diff --git a/flight/Modules/Attitude/revolution/attitude.c b/flight/Modules/Attitude/revolution/attitude.c new file mode 100644 index 000000000..a95e21ba4 --- /dev/null +++ b/flight/Modules/Attitude/revolution/attitude.c @@ -0,0 +1,472 @@ +/** + ****************************************************************************** + * @addtogroup OpenPilotModules OpenPilot Modules + * @{ + * @addtogroup Attitude Copter Control Attitude Estimation + * @brief Acquires sensor data and computes attitude estimate + * Specifically updates the the @ref AttitudeActual "AttitudeActual" and @ref AttitudeRaw "AttitudeRaw" settings objects + * @{ + * + * @file attitude.c + * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. + * @brief Module to handle all comms to the AHRS on a periodic basis. + * + * @see The GNU Public License (GPL) Version 3 + * + ******************************************************************************/ +/* + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY + * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ + +/** + * Input objects: None, takes sensor data via pios + * Output objects: @ref AttitudeRaw @ref AttitudeActual + * + * This module computes an attitude estimate from the sensor data + * + * The module executes in its own thread. + * + * UAVObjects are automatically generated by the UAVObjectGenerator from + * the object definition XML file. + * + * Modules have no API, all communication to other modules is done through UAVObjects. + * However modules may use the API exposed by shared libraries. + * See the OpenPilot wiki for more details. + * http://www.openpilot.org/OpenPilot_Application_Architecture + * + */ + +#include "pios.h" +#include "attitude.h" +#include "attituderaw.h" +#include "attitudeactual.h" +#include "attitudesettings.h" +#include "baroaltitude.h" +#include "flightstatus.h" +#include "CoordinateConversions.h" + +// Private constants +#define STACK_SIZE_BYTES 540 +#define TASK_PRIORITY (tskIDLE_PRIORITY+3) + +#define PI_MOD(x) (fmod(x + M_PI, M_PI * 2) - M_PI) +// Private types + +// Private variables +static xTaskHandle taskHandle; + +// Private functions +static void AttitudeTask(void *parameters); + +static float gyro_correct_int[3] = {0,0,0}; + +static int8_t updateSensors(AttitudeRawData *); +static void updateAttitude(AttitudeRawData *); +static void settingsUpdatedCb(UAVObjEvent * objEv); + +static float accelKi = 0; +static float accelKp = 0; +static float yawBiasRate = 0; +static float gyroGain = 0.42; +static int16_t accelbias[3]; +static float q[4] = {1,0,0,0}; +static float R[3][3]; +static int8_t rotate = 0; +static bool zero_during_arming = false; +static bool bias_correct_gyro = true; + +/** + * Initialise the module, called on startup + * \returns 0 on success or -1 if initialisation failed + */ +int32_t AttitudeStart(void) +{ + + // Start main task + xTaskCreate(AttitudeTask, (signed char *)"Attitude", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &taskHandle); + TaskMonitorAdd(TASKINFO_RUNNING_ATTITUDE, taskHandle); + PIOS_WDG_RegisterFlag(PIOS_WDG_ATTITUDE); + + return 0; +} + +/** + * Initialise the module, called on startup + * \returns 0 on success or -1 if initialisation failed + */ +int32_t AttitudeInitialize(void) +{ + AttitudeActualInitialize(); + AttitudeRawInitialize(); + AttitudeSettingsInitialize(); + BaroAltitudeInitialize(); + + // Initialize quaternion + AttitudeActualData attitude; + AttitudeActualGet(&attitude); + attitude.q1 = 1; + attitude.q2 = 0; + attitude.q3 = 0; + attitude.q4 = 0; + AttitudeActualSet(&attitude); + + // Cannot trust the values to init right above if BL runs + gyro_correct_int[0] = 0; + gyro_correct_int[1] = 0; + gyro_correct_int[2] = 0; + + q[0] = 1; + q[1] = 0; + q[2] = 0; + q[3] = 0; + for(uint8_t