1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-22 07:52:12 +01:00

531 lines
17 KiB
C
Raw Normal View History

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup NavigationModule Navigation Module
* @brief Feeds Stabilization with input to fly to a given coordinate in space
* @note This object updates the @ref AttitudeDesired "Attitude Desired" based on the
* comparison on the @ref NavigationDesired "Navigation Desired", @ref AttitudeActual
* "Attitude Actual" and @ref FlightSituationActual "FlightSituation Actual"
* @{
*
* @file navigation.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Position stabilization module.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "openpilot.h"
#include "navigation.h"
#include "navigationsettings.h"
#include "navigationdesired.h"
#include "attitudeactual.h"
#include "attitudedesired.h"
#include "flightsituationactual.h"
#include "manualcontrolcommand.h"
#include "systemsettings.h"
// Private constants
#define STACK_SIZE configMINIMAL_STACK_SIZE
#define TASK_PRIORITY (tskIDLE_PRIORITY+3)
#define DEG2RAD ( M_PI / 180.0 )
#define RAD2DEG ( 180.0 / M_PI )
#define MIN(a,b) ((a<b)?a:b)
#define MAX(a,b) ((a>b)?a:b)
#define SSQRT(x) ((x)>=0?sqrt(x):-sqrt(-x)) // signed square root
#define EARTHRAD 6378137
#define GRAVITY 9.81
// Private types
// Private variables
static xTaskHandle taskHandle;
// Private functions
static void navigationTask(void* parameters);
static float bound(float val, float min, float max);
static float angleDifference(float val);
static float fixAngle(float val,float min, float max);
static float sphereDistance(float lat1,float long1,float lat2,float long2);
static float sphereCourse(float lat1,float long1,float lat2,float long2);
/**
* Module initialization
*/
int32_t NavigationInitialize()
{
// Initialize variables
// Start main task
xTaskCreate(navigationTask, (signed char*)"Navigation", STACK_SIZE, NULL, TASK_PRIORITY, &taskHandle);
return 0;
}
/**
* Module task
*/
static void navigationTask(void* parameters)
{
NavigationSettingsData navSettings;
NavigationDesiredData navigationDesired;
AttitudeActualData attitudeActual;
AttitudeDesiredData attitudeDesired;
FlightSituationActualData situationActual;
ManualControlCommandData manualControl;
SystemSettingsData systemSettings;
portTickType lastSysTime;
// flight safety values
float maxPitch;
float minPitch;
float maxAccel;
// helper variables
float safeAccel;
float safeDistance;
float aoa,saoa;
// intended flight direction
float targetDistance;
float targetVspeed;
float targetTruePitch;
float targetHeading;
float targetPitch;
float targetYaw;
// turn direction
float turnDirection;
float turnSpeed;
float turnAccel;
// Main task loop
lastSysTime = xTaskGetTickCount();
while (1)
{
// Read settings and other objects
NavigationSettingsGet(&navSettings);
SystemSettingsGet(&systemSettings);
ManualControlCommandGet(&manualControl);
FlightSituationActualGet(&situationActual);
NavigationDesiredGet(&navigationDesired);
AttitudeActualGet(&attitudeActual);
// horizontal distance to waypoint
// (not 100% exact since the earth is not a perfect sphere, but
// close enough for our purpose...)
targetDistance = DEG2RAD * EARTHRAD * sphereDistance(
situationActual.Latitude,situationActual.Longitude,
navigationDesired.Latitude,navigationDesired.Longitude
);
// pitch to climb/sink to target altitude (attempts to reach
// target altitude withing SettleTime seconds
targetVspeed= (navigationDesired.Altitude - situationActual.Altitude)/navSettings.SettleTime;
if ( targetVspeed >= situationActual.Airspeed )
{
targetTruePitch = 90.0;
}
else if ( targetVspeed <= -situationActual.Airspeed )
{
targetTruePitch = -90.0;
}
else
{
targetTruePitch = RAD2DEG * asin( targetVspeed / situationActual.Airspeed );
}
// course to target coordinate
targetHeading = sphereCourse(
situationActual.Latitude,situationActual.Longitude,
navigationDesired.Latitude,navigationDesired.Longitude
);
//printf("\n\n\nTarget: Heading: %2f Distance: %2f climbing %2f°\n",targetHeading,targetDistance,targetTruePitch);
//printf("distance: %f\n",sphereDistance(situationActual.Latitude,situationActual.Longitude,navigationDesired.Latitude,navigationDesired.Longitude));
/**
* navigation for fixed wing planes
*/
if (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_VTOL)
{
/**
* Fixed wing planes create lift through their airspeed
* therefore most maneuver limits depend on the current
* speed and situation.
