diff --git a/flight/Modules/Attitude/attitude.c b/flight/Modules/Attitude/attitude.c index d05ae1152..b22b7ec58 100644 --- a/flight/Modules/Attitude/attitude.c +++ b/flight/Modules/Attitude/attitude.c @@ -3,7 +3,7 @@ * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup Attitude Copter Control Attitude Estimation - * @brief Acquires sensor data and computes attitude estimate + * @brief Acquires sensor data and computes attitude estimate * Specifically updates the the @ref AttitudeActual "AttitudeActual" and @ref AttitudeRaw "AttitudeRaw" settings objects * @{ * @@ -89,6 +89,7 @@ static float q[4] = {1,0,0,0}; static float R[3][3]; static int8_t rotate = 0; static bool zero_during_arming = false; +static bool bias_correct_gyro = true; /** * Initialise the module, called on startup @@ -104,15 +105,15 @@ int32_t AttitudeInitialize(void) attitude.q3 = 0; attitude.q4 = 0; AttitudeActualSet(&attitude); - + // Create queue for passing gyro data, allow 2 back samples in case gyro_queue = xQueueCreate(1, sizeof(float) * 4); - if(gyro_queue == NULL) + if(gyro_queue == NULL) return -1; PIOS_ADC_SetQueue(gyro_queue); - + AttitudeSettingsConnectCallback(&settingsUpdatedCb); - + // Start main task xTaskCreate(AttitudeTask, (signed char *)"Attitude", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &taskHandle); TaskMonitorAdd(TASKINFO_RUNNING_ATTITUDE, taskHandle); @@ -132,13 +133,13 @@ static void AttitudeTask(void *parameters) PIOS_ADC_Config((PIOS_ADC_RATE / 1000.0f) * UPDATE_RATE); // Keep flash CS pin high while talking accel - PIOS_FLASH_DISABLE; + PIOS_FLASH_DISABLE; PIOS_ADXL345_Init(); - + zero_during_arming = false; // Main task loop while (1) { - + FlightStatusData flightStatus; FlightStatusGet(&flightStatus); @@ -150,45 +151,45 @@ static void AttitudeTask(void *parameters) accelKi = 0.9; yawBiasRate = 0.23; init = 0; - } + } else if (zero_during_arming && (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMING)) { accelKp = 1; accelKi = 0.9; yawBiasRate = 0.23; - init = 0; + init = 0; } else if (init == 0) { settingsUpdatedCb(AttitudeSettingsHandle()); init = 1; - } - + } + PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE); - + AttitudeRawData attitudeRaw; - AttitudeRawGet(&attitudeRaw); - updateSensors(&attitudeRaw); + AttitudeRawGet(&attitudeRaw); + updateSensors(&attitudeRaw); updateAttitude(&attitudeRaw); - AttitudeRawSet(&attitudeRaw); + AttitudeRawSet(&attitudeRaw); } } -static void updateSensors(AttitudeRawData * attitudeRaw) -{ +static void updateSensors(AttitudeRawData * attitudeRaw) +{ struct pios_adxl345_data accel_data; float gyro[4]; - + // Only wait the time for two nominal updates before setting an alarm if(xQueueReceive(gyro_queue, (void * const) gyro, UPDATE_RATE * 2) == errQUEUE_EMPTY) { AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR); return; } - - + + // First sample is temperature attitudeRaw->gyros[ATTITUDERAW_GYROS_X] = -(gyro[1] - GYRO_NEUTRAL) * gyroGain; attitudeRaw->gyros[ATTITUDERAW_GYROS_Y] = (gyro[2] - GYRO_NEUTRAL) * gyroGain; attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] = -(gyro[3] - GYRO_NEUTRAL) * gyroGain; - + int32_t x = 0; int32_t y = 0; int32_t z = 0; @@ -203,9 +204,9 @@ static void updateSensors(AttitudeRawData * attitudeRaw) } while ( (i < 32) && (samples_remaining > 0) ); attitudeRaw->gyrotemp[0] = samples_remaining; attitudeRaw->gyrotemp[1] = i; - + float