i = 0; i < 3; i++) + for(uint8_t j = 0; j < 3; j++) + R[i][j] = 0; + + AttitudeSettingsConnectCallback(&settingsUpdatedCb); + + return 0; +} + +MODULE_INITCALL(AttitudeInitialize, AttitudeStart) + +int32_t accel_test; +int32_t gyro_test; +int32_t mag_test; +int32_t pressure_test; + +/** + * Module thread, should not return. + */ +static void AttitudeTask(void *parameters) +{ + uint8_t init = 0; + AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE); + + // Force settings update to make sure rotation loaded + settingsUpdatedCb(AttitudeSettingsHandle()); + + accel_test = PIOS_BMA180_Test(); + gyro_test = PIOS_MPU6050_Test(); + mag_test = PIOS_HMC5883_Test(); + pressure_test = PIOS_BMP085_Test(); + + // Kick of pressure conversions + PIOS_BMP085_StartADC(TemperatureConv); + + // Main task loop + while (1) { + + FlightStatusData flightStatus; + FlightStatusGet(&flightStatus); + + if((xTaskGetTickCount() < 7000) && (xTaskGetTickCount() > 1000)) { + // For first 7 seconds use accels to get gyro bias + accelKp = 1; + accelKi = 0.9; + yawBiasRate = 0.23; + init = 0; + } + else if (zero_during_arming && (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMING)) { + accelKp = 1; + accelKi = 0.9; + yawBiasRate = 0.23; + init = 0; + } else if (init == 0) { + // Reload settings (all the rates) + AttitudeSettingsAccelKiGet(&accelKi); + AttitudeSettingsAccelKpGet(&accelKp); + AttitudeSettingsYawBiasRateGet(&yawBiasRate); + init = 1; + } + + PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE); + + AttitudeRawData attitudeRaw; + AttitudeRawGet(&attitudeRaw); + if(updateSensors(&attitudeRaw) != 0) + AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR); + else { + // Only update attitude when sensor data is good + //updateAttitude(&attitudeRaw); + AttitudeRawSet(&attitudeRaw); + AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE); + } + + vTaskDelay(1); + } +} + + +uint32_t accel_samples; +uint32_t gyro_samples; +struct pios_bma180_data accel; +struct pios_mpu6050_data gyro; +AttitudeRawData raw; +int32_t accel_accum[3] = {0, 0, 0}; +int32_t gyro_accum[3] = {0,0,0}; +float scaling; + +/** + * Get an update from the sensors + * @param[in] attitudeRaw Populate the UAVO instead of saving right here + * @return 0 if successfull, -1 if not + */ +static int8_t updateSensors(AttitudeRawData * attitudeRaw) +{ + int32_t read_good; + int32_t count; + + for (int i = 0; i < 3; i++) { + accel_accum[i] = 0; + gyro_accum[i] = 0; + } + accel_samples = 0; + gyro_samples = 0; + + // Make sure we get one sample + count = 0; + while((read_good = PIOS_BMA180_ReadFifo(&accel)) != 0); + while(read_good == 0) { + count++; + + accel_accum[0] += accel.x; + accel_accum[1] += accel.y; + accel_accum[2] += accel.z; + + read_good = PIOS_BMA180_ReadFifo(&accel); + } + accel_samples = count; + + // Not the swaping of channel orders + scaling = PIOS_BMA180_GetScale() / accel_samples; + attitudeRaw->accels[ATTITUDERAW_ACCELS_X] = accel_accum[0] * scaling; + attitudeRaw->accels[ATTITUDERAW_ACCELS_Y] = accel_accum[1] * scaling; + attitudeRaw->accels[ATTITUDERAW_ACCELS_Z] = accel_accum[2] * scaling; + + + /* + // Make sure we get one sample + count = 0; + while((read_good = PIOS_MPU6050_ReadFifo(&gyro)) != 0); + while(read_good == 0) { + count++; + + gyro_accum[0] += gyro.gyro_x; + gyro_accum[1] += gyro.gyro_y; + gyro_accum[2] += gyro.gyro_z; + + read_good = PIOS_MPU6050_ReadFifo(&gyro); + } + gyro_samples = count; + + + + scaling = PIOS_MPU6050_GetScale() / gyro_samples; + attitudeRaw->gyros[ATTITUDERAW_GYROS_X] = -((float) gyro_accum[1]) * scaling; + attitudeRaw->gyros[ATTITUDERAW_GYROS_Y] = -((float) gyro_accum[0]) * scaling; + attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] = -((float) gyro_accum[2]) * scaling; + + // From data