mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2024-11-29 07:24:13 +01:00
392 lines
9.9 KiB
C
392 lines
9.9 KiB
C
|
#include "pios.h"
|
||
|
|
||
|
#include "pios_tim.h"
|
||
|
#include "pios_tim_priv.h"
|
||
|
|
||
|
enum pios_tim_dev_magic {
|
||
|
PIOS_TIM_DEV_MAGIC = 0x87654098,
|
||
|
};
|
||
|
|
||
|
struct pios_tim_dev {
|
||
|
enum pios_tim_dev_magic magic;
|
||
|
|
||
|
const struct pios_tim_channel * channels;
|
||
|
uint8_t num_channels;
|
||
|
|
||
|
const struct pios_tim_callbacks * callbacks;
|
||
|
uint32_t context;
|
||
|
};
|
||
|
|
||
|
#if 0
|
||
|
static bool PIOS_TIM_validate(struct pios_tim_dev * tim_dev)
|
||
|
{
|
||
|
return (tim_dev->magic == PIOS_TIM_DEV_MAGIC);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if defined(PIOS_INCLUDE_FREERTOS) && 0
|
||
|
static struct pios_tim_dev * PIOS_TIM_alloc(void)
|
||
|
{
|
||
|
struct pios_tim_dev * tim_dev;
|
||
|
|
||
|
tim_dev = (struct pios_tim_dev *)malloc(sizeof(*tim_dev));
|
||
|
if (!tim_dev) return(NULL);
|
||
|
|
||
|
tim_dev->magic = PIOS_TIM_DEV_MAGIC;
|
||
|
return(tim_dev);
|
||
|
}
|
||
|
#else
|
||
|
static struct pios_tim_dev pios_tim_devs[PIOS_TIM_MAX_DEVS];
|
||
|
static uint8_t pios_tim_num_devs;
|
||
|
static struct pios_tim_dev * PIOS_TIM_alloc(void)
|
||
|
{
|
||
|
struct pios_tim_dev * tim_dev;
|
||
|
|
||
|
if (pios_tim_num_devs >= PIOS_TIM_MAX_DEVS) {
|
||
|
return (NULL);
|
||
|
}
|
||
|
|
||
|
tim_dev = &pios_tim_devs[pios_tim_num_devs++];
|
||
|
tim_dev->magic = PIOS_TIM_DEV_MAGIC;
|
||
|
|
||
|
return (tim_dev);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
int32_t PIOS_TIM_InitClock(const struct pios_tim_clock_cfg * cfg)
|
||
|
{
|
||
|
PIOS_DEBUG_Assert(cfg);
|
||
|
|
||
|
/* Enable appropriate clock to timer module */
|
||
|
switch((uint32_t) cfg->timer) {
|
||
|
case (uint32_t)TIM1:
|
||
|
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
|
||
|
break;
|
||
|
case (uint32_t)TIM2:
|
||
|
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
|
||
|
break;
|
||
|
case (uint32_t)TIM3:
|
||
|
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
|
||
|
break;
|
||
|
case (uint32_t)TIM4:
|
||
|
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE);
|
||
|
break;
|
||
|
#ifdef STM32F10X_HD
|
||
|
case (uint32_t)TIM5:
|
||
|
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5, ENABLE);
|
||
|
break;
|
||
|
case (uint32_t)TIM6:
|
||
|
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6, ENABLE);
|
||
|
break;
|
||
|
case (uint32_t)TIM7:
|
||
|
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM7, ENABLE);
|
||
|
break;
|
||
|
case (uint32_t)TIM8:
|
||
|
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM8, ENABLE);
|
||
|
break;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/* Configure the dividers for this timer */
|
||
|
TIM_TimeBaseInit(cfg->timer, cfg->time_base_init);
|
||
|
|
||
|
/* Configure internal timer clocks */
|
||
|
TIM_InternalClockConfig(cfg->timer);
|
||
|
|
||
|
/* Enable timers */
|
||
|
TIM_Cmd(cfg->timer, ENABLE);
|
||
|
