mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2025-01-29 14:52:12 +01:00
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@1268 ebee16cc-31ac-478f-84a7-5cbb03baadba
This commit is contained in:
parent
b8712ef361
commit
487b61473e
1060
flight/AHRS/WorldMagModel.c
Normal file
1060
flight/AHRS/WorldMagModel.c
Normal file
@ -0,0 +1,1060 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
*
|
||||
* @file WorldMagModel.c
|
||||
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
||||
* @brief Source file for the World Magnetic Model
|
||||
* This is a port of code available from the US NOAA.
|
||||
* The hard coded coefficients should be valid until 2015.
|
||||
* Major changes include:
|
||||
* - No geoid model (altitude must be geodetic WGS-84)
|
||||
* - Floating point calculation (not double precision)
|
||||
* - Hard coded coefficients for model
|
||||
* - Elimination of user interface
|
||||
* - Elimination of dynamic memory allocation
|
||||
*
|
||||
* @see The GNU Public License (GPL) Version 3
|
||||
*
|
||||
*****************************************************************************/
|
||||
/*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License along
|
||||
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "WorldMagModel.h"
|
||||
#include "WMMInternal.h"
|
||||
|
||||
WMMtype_Ellipsoid Ellip;
|
||||
WMMtype_MagneticModel MagneticModel;
|
||||
|
||||
/**************************************************************************************
|
||||
* Example use - very simple - only two exposed functions
|
||||
*
|
||||
* WMM_Initialize(); // Set default values and constants
|
||||
*
|
||||
* WMM_GetMagVector(float Lat, float Lon, float Alt, uint16_t Month, uint16_t Day, uint16_t Year, float B[3]);
|
||||
* e.g. Iceland in may of 2012 = WMM_GetMagVector(65.0, -20.0, 0.0, 5, 5, 2012, B);
|
||||
* Alt is above the WGS-84 Ellipsoid
|
||||
* B is the NED (XYZ) magnetic vector in nTesla
|
||||
**************************************************************************************/
|
||||
|
||||
void WMM_Initialize()
|
||||
// Sets default values for WMM subroutines.
|
||||
// UPDATES : Ellip and MagneticModel
|
||||
{
|
||||
float coeffs[NUMTERMS][6];
|
||||
|
||||
// Sets WGS-84 parameters
|
||||
Ellip.a = 6378.137; // semi-major axis of the ellipsoid in km
|
||||
Ellip.b = 6356.7523142; // semi-minor axis of the ellipsoid in km
|
||||
Ellip.fla = 1/298.257223563; // flattening
|
||||
Ellip.eps = sqrt(1- (Ellip.b*Ellip.b)/(Ellip.a*Ellip.a )); // first eccentricity
|
||||
Ellip.epssq = (Ellip.eps*Ellip.eps); // first eccentricity squared
|
||||
Ellip.re = 6371.2; // Earth's radius in km
|
||||
|
||||
// Sets Magnetic Model parameters
|
||||
MagneticModel.nMax = WMM_MAX_MODEL_DEGREES;
|
||||
MagneticModel.nMaxSecVar = WMM_MAX_SECULAR_VARIATION_MODEL_DEGREES;
|
||||
MagneticModel.SecularVariationUsed = 0;
|
||||
|
||||
// Really, Really needs to be read from a file - out of date in 2015 at latest
|
||||
MagneticModel.EditionDate = 5.7863328170559505e-307;
|
||||
MagneticModel.epoch = 2010.0;
|
||||
sprintf(MagneticModel.ModelName, "WMM-2010");
|
||||
WMM_Set_Coeff_Array(coeffs);
|
||||
for(uint16_t i=0; i<NUMTERMS; i++){
|
||||
MagneticModel.Main_Field_Coeff_G[i]=coeffs[i][2];
|
||||
MagneticModel.Main_Field_Coeff_H[i]=coeffs[i][3];
|
||||
MagneticModel.Secular_Var_Coeff_G[i]=coeffs[i][4];
|
||||
MagneticModel.Secular_Var_Coeff_H[i]=coeffs[i][5];
|
||||
}
|
||||
}
|
||||
|
||||
void WMM_GetMagVector(float Lat, float Lon, float AltEllipsoid, uint16_t Month, uint16_t Day, uint16_t Year, float B[3])
|
||||
{
|
||||
char Error_Message[255];
|
||||
|
||||
WMMtype_MagneticModel TimedMagneticModel;
|
||||
WMMtype_CoordSpherical CoordSpherical;
|
||||
WMMtype_CoordGeodetic CoordGeodetic;
|
||||
WMMtype_Date Date;
|
||||
WMMtype_GeoMagneticElements GeoMagneticElements;
|
||||
|
||||
CoordGeodetic.lambda = Lon;
|
||||
CoordGeodetic.phi = Lat;
|
||||
CoordGeodetic.HeightAboveEllipsoid = AltEllipsoid;
|
||||
WMM_GeodeticToSpherical(Ellip, CoordGeodetic, &CoordSpherical); /*Convert from geodeitic to Spherical Equations: 17-18, WMM Technical report*/
|
||||
|
||||
Date.Month=Month;
|
||||
Date.Day=Day;
|
||||
Date.Year=Year;
|
||||
WMM_DateToYear (&Date, Error_Message);
|
||||
WMM_TimelyModifyMagneticModel(Date, &MagneticModel, &TimedMagneticModel); /* Time adjust the coefficients, Equation 19, WMM Technical report */
|
||||
WMM_Geomag(Ellip, CoordSpherical, CoordGeodetic, &TimedMagneticModel, &GeoMagneticElements); /* Computes the geoMagnetic field elements and their time change*/
|
||||
|
||||
B[0]=GeoMagneticElements.X;
|
||||
B[1]=GeoMagneticElements.Y;
|
||||
B[2]=GeoMagneticElements.Z;
|
||||
}
|
||||
|
||||
uint16_t WMM_Geomag(WMMtype_Ellipsoid Ellip, WMMtype_CoordSpherical CoordSpherical, WMMtype_CoordGeodetic CoordGeodetic,
|
||||
WMMtype_MagneticModel *TimedMagneticModel, WMMtype_GeoMagneticElements *GeoMagneticElements)
|
||||
/*
|
||||
The main subroutine that calls a sequence of WMM sub-functions to calculate the magnetic field elements for a single point.
|
||||
The function expects the model coefficients and point coordinates as input and returns the magnetic field elements and
|
||||
their rate of change. Though, this subroutine can be called successively to calculate a time series, profile or grid
|
||||
of magnetic field, these are better achieved by the subroutine WMM_Grid.