sheet 35 deg C corresponds to -13200, and 280 LSB per C + attitudeRaw->temperature[ATTITUDERAW_TEMPERATURE_GYRO] = gyro.temperature = 35.0f + ((float) gyro.temperature + 13200) / 280; + */ + // From the data sheet 25 deg C corresponds to 2 and 2 LSB per C + attitudeRaw->temperature[ATTITUDERAW_TEMPERATURE_ACCEL] = 25.0f + ((float) accel.temperature - 2) / 2; + + if(bias_correct_gyro) { + // Applying integral component here so it can be seen on the gyros and correct bias + attitudeRaw->gyros[ATTITUDERAW_GYROS_X] += gyro_correct_int[0]; + attitudeRaw->gyros[ATTITUDERAW_GYROS_Y] += gyro_correct_int[1]; + attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] += gyro_correct_int[2]; + } + + // Because most crafts wont get enough information from gravity to zero yaw gyro, we try + // and make it average zero (weakly) + gyro_correct_int[2] += - attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] * yawBiasRate; + + + if (PIOS_HMC5883_NewDataAvailable()) { + int16_t values[3]; + PIOS_HMC5883_ReadMag(values); + attitudeRaw->magnetometers[ATTITUDERAW_MAGNETOMETERS_X] = -values[0]; + attitudeRaw->magnetometers[ATTITUDERAW_MAGNETOMETERS_Y] = -values[1]; + attitudeRaw->magnetometers[ATTITUDERAW_MAGNETOMETERS_Z] = -values[2]; + } + + AttitudeRawSet(&raw); + + int32_t retval = PIOS_BMP085_ReadADC(); + if (retval == 0) { // Conversion completed + static uint32_t baro_conversions; + + if((baro_conversions++) % 2) + PIOS_BMP085_StartADC(PressureConv); + else { + PIOS_BMP085_StartADC(TemperatureConv); + + float pressure; + + pressure = PIOS_BMP085_GetPressure(); + + BaroAltitudeData data; + BaroAltitudeGet(&data); + data.Altitude = (1.0f - powf(pressure / BMP085_P0, (1.0f / 5.255f))) * 44330.0f; + data.Pressure = pressure / 1000.0f; + data.Temperature = PIOS_BMP085_GetTemperature() / 10.0f; // Convert to deg C + BaroAltitudeSet(&data); + + } + } + + return 0; +} + +static void updateAttitude(AttitudeRawData * attitudeRaw) +{ + float dT; + portTickType thisSysTime = xTaskGetTickCount(); + static portTickType lastSysTime = 0; + + dT = (thisSysTime == lastSysTime) ? 0.001 : (portMAX_DELAY & (thisSysTime - lastSysTime)) / portTICK_RATE_MS / 1000.0f; + lastSysTime = thisSysTime; + + // Bad practice to assume structure order, but saves memory + float gyro[3]; + gyro[0] = attitudeRaw->gyros[0]; + gyro[1] = attitudeRaw->gyros[1]; + gyro[2] = attitudeRaw->gyros[2]; + + { + float * accels = attitudeRaw->accels; + float grot[3]; + float accel_err[3]; + + // Rotate gravity to body frame and cross with accels + grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2])); + grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1])); + grot[2] = -(q[0] * q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]); + CrossProduct((const float *) accels, (const float *) grot, accel_err); + + // Account for accel magnitude + float accel_mag = sqrt(accels[0]*accels[0] + accels[1]*accels[1] + accels[2]*accels[2]); + accel_err[0] /= accel_mag; + accel_err[1] /= accel_mag; + accel_err[2] /= accel_mag; + + // Accumulate integral of error. Scale here so that units are (deg/s) but Ki has units of s + gyro_correct_int[0] += accel_err[0] * accelKi; + gyro_correct_int[1] += accel_err[1] * accelKi; + + //gyro_correct_int[2] += accel_err[2] * settings.AccelKI * dT; + + // Correct rates based on error, integral component dealt with in updateSensors + gyro[0] += accel_err[0] * accelKp / dT; + gyro[1] += accel_err[1] * accelKp / dT; + gyro[2] += accel_err[2] * accelKp / dT; + } + + { // scoping variables to save memory + // Work out time derivative from INSAlgo writeup + // Also accounts for the fact that gyros are in deg/s + float qdot[4]; + qdot[0] = (-q[1] * gyro[0] - q[2] * gyro[1] - q[3] * gyro[2]) * dT * M_PI / 180 / 