*/
// acceleration:
maxAccel=navSettings.AccelerationMax;
/**
* Idea: at minSpeed, the plane can JUST compensate 1g
* safely. The StallSpeed at any load factor is
* Vstall=Vs(0) / sqrt(load) so the maximum load for
* the current speed is maxLoad = (Vs(0)/V)²
*/
maxAccel = MIN( maxAccel ,
GRAVITY * (situationActual.Airspeed*situationActual.Airspeed)
/ (navSettings.SpeedMin * navSettings.SpeedMin)
);
// maximum pitch:
maxPitch=85.0;
/**
* Idea: any climb decreases speed. Aside from drag
* speed decrease is vertical speed times g (9.81m/s²)
* make sure speed stays above min speed within
* SettleTime
*/
safeAccel = ( navSettings.SpeedSafe-situationActual.Airspeed ) / navSettings.SettleTime;
if (safeAccel>=0)
{
// speed is below minimum speed. Do not allow any climbs!
maxPitch = MIN(maxPitch,0);
}
else if (safeAccel>-GRAVITY)
{
// speed is getting low. Limit maximum climb!
maxPitch = MIN(maxPitch,RAD2DEG*asin(-safeAccel/GRAVITY));
}
// minimum pitch:
minPitch=-85.0;
/**
* Idea: any dive increases speed. Aside from drag
* speed increase is vertical speed times g (9.81m/s²)
* make sure speed stays below max speed within
* SettleTime
*/
safeAccel = ( navSettings.SpeedMax-situationActual.Airspeed ) / navSettings.SettleTime;
if (safeAccel<=0)
{
// speed is above maximum speed. Do not allow any dives!
minPitch = MAX(minPitch,0);
}
else if (safeAccel<GRAVITY)
{
// speed is getting high. Limit maximum dive!
minPitch = MAX(minPitch,-1.*RAD2DEG*asin(safeAccel/GRAVITY));
}
/**
* Idea: To change pitch, acceleration must be
* applied. A pull up at maximum allowed pitch has a certain radius.
* If we are lower than that we are not allowed to
*/
safeDistance = situationActual.Airspeed * situationActual.Airspeed / (maxAccel+GRAVITY);
//printf("safe distance: %f\n",safeDistance);
if (safeDistance <= 0 || situationActual.Altitude<=navigationDesired.Altitude)
{
// altitude is below wanted altitude. Do not allow any dive at all.
minPitch = MAX(minPitch,0);
}
else if ( safeDistance >= situationActual.Altitude - navigationDesired.Altitude)
{
// altitude is close to target altitude, limit negative pitch
minPitch = MAX(minPitch,-1 * RAD2DEG * asin( (situationActual.Altitude - navigationDesired.Altitude) / safeDistance ));
}
//printf("Safety: Pitch: %2f %2f Accel: %2fm/s²\n",minPitch,maxPitch,maxAccel);
/**
* Base anted yaw and pitch on calculated angle of
* attack and side slip effects
*
* Note: This can lead to an oszillation between a
* flight with positive and negative angle of attack.
* Without this correction however, the plane will
* always "lag behind" it's desired altitude.
*/
// angle of attack in X and Y
aoa = attitudeActual.Pitch - (RAD2DEG * atan2( situationActual.Climbrate, situationActual.Groundspeed));
saoa = attitudeActual.Yaw-situationActual.Course;
targetPitch = bound(targetTruePitch+aoa,minPitch,maxPitch);
targetYaw = fixAngle(targetHeading+saoa,0.,360.);
//printf("Target Pitch: %2f Yaw: %2f \n",targetPitch,targetYaw);
//printf("Current Roll: %2f Pitch: %2f Yaw: %2f \n",attitudeActual.Roll,attitudeActual.Pitch,attitudeActual.Yaw);
/**
* Now we have the current Pitch Yaw and Roll in
* AttitudeActual and the wanted course in targetPitch
* and targetYaw. We also have the safety limits. Now
* make a smooth and save transition.
