1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-30 15:52:12 +01:00

Merge branch 'corvuscorax/OP-1352_Headwind-improvements' into next

This commit is contained in:
Corvus Corax 2014-05-26 17:18:59 +02:00
commit 0b02da43e6
2 changed files with 216 additions and 111 deletions

View File

@ -63,6 +63,7 @@
#include "taskinfo.h"
#include <pios_struct_helper.h>
#include "sin_lookup.h"
#include "paths.h"
#include "CoordinateConversions.h"
@ -85,6 +86,7 @@ static void updatePathVelocity();
static uint8_t updateFixedDesiredAttitude();
static void updateFixedAttitude();
static void airspeedStateUpdatedCb(UAVObjEvent *ev);
static bool correctCourse(float *C, float *V, float *F, float s);
/**
* Initialise the module, called on startup
@ -125,17 +127,17 @@ int32_t FixedWingPathFollowerInitialize()
}
MODULE_INITCALL(FixedWingPathFollowerInitialize, FixedWingPathFollowerStart);
static float northVelIntegral = 0;
static float eastVelIntegral = 0;
static float downVelIntegral = 0;
static float northVelIntegral = 0.0f;
static float eastVelIntegral = 0.0f;
static float downVelIntegral = 0.0f;
static float courseIntegral = 0;
static float speedIntegral = 0;
static float powerIntegral = 0;
static float airspeedErrorInt = 0;
static float courseIntegral = 0.0f;
static float speedIntegral = 0.0f;
static float powerIntegral = 0.0f;
static float airspeedErrorInt = 0.0f;
// correct speed by measured airspeed
static float indicatedAirspeedStateBias = 0;
static float indicatedAirspeedStateBias = 0.0f;
/**
* Module thread, should not return.
@ -225,12 +227,12 @@ static void pathfollowerTask(__attribute__((unused)) void *parameters)
}
} else {
// Be cleaner and get rid of global variables
northVelIntegral = 0;
eastVelIntegral = 0;
downVelIntegral = 0;
courseIntegral = 0;
speedIntegral = 0;
powerIntegral = 0;
northVelIntegral = 0.0f;
eastVelIntegral = 0.0f;
downVelIntegral = 0.0f;
courseIntegral = 0.0f;
speedIntegral = 0.0f;
powerIntegral = 0.0f;
}
PathStatusSet(&pathStatus);
}
@ -276,14 +278,14 @@ static void updatePathVelocity()
case PATHDESIRED_MODE_DRIVEVECTOR:
default:
groundspeed = pathDesired.StartingVelocity + (pathDesired.EndingVelocity - pathDesired.StartingVelocity) *
boundf(progress.fractional_progress, 0, 1);
boundf(progress.fractional_progress, 0.0f, 1.0f);
altitudeSetpoint = pathDesired.Start.Down + (pathDesired.End.Down - pathDesired.Start.Down) *
boundf(progress.fractional_progress, 0, 1);
boundf(progress.fractional_progress, 0.0f, 1.0f);
break;
}
// make sure groundspeed is not zero
if (groundspeed < 1e-2f) {
groundspeed = 1e-2f;
if (groundspeed < 1e-6f) {
groundspeed = 1e-6f;
}
// calculate velocity - can be zero if waypoints are too close
@ -302,24 +304,12 @@ static void updatePathVelocity()
// in this case the plane effectively needs to be turned around
// indicators:
// difference between correction_direction and velocitystate >90 degrees and
// difference between path_direction and velocitystate >90 degrees ( 4th sector, facing away from eerything )
// difference between path_direction and velocitystate >90 degrees ( 4th sector, facing away from everything )
// fix: ignore correction, steer in path direction until the situation has become better (condition doesn't apply anymore)
float angle1 = RAD2DEG(atan2f(progress.path_direction[1], progress.path_direction[0]) - atan2f(velocityState.East, velocityState.North));
float angle2 = RAD2DEG(atan2f(progress.correction_direction[1], progress.correction_direction[0]) - atan2f(velocityState.East, velocityState.North));
if (angle1 < -180.0f) {
angle1 += 360.0f;
}
if (angle1 > 180.0f) {
angle1 -= 360.0f;
}
if (angle2 < -180.0f) {
angle2 += 360.0f;
}
if (angle2 > 180.0f) {
angle2 -= 360.0f;
}
if (fabsf(angle1) >= 90.0f && fabsf(angle2) >= 90.0f) {
error_speed = 0;
if ( // calculating angles < 90 degrees through dot products
((progress.path_direction[0] * velocityState.North + progress.path_direction[1] * velocityState.East) < 0.0f) &&
((progress.correction_direction[0] * velocityState.North + progress.correction_direction[1] * velocityState.East) < 0.0f)) {
error_speed = 0.0f;
}
// calculate correction - can also be zero if correction vector is 0 or no error present
@ -328,14 +318,16 @@ static void updatePathVelocity()
// scale to correct length
float l = sqrtf(velocityDesired.North * velocityDesired.North + velocityDesired.East * velocityDesired.East);
velocityDesired.North *= groundspeed / l;
velocityDesired.East *= groundspeed / l;
if (l > 1e-9f) {
velocityDesired.North *= groundspeed / l;
velocityDesired.East *= groundspeed / l;
}
float downError = altitudeSetpoint - positionState.Down;
velocityDesired.Down = downError * fixedwingpathfollowerSettings.VerticalPosP;