|
||
|
/* Enable Interrupts */
|
||
|
NVIC_Init(&cfg->irq.init);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int32_t PIOS_TIM_InitChannels(uint32_t * tim_id, const struct pios_tim_channel * channels, uint8_t num_channels, const struct pios_tim_callbacks * callbacks, uint32_t context)
|
||
|
{
|
||
|
PIOS_Assert(channels);
|
||
|
PIOS_Assert(num_channels);
|
||
|
|
||
|
struct pios_tim_dev * tim_dev;
|
||
|
tim_dev = (struct pios_tim_dev *) PIOS_TIM_alloc();
|
||
|
if (!tim_dev) goto out_fail;
|
||
|
|
||
|
/* Bind the configuration to the device instance */
|
||
|
tim_dev->channels = channels;
|
||
|
tim_dev->num_channels = num_channels;
|
||
|
tim_dev->callbacks = callbacks;
|
||
|
tim_dev->context = context;
|
||
|
|
||
|
/* Configure the pins */
|
||
|
for (uint8_t i = 0; i < num_channels; i++) {
|
||
|
const struct pios_tim_channel * chan = &(channels[i]);
|
||
|
|
||
|
/* Enable the peripheral clock for the GPIO */
|
||
|
switch ((uint32_t)chan->pin.gpio) {
|
||
|
case (uint32_t) GPIOA:
|
||
|
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
|
||
|
break;
|
||
|
case (uint32_t) GPIOB:
|
||
|
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
|
||
|
break;
|
||
|
case (uint32_t) GPIOC:
|
||
|
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
|
||
|
break;
|
||
|
default:
|
||
|
PIOS_Assert(0);
|
||
|
break;
|
||
|
}
|
||
|
GPIO_Init(chan->pin.gpio, &chan->pin.init);
|
||
|
|
||
|
if (chan->remap) {
|
||
|
GPIO_PinRemapConfig(chan->remap, ENABLE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
*tim_id = (uint32_t)tim_dev;
|
||
|
|
||
|
return(0);
|
||
|
|
||
|
out_fail:
|
||
|
return(-1);
|
||
|
}
|
||
|
|
||
|
static void PIOS_TIM_generic_irq_handler(TIM_TypeDef * timer)
|
||
|
{
|
||
|
/* Iterate over all registered clients of the TIM layer to find channels on this timer */
|
||
|
for (uint8_t i = 0; i < pios_tim_num_devs; i++) {
|
||
|
const struct pios_tim_dev * tim_dev = &pios_tim_devs[i];
|
||
|
|
||
|
if (!tim_dev->channels || tim_dev->num_channels == 0) {
|
||
|
/* No channels to process on this client */
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* Check for an overflow event on this timer */
|
||
|
bool overflow_event;
|
||
|
uint16_t overflow_count;
|
||
|
if (TIM_GetITStatus(timer, TIM_IT_Update) == SET) {
|
||
|
TIM_ClearITPendingBit(timer, TIM_IT_Update);
|
||
|
overflow_count = timer->ARR;
|
||
|
overflow_event = true;
|
||
|
} else {
|
||
|
overflow_count = 0;
|
||
|
overflow_event = false;
|
||
|
}
|
||
|
|
||
|
for (uint8_t j = 0; j < tim_dev->num_channels; j++) {
|
||
|
const struct pios_tim_channel * chan = &tim_dev->channels[j];
|
||
|
|
||
|
if (chan->timer != timer) {
|
||
|
/* channel is not on this timer */
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* Figure out which interrupt bit we should be looking at */
|
||
|
uint16_t timer_it;
|
||
|
switch (chan->timer_chan) {
|
||
|
case TIM_Channel_1:
|
||
|
timer_it = TIM_IT_CC1;
|
||
|
break;
|
||
|
case TIM_Channel_2:
|
||
|
timer_it = TIM_IT_CC2;
|
||
|
break;