* including all safety limits! Make a nice transition.
*/
// turn vector (Euler)
/**
* The naive approach wants to fly along an Orthodrome - the quickest way to get from one angle to another
*/
turnDirection = sphereCourse(attitudeActual.Pitch,attitudeActual.Yaw,targetPitch,targetYaw);
/**
* However if the target yaw is more than 90° away, this orthodrome would lead through a minimum or maximum point that
* could be beyond safe min/max pitch values!
*/
if (fabs(angleDifference(attitudeActual.Yaw-targetYaw))>90)
{
if (fabs(turnDirection)<90)
{
/**
* Positive turns (upward) can conflict with maxPitch
*/
if (RAD2DEG*acos(sin(fabs(DEG2RAD*turnDirection))*cos(DEG2RAD*attitudeActual.Pitch))>maxPitch)
{
/**
* In this case the turn has to be adjusted to a circle that won't conflict with maxPitch
*/
//printf("maximum is %2f which is higher than %2f\n",RAD2DEG*acos(sin(DEG2RAD*turnDirection)*cos(DEG2RAD*attitudeActual.Pitch)),maxPitch);
if (cos(DEG2RAD*attitudeActual.Pitch)>cos(DEG2RAD*maxPitch))
{
if (turnDirection>0)
{
turnDirection = RAD2DEG * asin( cos(DEG2RAD*maxPitch)/cos(DEG2RAD*attitudeActual.Pitch));
}
else
{
turnDirection = -RAD2DEG * asin( cos(DEG2RAD*maxPitch)/cos(DEG2RAD*attitudeActual.Pitch));
}
}
else
{
/**
* something went wrong (attitude outside safe bounds?)- compensate safely
*/
turnDirection=(turnDirection>0?110:-110);
}
//printf("limiting because of max!\n");
}
}
else
{
/**
* Downward turns can conflict with minPitch
*/
if (RAD2DEG*acos(sin(fabs(DEG2RAD*turnDirection))*cos(DEG2RAD*attitudeActual.Pitch))>-minPitch)
{
//printf("minimum is %2f which is less than %2f\n",-1*RAD2DEG*acos(sin(fabs(DEG2RAD*turnDirection))*cos(DEG2RAD*attitudeActual.Pitch)),minPitch);
/**
* In this case the turn has to be adjusted to a circle that won't conflict with minPitch
*/
if (cos(DEG2RAD*attitudeActual.Pitch)>cos(DEG2RAD*minPitch))
{
if (turnDirection>0) {
turnDirection = 180 - RAD2DEG * asin( cos(DEG2RAD*minPitch)/cos(DEG2RAD*attitudeActual.Pitch));
}
else
{
turnDirection = -180 + RAD2DEG * asin( cos(DEG2RAD*minPitch)/cos(DEG2RAD*attitudeActual.Pitch));
}
}
else
{
/**
* something went wrong (attitude outside safe bounds?)- compensate safely
*/
turnDirection=(turnDirection>0?45:-45);
}
//printf("limiting because of min!\n");
}
}
}
/**
* Turn speed in °/s is the minimum of
* TurnSpeedFactor * degrees to turn
* and
* the maximum angular velocity achievable with
* less than maxAccel centripetal acceleration
* (taking gravity effect into account)
* but not less than 0
* Formula: acceleration = (DEG2RAD*turnSpeed)
* * airspeed
*/
turnSpeed = MAX(0,MIN(
navSettings.TurnSpeedFactor * sphereDistance(
attitudeActual.Pitch,attitudeActual.Yaw,
targetPitch,targetYaw)
,
RAD2DEG * (maxAccel-( MIN(0,cos(DEG2RAD*turnDirection))*GRAVITY )) / situationActual.Airspeed
));
//printf("turn distance is %2f °\n", sphereDistance(attitudeActual.Pitch,attitudeActual.Yaw,targetPitch,targetYaw));
//printf("safe speed is %2f °/s\n",RAD2DEG * (maxAccel-( MIN(0,cos(DEG2RAD*turnDirection))*GRAVITY )) / situationActual.Airspeed);
//printf("turn speed is %2f °/s\n",turnSpeed);
//printf("Airspeed is %2f °/s\n",situationActual.Airspeed);
/**
* Compute wanted centripetal acceleration
*/
turnAccel = DEG2RAD* turnSpeed * situationActual.Airspeed;
//printf("Turn with: %2f at %2fm/s²\n",turnDirection,turnAccel);
// Desired Attitude
/**
* Now that we know which way the plane is supposed to
* go and at what acceleration, calculate the required
* roll angle to also compensate gravity during the
* turn
*/
attitudeDesired.Roll = RAD2DEG*atan2(
turnAccel * sin(DEG2RAD*turnDirection),
turnAccel * cos(DEG2RAD*turnDirection) + cos(DEG2RAD*attitudeActual.Pitch)*GRAVITY
);
/**
* However this can also result in an upright flight
* with a load of less than 1g
* In this case, the effect on yaw is reversed.