velocityDesired.Down = downError * fixedwingpathfollowerSettings.VerticalPosP;
// update pathstatus
pathStatus.error = progress.error;
pathStatus.error = progress.error;
pathStatus.fractional_progress = progress.fractional_progress;
VelocityDesiredSet(&velocityDesired);
@ -384,8 +376,7 @@ static uint8_t updateFixedDesiredAttitude()
AirspeedStateData airspeedState;
SystemSettingsData systemSettings;
float groundspeedState;
float groundspeedDesired;
float groundspeedProjection;
float indicatedAirspeedState;
float indicatedAirspeedDesired;
float airspeedError;
@ -396,10 +387,9 @@ static uint8_t updateFixedDesiredAttitude()
float descentspeedError;
float powerCommand;
float bearing;
float heading;
float headingError;
float course;
float airspeedVector[2];
float fluidMovement[2];
float courseComponent[2];
float courseError;
float courseCommand;
@ -413,24 +403,54 @@ static uint8_t updateFixedDesiredAttitude()
AirspeedStateGet(&airspeedState);
SystemSettingsGet(&systemSettings);
/**
* Compute speed error (required for thrust and pitch)
* Compute speed error and course
*/
// missing sensors for airspeed-direction we have to assume within
// reasonable error that measured airspeed is actually the airspeed
// component in forward pointing direction
// airspeedVector is normalized
airspeedVector[0] = cos_lookup_deg(attitudeState.Yaw);
airspeedVector[1] = sin_lookup_deg(attitudeState.Yaw);
// Current ground speed
groundspeedState = sqrtf(velocityState.East * velocityState.East + velocityState.North * velocityState.North);
// note that airspeedStateBias is ( calibratedAirspeed - groundSpeed ) at the time of measurement,
// but thanks to accelerometers, groundspeed reacts faster to changes in direction
// current ground speed projected in forward direction
groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
// note that airspeedStateBias is ( calibratedAirspeed - groundspeedProjection ) at the time of measurement,
// but thanks to accelerometers, groundspeedProjection reacts faster to changes in direction
// than airspeed and gps sensors alone
indicatedAirspeedState = groundspeedState + indicatedAirspeedStateBias;
indicatedAirspeedState = groundspeedProjection + indicatedAirspeedStateBias;
// Desired ground speed
groundspeedDesired = sqrtf(velocityDesired.North * velocityDesired.North + velocityDesired.East * velocityDesired.East);
indicatedAirspeedDesired = boundf(groundspeedDesired + indicatedAirspeedStateBias,
// fluidMovement is a vector describing the aproximate movement vector of
// the surrounding fluid in 2d space (aka wind vector)
fluidMovement[0] = velocityState.North - (indicatedAirspeedState * airspeedVector[0]);
fluidMovement[1] = velocityState.East - (indicatedAirspeedState * airspeedVector[1]);
// calculate the movement vector we need to fly to reach velocityDesired -
// taking fluidMovement into account
courseComponent[0] = velocityDesired.North - fluidMovement[0];
courseComponent[1] = velocityDesired.East - fluidMovement[1];
indicatedAirspeedDesired = boundf(sqrtf(courseComponent[0] * courseComponent[0] + courseComponent[1] * courseComponent[1]),
fixedwingpathfollowerSettings.HorizontalVelMin,
fixedwingpathfollowerSettings.HorizontalVelMax);
// if we could fly at arbitrary speeds, we'd just have to move towards the
// courseComponent vector as previously calculated and we'd be fine
// unfortunately however we are bound by min and max air speed limits, so
// we need to recalculate the correct course to meet at least the
// velocityDesired vector direction at our current speed
// this overwrites courseComponent
bool valid = correctCourse(courseComponent, (float *)&velocityDesired.North, fluidMovement, indicatedAirspeedDesired);
// Error condition: wind speed too high, we can't go where we want anymore
fixedwingpathfollowerStatus.Errors.Wind = 0;
if ((!valid) &&
fixedwingpathfollowerSettings.Safetymargins.Wind > 0.5f) { // alarm switched on
fixedwingpathfollowerStatus.Errors.Wind = 1;
result = 0;
}
// Airspeed error
airspeedError = indicatedAirspeedDesired - indicatedAirspeedState;
@ -461,23 +481,18 @@ static uint8_t updateFixedDesiredAttitude()
result = 0;
}
if (indicatedAirspeedState < 1e-6f) {
// prevent division by zero, abort without controlling anything. This guidance mode is not suited for takeoff or touchdown, or handling stationary planes
// also we cannot handle planes flying backwards, lets just wait until the nose drops
fixedwingpathfollowerStatus.Errors.Lowspeed = 1;
return 0;
}
/**
* Compute desired thrust command
*/
// compute saturated integral error thrust response. Make integral leaky for better performance. Approximately 30s time constant.