|
||
|
case TIM_Channel_3:
|
||
|
timer_it = TIM_IT_CC3;
|
||
|
break;
|
||
|
case TIM_Channel_4:
|
||
|
timer_it = TIM_IT_CC4;
|
||
|
break;
|
||
|
default:
|
||
|
PIOS_Assert(0);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
bool edge_event;
|
||
|
uint16_t edge_count;
|
||
|
if (TIM_GetITStatus(chan->timer, timer_it) == SET) {
|
||
|
TIM_ClearITPendingBit(chan->timer, timer_it);
|
||
|
|
||
|
/* Read the current counter */
|
||
|
switch(chan->timer_chan) {
|
||
|
case TIM_Channel_1:
|
||
|
edge_count = TIM_GetCapture1(chan->timer);
|
||
|
break;
|
||
|
case TIM_Channel_2:
|
||
|
edge_count = TIM_GetCapture2(chan->timer);
|
||
|
break;
|
||
|
case TIM_Channel_3:
|
||
|
edge_count = TIM_GetCapture3(chan->timer);
|
||
|
break;
|
||
|
case TIM_Channel_4:
|
||
|
edge_count = TIM_GetCapture4(chan->timer);
|
||
|
break;
|
||
|
default:
|
||
|
PIOS_Assert(0);
|
||
|
break;
|
||
|
}
|
||
|
edge_event = true;
|
||
|
} else {
|
||
|
edge_event = false;
|
||
|
edge_count = 0;
|
||
|
}
|
||
|
|
||
|
if (!tim_dev->callbacks) {
|
||
|
/* No callbacks registered, we're done with this channel */
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* Generate the appropriate callbacks */
|
||
|
if (overflow_event & edge_event) {
|
||
|
/*
|
||
|
* When both edge and overflow happen in the same interrupt, we
|
||
|
* need a heuristic to determine the order of the edge and overflow
|
||
|
* events so that the callbacks happen in the right order. If we
|
||
|
* get the order wrong, our pulse width calculations could be off by up
|
||
|
* to ARR ticks. That could be bad.
|
||
|
*
|
||
|
* Heuristic: If the edge_count is < 16 ticks above zero then we assume the
|
||
|
* edge happened just after the overflow.
|
||
|
*/
|
||
|
|
||
|
if (edge_count < 16) {
|
||
|
/* Call the overflow callback first */
|
||
|
if (tim_dev->callbacks->overflow) {
|
||
|
(*tim_dev->callbacks->overflow)((uint32_t)tim_dev,
|
||
|
tim_dev->context,
|
||
|
j,
|
||
|
overflow_count);
|
||
|
}
|
||
|
/* Call the edge callback second */
|
||
|
if (tim_dev->callbacks->edge) {
|
||
|
(*tim_dev->callbacks->edge)((uint32_t)tim_dev,
|
||
|
tim_dev->context,
|
||
|
j,
|
||
|
edge_count);
|
||
|
}
|
||
|
} else {
|
||
|
/* Call the edge callback first */
|
||
|
if (tim_dev->callbacks->edge) {
|
||
|
(*tim_dev->callbacks->edge)((uint32_t)tim_dev,
|
||
|
tim_dev->context,
|
||
|
j,
|
||
|
edge_count);
|
||
|
}
|
||
|
/* Call the overflow callback second */
|
||
|
if (tim_dev->callbacks->overflow) {
|
||
|
(*tim_dev->callbacks->overflow)((uint32_t)tim_dev,
|
||
|
tim_dev->context,
|
||
|
j,
|
||
|
overflow_count);
|
||
|
}
|
||
|
}
|
||
|
} else if (overflow_event && tim_dev->callbacks->overflow) {
|
||
|
(*tim_dev->callbacks->overflow)((uint32_t)tim_dev,
|
||
|
tim_dev->context,
|
||
|
j,
|
||
|
overflow_count);
|
||
|
} else if (edge_event && tim_dev->callbacks->edge) {
|
||
|
(*tim_dev->callbacks->edge)((uint32_t)tim_dev,
|
||
|
tim_dev->context,
|
||
|
j,
|
||
|
edge_count);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#if 0