|
||||
|
||||
INPUT: Ellip
|
||||
CoordSpherical
|
||||
CoordGeodetic
|
||||
TimedMagneticModel
|
||||
|
||||
OUTPUT : GeoMagneticElements
|
||||
|
||||
CALLS: WMM_ComputeSphericalHarmonicVariables( Ellip, CoordSpherical, TimedMagneticModel->nMax, &SphVariables); (Compute Spherical Harmonic variables )
|
||||
WMM_AssociatedLegendreFunction(CoordSpherical, TimedMagneticModel->nMax, LegendreFunction); Compute ALF
|
||||
WMM_Summation(LegendreFunction, TimedMagneticModel, SphVariables, CoordSpherical, &MagneticResultsSph); Accumulate the spherical harmonic coefficients
|
||||
WMM_SecVarSummation(LegendreFunction, TimedMagneticModel, SphVariables, CoordSpherical, &MagneticResultsSphVar); Sum the Secular Variation Coefficients
|
||||
WMM_RotateMagneticVector(CoordSpherical, CoordGeodetic, MagneticResultsSph, &MagneticResultsGeo); Map the computed Magnetic fields to Geodeitic coordinates
|
||||
WMM_RotateMagneticVector(CoordSpherical, CoordGeodetic, MagneticResultsSphVar, &MagneticResultsGeoVar); Map the secular variation field components to Geodetic coordinates
|
||||
WMM_CalculateGeoMagneticElements(&MagneticResultsGeo, GeoMagneticElements); Calculate the Geomagnetic elements
|
||||
WMM_CalculateSecularVariation(MagneticResultsGeoVar, GeoMagneticElements); Calculate the secular variation of each of the Geomagnetic elements
|
||||
|
||||
*/
|
||||
{
|
||||
WMMtype_LegendreFunction LegendreAllocate, *LegendreFunction;
|
||||
LegendreFunction = &LegendreAllocate;
|
||||
WMMtype_SphericalHarmonicVariables SphVariables;
|
||||
WMMtype_MagneticResults MagneticResultsSph, MagneticResultsGeo, MagneticResultsSphVar, MagneticResultsGeoVar;
|
||||
|
||||
WMM_ComputeSphericalHarmonicVariables( Ellip, CoordSpherical, TimedMagneticModel->nMax, &SphVariables); /* Compute Spherical Harmonic variables */
|
||||
WMM_AssociatedLegendreFunction(CoordSpherical, TimedMagneticModel->nMax, LegendreFunction); /* Compute ALF */
|
||||
WMM_Summation(LegendreFunction, TimedMagneticModel, SphVariables, CoordSpherical, &MagneticResultsSph); /* Accumulate the spherical harmonic coefficients*/
|
||||
WMM_SecVarSummation(LegendreFunction, TimedMagneticModel, SphVariables, CoordSpherical, &MagneticResultsSphVar); /*Sum the Secular Variation Coefficients */
|
||||
WMM_RotateMagneticVector(CoordSpherical, CoordGeodetic, MagneticResultsSph, &MagneticResultsGeo); /* Map the computed Magnetic fields to Geodeitic coordinates */
|
||||
WMM_RotateMagneticVector(CoordSpherical, CoordGeodetic, MagneticResultsSphVar, &MagneticResultsGeoVar); /* Map the secular variation field components to Geodetic coordinates*/
|
||||
WMM_CalculateGeoMagneticElements(&MagneticResultsGeo, GeoMagneticElements); /* Calculate the Geomagnetic elements, Equation 18 , WMM Technical report */
|
||||
WMM_CalculateSecularVariation(MagneticResultsGeoVar, GeoMagneticElements); /*Calculate the secular variation of each of the Geomagnetic elements*/
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
uint16_t WMM_ComputeSphericalHarmonicVariables(WMMtype_Ellipsoid Ellip, WMMtype_CoordSpherical CoordSpherical, uint16_t nMax, WMMtype_SphericalHarmonicVariables *SphVariables)
|
||||
|
||||
/* Computes Spherical variables
|
||||
Variables computed are (a/r)^(n+2), cos_m(lamda) and sin_m(lambda) for spherical harmonic
|
||||
summations. (Equations 10-12 in the WMM Technical Report)
|
||||
INPUT Ellip data structure with the following elements
|
||||
float a; semi-major axis of the ellipsoid
|
||||
float b; semi-minor axis of the ellipsoid
|
||||
float fla; flattening
|
||||
float epssq; first eccentricity squared
|
||||
float eps; first eccentricity
|
||||
float re; mean radius of ellipsoid
|
||||
CoordSpherical A data structure with the following elements
|
||||
float lambda; ( longitude)
|
||||
float phig; ( geocentric latitude )
|
||||
float r; ( distance from the center of the ellipsoid)
|
||||
nMax integer ( Maxumum degree of spherical harmonic secular model)\
|
||||
|
||||
OUTPUT SphVariables Pointer to the data structure with the following elements
|
||||
float RelativeRadiusPower[WMM_MAX_MODEL_DEGREES+1]; [earth_reference_radius_km sph. radius ]^n
|
||||
float cos_mlambda[WMM_MAX_MODEL_DEGREES+1]; cp(m) - cosine of (mspherical coord. longitude)
|
||||
float sin_mlambda[WMM_MAX_MODEL_DEGREES+1]; sp(m) - sine of (mspherical coord. longitude)
|
||||
CALLS : none
|
||||
*/
|
||||
|
||||
{
|
||||
float cos_lambda, sin_lambda;
|
||||
uint16_t m, n;
|
||||
cos_lambda = cos(DEG2RAD(CoordSpherical.lambda));
|
||||
sin_lambda = sin(DEG2RAD(CoordSpherical.lambda));
|
||||
/* for n = 0 ... model_order, compute (Radius of Earth / Spherica radius r)^(n+2)
|
||||
for n 1..nMax-1 (this is much faster than calling pow MAX_N+1 times). */
|
||||
SphVariables->RelativeRadiusPower[0] = (Ellip.re / CoordSpherical.r) * (Ellip.re / CoordSpherical.r);
|
||||
for (n = 1; n <= nMax; n++)
|
||||
{
|
||||
SphVariables->RelativeRadiusPower[n] = SphVariables->RelativeRadiusPower[n-1] * (Ellip.re / CoordSpherical.r);
|
||||
}
|
||||
|
||||
/*
|
||||
Compute cos(m*lambda), sin(m*lambda) for m = 0 ... nMax
|
||||
cos(a + b) = cos(a)*cos(b) - sin(a)*sin(b)
|
||||
sin(a + b) = cos(a)*sin(b) + sin(a)*cos(b)
|
||||
*/
|
||||
SphVariables->cos_mlambda[0] = 1.0;
|
||||
SphVariables->sin_mlambda[0] = 0.0;
|
||||
|
||||
SphVariables->cos_mlambda[1] = cos_lambda;
|
||||
SphVariables->sin_mlambda[1] = sin_lambda;
|
||||
for (m = 2; m <= nMax; m++)
|
||||
{
|
||||
SphVariables->cos_mlambda[m] = SphVariables->cos_mlambda[m-1]*cos_lambda - SphVariables->sin_mlambda[m-1]*sin_lambda;
|
||||
SphVariables->sin_mlambda[m] = SphVariables->cos_mlambda[m-1]*sin_lambda + SphVariables->sin_mlambda[m-1]*cos_lambda;
|
||||
}
|
||||
return TRUE;
|
||||
} /*WMM_ComputeSphericalHarmonicVariables*/
|
||||
|
||||
|
||||
uint16_t WMM_AssociatedLegendreFunction(WMMtype_CoordSpherical CoordSpherical, uint16_t nMax, WMMtype_LegendreFunction *LegendreFunction)
|
||||
|
||||
/* Computes all of the Schmidt-semi normalized associated Legendre
|
||||
functions up to degree nMax. If nMax <= 16, function WMM_PcupLow is used.
|
||||
Otherwise WMM_PcupHigh is called.
|
||||
INPUT CoordSpherical A data structure with the following elements
|
||||
float lambda; ( longitude)
|
||||
float phig; ( geocentric latitude )
|
||||
float r; ( distance from the center of the ellipsoid)
|
||||
nMax integer ( Maxumum degree of spherical harmonic secular model)
|
||||
LegendreFunction Pointer to data structure with the following elements
|
||||
float *Pcup; ( pointer to store Legendre Function )
|
||||
float *dPcup; ( pointer to store Derivative of Lagendre function )
|
||||
|
||||
OUTPUT LegendreFunction Calculated Legendre variables in the data structure
|
||||
|
||||
*/
|
||||
|
||||
{
|
||||
float sin_phi;
|
||||
uint16_t FLAG = 1;
|
||||
|
||||
sin_phi = sin ( DEG2RAD ( CoordSpherical.phig ) ); /* sin (geocentric latitude) */
|
||||
|
||||
if (nMax <= 16 || (1 - fabs(sin_phi)) < 1.0e-10 ) /* If nMax is less tha 16 or at the poles */
|
||||
FLAG = WMM_PcupLow(LegendreFunction->Pcup,LegendreFunction->dPcup,sin_phi, nMax);
|
||||
else FLAG = WMM_PcupHigh(LegendreFunction->Pcup,LegendreFunction->dPcup,sin_phi, nMax);
|
||||
if (FLAG == 0) /* Error while computing Legendre variables*/
|
||||
return FALSE;
|
||||
|
||||
|
||||
return TRUE;
|
||||
} /*WMM_AssociatedLegendreFunction */
|
||||
|
||||
uint16_t WMM_Summation(WMMtype_LegendreFunction *LegendreFunction, WMMtype_MagneticModel *MagneticModel, WMMtype_SphericalHarmonicVariables SphVariables, WMMtype_CoordSpherical CoordSpherical, WMMtype_MagneticResults *MagneticResults)
|
||||
{
|
||||
/* Computes Geomagnetic Field Elements X, Y and Z in Spherical coordinate system using
|
||||
spherical harmonic summation.