accel[3] = {(float) x / i, (float) y / i, (float) z / i}; - + if(rotate) { // TODO: rotate sensors too so stabilization is well behaved float vec_out[3]; @@ -221,68 +222,71 @@ static void updateSensors(AttitudeRawData * attitudeRaw) attitudeRaw->accels[0] = accel[0]; attitudeRaw->accels[1] = accel[1]; attitudeRaw->accels[2] = accel[2]; - } - + } + // Scale accels and correct bias attitudeRaw->accels[ATTITUDERAW_ACCELS_X] = (attitudeRaw->accels[ATTITUDERAW_ACCELS_X] - accelbias[0]) * 0.004f * 9.81f; attitudeRaw->accels[ATTITUDERAW_ACCELS_Y] = (attitudeRaw->accels[ATTITUDERAW_ACCELS_Y] - accelbias[1]) * 0.004f * 9.81f; attitudeRaw->accels[ATTITUDERAW_ACCELS_Z] = (attitudeRaw->accels[ATTITUDERAW_ACCELS_Z] - accelbias[2]) * 0.004f * 9.81f; - - // Applying integral component here so it can be seen on the gyros and correct bias - attitudeRaw->gyros[ATTITUDERAW_GYROS_X] += gyro_correct_int[0]; - attitudeRaw->gyros[ATTITUDERAW_GYROS_Y] += gyro_correct_int[1]; - - // Because most crafts wont get enough information from gravity to zero yaw gyro - attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] += gyro_correct_int[2]; - gyro_correct_int[2] += - attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] * yawBiasRate; + + if(bias_correct_gyro) { + // Applying integral component here so it can be seen on the gyros and correct bias + attitudeRaw->gyros[ATTITUDERAW_GYROS_X] += gyro_correct_int[0]; + attitudeRaw->gyros[ATTITUDERAW_GYROS_Y] += gyro_correct_int[1]; + attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] += gyro_correct_int[2]; + } + + // Because most crafts wont get enough information from gravity to zero yaw gyro, we try + // and make it average zero (weakly) + gyro_correct_int[2] += - attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] * yawBiasRate; } static void updateAttitude(AttitudeRawData * attitudeRaw) { static portTickType lastSysTime = 0; static portTickType thisSysTime; - + static float dT = 0; - + thisSysTime = xTaskGetTickCount(); if(thisSysTime > lastSysTime) // reuse dt in case of wraparound dT = (thisSysTime - lastSysTime) / portTICK_RATE_MS / 1000.0f; lastSysTime = thisSysTime; - + // Bad practice to assume structure order, but saves memory float gyro[3]; gyro[0] = attitudeRaw->gyros[0]; gyro[1] = attitudeRaw->gyros[1]; gyro[2] = attitudeRaw->gyros[2]; - + { float * accels = attitudeRaw->accels; float grot[3]; float accel_err[3]; - + // Rotate gravity to body frame and cross with accels grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2])); grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1])); grot[2] = -(q[0] * q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]); CrossProduct((const float *) accels, (const float *) grot, accel_err); - - // Account for accel magnitude + + // Account for accel magnitude float accel_mag = sqrt(accels[0]*accels[0] + accels[1]*accels[1] + accels[2]*accels[2]); accel_err[0] /= accel_mag; accel_err[1] /= accel_mag; accel_err[2] /= accel_mag; - + // Accumulate integral of error. Scale here so that units are (rad/s) but Ki has units of s gyro_correct_int[0] += accel_err[0] * accelKi; gyro_correct_int[1] += accel_err[1] * accelKi; //gyro_correct_int[2] += accel_err[2] * settings.AccelKI * dT; - + // Correct rates based on error, integral component dealt with in updateSensors gyro[0] += accel_err[0] * accelKp / dT; gyro[1] += accel_err[1] * accelKp / dT; gyro[2] += accel_err[2] * accelKp / dT; } - + { // scoping variables to save memory // Work out time derivative from INSAlgo writeup // Also accounts for the fact that gyros are in deg/s @@ -291,28 +295,28 @@ static void updateAttitude(AttitudeRawData * attitudeRaw) qdot[1] = (q[0] * gyro[0] - q[3] * gyro[1] + q[2] * gyro[2]) * dT * M_PI / 180 / 2; qdot[2] = (q[3] * gyro[0] + q[0] * gyro[1] - q[1] * gyro[2]) * dT * M_PI / 180 / 2; qdot[3] = (-q[2] * gyro[0] + q[1] * gyro[1] + q[0] * gyro[2]) * dT * M_PI / 180 / 2; - + // Take a time step q[0] = q[0] + qdot[0]; q[1] = q[1] + qdot[1]; q[2] = q[2] + qdot[2]; q[3] = q[3] + qdot[3]; } - + // Renomalize float qmag = sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]); q[0] = q[0] / qmag; q[1] = q[1] / qmag; q[2] = q[2] / qmag; q[3] = q[3] / qmag; - + AttitudeActualData attitudeActual; AttitudeActualGet(&attitudeActual); - + quat_copy(q, &attitudeActual.q1); - + // Convert into eueler degrees (makes assumptions about RPY order) - Quaternion2RPY(&attitudeActual.q1,&attitudeActual.Roll); + Quaternion2RPY(&attitudeActual.q1,&attitudeActual.Roll); AttitudeActualSet(&attitudeActual); } @@ -320,36 +324,41 @@ static void updateAttitude(AttitudeRawData * attitudeRaw) static void settingsUpdatedCb(UAVObjEvent * objEv) { AttitudeSettingsData attitudeSettings; AttitudeSettingsGet(&attitudeSettings); - - + + accelKp = attitudeSettings.AccelKp; - accelKi = attitudeSettings.AccelKi; + accelKi = attitudeSettings.AccelKi; yawBiasRate = attitudeSettings.YawBiasRate; gyroGain = attitudeSettings.GyroGain; - + zero_during_arming = attitudeSettings.ZeroDuringArming == ATTITUDESETTINGS_ZERODURINGARMING_TRUE; - + bias_correct_gyro = attitudeSettings.BiasCorrectGyro == ATTITUDESETTINGS_BIASCORRECTGYRO_TRUE; + accelbias[0] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_X]; accelbias[1] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Y]; accelbias[2] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Z]; - + + gyro_correct_int[0] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_X]; + gyro_correct_int[1] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Y]; + gyro_correct_int[2] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Z]; + // Indicates not to expend cycles on rotation if(attitudeSettings.BoardRotation[0] == 0 && attitudeSettings.BoardRotation[1] == 0 && attitudeSettings.BoardRotation[2] == 0) { rotate = 0; - + // Shouldn't be used but to be safe float rotationQuat[4] = {1,0,0,0}; Quaternion2R(rotationQuat, R); } else { float rotationQuat[4]; - const float rpy[3] = {attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_ROLL], - attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_PITCH], + const float rpy[3] = {attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_ROLL], + attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_PITCH], attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_YAW]}; RPY2Quaternion(rpy, rotationQuat); Quaternion2R(rotationQuat, R); rotate = 1; - } + } } /** * @} diff --git a/shared/uavobjectdefinition/attitudesettings.xml b/shared/uavobjectdefinition/attitudesettings.xml index e0007bbeb..45e64b57d 100644 --- a/shared/uavobjectdefinition/attitudesettings.xml +++ b/shared/uavobjectdefinition/attitudesettings.xml @@ -2,12 +2,14 @@ Settings for the @ref Attitude module used on CopterControl + +