1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-11-29 07:24:13 +01:00
LibrePilot/flight/PiOS/STM32F10x/pios_tim.c

392 lines
9.9 KiB
C
Raw Normal View History

#include "pios.h"
#include "pios_tim.h"
#include "pios_tim_priv.h"
enum pios_tim_dev_magic {
PIOS_TIM_DEV_MAGIC = 0x87654098,
};
struct pios_tim_dev {
enum pios_tim_dev_magic magic;
const struct pios_tim_channel * channels;
uint8_t num_channels;
const struct pios_tim_callbacks * callbacks;
uint32_t context;
};
#if 0
static bool PIOS_TIM_validate(struct pios_tim_dev * tim_dev)
{
return (tim_dev->magic == PIOS_TIM_DEV_MAGIC);
}
#endif
#if defined(PIOS_INCLUDE_FREERTOS) && 0
static struct pios_tim_dev * PIOS_TIM_alloc(void)
{
struct pios_tim_dev * tim_dev;
tim_dev = (struct pios_tim_dev *)malloc(sizeof(*tim_dev));
if (!tim_dev) return(NULL);
tim_dev->magic = PIOS_TIM_DEV_MAGIC;
return(tim_dev);
}
#else
static struct pios_tim_dev pios_tim_devs[PIOS_TIM_MAX_DEVS];
static uint8_t pios_tim_num_devs;
static struct pios_tim_dev * PIOS_TIM_alloc(void)
{
struct pios_tim_dev * tim_dev;
if (pios_tim_num_devs >= PIOS_TIM_MAX_DEVS) {
return (NULL);
}
tim_dev = &pios_tim_devs[pios_tim_num_devs++];
tim_dev->magic = PIOS_TIM_DEV_MAGIC;
return (tim_dev);
}
#endif
int32_t PIOS_TIM_InitClock(const struct pios_tim_clock_cfg * cfg)
{
PIOS_DEBUG_Assert(cfg);
/* Enable appropriate clock to timer module */
switch((uint32_t) cfg->timer) {
case (uint32_t)TIM1:
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
break;
case (uint32_t)TIM2:
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
break;
case (uint32_t)TIM3:
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
break;
case (uint32_t)TIM4:
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE);
break;
#ifdef STM32F10X_HD
case (uint32_t)TIM5:
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5, ENABLE);
break;
case (uint32_t)TIM6:
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6, ENABLE);
break;
case (uint32_t)TIM7:
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM7, ENABLE);
break;
case (uint32_t)TIM8:
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM8, ENABLE);
break;
#endif
}
/* Configure the dividers for this timer */
TIM_TimeBaseInit(cfg->timer, cfg->time_base_init);
/* Configure internal timer clocks */
TIM_InternalClockConfig(cfg->timer);
/* Enable timers */
TIM_Cmd(cfg->timer, ENABLE);
/* Enable Interrupts */
NVIC_Init(&cfg->irq.init);
return 0;
}
int32_t PIOS_TIM_InitChannels(uint32_t * tim_id, const struct pios_tim_channel * channels, uint8_t num_channels, const struct pios_tim_callbacks * callbacks, uint32_t context)
{
PIOS_Assert(channels);
PIOS_Assert(num_channels);
struct pios_tim_dev * tim_dev;
tim_dev = (struct pios_tim_dev *) PIOS_TIM_alloc();
if (!tim_dev) goto out_fail;
/* Bind the configuration to the device instance */
tim_dev->channels = channels;
tim_dev->num_channels = num_channels;
tim_dev->callbacks = callbacks;
tim_dev->context = context;
/* Configure the pins */
for (uint8_t i = 0; i < num_channels; i++) {
const struct pios_tim_channel * chan = &(channels[i]);
/* Enable the peripheral clock for the GPIO */
switch ((uint32_t)chan->pin.gpio) {
case (uint32_t) GPIOA:
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
break;
case (uint32_t) GPIOB:
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
break;
case (uint32_t) GPIOC:
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
break;
default:
PIOS_Assert(0);
break;
}
GPIO_Init(chan->pin.gpio, &chan->pin.init);
if (chan->remap) {
GPIO_PinRemapConfig(chan->remap, ENABLE);
}
}
*tim_id = (uint32_t)tim_dev;
return(0);
out_fail:
return(-1);
}
static void PIOS_TIM_generic_irq_handler(TIM_TypeDef * timer)
{
/* Iterate over all registered clients of the TIM layer to find channels on this timer */
for (uint8_t i = 0; i < pios_tim_num_devs; i++) {
const struct pios_tim_dev * tim_dev = &pios_tim_devs[i];
if (!tim_dev->channels || tim_dev->num_channels == 0) {
/* No channels to process on this client */
continue;
}
/* Check for an overflow event on this timer */
bool overflow_event;
uint16_t overflow_count;
if (TIM_GetITStatus(timer, TIM_IT_Update) == SET) {
TIM_ClearITPendingBit(timer, TIM_IT_Update);
overflow_count = timer->ARR;
overflow_event = true;
} else {
overflow_count = 0;
overflow_event = false;
}
for (uint8_t j = 0; j < tim_dev->num_channels; j++) {
const struct pios_tim_channel * chan = &tim_dev->channels[j];
if (chan->timer != timer) {
/* channel is not on this timer */
continue;
}
/* Figure out which interrupt bit we should be looking at */
uint16_t timer_it;
switch (chan->timer_chan) {
case TIM_Channel_1:
timer_it = TIM_IT_CC1;
break;
case TIM_Channel_2:
timer_it = TIM_IT_CC2;
break;
case TIM_Channel_3:
timer_it = TIM_IT_CC3;
break;
case TIM_Channel_4:
timer_it = TIM_IT_CC4;
break;
default:
PIOS_Assert(0);
break;
}
bool edge_event;
uint16_t edge_count;
if (TIM_GetITStatus(chan->timer, timer_it) == SET) {
TIM_ClearITPendingBit(chan->timer, timer_it);
/* Read the current counter */
switch(chan->timer_chan) {
case TIM_Channel_1:
edge_count = TIM_GetCapture1(chan->timer);
break;
case TIM_Channel_2:
edge_count = TIM_GetCapture2(chan->timer);
break;
case TIM_Channel_3:
edge_count = TIM_GetCapture3(chan->timer);
break;
case TIM_Channel_4:
edge_count = TIM_GetCapture4(chan->timer);
break;
default:
PIOS_Assert(0);
break;
}
edge_event = true;
} else {
edge_event = false;
edge_count = 0;
}
if (!tim_dev->callbacks) {
/* No callbacks registered, we're done with this channel */
continue;
}
/* Generate the appropriate callbacks */
if (overflow_event & edge_event) {
/*
* When both edge and overflow happen in the same interrupt, we
* need a heuristic to determine the order of the edge and overflow
* events so that the callbacks happen in the right order. If we
* get the order wrong, our pulse width calculations could be off by up
* to ARR ticks. That could be bad.
