[0]);
gyro_var[1] +=
(gyro_data.filtered.y -
gyro_bias[1]) * (gyro_data.filtered.y - gyro_bias[1]);
gyro_var[2] +=
(gyro_data.filtered.z -
gyro_bias[2]) * (gyro_data.filtered.z - gyro_bias[2]);
accel_var[0] +=
(accel_data.filtered.x -
accel_bias[0]) * (accel_data.filtered.x -
accel_bias[0]);
accel_var[1] +=
(accel_data.filtered.y -
accel_bias[1]) * (accel_data.filtered.y -
accel_bias[1]);
accel_var[2] +=
(accel_data.filtered.z -
accel_bias[2]) * (accel_data.filtered.z -
accel_bias[2]);
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
PIOS_HMC5843_ReadMag(mag_raw);
#endif
mag_var[0] +=
(mag_raw[0] - mag_bias[0]) * (mag_raw[0] -
mag_bias[0]);
mag_var[1] +=
(mag_raw[1] - mag_bias[1]) * (mag_raw[1] -
mag_bias[1]);
mag_var[2] +=
(mag_raw[2] - mag_bias[2]) * (mag_raw[2] -
mag_bias[2]);
ahrs_state = AHRS_IDLE;
process_spi_request();
}
gyro_var[0] /= i;
gyro_var[1] /= i;
gyro_var[2] /= i;
accel_var[0] /= i;
accel_var[1] /= i;
accel_var[2] /= i;
mag_var[0] /= i;
mag_var[1] /= i;
mag_var[2] /= i;
float mag_length2 =
mag_bias[0] * mag_bias[0] + mag_bias[1] * mag_bias[1] +
mag_bias[2] * mag_bias[2];
mag_var[0] = mag_var[0] / mag_length2;
mag_var[1] = mag_var[1] / mag_length2;
mag_var[2] = mag_var[2] / mag_length2;
if (ahrs_algorithm == INSGPS_Algo)
converge_insgps();
}
/**
* @brief Quickly initialize INS assuming stationary and gravity is down
*
* Currently this is done iteratively but I'm sure it can be directly computed
* when I sit down and work it out
*/
void converge_insgps()
{
float pos[3] = { 0, 0, 0 }, vel[3] = {
0, 0, 0}, BaroAlt = 0, mag[3], accel[3], temp_gyro[3] = {
0, 0, 0};
INSGPSInit();
INSSetAccelVar(accel_var);
INSSetGyroBias(temp_gyro); // set this to zero - crude bias corrected from downsample_data
INSSetGyroVar(gyro_var);
INSSetMagVar(mag_var);
float temp_var[3] = { 10, 10, 10 };
INSSetGyroVar(temp_var); // ignore gyro's
accel[0] = accel_data.filtered.x;
accel[1] = accel_data.filtered.y;
accel[2] = accel_data.filtered.z;
// Iteratively constrain pitch and roll while updating yaw to align magnetic axis.
for (int i = 0; i < 50; i++) {
// This should be done directly but I'm too dumb.