|
||||
|
||||
|
||||
The vector Magnetic field is given by -grad V, where V is Geomagnetic scalar potential
|
||||
The gradient in spherical coordinates is given by:
|
||||
|
||||
dV ^ 1 dV ^ 1 dV ^
|
||||
grad V = -- r + - -- t + -------- -- p
|
||||
dr r dt r sin(t) dp
|
||||
|
||||
|
||||
INPUT : LegendreFunction
|
||||
MagneticModel
|
||||
SphVariables
|
||||
CoordSpherical
|
||||
OUTPUT : MagneticResults
|
||||
|
||||
CALLS : WMM_SummationSpecial
|
||||
|
||||
|
||||
|
||||
Manoj Nair, June, 2009 Manoj.C.Nair@Noaa.Gov
|
||||
*/
|
||||
uint16_t m, n, index;
|
||||
float cos_phi;
|
||||
MagneticResults->Bz = 0.0;
|
||||
MagneticResults->By = 0.0;
|
||||
MagneticResults->Bx = 0.0;
|
||||
for (n = 1; n <= MagneticModel->nMax; n++)
|
||||
{
|
||||
for (m=0;m<=n;m++)
|
||||
{
|
||||
index = (n * (n + 1) / 2 + m);
|
||||
|
||||
/* nMax (n+2) n m m m
|
||||
Bz = -SUM (a/r) (n+1) SUM [g cos(m p) + h sin(m p)] P (sin(phi))
|
||||
n=1 m=0 n n n */
|
||||
/* Equation 12 in the WMM Technical report. Derivative with respect to radius.*/
|
||||
MagneticResults->Bz -= SphVariables.RelativeRadiusPower[n] *
|
||||
( MagneticModel->Main_Field_Coeff_G[index]*SphVariables.cos_mlambda[m] +
|
||||
MagneticModel->Main_Field_Coeff_H[index]*SphVariables.sin_mlambda[m] )
|
||||
* (float) (n+1) * LegendreFunction-> Pcup[index];
|
||||
|
||||
/* 1 nMax (n+2) n m m m
|
||||
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
|
||||
n=1 m=0 n n n */
|
||||
/* Equation 11 in the WMM Technical report. Derivative with respect to longitude, divided by radius. */
|
||||
MagneticResults->By += SphVariables.RelativeRadiusPower[n] *
|
||||
( MagneticModel->Main_Field_Coeff_G[index]*SphVariables.sin_mlambda[m] -
|
||||
MagneticModel->Main_Field_Coeff_H[index]*SphVariables.cos_mlambda[m] )
|
||||
* (float) (m) * LegendreFunction-> Pcup[index];
|
||||
/* nMax (n+2) n m m m
|
||||
Bx = - SUM (a/r) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
|
||||
n=1 m=0 n n n */
|
||||
/* Equation 10 in the WMM Technical report. Derivative with respect to latitude, divided by radius. */
|
||||
|
||||
MagneticResults->Bx -= SphVariables.RelativeRadiusPower[n] *
|
||||
( MagneticModel->Main_Field_Coeff_G[index]*SphVariables.cos_mlambda[m] +
|
||||
MagneticModel->Main_Field_Coeff_H[index]*SphVariables.sin_mlambda[m] )
|
||||
* LegendreFunction-> dPcup[index];
|
||||
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
cos_phi = cos ( DEG2RAD ( CoordSpherical.phig ) );
|
||||
if ( fabs(cos_phi) > 1.0e-10 )
|
||||
{
|
||||
MagneticResults->By = MagneticResults->By / cos_phi ;
|
||||
}
|
||||
else
|
||||
/* Special calculation for component - By - at Geographic poles.
|
||||
* If the user wants to avoid using this function, please make sure that
|
||||
* the latitude is not exactly +/-90. An option is to make use the function
|
||||
* WMM_CheckGeographicPoles.
|
||||
*/
|
||||
|
||||
{
|
||||
WMM_SummationSpecial(MagneticModel, SphVariables, CoordSpherical, MagneticResults);
|
||||
}
|
||||
return TRUE;
|
||||
}/*WMM_Summation */
|
||||
|
||||
uint16_t WMM_SecVarSummation(WMMtype_LegendreFunction *LegendreFunction, WMMtype_MagneticModel *MagneticModel, WMMtype_SphericalHarmonicVariables SphVariables, WMMtype_CoordSpherical CoordSpherical, WMMtype_MagneticResults *MagneticResults)
|
||||
{
|
||||
/*This Function sums the secular variation coefficients to get the secular variation of the Magnetic vector.
|
||||
INPUT : LegendreFunction
|
||||
MagneticModel
|
||||
SphVariables
|
||||
CoordSpherical
|
||||
OUTPUT : MagneticResults
|
||||
|
||||
CALLS : WMM_SecVarSummationSpecial
|
||||
|
||||
*/
|
||||
uint16_t m, n, index;
|
||||
float cos_phi;
|
||||
MagneticModel->SecularVariationUsed = TRUE;
|
||||
MagneticResults->Bz = 0.0;
|
||||
MagneticResults->By = 0.0;
|
||||
MagneticResults->Bx = 0.0;
|
||||
for (n = 1; n <= MagneticModel->nMaxSecVar; n++)
|
||||
{
|
||||
for (m=0;m<=n;m++)
|
||||
{
|
||||
index = (n * (n + 1) / 2 + m);
|
||||
|
||||
/* nMax (n+2) n m m m
|
||||
Bz = -SUM (a/r) (n+1) SUM [g cos(m p) + h sin(m p)] P (sin(phi))
|
||||
n=1 m=0 n n n */
|
||||
/* Derivative with respect to radius.*/
|
||||
MagneticResults->Bz -= SphVariables.RelativeRadiusPower[n] *
|
||||
( MagneticModel->Secular_Var_Coeff_G[index]*SphVariables.cos_mlambda[m] +
|
||||
MagneticModel->Secular_Var_Coeff_H[index]*SphVariables.sin_mlambda[m] )
|
||||
* (float) (n+1) * LegendreFunction-> Pcup[index];
|
||||
|
||||
/* 1 nMax (n+2) n m m m
|
||||
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
|
||||
n=1 m=0 n n n */
|
||||
/* Derivative with respect to longitude, divided by radius. */
|
||||
MagneticResults->By += SphVariables.RelativeRadiusPower[n] *
|
||||
( MagneticModel->Secular_Var_Coeff_G[index]*SphVariables.sin_mlambda[m] -
|
||||
MagneticModel->Secular_Var_Coeff_H[index]*SphVariables.cos_mlambda[m] )
|
||||
* (float) (m) * LegendreFunction-> Pcup[index];
|
||||
/* nMax (n+2) n m m m
|
||||
Bx = - SUM (a/r) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
|
||||
n=1 m=0 n n n */
|
||||
/* Derivative with respect to latitude, divided by radius. */
|
||||
|
||||
MagneticResults->Bx -= SphVariables.RelativeRadiusPower[n] *
|
||||
( MagneticModel->Secular_Var_Coeff_G[index]*SphVariables.cos_mlambda[m] +
|
||||
MagneticModel->Secular_Var_Coeff_H[index]*SphVariables.sin_mlambda[m] )
|
||||
* LegendreFunction-> dPcup[index];
|
||||
}
|
||||
}
|
||||
cos_phi = cos ( DEG2RAD ( CoordSpherical.phig ) );
|
||||
if ( fabs(cos_phi) > 1.0e-10 )
|
||||
{
|
||||
MagneticResults->By = MagneticResults->By / cos_phi ;
|
||||
}
|
||||
else
|
||||
/* Special calculation for component By at Geographic poles */
|
||||
{
|
||||
WMM_SecVarSummationSpecial(MagneticModel, SphVariables, CoordSpherical, MagneticResults);
|
||||
}
|
||||
return TRUE;
|
||||
} /*WMM_SecVarSummation*/
|
||||
|
||||
uint16_t WMM_RotateMagneticVector(WMMtype_CoordSpherical CoordSpherical, WMMtype_CoordGeodetic CoordGeodetic, WMMtype_MagneticResults MagneticResultsSph, WMMtype_MagneticResults *MagneticResultsGeo)
|
||||
/* Rotate the Magnetic Vectors to Geodetic Coordinates
|
||||
Manoj Nair, June, 2009 Manoj.C.Nair@Noaa.Gov
|
||||
Equation 16, WMM Technical report
|
||||
|
||||
INPUT : CoordSpherical : Data structure WMMtype_CoordSpherical with the following elements
|
||||
float lambda; ( longitude)
|
||||
float phig; ( geocentric latitude )
|
||||
float r; ( distance from the center of the ellipsoid)
|
||||
|
||||
CoordGeodetic : Data structure WMMtype_CoordGeodetic with the following elements