*
* Heuristic: If the edge_count is < 16 ticks above zero then we assume the
* edge happened just after the overflow.
*/
if (edge_count < 16) {
/* Call the overflow callback first */
if (tim_dev->callbacks->overflow) {
(*tim_dev->callbacks->overflow)((uint32_t)tim_dev,
tim_dev->context,
j,
overflow_count);
}
/* Call the edge callback second */
if (tim_dev->callbacks->edge) {
(*tim_dev->callbacks->edge)((uint32_t)tim_dev,
tim_dev->context,
j,
edge_count);
}
} else {
/* Call the edge callback first */
if (tim_dev->callbacks->edge) {
(*tim_dev->callbacks->edge)((uint32_t)tim_dev,
tim_dev->context,
j,
edge_count);
}
/* Call the overflow callback second */
if (tim_dev->callbacks->overflow) {
(*tim_dev->callbacks->overflow)((uint32_t)tim_dev,
tim_dev->context,
j,
overflow_count);
}
}
} else if (overflow_event && tim_dev->callbacks->overflow) {
(*tim_dev->callbacks->overflow)((uint32_t)tim_dev,
tim_dev->context,
j,
overflow_count);
} else if (edge_event && tim_dev->callbacks->edge) {
(*tim_dev->callbacks->edge)((uint32_t)tim_dev,
tim_dev->context,
j,
edge_count);
}
}
}
}
#if 0
uint16_t val = 0;
for(uint8_t i = 0; i < pios_pwm_cfg.num_channels; i++) {
struct pios_pwm_channel channel = pios_pwm_cfg.channels[i];
if ((channel.timer == timer) && (TIM_GetITStatus(channel.timer, channel.ccr) == SET)) {
TIM_ClearITPendingBit(channel.timer, channel.ccr);
switch(channel.channel) {
case TIM_Channel_1:
val = TIM_GetCapture1(channel.timer);
break;
case TIM_Channel_2:
val = TIM_GetCapture2(channel.timer);
break;
case TIM_Channel_3:
val = TIM_GetCapture3(channel.timer);
break;
case TIM_Channel_4:
val = TIM_GetCapture4(channel.timer);
break;
}
if (CaptureState[i] == 0) {
RiseValue[i] = val;
} else {
FallValue[i] = val;
}
// flip state machine and capture value here
/* Simple rise or fall state machine */
TIM_ICInitTypeDef TIM_ICInitStructure = pios_pwm_cfg.tim_ic_init;
if (CaptureState[i] == 0) {
/* Switch states */
CaptureState[i] = 1;
/* Switch polarity of input capture */
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Falling;
TIM_ICInitStructure.TIM_Channel = channel.channel;
TIM_ICInit(channel.timer, &TIM_ICInitStructure);
} else {
/* Capture computation */
if (FallValue[i] > RiseValue[i]) {
CaptureValue[i] = (FallValue[i] - RiseValue[i]);
} else {
CaptureValue[i] = ((channel.timer->ARR - RiseValue[i]) + FallValue[i]);
}
/* Switch states */
CaptureState[i] = 0;
/* Increase supervisor counter */
CapCounter[i]++;
/* Switch polarity of input capture */
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
TIM_ICInitStructure.TIM_Channel = channel.channel;
TIM_ICInit(channel.timer, &TIM_ICInitStructure);
}
}
}
#endif
/* Bind Interrupt Handlers
*
* Map all valid TIM IRQs to the common interrupt handler
* and give it enough context to properly demux the various timers
*/
static void PIOS_TIM_1_irq_handler (void)
{
PIOS_TIM_generic_irq_handler (TIM1);
}
void TIM1_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_1_irq_handler")));
static void PIOS_TIM_2_irq_handler (void)
{
PIOS_TIM_generic_irq_handler (TIM2);
}
void TIM2_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_2_irq_handler")));
void TIM3_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_3_irq_handler")));
static void PIOS_TIM_3_irq_handler (void)
{
PIOS_TIM_generic_irq_handler (TIM3);
}
void TIM4_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_4_irq_handler")));
static void PIOS_TIM_4_irq_handler (void)
{
PIOS_TIM_generic_irq_handler (TIM4);
}