float rpy[3];
Quaternion2RPY(Nav.q, rpy);
rpy[1] =
-atan2(accel_data.filtered.x,
accel_data.filtered.z) * 180 / M_PI;
rpy[0] =
-atan2(accel_data.filtered.y,
accel_data.filtered.z) * 180 / M_PI;
// Get magnetic readings
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
PIOS_HMC5843_ReadMag(mag_data.raw.axis);
#endif
mag[0] = -mag_data.raw.axis[1];
mag[1] = -mag_data.raw.axis[0];
mag[2] = -mag_data.raw.axis[2];
RPY2Quaternion(rpy, Nav.q);
INSStatePrediction(temp_gyro, accel, 1 / (float)EKF_RATE);
INSCovariancePrediction(1 / (float)EKF_RATE);
FullCorrection(mag, pos, vel, BaroAlt);
process_spi_request(); // again we must keep this hear to prevent SPI connection dropping
}
INSSetGyroVar(gyro_var);
}
/**
* @addtogroup AHRS_SPI SPI Messaging
* @{
* @brief SPI protocol handling requests for data from OP mainboard
*/
static struct opahrs_msg_v1 link_tx_v1;
static struct opahrs_msg_v1 link_rx_v1;
static struct opahrs_msg_v1 user_rx_v1;
static struct opahrs_msg_v1 user_tx_v1;
void process_spi_request(void)
{
bool msg_to_process = FALSE;
PIOS_IRQ_Disable();
/* Figure out if we're in an interesting stable state */
switch (lfsm_get_state()) {
case LFSM_STATE_USER_BUSY:
msg_to_process = TRUE;
break;
case LFSM_STATE_INACTIVE:
/* Queue up a receive buffer */
lfsm_user_set_rx_v1(&user_rx_v1);
lfsm_user_done();
break;
case LFSM_STATE_STOPPED:
/* Get things going */
lfsm_set_link_proto_v1(&link_tx_v1, &link_rx_v1);
break;
default:
/* Not a stable state */
break;
}
PIOS_IRQ_Enable();
if (!msg_to_process) {
/* Nothing to do */
return;
}
switch (user_rx_v1.payload.user.t) {
case OPAHRS_MSG_V1_REQ_RESET:
PIOS_DELAY_WaitmS(user_rx_v1.payload.user.v.req.reset.
reset_delay_in_ms);
PIOS_SYS_Reset();
break;
case OPAHRS_MSG_V1_REQ_SERIAL:
opahrs_msg_v1_init_user_tx(&user_tx_v1,
OPAHRS_MSG_V1_RSP_SERIAL);
PIOS_SYS_SerialNumberGet((char *)
&(user_tx_v1.payload.user.v.rsp.
serial.serial_bcd));
lfsm_user_set_tx_v1(&user_tx_v1);
break;
case OPAHRS_MSG_V1_REQ_ALGORITHM:
opahrs_msg_v1_init_user_tx(&user_tx_v1,
OPAHRS_MSG_V1_RSP_ALGORITHM);
ahrs_algorithm =
user_rx_v1.payload.user.v.req.algorithm.algorithm;
lfsm_user_set_tx_v1(&user_tx_v1);
break;
case OPAHRS_MSG_V1_REQ_NORTH:
opahrs_msg_v1_init_user_tx(&user_tx_v1,
OPAHRS_MSG_V1_RSP_NORTH);
INSSetMagNorth(user_rx_v1.payload.user.v.req.north.Be);
lfsm_user_set_tx_v1(&user_tx_v1);
break;
case OPAHRS_MSG_V1_REQ_CALIBRATION:
if (user_rx_v1.payload.user.v.req.calibration.
measure_var == AHRS_MEASURE) {
calibration_pending = TRUE;
} else if (user_rx_v1.payload.user.v.req.calibration.
measure_var == AHRS_SET) {
accel_var[0] =
user_rx_v1.payload.user.v.req.calibration.
accel_var[0];
accel_var[1] =
user_rx_v1.payload.user.v.req.calibration.
accel_var[1];
accel_var[2] =
user_rx_v1.payload.user.v.req.calibration.
accel_var[2];
gyro_bias[0] =
user_rx_v1.payload.user.v.req.calibration.
gyro_bias[0];
gyro_bias[1] =
user_rx_v1.payload.user.v.req.calibration.
gyro_bias[1];
gyro_bias[2] =
user_rx_v1.payload.user.v.req.calibration.
gyro_bias[2];
gyro_var[0] =
user_rx_v1.payload.user.v.req.calibration.
gyro_var[0];
gyro_var[1] =
user_rx_v1.payload.user.v.req.calibration.
gyro_var[1];
gyro_var[2] =
user_rx_v1.payload.user.v.req.calibration.
gyro_var[2];
mag_var[0] =
user_rx_v1.payload.user.v.req.calibration.
mag_var[0];
mag_var[1] =
user_rx_v1.payload.user.v.req.calibration.
mag_var[1];
mag_var[2] =
user_rx_v1.payload.user.v.req.calibration.
mag_var[2];
INSSetAccelVar(accel_var);
float gyro_bias_ins[3] = { 0, 0, 0 };
INSSetGyroBias(gyro_bias_ins); //gyro bias corrects in preprocessing
INSSetGyroVar(gyro_var);
INSSetMagVar(mag_var);
}
if (user_rx_v1.payload.user.v.req.calibration.