|
||
|
uint16_t val = 0;
|
||
|
for(uint8_t i = 0; i < pios_pwm_cfg.num_channels; i++) {
|
||
|
struct pios_pwm_channel channel = pios_pwm_cfg.channels[i];
|
||
|
if ((channel.timer == timer) && (TIM_GetITStatus(channel.timer, channel.ccr) == SET)) {
|
||
|
|
||
|
TIM_ClearITPendingBit(channel.timer, channel.ccr);
|
||
|
|
||
|
switch(channel.channel) {
|
||
|
case TIM_Channel_1:
|
||
|
val = TIM_GetCapture1(channel.timer);
|
||
|
break;
|
||
|
case TIM_Channel_2:
|
||
|
val = TIM_GetCapture2(channel.timer);
|
||
|
break;
|
||
|
case TIM_Channel_3:
|
||
|
val = TIM_GetCapture3(channel.timer);
|
||
|
break;
|
||
|
case TIM_Channel_4:
|
||
|
val = TIM_GetCapture4(channel.timer);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (CaptureState[i] == 0) {
|
||
|
RiseValue[i] = val;
|
||
|
} else {
|
||
|
FallValue[i] = val;
|
||
|
}
|
||
|
|
||
|
// flip state machine and capture value here
|
||
|
/* Simple rise or fall state machine */
|
||
|
TIM_ICInitTypeDef TIM_ICInitStructure = pios_pwm_cfg.tim_ic_init;
|
||
|
if (CaptureState[i] == 0) {
|
||
|
/* Switch states */
|
||
|
CaptureState[i] = 1;
|
||
|
|
||
|
/* Switch polarity of input capture */
|
||
|
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Falling;
|
||
|
TIM_ICInitStructure.TIM_Channel = channel.channel;
|
||
|
TIM_ICInit(channel.timer, &TIM_ICInitStructure);
|
||
|
} else {
|
||
|
/* Capture computation */
|
||
|
if (FallValue[i] > RiseValue[i]) {
|
||
|
CaptureValue[i] = (FallValue[i] - RiseValue[i]);
|
||
|
} else {
|
||
|
CaptureValue[i] = ((channel.timer->ARR - RiseValue[i]) + FallValue[i]);
|
||
|
}
|
||
|
|
||
|
/* Switch states */
|
||
|
CaptureState[i] = 0;
|
||
|
|
||
|
/* Increase supervisor counter */
|
||
|
CapCounter[i]++;
|
||
|
|
||
|
/* Switch polarity of input capture */
|
||
|
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
|
||
|
TIM_ICInitStructure.TIM_Channel = channel.channel;
|
||
|
TIM_ICInit(channel.timer, &TIM_ICInitStructure);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* Bind Interrupt Handlers
|
||
|
*
|
||
|
* Map all valid TIM IRQs to the common interrupt handler
|
||
|
* and give it enough context to properly demux the various timers
|
||
|
*/
|
||
|
static void PIOS_TIM_1_irq_handler (void)
|
||
|
{
|
||
|
PIOS_TIM_generic_irq_handler (TIM1);
|
||
|
}
|
||
|
void TIM1_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_1_irq_handler")));
|
||
|
|
||
|
static void PIOS_TIM_2_irq_handler (void)
|
||
|
{
|
||
|
PIOS_TIM_generic_irq_handler (TIM2);
|
||
|
}
|
||
|
void TIM2_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_2_irq_handler")));
|
||
|
|
||
|
void TIM3_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_3_irq_handler")));
|
||
|
static void PIOS_TIM_3_irq_handler (void)
|
||
|
{
|
||
|
PIOS_TIM_generic_irq_handler (TIM3);
|
||
|
}
|
||
|
|
||
|
void TIM4_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_4_irq_handler")));
|
||
|
static void PIOS_TIM_4_irq_handler (void)
|
||
|
{
|
||
|
PIOS_TIM_generic_irq_handler (TIM4);
|
||
|
}
|
||
|
|