|
||||
float lambda; (longitude)
|
||||
float phi; ( geodetic latitude)
|
||||
float HeightAboveEllipsoid; (height above the ellipsoid (HaE) )
|
||||
float HeightAboveGeoid;(height above the Geoid )
|
||||
|
||||
MagneticResultsSph : Data structure WMMtype_MagneticResults with the following elements
|
||||
float Bx; North
|
||||
float By; East
|
||||
float Bz; Down
|
||||
|
||||
OUTPUT: MagneticResultsGeo Pointer to the data structure WMMtype_MagneticResults, with the following elements
|
||||
float Bx; North
|
||||
float By; East
|
||||
float Bz; Down
|
||||
|
||||
CALLS : none
|
||||
|
||||
*/
|
||||
{
|
||||
float Psi;
|
||||
/* Difference between the spherical and Geodetic latitudes */
|
||||
Psi = ( M_PI/180 ) * ( CoordSpherical.phig - CoordGeodetic.phi );
|
||||
|
||||
/* Rotate spherical field components to the Geodeitic system */
|
||||
MagneticResultsGeo->Bz = MagneticResultsSph.Bx * sin(Psi) + MagneticResultsSph.Bz * cos(Psi);
|
||||
MagneticResultsGeo->Bx = MagneticResultsSph.Bx * cos(Psi) - MagneticResultsSph.Bz * sin(Psi);
|
||||
MagneticResultsGeo->By = MagneticResultsSph.By;
|
||||
return TRUE;
|
||||
} /*WMM_RotateMagneticVector*/
|
||||
|
||||
uint16_t WMM_CalculateGeoMagneticElements(WMMtype_MagneticResults *MagneticResultsGeo, WMMtype_GeoMagneticElements *GeoMagneticElements)
|
||||
|
||||
/* Calculate all the Geomagnetic elements from X,Y and Z components
|
||||
INPUT MagneticResultsGeo Pointer to data structure with the following elements
|
||||
float Bx; ( North )
|
||||
float By; ( East )
|
||||
float Bz; ( Down )
|
||||
OUTPUT GeoMagneticElements Pointer to data structure with the following elements
|
||||
float Decl; (Angle between the magnetic field vector and true north, positive east)
|
||||
float Incl; Angle between the magnetic field vector and the horizontal plane, positive down
|
||||
float F; Magnetic Field Strength
|
||||
float H; Horizontal Magnetic Field Strength
|
||||
float X; Northern component of the magnetic field vector
|
||||
float Y; Eastern component of the magnetic field vector
|
||||
float Z; Downward component of the magnetic field vector
|
||||
CALLS : none
|
||||
*/
|
||||
{
|
||||
GeoMagneticElements->X = MagneticResultsGeo->Bx;
|
||||
GeoMagneticElements->Y = MagneticResultsGeo->By;
|
||||
GeoMagneticElements->Z = MagneticResultsGeo->Bz;
|
||||
|
||||
GeoMagneticElements->H = sqrt (MagneticResultsGeo->Bx* MagneticResultsGeo->Bx + MagneticResultsGeo->By * MagneticResultsGeo->By);
|
||||
GeoMagneticElements->F = sqrt (GeoMagneticElements->H*GeoMagneticElements->H + MagneticResultsGeo->Bz * MagneticResultsGeo->Bz);
|
||||
GeoMagneticElements->Decl = RAD2DEG(atan2 (GeoMagneticElements->Y , GeoMagneticElements->X));
|
||||
GeoMagneticElements->Incl = RAD2DEG(atan2 (GeoMagneticElements->Z , GeoMagneticElements->H));
|
||||
|
||||
return TRUE;
|
||||
} /*WMM_CalculateGeoMagneticElements */
|
||||
|
||||
uint16_t WMM_CalculateSecularVariation(WMMtype_MagneticResults MagneticVariation, WMMtype_GeoMagneticElements *MagneticElements)
|
||||
/*This takes the Magnetic Variation in x, y, and z and uses it to calculate the secular variation of each of the Geomagnetic elements.
|
||||
INPUT MagneticVariation Data structure with the following elements
|
||||
float Bx; ( North )
|
||||
float By; ( East )
|
||||
float Bz; ( Down )
|
||||
OUTPUT MagneticElements Pointer to the data structure with the following elements updated
|
||||
float Decldot; Yearly Rate of change in declination
|
||||
float Incldot; Yearly Rate of change in inclination
|
||||
float Fdot; Yearly rate of change in Magnetic field strength
|
||||
float Hdot; Yearly rate of change in horizontal field strength
|
||||
float Xdot; Yearly rate of change in the northern component
|
||||
float Ydot; Yearly rate of change in the eastern component
|
||||
float Zdot; Yearly rate of change in the downward component
|
||||
float GVdot;Yearly rate of chnage in grid variation
|
||||
CALLS : none
|
||||
|
||||
*/
|
||||
{
|
||||
MagneticElements->Xdot = MagneticVariation.Bx;
|
||||
MagneticElements->Ydot = MagneticVariation.By;
|
||||
MagneticElements->Zdot = MagneticVariation.Bz;
|
||||
MagneticElements->Hdot = (MagneticElements->X * MagneticElements->Xdot + MagneticElements->Y * MagneticElements->Ydot) / MagneticElements->H; //See equation 19 in the WMM technical report
|
||||
MagneticElements->Fdot = (MagneticElements->X * MagneticElements->Xdot + MagneticElements->Y * MagneticElements->Ydot + MagneticElements->Z * MagneticElements->Zdot) / MagneticElements->F;
|
||||
MagneticElements->Decldot = 180.0 / M_PI * (MagneticElements->X * MagneticElements->Ydot - MagneticElements->Y * MagneticElements->Xdot) / (MagneticElements->H * MagneticElements->H);
|
||||
MagneticElements->Incldot = 180.0 / M_PI * (MagneticElements->H * MagneticElements->Zdot - MagneticElements->Z * MagneticElements->Hdot) / (MagneticElements->F * MagneticElements->F);
|
||||
MagneticElements->GVdot = MagneticElements->Decldot;
|
||||
return TRUE;
|
||||
} /*WMM_CalculateSecularVariation*/
|
||||
|
||||
uint16_t WMM_PcupHigh(float *Pcup, float *dPcup, float x, uint16_t nMax)
|
||||
|
||||
/* This function evaluates all of the Schmidt-semi normalized associated Legendre
|
||||
functions up to degree nMax. The functions are initially scaled by
|
||||
10^280 sin^m in order to minimize the effects of underflow at large m
|
||||
near the poles (see Holmes and Featherstone 2002, J. Geodesy, 76, 279-299).
|
||||
Note that this function performs the same operation as WMM_PcupLow.
|
||||
However this function also can be used for high degree (large nMax) models.
|
||||
|
||||
Calling Parameters:
|
||||
INPUT
|
||||
nMax: Maximum spherical harmonic degree to compute.
|
||||
x: cos(colatitude) or sin(latitude).
|
||||
|
||||
OUTPUT
|
||||
Pcup: A vector of all associated Legendgre polynomials evaluated at
|
||||
x up to nMax. The lenght must by greater or equal to (nMax+1)*(nMax+2)/2.
|
||||
dPcup: Derivative of Pcup(x) with respect to latitude
|
||||
|
||||
CALLS : none
|
||||
Notes:
|
||||
|
||||
|
||||
|
||||
Adopted from the FORTRAN code written by Mark Wieczorek September 25, 2005.
|
||||
|
||||
Manoj Nair, Nov, 2009 Manoj.C.Nair@Noaa.Gov
|
||||
|
||||
Change from the previous version
|
||||
The prevous version computes the derivatives as
|
||||
dP(n,m)(x)/dx, where x = sin(latitude) (or cos(colatitude) ).
|
||||
However, the WMM Geomagnetic routines requires dP(n,m)(x)/dlatitude.