measure_var != AHRS_ECHO) {
/* if echoing don't set anything */
accel_bias[0] =
user_rx_v1.payload.user.v.req.calibration.
accel_bias[0];
accel_bias[1] =
user_rx_v1.payload.user.v.req.calibration.
accel_bias[1];
accel_bias[2] =
user_rx_v1.payload.user.v.req.calibration.
accel_bias[2];
accel_scale[0] =
user_rx_v1.payload.user.v.req.calibration.
accel_scale[0];
accel_scale[1] =
user_rx_v1.payload.user.v.req.calibration.
accel_scale[1];
accel_scale[2] =
user_rx_v1.payload.user.v.req.calibration.
accel_scale[2];
gyro_scale[0] =
user_rx_v1.payload.user.v.req.calibration.
gyro_scale[0];
gyro_scale[1] =
user_rx_v1.payload.user.v.req.calibration.
gyro_scale[1];
gyro_scale[2] =
user_rx_v1.payload.user.v.req.calibration.
gyro_scale[2];
mag_bias[0] =
user_rx_v1.payload.user.v.req.calibration.
mag_bias[0];
mag_bias[1] =
user_rx_v1.payload.user.v.req.calibration.
mag_bias[1];
mag_bias[2] =
user_rx_v1.payload.user.v.req.calibration.
mag_bias[2];
}
// echo back the values used
opahrs_msg_v1_init_user_tx(&user_tx_v1,
OPAHRS_MSG_V1_RSP_CALIBRATION);
user_tx_v1.payload.user.v.rsp.calibration.accel_var[0] =
accel_var[0];
user_tx_v1.payload.user.v.rsp.calibration.accel_var[1] =
accel_var[1];
user_tx_v1.payload.user.v.rsp.calibration.accel_var[2] =
accel_var[2];
user_tx_v1.payload.user.v.rsp.calibration.gyro_bias[0] =
gyro_bias[0];
user_tx_v1.payload.user.v.rsp.calibration.gyro_bias[1] =
gyro_bias[1];
user_tx_v1.payload.user.v.rsp.calibration.gyro_bias[2] =
gyro_bias[2];
user_tx_v1.payload.user.v.rsp.calibration.gyro_var[0] =
gyro_var[0];
user_tx_v1.payload.user.v.rsp.calibration.gyro_var[1] =
gyro_var[1];
user_tx_v1.payload.user.v.rsp.calibration.gyro_var[2] =
gyro_var[2];
user_tx_v1.payload.user.v.rsp.calibration.mag_var[0] =
mag_var[0];
user_tx_v1.payload.user.v.rsp.calibration.mag_var[1] =
mag_var[1];
user_tx_v1.payload.user.v.rsp.calibration.mag_var[2] =
mag_var[2];
lfsm_user_set_tx_v1(&user_tx_v1);
break;
case OPAHRS_MSG_V1_REQ_ATTITUDERAW:
opahrs_msg_v1_init_user_tx(&user_tx_v1,
OPAHRS_MSG_V1_RSP_ATTITUDERAW);
user_tx_v1.payload.user.v.rsp.attituderaw.mags.x =
mag_data.raw.axis[0];
user_tx_v1.payload.user.v.rsp.attituderaw.mags.y =
mag_data.raw.axis[1];
user_tx_v1.payload.user.v.rsp.attituderaw.mags.z =
mag_data.raw.axis[2];
user_tx_v1.payload.user.v.rsp.attituderaw.gyros.x =
gyro_data.raw.x;
user_tx_v1.payload.user.v.rsp.attituderaw.gyros.y =
gyro_data.raw.y;
user_tx_v1.payload.user.v.rsp.attituderaw.gyros.z =
gyro_data.raw.z;
user_tx_v1.payload.user.v.rsp.attituderaw.gyros_filtered.
x = gyro_data.filtered.x;
user_tx_v1.payload.user.v.rsp.attituderaw.gyros_filtered.
y = gyro_data.filtered.y;
user_tx_v1.payload.user.v.rsp.attituderaw.gyros_filtered.
