mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2025-01-06 17:46:07 +01:00
96 lines
2.6 KiB
Mathematica
96 lines
2.6 KiB
Mathematica
|
function OPPlots()
|
||
|
[FileName,PathName,FilterIndex] = uigetfile('*.mat');
|
||
|
matfile = strcat(PathName,FileName);
|
||
|
load(matfile);
|
||
|
|
||
|
%load('specificfilename')
|
||
|
|
||
|
TimeVA = [VelocityActual.timestamp]/1000;
|
||
|
VA = [[VelocityActual.North]
|
||
|
[VelocityActual.East]
|
||
|
[VelocityActual.Down]]/100;
|
||
|
|
||
|
TimeGPSPos = [GPSPosition.timestamp]/1000;
|
||
|
Vgps=[[GPSPosition.Groundspeed].*cos([GPSPosition.Heading]*pi/180)
|
||
|
[GPSPosition.Groundspeed].*sin([GPSPosition.Heading]*pi/180)];
|
||
|
|
||
|
figure(1);
|
||
|
plot(TimeVA,VA(1,:),TimeVA,VA(2,:),TimeGPSPos,Vgps(1,:),TimeGPSPos,Vgps(2,:));
|
||
|
s1='Velocity Actual North';
|
||
|
s2='Velocity Actual East';
|
||
|
s3='GPS Velocity North';
|
||
|
s4='GPS Velocity East';
|
||
|
legend(s1,s2,s3,s4);
|
||
|
xlabel('Time (sec)');
|
||
|
ylabel('Velocity (m/s)');
|
||
|
|
||
|
|
||
|
TimePA = [PositionActual.timestamp]/1000;
|
||
|
PA = [[PositionActual.North]
|
||
|
[PositionActual.East]
|
||
|
[PositionActual.Down]]/100;
|
||
|
|
||
|
TimeGPSPos = [GPSPosition.timestamp]/1000;
|
||
|
LLA=[[GPSPosition.Latitude]*1e-7;
|
||
|
[GPSPosition.Longitude]*1e-7;
|
||
|
[GPSPosition.Altitude]+[GPSPosition.GeoidSeparation]];
|
||
|
BaseECEF = HomeLocation(end).ECEF/100;
|
||
|
Rne = reshape(HomeLocation(end).RNE,3,3);
|
||
|
GPSPos=LLA2Base(LLA,BaseECEF,Rne);
|
||
|
|
||
|
figure(2);
|
||
|
plot(TimePA,PA(1,:),TimePA,PA(2,:),TimeGPSPos,GPSPos(1,:),TimeGPSPos,GPSPos(2,:));
|
||
|
s1='Position Actual North';
|
||
|
s2='Position Actual East';
|
||
|
s3='GPS Position North';
|
||
|
s4='GPS Position East';
|
||
|
legend(s1,s2,s3,s4);
|
||
|
xlabel('Time (sec)');
|
||
|
ylabel('Position (m)');
|
||
|
|
||
|
figure(3);
|
||
|
plot3(PA(2,:),PA(1,:),PA(3,:),GPSPos(2,:),GPSPos(1,:),GPSPos(3,:));
|
||
|
s1='Pos Actual';
|
||
|
s2='GPS Pos';
|
||
|
legend(s1,s2);
|
||
|
xlabel('East (m)');
|
||
|
ylabel('North(m)');
|
||
|
zlabel('Up (m)');
|
||
|
axis equal
|
||
|
|
||
|
end
|
||
|
|
||
|
function NED = LLA2Base(LLA,BaseECEF,Rne)
|
||
|
|
||
|
n = size(LLA,2);
|
||
|
|
||
|
ECEF = LLA2ECEF(LLA);
|
||
|
|
||
|
diff = ECEF - repmat(BaseECEF,1,n);
|
||
|
|
||
|
NED = Rne*diff;
|
||
|
end
|
||
|
|
||
|
function ECEF = LLA2ECEF(LLA)
|
||
|
|
||
|
a = 6378137.0; % Equatorial Radius
|
||
|
e = 8.1819190842622e-2; % Eccentricity
|
||
|
|
||
|
n = size(LLA,2);
|
||
|
ECEF = zeros(3,n);
|
||
|
|
||
|
for i=1:n
|
||
|
sinLat = sin(pi*LLA(1,i)/180);
|
||
|
sinLon = sin(pi*LLA(2,i)/180);
|
||
|
cosLat = cos(pi*LLA(1,i)/180);
|
||
|
cosLon = cos(pi*LLA(2,i)/180);
|
||
|
|
||
|
N = a / sqrt(1.0 - e * e * sinLat * sinLat); %prime vertical radius of curvature
|
||
|
|
||
|
ECEF(1,i) = (N + LLA(3,i)) * cosLat * cosLon;
|
||
|
ECEF(2,i) = (N + LLA(3,i)) * cosLat * sinLon;
|
||
|
ECEF(3,i) = ((1 - e * e) * N + LLA(3,i)) * sinLat;
|
||
|
end
|
||
|
end
|
||
|
|