|
||||
Hence the derivatives are multiplied by sin(latitude).
|
||||
Removed the options for CS phase and normalizations.
|
||||
|
||||
Note: In geomagnetism, the derivatives of ALF are usually found with
|
||||
respect to the colatitudes. Here the derivatives are found with respect
|
||||
to the latitude. The difference is a sign reversal for the derivative of
|
||||
the Associated Legendre Functions.
|
||||
|
||||
The derivates can't be computed for latitude = |90| degrees.
|
||||
*/
|
||||
{
|
||||
float pm2, pm1, pmm, plm, rescalem, z, scalef;
|
||||
float f1[NUMPCUP], f2[NUMPCUP], PreSqr[NUMPCUP];
|
||||
uint16_t k, kstart, m, n;
|
||||
|
||||
if (fabs(x) == 1.0)
|
||||
{
|
||||
// printf("Error in PcupHigh: derivative cannot be calculated at poles\n");
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
scalef = 1.0e-280;
|
||||
|
||||
for(n = 0 ; n <= 2*nMax+1 ; ++n )
|
||||
{
|
||||
PreSqr[n] = sqrt((float)(n));
|
||||
}
|
||||
|
||||
k = 2;
|
||||
|
||||
for(n=2 ; n<=nMax ; n++)
|
||||
{
|
||||
k = k + 1;
|
||||
f1[k] = (float)(2*n-1) /(float)(n);
|
||||
f2[k] = (float)(n-1) /(float)(n);
|
||||
for(m=1 ; m<=n-2 ; m++)
|
||||
{
|
||||
k = k+1;
|
||||
f1[k] = (float)(2*n-1) / PreSqr[n+m] / PreSqr[n-m];
|
||||
f2[k] = PreSqr[n-m-1] * PreSqr[n+m-1] / PreSqr[n+m] / PreSqr[n-m];
|
||||
}
|
||||
k = k + 2;
|
||||
}
|
||||
|
||||
/*z = sin (geocentric latitude) */
|
||||
z = sqrt((1.0-x)*(1.0+x));
|
||||
pm2 = 1.0;
|
||||
Pcup[0] = 1.0;
|
||||
dPcup[0] = 0.0;
|
||||
if (nMax == 0)
|
||||
return FALSE;
|
||||
pm1 = x;
|
||||
Pcup[1] = pm1;
|
||||
dPcup[1] = z;
|
||||
k = 1;
|
||||
|
||||
for(n = 2; n <= nMax; n++ )
|
||||
{
|
||||
k = k+n;
|
||||
plm = f1[k]*x*pm1-f2[k]*pm2;
|
||||
Pcup[k] = plm;
|
||||
dPcup[k] = (float)(n) * (pm1 - x * plm) / z;
|
||||
pm2 = pm1;
|
||||
pm1 = plm;
|
||||
}
|
||||
|
||||
pmm = PreSqr[2]*scalef;
|
||||
rescalem = 1.0/scalef;
|
||||
kstart = 0;
|
||||
|
||||
for(m = 1; m <= nMax - 1; ++m)
|
||||
{
|
||||
rescalem = rescalem*z;
|
||||
|
||||
/* Calculate Pcup(m,m)*/
|
||||
kstart = kstart+m+1;
|
||||
pmm = pmm * PreSqr[2*m+1] / PreSqr[2*m];
|
||||
Pcup[kstart] = pmm*rescalem / PreSqr[2*m+1];
|
||||
dPcup[kstart] = -((float)(m) * x * Pcup[kstart] / z);
|
||||
pm2 = pmm/PreSqr[2*m+1];
|
||||
/* Calculate Pcup(m+1,m)*/
|
||||
k = kstart+m+1 ;
|
||||
pm1 = x * PreSqr[2*m+1] * pm2;
|
||||
Pcup[k] = pm1*rescalem;
|
||||
dPcup[k] = ((pm2*rescalem) * PreSqr[2*m+1] - x * (float)(m+1) * Pcup[k]) / z;
|
||||
/* Calculate Pcup(n,m)*/
|
||||
for(n = m+2; n <= nMax; ++n)
|
||||
{
|
||||
k = k+n;
|
||||
plm = x*f1[k]*pm1-f2[k]*pm2;
|
||||
Pcup[k] = plm*rescalem;
|
||||
dPcup[k] = (PreSqr[n+m] * PreSqr[n-m] * (pm1 * rescalem) - (float)(n) * x * Pcup[k] ) / z;
|
||||
pm2 = pm1;
|
||||
pm1 = plm;
|
||||
}
|
||||
}
|
||||
|
||||
/* Calculate Pcup(nMax,nMax)*/
|
||||
rescalem = rescalem*z;
|
||||
kstart = kstart+m+1;
|
||||
pmm = pmm / PreSqr[2*nMax];
|
||||
Pcup[kstart] = pmm * rescalem;
|
||||
dPcup[kstart] = -(float)(nMax) * x * Pcup[kstart] / z;
|
||||
|
||||
return TRUE ;
|
||||
} /* WMM_PcupHigh */
|
||||
|
||||
uint16_t WMM_PcupLow( float *Pcup, float *dPcup, float x, uint16_t nMax)
|
||||
|
||||
/* This function evaluates all of the Schmidt-semi normalized associated Legendre
|
||||
functions up to degree nMax.
|
||||
|
||||
Calling Parameters:
|
||||
INPUT
|
||||
nMax: Maximum spherical harmonic degree to compute.
|
||||
x: cos(colatitude) or sin(latitude).
|
||||
|
||||
OUTPUT
|
||||
Pcup: A vector of all associated Legendgre polynomials evaluated at
|
||||
x up to nMax.
|
||||
dPcup: Derivative of Pcup(x) with respect to latitude
|
||||
|
||||
Notes: Overflow may occur if nMax > 20 , especially for high-latitudes.
|
||||
Use WMM_PcupHigh for large nMax.
|
||||
|
||||
Writted by Manoj Nair, June, 2009 . Manoj.C.Nair@Noaa.Gov.
|
||||
|
||||
Note: In geomagnetism, the derivatives of ALF are usually found with
|
||||
respect to the colatitudes. Here the derivatives are found with respect
|
||||
to the latitude. The difference is a sign reversal for the derivative of
|
||||
the Associated Legendre Functions.