z = gyro_data.filtered.z;
user_tx_v1.payload.user.v.rsp.attituderaw.gyros.xy_temp =
gyro_data.temp.xy;
user_tx_v1.payload.user.v.rsp.attituderaw.gyros.z_temp =
gyro_data.temp.z;
user_tx_v1.payload.user.v.rsp.attituderaw.accels.x =
accel_data.raw.x;
user_tx_v1.payload.user.v.rsp.attituderaw.accels.y =
accel_data.raw.y;
user_tx_v1.payload.user.v.rsp.attituderaw.accels.z =
accel_data.raw.z;
user_tx_v1.payload.user.v.rsp.attituderaw.accels_filtered.
x = accel_data.filtered.x;
user_tx_v1.payload.user.v.rsp.attituderaw.accels_filtered.
y = accel_data.filtered.y;
user_tx_v1.payload.user.v.rsp.attituderaw.accels_filtered.
z = accel_data.filtered.z;
lfsm_user_set_tx_v1(&user_tx_v1);
break;
case OPAHRS_MSG_V1_REQ_UPDATE:
// process incoming data
opahrs_msg_v1_init_user_tx(&user_tx_v1,
OPAHRS_MSG_V1_RSP_UPDATE);
if (user_rx_v1.payload.user.v.req.update.barometer.updated) {
altitude_data.altitude =
user_rx_v1.payload.user.v.req.update.barometer.
altitude;
altitude_data.updated =
user_rx_v1.payload.user.v.req.update.barometer.
updated;
}
if (user_rx_v1.payload.user.v.req.update.gps.updated) {
gps_data.updated = true;
gps_data.NED[0] =
user_rx_v1.payload.user.v.req.update.gps.
NED[0];
gps_data.NED[1] =
user_rx_v1.payload.user.v.req.update.gps.
NED[1];
gps_data.NED[2] =
user_rx_v1.payload.user.v.req.update.gps.
NED[2];
gps_data.heading =
user_rx_v1.payload.user.v.req.update.gps.
heading;
gps_data.groundspeed =
user_rx_v1.payload.user.v.req.update.gps.
groundspeed;
gps_data.quality =
user_rx_v1.payload.user.v.req.update.gps.
quality;
}
// send out attitude/position estimate
user_tx_v1.payload.user.v.rsp.update.quaternion.q1 =
attitude_data.quaternion.q1;
user_tx_v1.payload.user.v.rsp.update.quaternion.q2 =
attitude_data.quaternion.q2;
user_tx_v1.payload.user.v.rsp.update.quaternion.q3 =
attitude_data.quaternion.q3;
user_tx_v1.payload.user.v.rsp.update.quaternion.q4 =
attitude_data.quaternion.q4;
// TODO: separate this from INSGPS
user_tx_v1.payload.user.v.rsp.update.NED[0] = Nav.Pos[0];
user_tx_v1.payload.user.v.rsp.update.NED[1] = Nav.Pos[1];
user_tx_v1.payload.user.v.rsp.update.NED[2] = Nav.Pos[2];
user_tx_v1.payload.user.v.rsp.update.Vel[0] = Nav.Vel[0];
user_tx_v1.payload.user.v.rsp.update.Vel[1] = Nav.Vel[1];
user_tx_v1.payload.user.v.rsp.update.Vel[2] = Nav.Vel[2];
// compute the idle fraction
user_tx_v1.payload.user.v.rsp.update.load =
((float)running_counts /
(float)(idle_counts + running_counts)) * 100;
user_tx_v1.payload.user.v.rsp.update.idle_time =
idle_counts / (TIMER_RATE / 10000);
user_tx_v1.payload.user.v.rsp.update.run_time =
running_counts / (TIMER_RATE / 10000);
user_tx_v1.payload.user.v.rsp.update.dropped_updates =
ekf_too_slow;
lfsm_user_set_tx_v1(&user_tx_v1);
break;
default:
break;
}
/* Finished processing the received message, requeue it */
lfsm_user_set_rx_v1(&user_rx_v1);
lfsm_user_done();
}
/**
* @}
*/