if (fixedwingpathfollowerSettings.PowerPI.Ki > 0) {
if (fixedwingpathfollowerSettings.PowerPI.Ki > 0.0f) {
powerIntegral = boundf(powerIntegral + -descentspeedError * dT,
-fixedwingpathfollowerSettings.PowerPI.ILimit / fixedwingpathfollowerSettings.PowerPI.Ki,
fixedwingpathfollowerSettings.PowerPI.ILimit / fixedwingpathfollowerSettings.PowerPI.Ki
) * (1.0f - 1.0f / (1.0f + 30.0f / dT));
} else { powerIntegral = 0; }
} else {
powerIntegral = 0.0f;
}
// Compute the cross feed from vertical speed to pitch, with saturation
float speedErrorToPowerCommandComponent = boundf(
@ -504,9 +519,9 @@ static uint8_t updateFixedDesiredAttitude()
// Error condition: plane cannot hold altitude at current speed.
fixedwingpathfollowerStatus.Errors.Lowpower = 0;
if (fixedwingpathfollowerSettings.ThrustLimit.Neutral + powerCommand >= fixedwingpathfollowerSettings.ThrustLimit.Max && // thrust at maximum
velocityState.Down > 0 && // we ARE going down
descentspeedDesired < 0 && // we WANT to go up
airspeedError > 0 && // we are too slow already
velocityState.Down > 0.0f && // we ARE going down
descentspeedDesired < 0.0f && // we WANT to go up
airspeedError > 0.0f && // we are too slow already
fixedwingpathfollowerSettings.Safetymargins.Lowpower > 0.5f) { // alarm switched on
fixedwingpathfollowerStatus.Errors.Lowpower = 1;
result = 0;
@ -514,9 +529,9 @@ static uint8_t updateFixedDesiredAttitude()
// Error condition: plane keeps climbing despite minimum thrust (opposite of above)
fixedwingpathfollowerStatus.Errors.Highpower = 0;
if (fixedwingpathfollowerSettings.ThrustLimit.Neutral + powerCommand <= fixedwingpathfollowerSettings.ThrustLimit.Min && // thrust at minimum
velocityState.Down < 0 && // we ARE going up
descentspeedDesired > 0 && // we WANT to go down
airspeedError < 0 && // we are too fast already
velocityState.Down < 0.0f && // we ARE going up
descentspeedDesired > 0.0f && // we WANT to go down
airspeedError < 0.0f && // we are too fast already
fixedwingpathfollowerSettings.Safetymargins.Highpower > 0.5f) { // alarm switched on
fixedwingpathfollowerStatus.Errors.Highpower = 1;
result = 0;
@ -526,7 +541,6 @@ static uint8_t updateFixedDesiredAttitude()
/**
* Compute desired pitch command
*/
if (fixedwingpathfollowerSettings.SpeedPI.Ki > 0) {
// Integrate with saturation
airspeedErrorInt = boundf(airspeedErrorInt + airspeedError * dT,
@ -556,48 +570,18 @@ static uint8_t updateFixedDesiredAttitude()
// Error condition: high speed dive
fixedwingpathfollowerStatus.Errors.Pitchcontrol = 0;
if (fixedwingpathfollowerSettings.PitchLimit.Neutral + pitchCommand >= fixedwingpathfollowerSettings.PitchLimit.Max && // pitch demand is full up
velocityState.Down > 0 && // we ARE going down
descentspeedDesired < 0 && // we WANT to go up
airspeedError < 0 && // we are too fast already
velocityState.Down > 0.0f && // we ARE going down
descentspeedDesired < 0.0f && // we WANT to go up
airspeedError < 0.0f && // we are too fast already
fixedwingpathfollowerSettings.Safetymargins.Pitchcontrol > 0.5f) { // alarm switched on
fixedwingpathfollowerStatus.Errors.Pitchcontrol = 1;
result = 0;
}
/**
* Calculate where we are heading and why (wind issues)
*/
bearing = attitudeState.Yaw;
heading = RAD2DEG(atan2f(velocityState.East, velocityState.North));
headingError = heading - bearing;
if (headingError < -180.0f) {
headingError += 360.0f;
}
if (headingError > 180.0f) {
headingError -= 360.0f;
}
// Error condition: wind speed is higher than airspeed. We are forced backwards!