|
||||
*/
|
||||
{
|
||||
uint16_t n, m, index, index1, index2;
|
||||
float k, z, schmidtQuasiNorm[NUMPCUP];
|
||||
Pcup[0] = 1.0;
|
||||
dPcup[0] = 0.0;
|
||||
/*sin (geocentric latitude) - sin_phi */
|
||||
z = sqrt( ( 1.0 - x ) * ( 1.0 + x ) ) ;
|
||||
|
||||
/* First, Compute the Gauss-normalized associated Legendre functions*/
|
||||
for (n = 1; n <= nMax; n++)
|
||||
{
|
||||
for (m=0;m<=n;m++)
|
||||
{
|
||||
index = (n * (n + 1) / 2 + m);
|
||||
if (n == m)
|
||||
{
|
||||
index1 = ( n - 1 ) * n / 2 + m -1;
|
||||
Pcup [index] = z * Pcup[index1];
|
||||
dPcup[index] = z * dPcup[index1] + x * Pcup[index1];
|
||||
}
|
||||
else if (n == 1 && m == 0)
|
||||
{
|
||||
index1 = ( n - 1 ) * n / 2 + m;
|
||||
Pcup[index] = x * Pcup[index1];
|
||||
dPcup[index] = x * dPcup[index1] - z * Pcup[index1];
|
||||
}
|
||||
else if (n > 1 && n != m)
|
||||
{
|
||||
index1 = ( n - 2 ) * ( n - 1 ) / 2 + m;
|
||||
index2 = ( n - 1) * n / 2 + m;
|
||||
if (m > n - 2)
|
||||
{
|
||||
Pcup[index] = x * Pcup[index2];
|
||||
dPcup[index] = x * dPcup[index2] - z * Pcup[index2];
|
||||
}
|
||||
else
|
||||
{
|
||||
k = (float)( ( ( n - 1 ) * ( n - 1 ) ) - ( m * m ) ) / ( float ) ( ( 2 * n - 1 ) * ( 2 * n - 3 ) );
|
||||
Pcup[index] = x * Pcup[index2] - k * Pcup[index1];
|
||||
dPcup[index] = x * dPcup[index2] - z * Pcup[index2] - k * dPcup[index1];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/*Compute the ration between the Gauss-normalized associated Legendre
|
||||
functions and the Schmidt quasi-normalized version. This is equivalent to
|
||||
sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)! */
|
||||
|
||||
schmidtQuasiNorm[0] = 1.0;
|
||||
for (n = 1; n <= nMax; n++)
|
||||
{
|
||||
index = (n * (n + 1) / 2);
|
||||
index1 = (n - 1) * n / 2 ;
|
||||
/* for m = 0 */
|
||||
schmidtQuasiNorm[index] = schmidtQuasiNorm[index1] * (float) (2 * n - 1) / (float) n;
|
||||
|
||||
for ( m = 1; m <= n; m++)
|
||||
{
|
||||
index = (n * (n + 1) / 2 + m);
|
||||
index1 = (n * (n + 1) / 2 + m - 1);
|
||||
schmidtQuasiNorm[index] = schmidtQuasiNorm[index1] * sqrt( (float) ((n - m + 1) * (m == 1 ? 2 : 1)) / (float) (n + m));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* Converts the Gauss-normalized associated Legendre
|
||||
functions to the Schmidt quasi-normalized version using pre-computed
|
||||
relation stored in the variable schmidtQuasiNorm */
|
||||
|
||||
for (n = 1; n <= nMax; n++)
|
||||
{
|
||||
for (m=0;m<=n;m++)
|
||||
{
|
||||
index = (n * (n + 1) / 2 + m);
|
||||
Pcup[index] = Pcup[index] * schmidtQuasiNorm[index];
|
||||
dPcup[index] = - dPcup[index] * schmidtQuasiNorm[index];
|
||||
/* The sign is changed since the new WMM routines use derivative with respect to latitude
|
||||
insted of co-latitude */
|
||||
}
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
} /*WMM_PcupLow */
|
||||
|
||||
|
||||
uint16_t WMM_SummationSpecial(WMMtype_MagneticModel *MagneticModel, WMMtype_SphericalHarmonicVariables SphVariables, WMMtype_CoordSpherical CoordSpherical, WMMtype_MagneticResults *MagneticResults)
|
||||
/* Special calculation for the component By at Geographic poles.
|
||||
Manoj Nair, June, 2009 manoj.c.nair@noaa.gov
|
||||
INPUT: MagneticModel
|
||||
SphVariables
|
||||
CoordSpherical
|
||||
OUTPUT: MagneticResults
|
||||
CALLS : none
|
||||
See Section 1.4, "SINGULARITIES AT THE GEOGRAPHIC POLES", WMM Technical report
|
||||
|
||||
*/
|
||||
{
|
||||
uint16_t n, index;
|
||||
float k, sin_phi, PcupS[NUMPCUPS], schmidtQuasiNorm1, schmidtQuasiNorm2, schmidtQuasiNorm3;
|
||||
|
||||
PcupS[0] = 1;
|
||||
schmidtQuasiNorm1 = 1.0;
|
||||
|
||||
MagneticResults->By = 0.0;
|
||||
sin_phi = sin ( DEG2RAD ( CoordSpherical.phig ) );
|
||||
|
||||
for (n = 1; n <= MagneticModel->nMax; n++)
|
||||
{
|
||||
|
||||
/*Compute the ration between the Gauss-normalized associated Legendre
|
||||
functions and the Schmidt quasi-normalized version. This is equivalent to
|
||||
sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)! */
|
||||
|
||||
index = (n * (n + 1) / 2 + 1);
|
||||
schmidtQuasiNorm2 = schmidtQuasiNorm1 * (float) (2 * n - 1) / (float) n;
|
||||
schmidtQuasiNorm3 = schmidtQuasiNorm2 * sqrt( (float) (n * 2) / (float) (n + 1));
|
||||
schmidtQuasiNorm1 = schmidtQuasiNorm2;
|
||||
if (n == 1)
|
||||
{
|
||||
PcupS[n] = PcupS[n-1];
|
||||
}
|
||||
else
|
||||
{
|
||||
k = (float)( ( (n - 1) * (n - 1) ) - 1) / ( float ) ( (2 * n - 1) * (2 * n - 3) );
|
||||
PcupS[n] = sin_phi * PcupS[n-1] - k * PcupS[n-2];
|
||||
}
|
||||
|
||||
/* 1 nMax (n+2) n m m m
|
||||
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
|
||||
n=1 m=0 n n n */
|
||||
/* Equation 11 in the WMM Technical report. Derivative with respect to longitude, divided by radius. */
|
||||
|
||||
MagneticResults->By += SphVariables.RelativeRadiusPower[n] *
|
||||
( MagneticModel->Main_Field_Coeff_G[index]*SphVariables.sin_mlambda[1] -
|
||||
MagneticModel->Main_Field_Coeff_H[index]*SphVariables.cos_mlambda[1] )
|
||||
* PcupS[n] * schmidtQuasiNorm3;
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}/*WMM_SummationSpecial */
|
||||
|
||||
uint16_t WMM_SecVarSummationSpecial(WMMtype_MagneticModel *MagneticModel, WMMtype_SphericalHarmonicVariables SphVariables, WMMtype_CoordSpherical CoordSpherical, WMMtype_MagneticResults *MagneticResults)
|
||||
{
|
||||
/*Special calculation for the secular variation summation at the poles.
|
||||
|
||||
|
||||
INPUT: MagneticModel
|
||||
SphVariables
|
||||
CoordSpherical
|
||||
OUTPUT: MagneticResults
|
||||
CALLS : none
|
||||
|
||||
|
||||
*/
|
||||
uint16_t n, index;
|
||||
float k, sin_phi, PcupS[NUMPCUPS], schmidtQuasiNorm1, schmidtQuasiNorm2, schmidtQuasiNorm3;
|
||||
|
||||
PcupS[0] = 1;
|
||||
schmidtQuasiNorm1 = 1.0;
|
||||
|
||||
MagneticResults->By = 0.0;
|
||||
sin_phi = sin ( DEG2RAD ( CoordSpherical.phig ) );
|
||||
|
||||
for (n = 1; n <= MagneticModel->nMaxSecVar; n++)
|
||||
{
|
||||
index = (n * (n + 1) / 2 + 1);
|
||||
schmidtQuasiNorm2 = schmidtQuasiNorm1 * (float) (2 * n - 1) / (float) n;
|
||||
schmidtQuasiNorm3 = schmidtQuasiNorm2 * sqrt( (float) (n * 2) / (float) (n + 1));
|
||||
schmidtQuasiNorm1 = schmidtQuasiNorm2;
|
||||
if (n == 1)
|
||||
{
|
||||
PcupS[n] = PcupS[n-1];
|
||||
}
|
||||
else
|
||||
{
|
||||
k = (float)( ( (n - 1) * (n - 1) ) - 1) / ( float ) ( (2 * n - 1) * (2 * n - 3) );
|
||||
PcupS[n] = sin_phi * PcupS[n-1] - k * PcupS[n-2];
|
||||
}
|
||||
|
||||
/* 1 nMax (n+2) n m m m
|
||||
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
|
||||
n=1 m=0 n n n */
|
||||
/* Derivative with respect to longitude, divided by radius. */
|
||||
|
||||
MagneticResults->By += SphVariables.RelativeRadiusPower[n] *
|
||||
( MagneticModel->Secular_Var_Coeff_G[index]*SphVariables.sin_mlambda[1] -
|
||||
MagneticModel->Secular_Var_Coeff_H[index]*SphVariables.cos_mlambda[1] )
|
||||
* PcupS[n] * schmidtQuasiNorm3;
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}/*SecVarSummationSpecial*/
|
||||
|
||||
|
||||
void WMM_TimelyModifyMagneticModel(WMMtype_Date UserDate, WMMtype_MagneticModel *MagneticModel, WMMtype_MagneticModel *TimedMagneticModel)
|
||||
// Time change the Model coefficients from the base year of the model using secular variation coefficients.
|
||||
// Store the coefficients of the static model with their values advanced from epoch t0 to epoch t.
|
||||
// Copy the SV coefficients. If input "t" is the same as "t0", then this is merely a copy operation.