2; + qdot[1] = (q[0] * gyro[0] - q[3] * gyro[1] + q[2] * gyro[2]) * dT * M_PI / 180 / 2; + qdot[2] = (q[3] * gyro[0] + q[0] * gyro[1] - q[1] * gyro[2]) * dT * M_PI / 180 / 2; + qdot[3] = (-q[2] * gyro[0] + q[1] * gyro[1] + q[0] * gyro[2]) * dT * M_PI / 180 / 2; + + // Take a time step + q[0] = q[0] + qdot[0]; + q[1] = q[1] + qdot[1]; + q[2] = q[2] + qdot[2]; + q[3] = q[3] + qdot[3]; + + if(q[0] < 0) { + q[0] = -q[0]; + q[1] = -q[1]; + q[2] = -q[2]; + q[3] = -q[3]; + } + } + + // Renomalize + float qmag = sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]); + q[0] = q[0] / qmag; + q[1] = q[1] / qmag; + q[2] = q[2] / qmag; + q[3] = q[3] / qmag; + + // If quaternion has become inappropriately short or is nan reinit. + // THIS SHOULD NEVER ACTUALLY HAPPEN + if((fabs(qmag) < 1e-3) || (qmag != qmag)) { + q[0] = 1; + q[1] = 0; + q[2] = 0; + q[3] = 0; + } + + AttitudeActualData attitudeActual; + AttitudeActualGet(&attitudeActual); + + quat_copy(q, &attitudeActual.q1); + + // Convert into eueler degrees (makes assumptions about RPY order) + Quaternion2RPY(&attitudeActual.q1,&attitudeActual.Roll); + + AttitudeActualSet(&attitudeActual); +} + +static void settingsUpdatedCb(UAVObjEvent * objEv) { + AttitudeSettingsData attitudeSettings; + AttitudeSettingsGet(&attitudeSettings); + + + accelKp = attitudeSettings.AccelKp; + accelKi = attitudeSettings.AccelKi; + yawBiasRate = attitudeSettings.YawBiasRate; + gyroGain = attitudeSettings.GyroGain; + + zero_during_arming = attitudeSettings.ZeroDuringArming == ATTITUDESETTINGS_ZERODURINGARMING_TRUE; + bias_correct_gyro = attitudeSettings.BiasCorrectGyro == ATTITUDESETTINGS_BIASCORRECTGYRO_TRUE; + + accelbias[0] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_X]; + accelbias[1] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Y]; + accelbias[2] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Z]; + + gyro_correct_int[0] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_X] / 100.0f; + gyro_correct_int[1] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Y] / 100.0f; + gyro_correct_int[2] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Z] / 100.0f; + + // Indicates not to expend cycles on rotation + if(attitudeSettings.BoardRotation[0] == 0 && attitudeSettings.BoardRotation[1] == 0 && + attitudeSettings.BoardRotation[2] == 0) { + rotate = 0; + + // Shouldn't be used but to be safe + float rotationQuat[4] = {1,0,0,0}; + Quaternion2R(rotationQuat, R); + } else { + float rotationQuat[4]; + const float rpy[3] = {attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_ROLL], + attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_PITCH], + attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_YAW]}; + RPY2Quaternion(rpy, rotationQuat); + Quaternion2R(rotationQuat, R); + rotate = 1; + } +} +/** + * @} + * @} + */ diff --git a/flight/Modules/Attitude/revolution/inc/attitude.h b/flight/Modules/Attitude/revolution/inc/attitude.h new file mode 100644 index 000000000..3f90e56a6 --- /dev/null +++ b/flight/Modules/Attitude/revolution/inc/attitude.h @@ -0,0 +1,37 @@ +/** + ****************************************************************************** + * @addtogroup OpenPilotModules OpenPilot Modules + * @{ + * @addtogroup Attitude Attitude Module + * @{ + * + * @file attitude.h + * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2011. + * @brief Acquires sensor data and fuses it into attitude estimate for CC + * + * @see The GNU Public License (GPL) Version 3 + * + *****************************************************************************/ +/* + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY + * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ +#ifndef ATTITUDE_H +#define ATTITUDE_H + +#include "openpilot.h" + +int32_t AttitudeInitialize(void); + +#endif // ATTITUDE_H