fixedwingpathfollowerStatus.Errors.Wind = 0;
if ((headingError > fixedwingpathfollowerSettings.Safetymargins.Wind ||
headingError < -fixedwingpathfollowerSettings.Safetymargins.Wind) &&
fixedwingpathfollowerSettings.Safetymargins.Highpower > 0.5f) { // alarm switched on
// we are flying backwards
fixedwingpathfollowerStatus.Errors.Wind = 1;
result = 0;
}
/**
* Compute desired roll command
*/
if (groundspeedDesired > 1e-6f) {
course = RAD2DEG(atan2f(velocityDesired.East, velocityDesired.North));
courseError = course - heading;
} else {
// if we are not supposed to move, run in a circle
courseError = -90.0f;
result = 0;
}
courseError = RAD2DEG(atan2f(courseComponent[1], courseComponent[0])) - attitudeState.Yaw;
if (courseError < -180.0f) {
courseError += 360.0f;
@ -606,6 +590,19 @@ static uint8_t updateFixedDesiredAttitude()
courseError -= 360.0f;
}
// overlap calculation. Theres a dead zone behind the craft where the
// counter-yawing of some craft while rolling could render a desired right
// turn into a desired left turn. Making the turn direction based on
// current roll angle keeps the plane committed to a direction once chosen
if (courseError < -180.0f + (fixedwingpathfollowerSettings.ReverseCourseOverlap * 0.5f)
&& attitudeState.Roll > 0.0f) {
courseError += 360.0f;
}
if (courseError > 180.0f - (fixedwingpathfollowerSettings.ReverseCourseOverlap * 0.5f)
&& attitudeState.Roll < 0.0f) {
courseError -= 360.0f;
}
courseIntegral = boundf(courseIntegral + courseError * dT * fixedwingpathfollowerSettings.CoursePI.Ki,
-fixedwingpathfollowerSettings.CoursePI.ILimit,
fixedwingpathfollowerSettings.CoursePI.ILimit);
@ -628,7 +625,7 @@ static uint8_t updateFixedDesiredAttitude()
* Compute desired yaw command
*/
// TODO implement raw control mode for yaw and base on Accels.Y
stabDesired.Yaw = 0;
stabDesired.Yaw = 0.0f;
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
@ -656,10 +653,116 @@ static void airspeedStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
AirspeedStateGet(&airspeedState);
VelocityStateGet(&velocityState);
float groundspeed = sqrtf(velocityState.East * velocityState.East + velocityState.North * velocityState.North);
float airspeedVector[2];
float yaw;
AttitudeStateYawGet(&yaw);
airspeedVector[0] = cos_lookup_deg(yaw);
airspeedVector[1] = sin_lookup_deg(yaw);
// vector projection of groundspeed on airspeed vector to handle both forward and backwards movement
float groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
indicatedAirspeedStateBias = airspeedState.CalibratedAirspeed - groundspeed;
// note - we do fly by Indicated Airspeed (== calibrated airspeed)
// however since airspeed is updated less often than groundspeed, we use sudden changes to groundspeed to offset the airspeed by the same measurement.
indicatedAirspeedStateBias = airspeedState.CalibratedAirspeed - groundspeedProjection;
// note - we do fly by Indicated Airspeed (== calibrated airspeed) however
// since airspeed is updated less often than groundspeed, we use sudden
// changes to groundspeed to offset the airspeed by the same measurement.
// This has a side effect that in the absence of any airspeed updates, the
// pathfollower will fly using groundspeed.