|
||||
// If the address of "TimedMagneticModel" is the same as the address of "MagneticModel", then this procedure overwrites
|
||||
// the given item "MagneticModel".
|
||||
{
|
||||
uint16_t n, m, index, a, b;
|
||||
|
||||
TimedMagneticModel->EditionDate = MagneticModel->EditionDate;
|
||||
TimedMagneticModel->epoch = MagneticModel->epoch;
|
||||
TimedMagneticModel->nMax = MagneticModel->nMax;
|
||||
TimedMagneticModel->nMaxSecVar = MagneticModel->nMaxSecVar;
|
||||
a = TimedMagneticModel->nMaxSecVar;
|
||||
b = (a * (a + 1) / 2 + a);
|
||||
strcpy(TimedMagneticModel->ModelName,MagneticModel->ModelName);
|
||||
for (n = 1; n <= MagneticModel->nMax; n++)
|
||||
{
|
||||
for (m=0;m<=n;m++)
|
||||
{
|
||||
index = (n * (n + 1) / 2 + m);
|
||||
if(index <= b)
|
||||
{
|
||||
TimedMagneticModel->Main_Field_Coeff_H[index] = MagneticModel->Main_Field_Coeff_H[index] + (UserDate.DecimalYear - MagneticModel->epoch) * MagneticModel->Secular_Var_Coeff_H[index];
|
||||
TimedMagneticModel->Main_Field_Coeff_G[index] = MagneticModel->Main_Field_Coeff_G[index] + (UserDate.DecimalYear - MagneticModel->epoch) * MagneticModel->Secular_Var_Coeff_G[index];
|
||||
TimedMagneticModel->Secular_Var_Coeff_H[index] = MagneticModel->Secular_Var_Coeff_H[index]; // We need a copy of the secular var coef to calculate secular change
|
||||
TimedMagneticModel->Secular_Var_Coeff_G[index] = MagneticModel->Secular_Var_Coeff_G[index];
|
||||
}
|
||||
else
|
||||
{
|
||||
TimedMagneticModel->Main_Field_Coeff_H[index] = MagneticModel->Main_Field_Coeff_H[index];
|
||||
TimedMagneticModel->Main_Field_Coeff_G[index] = MagneticModel->Main_Field_Coeff_G[index];
|
||||
}
|
||||
}
|
||||
}
|
||||
} /* WMM_TimelyModifyMagneticModel */
|
||||
|
||||
uint16_t WMM_DateToYear (WMMtype_Date *CalendarDate, char *Error)
|
||||
// Converts a given calendar date into a decimal year
|
||||
{
|
||||
uint16_t temp = 0; // Total number of days
|
||||
uint16_t MonthDays[13] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
|
||||
uint16_t ExtraDay = 0;
|
||||
uint16_t i;
|
||||
|
||||
if((CalendarDate->Year%4 == 0 && CalendarDate->Year%100 != 0) || CalendarDate->Year%400 == 0)
|
||||
ExtraDay=1;
|
||||
MonthDays[2] += ExtraDay;
|
||||
|
||||
/******************Validation********************************/
|
||||
if(CalendarDate->Month <= 0 || CalendarDate->Month > 12)
|
||||
{
|
||||
strcpy(Error, "\nError: The Month entered is invalid, valid months are '1 to 12'\n");
|
||||
return 0;
|
||||
}
|
||||
if(CalendarDate->Day <= 0 || CalendarDate->Day > MonthDays[CalendarDate->Month])
|
||||
{
|
||||
// printf("\nThe number of days in month %d is %d\n", CalendarDate->Month, MonthDays[CalendarDate->Month]);
|
||||
strcpy(Error, "\nError: The day entered is invalid\n");
|
||||
return 0;
|
||||
}
|
||||
/****************Calculation of t***************************/
|
||||
for(i = 1; i <= CalendarDate->Month; i++)
|
||||
temp+=MonthDays[i-1];
|
||||
temp+=CalendarDate->Day;
|
||||
CalendarDate->DecimalYear = CalendarDate->Year + (temp-1)/(365.0 + ExtraDay);
|
||||
|
||||
return 1;
|
||||
} /*WMM_DateToYear*/
|
||||
|
||||
void WMM_GeodeticToSpherical(WMMtype_Ellipsoid Ellip, WMMtype_CoordGeodetic CoordGeodetic, WMMtype_CoordSpherical *CoordSpherical)
|
||||
// Converts Geodetic coordinates to Spherical coordinates
|
||||
// Convert geodetic coordinates, (defined by the WGS-84
|
||||
// reference ellipsoid), to Earth Centered Earth Fixed Cartesian
|
||||
// coordinates, and then to spherical coordinates.
|
||||
{
|
||||
float CosLat, SinLat, rc, xp, zp; // all local variables
|
||||
|
||||
CosLat = cos(DEG2RAD(CoordGeodetic.phi));
|
||||
SinLat = sin(DEG2RAD(CoordGeodetic.phi));
|
||||
|
||||
// compute the local radius of curvature on the WGS-84 reference ellipsoid
|
||||
rc = Ellip.a / sqrt(1.0 - Ellip.epssq * SinLat * SinLat);
|
||||
|
||||
// compute ECEF Cartesian coordinates of specified point (for longitude=0)
|
||||
|
||||
xp = (rc + CoordGeodetic.HeightAboveEllipsoid) * CosLat;
|
||||
zp = (rc*(1.0 - Ellip.epssq) + CoordGeodetic.HeightAboveEllipsoid) * SinLat;
|
||||
|
||||
// compute spherical radius and angle lambda and phi of specified point
|
||||
|
||||
CoordSpherical->r = sqrt(xp * xp + zp * zp);
|
||||
CoordSpherical->phig = RAD2DEG(asin(zp / CoordSpherical->r)); // geocentric latitude
|
||||
CoordSpherical->lambda = CoordGeodetic.lambda; // longitude
|
||||
|
||||
}// WMM_GeodeticToSpherical
|
||||
|
||||
void WMM_Set_Coeff_Array(float coeffs[][6])
|
||||
{
|
||||
float CoeffFile[91][6] =
|
||||
{{0, 0, 0, 0, 0, 0},
|
||||
{1, 0, -29496.6, 0.0, 11.6, 0.0},
|
||||
{1, 1, -1586.3, 4944.4, 16.5, -25.9},
|
||||
{2, 0, -2396.6, 0.0, -12.1, 0.0},
|
||||
{2, 1, 3026.1, -2707.7, -4.4, -22.5},
|
||||
{2, 2, 1668.6, -576.1, 1.9, -11.8},
|
||||
{3, 0, 1340.1, 0.0, 0.4, 0.0},
|
||||
{3, 1, -2326.2, -160.2, -4.1, 7.3},
|
||||
{3, 2, 1231.9, 251.9, -2.9, -3.9},
|
||||
{3, 3, 634.0, -536.6, -7.7, -2.6},
|
||||
{4, 0, 912.6, 0.0, -1.8, 0.0},
|
||||
{4, 1, 808.9, 286.4, 2.3, 1.1},
|
||||
{4, 2, 166.7, -211.2, -8.7, 2.7},
|
||||
{4, 3, -357.1, 164.3, 4.6, 3.9},
|
||||
{4, 4, 89.4, -309.1, -2.1, -0.8},
|
||||
{5, 0, -230.9, 0.0, -1.0, 0.0},
|
||||
{5, 1, 357.2, 44.6, 0.6, 0.4},
|
||||
{5, 2, 200.3, 188.9, -1.8, 1.8},
|
||||
{5, 3, -141.1, -118.2, -1.0, 1.2},
|
||||
{5, 4, -163.0, 0.0, 0.9, 4.0},