* (Imagine rolling 45° right, then push the stick
* slightly. You will go left and down!)
* In this case we reverse the roll to descent into the
* right direction!
*/
if (fabs(angleDifference(attitudeDesired.Roll-turnDirection))>90) {
attitudeDesired.Roll=-attitudeDesired.Roll;
}
//printf("FINALS: roll %2f ",attitudeDesired.Roll);
/**
* The desired Yaw and Pitch values are tricky.
* The current Stabilization module doesn't allow us to
* specify an angular speed or even centripetal
* acceleration instead we have to specify an
* orientation.
* According to tests, a formula of
* sqrt(turnAccel) * StabilizationForceFactor
* degrees lookahead gives reasonable results.
*/
attitudeDesired.Pitch = bound(
attitudeActual.Pitch + navSettings.StabilizationForceFactor * SSQRT(turnAccel * cos(DEG2RAD*turnDirection)),
minPitch,
maxPitch);
attitudeDesired.Yaw = attitudeActual.Yaw + navSettings.StabilizationForceFactor * SSQRT(turnAccel * sin(DEG2RAD*turnDirection)) ;
//printf("pitch %2f yaw %2f\n",attitudeDesired.Pitch-attitudeActual.Pitch,attitudeDesired.Yaw-attitudeActual.Yaw);
/**
* TODO: Make a real PID loop for the throttle.
*/
attitudeDesired.Throttle=0.8;
}
// Write actuator desired (if not in manual mode)
if ( manualControl.FlightMode == MANUALCONTROLCOMMAND_FLIGHTMODE_AUTO )
{
AttitudeDesiredSet(&attitudeDesired);
}
// Wait until next update
vTaskDelayUntil(&lastSysTime, navSettings.UpdatePeriod / portTICK_RATE_MS );
}
}
/**
* Bound input value between limits
*/
static float bound(float val, float min, float max)
{
if ( val < min )
{
val = min;
}
else if ( val > max )
{
val = max;
}
return val;
}
/**
* Fix result of angular differences
*/
static float angleDifference(float val)
{
while ( val < -180.0 )
{
val += 360.0;
}
while ( val > 180.0 )
{
val -= 360.0;
}
return val;
}
/**
* Make sure an angular value stays between correct bounds
*/
static float fixAngle(float val,float min, float max)
{
while ( val < min )
{
val += 360.0;
}
while ( val >= max )
{
val -= 360.0;
}
return val;
}
/**
* calculate spherical distance and course between two coordinate pairs
* see http://de.wikipedia.org/wiki/Orthodrome for details
*/
static float sphereDistance(float lat1, float long1, float lat2, float long2)
{
float zeta=(RAD2DEG * acos (
sin(DEG2RAD*lat1) * sin(DEG2RAD*lat2)
+ cos(DEG2RAD*lat1) * cos(DEG2RAD*lat2) * cos(DEG2RAD*(long2-long1))
));
if (isnan(zeta)) {
zeta=0;
}
return zeta;
}
static float sphereCourse(float lat1, float long1, float lat2, float long2)
{
float zeta = sphereDistance(lat1,long1,lat2,long2);
float angle = RAD2DEG * acos(
( sin(DEG2RAD*lat2) - sin(DEG2RAD*lat1) * cos(DEG2RAD*zeta) )
/ ( cos(DEG2RAD*lat1) * sin(DEG2RAD*zeta) )
);
if (isnan(angle)) angle=0;
if (angleDifference(long2-long1)>=0) {
return angle;
} else {
return -angle;
}
}
/**
* @}
* @}
*/