}
/**
* Function to calculate course vector C based on airspeed s, fluid movement F
* and desired movement vector V
* parameters in: V,F,s
* parameters out: C
* returns true if a valid solution could be found for V,F,s, false if not
* C will be set to a best effort attempt either way
*/
static bool correctCourse(float *C, float *V, float *F, float s)
{
// Approach:
// Let Sc be a circle around origin marking possible movement vectors
// of the craft with airspeed s (all possible options for C)
// Let Vl be a line through the origin along movement vector V where fr any
// point v on line Vl v = k * (V / |V|) = k' * V
// Let Wl be a line parallel to Vl where for any point v on line Vl exists
// a point w on WL with w = v - F
// Then any intersection between circle Sc and line Wl represents course
// vector which would result in a movement vector
// V' = k * ( V / |V|) = k' * V
// If there is no intersection point, S is insufficient to compensate
// for F and we can only try to fly in direction of V (thus having wind drift
// but at least making progress orthogonal to wind)
s = fabsf(s);
float f = sqrtf(F[0] * F[0] + F[1] * F[1]);
// normalize Cn=V/|V|, |V| must be >0
float v = sqrtf(V[0] * V[0] + V[1] * V[1]);
if (v < 1e-6f) {
// if |V|=0, we aren't supposed to move, turn into the wind
// (this allows hovering)
C[0] = -F[0];
C[1] = -F[1];
// if desired airspeed matches fluidmovement a hover is actually
// intended so return true
return fabsf(f - s) < 1e-3f;
}
float Vn[2] = { V[0] / v, V[1] / v };
// project F on V
float fp = F[0] * Vn[0] + F[1] * Vn[1];
// find component Fo of F that is orthogonal to V
// (which is exactly the distance between Vl and Wl)
float Fo[2] = { F[0] - (fp * Vn[0]), F[1] - (fp * Vn[1]) };
float fo2 = Fo[0] * Fo[0] + Fo[1] * Fo[1];
// find k where k * Vn = C - Fo
// |C|=s is the hypothenuse in any rectangular triangle formed by k * Vn and Fo
// so k^2 + fo^2 = s^2 (since |Vn|=1)
float k2 = s * s - fo2;
if (k2 <= -1e-3f) {
// there is no solution, we will be drifted off either way
// fallback: fly stupidly in direction of V and hope for the best
C[0] = V[0];
C[1] = V[1];
return false;
} else if (k2 <= 1e-3f) {
// there is exactly one solution: -Fo
C[0] = -Fo[0];
C[1] = -Fo[1];
return true;
}
// we have two possible solutions k positive and k negative as there are
// two intersection points between Wl and Sc
// which one is better? two criteria:
// 1. we MUST move in the right direction, if any k leads to -v its invalid
// 2. we should minimize the speed error
float k = sqrt(k2);
float C1[2] = { -k * Vn[0] - Fo[0], -k * Vn[1] - Fo[1] };
float C2[2] = { k *Vn[0] - Fo[0], k * Vn[1] - Fo[1] };
// project C+F on Vn to find signed resulting movement vector length
float vp1 = (C1[0] + F[0]) * Vn[0] + (C1[1] + F[1]) * Vn[1];
float vp2 = (C2[0] + F[0]) * Vn[0] + (C2[1] + F[1]) * Vn[1];
if (vp1 >= 0.0f && fabsf(v - vp1) < fabsf(v - vp2)) {
// in this case the angle between course and resulting movement vector
// is greater than 90 degrees - so we actually fly backwards
C[0] = C1[0];
C[1] = C1[1];
return true;
}
C[0] = C2[0];
C[1] = C2[1];
if (vp2 >= 0.0f) {
// in this case the angle between course and movement vector is less than
// 90 degrees, but we do move in the right direction
return true;
} else {
// in this case we actually get driven in the opposite direction of V
// with both solutions for C
// this might be reached in headwind stronger than maximum allowed
// airspeed.
return false;
}
}

View File

@ -12,6 +12,8 @@
<field name="CourseFeedForward" units="s" type="float" elements="1" defaultvalue="3.0"/>
<!-- how many seconds to plan the flight vector ahead when initiating necessary heading changes - increase for planes with sluggish response -->
<field name="ReverseCourseOverlap" units="deg" type="float" elements="1" defaultvalue="20.0"/>
<!-- how big the overlapping area behind the plane is, where, if the desired course lies behind, the current bank angle will determine if the plane goes left or right -->
<field name="HorizontalPosP" units="(m/s)/m" type="float" elements="1" defaultvalue="0.05"/>
<!-- proportional coefficient for correction vector in path vector field to get back on course - reduce for fast planes to prevent course oscillations -->