|
||||
{5, 5, -7.8, 100.9, 1.0, -0.6},
|
||||
{6, 0, 72.8, 0.0, -0.2, 0.0},
|
||||
{6, 1, 68.6, -20.8, -0.2, -0.2},
|
||||
{6, 2, 76.0, 44.1, -0.1, -2.1},
|
||||
{6, 3, -141.4, 61.5, 2.0, -0.4},
|
||||
{6, 4, -22.8, -66.3, -1.7, -0.6},
|
||||
{6, 5, 13.2, 3.1, -0.3, 0.5},
|
||||
{6, 6, -77.9, 55.0, 1.7, 0.9},
|
||||
{7, 0, 80.5, 0.0, 0.1, 0.0},
|
||||
{7, 1, -75.1, -57.9, -0.1, 0.7},
|
||||
{7, 2, -4.7, -21.1, -0.6, 0.3},
|
||||
{7, 3, 45.3, 6.5, 1.3, -0.1},
|
||||
{7, 4, 13.9, 24.9, 0.4, -0.1},
|
||||
{7, 5, 10.4, 7.0, 0.3, -0.8},
|
||||
{7, 6, 1.7, -27.7, -0.7, -0.3},
|
||||
{7, 7, 4.9, -3.3, 0.6, 0.3},
|
||||
{8, 0, 24.4, 0.0, -0.1, 0.0},
|
||||
{8, 1, 8.1, 11.0, 0.1, -0.1},
|
||||
{8, 2, -14.5, -20.0, -0.6, 0.2},
|
||||
{8, 3, -5.6, 11.9, 0.2, 0.4},
|
||||
{8, 4, -19.3, -17.4, -0.2, 0.4},
|
||||
{8, 5, 11.5, 16.7, 0.3, 0.1},
|
||||
{8, 6, 10.9, 7.0, 0.3, -0.1},
|
||||
{8, 7, -14.1, -10.8, -0.6, 0.4},
|
||||
{8, 8, -3.7, 1.7, 0.2, 0.3},
|
||||
{9, 0, 5.4, 0.0, 0.0, 0.0},
|
||||
{9, 1, 9.4, -20.5, -0.1, 0.0},
|
||||
{9, 2, 3.4, 11.5, 0.0, -0.2},
|
||||
{9, 3, -5.2, 12.8, 0.3, 0.0},
|
||||
{9, 4, 3.1, -7.2, -0.4, -0.1},
|
||||
{9, 5, -12.4, -7.4, -0.3, 0.1},
|
||||
{9, 6, -0.7, 8.0, 0.1, 0.0},
|
||||
{9, 7, 8.4, 2.1, -0.1, -0.2},
|
||||
{9, 8, -8.5, -6.1, -0.4, 0.3},
|
||||
{9, 9, -10.1, 7.0, -0.2, 0.2},
|
||||
{10, 0, -2.0, 0.0, 0.0, 0.0},
|
||||
{10, 1, -6.3, 2.8, 0.0, 0.1},
|
||||
{10, 2, 0.9, -0.1, -0.1, -0.1},
|
||||
{10, 3, -1.1, 4.7, 0.2, 0.0},
|
||||
{10, 4, -0.2, 4.4, 0.0, -0.1},
|
||||
{10, 5, 2.5, -7.2, -0.1, -0.1},
|
||||
{10, 6, -0.3, -1.0, -0.2, 0.0},
|
||||
{10, 7, 2.2, -3.9, 0.0, -0.1},
|
||||
{10, 8, 3.1, -2.0, -0.1, -0.2},
|
||||
{10, 9, -1.0, -2.0, -0.2, 0.0},
|
||||
{10, 10, -2.8, -8.3, -0.2, -0.1},
|
||||
{11, 0, 3.0, 0.0, 0.0, 0.0},
|
||||
{11, 1, -1.5, 0.2, 0.0, 0.0},
|
||||
{11, 2, -2.1, 1.7, 0.0, 0.1},
|
||||
{11, 3, 1.7, -0.6, 0.1, 0.0},
|
||||
{11, 4, -0.5, -1.8, 0.0, 0.1},
|
||||
{11, 5, 0.5, 0.9, 0.0, 0.0},
|
||||
{11, 6, -0.8, -0.4, 0.0, 0.1},
|
||||
{11, 7, 0.4, -2.5, 0.0, 0.0},
|
||||
{11, 8, 1.8, -1.3, 0.0, -0.1},
|
||||
{11, 9, 0.1, -2.1, 0.0, -0.1},
|
||||
{11, 10, 0.7, -1.9, -0.1, 0.0},
|
||||
{11, 11, 3.8, -1.8, 0.0, -0.1},
|
||||
{12, 0, -2.2, 0.0, 0.0, 0.0},
|
||||
{12, 1, -0.2, -0.9, 0.0, 0.0},
|
||||
{12, 2, 0.3, 0.3, 0.1, 0.0},
|
||||
{12, 3, 1.0, 2.1, 0.1, 0.0},
|
||||
{12, 4, -0.6, -2.5, -0.1, 0.0},
|
||||
{12, 5, 0.9, 0.5, 0.0, 0.0},
|
||||
{12, 6, -0.1, 0.6, 0.0, 0.1},
|
||||
{12, 7, 0.5, 0.0, 0.0, 0.0},
|
||||
{12, 8, -0.4, 0.1, 0.0, 0.0},
|
||||
{12, 9, -0.4, 0.3, 0.0, 0.0},
|
||||
{12, 10, 0.2, -0.9, 0.0, 0.0},
|
||||
{12, 11, -0.8, -0.2, -0.1, 0.0},
|
||||
{12, 12, 0.0, 0.9, 0.1, 0.0}};
|
||||
|
||||
for(uint16_t i=0; i<NUMTERMS; i++){
|
||||
for(uint16_t j=0; j<6; j++)
|
||||
coeffs[i][j]=CoeffFile[i][j];
|
||||
}
|
||||
|
||||
}
|
176
flight/AHRS/inc/WMMInternal.h
Normal file
176
flight/AHRS/inc/WMMInternal.h
Normal file
@ -0,0 +1,176 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
*
|
||||
* @file WMMInternal.h
|
||||
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
||||
* @brief Include file of the WorldMagModel internal functionality.
|
||||
*
|
||||
* @see The GNU Public License (GPL) Version 3
|
||||
*
|
||||
*****************************************************************************/
|
||||
/*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License along
|
||||
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
#ifndef WMMINTERNAL_H_
|
||||
#define WMMINTERNAL_H_
|
||||
|
||||
// internal constants
|
||||
#define TRUE ((uint16_t)1)
|
||||
#define FALSE ((uint16_t)0)
|
||||
#define WMM_MAX_MODEL_DEGREES 12
|
||||
#define WMM_MAX_SECULAR_VARIATION_MODEL_DEGREES 12
|
||||
#define NUMTERMS 91 // ((WMM_MAX_MODEL_DEGREES+1)*(WMM_MAX_MODEL_DEGREES+2)/2);
|
||||
#define NUMPCUP 92 // NUMTERMS +1
|
||||
#define NUMPCUPS 13 // WMM_MAX_MODEL_DEGREES +1
|
||||
#define RAD2DEG(rad) ((rad)*(180.0L/M_PI))
|
||||
#define DEG2RAD(deg) ((deg)*(M_PI/180.0L))
|
||||
|
||||
|
||||
// internal structure definitions
|
||||
typedef struct {
|
||||
float EditionDate;
|
||||
float epoch; //Base time of Geomagnetic model epoch (yrs)
|
||||
char ModelName[20];
|
||||
float Main_Field_Coeff_G[NUMTERMS]; // C - Gauss coefficients of main geomagnetic model (nT)
|
||||
float Main_Field_Coeff_H[NUMTERMS]; // C - Gauss coefficients of main geomagnetic model (nT)
|
||||
float Secular_Var_Coeff_G[NUMTERMS]; // CD - Gauss coefficients of secular geomagnetic model (nT/yr)
|
||||
float Secular_Var_Coeff_H[NUMTERMS]; // CD - Gauss coefficients of secular geomagnetic model (nT/yr)
|
||||
uint16_t nMax; // Maximum degree of spherical harmonic model
|
||||
uint16_t nMaxSecVar; // Maxumum degree of spherical harmonic secular model
|
||||
uint16_t SecularVariationUsed; // Whether or not the magnetic secular variation vector will be needed by program
|
||||
} WMMtype_MagneticModel;
|
||||
|
||||
typedef struct {
|
||||
float a; // semi-major axis of the ellipsoid
|
||||
float b; // semi-minor axis of the ellipsoid
|
||||
float fla; // flattening
|
||||
float epssq; // first eccentricity squared
|
||||
float eps; // first eccentricity
|
||||
float re; // mean radius of ellipsoid
|
||||
} WMMtype_Ellipsoid;
|
||||
|
||||
typedef struct {
|
||||
float lambda; // longitude
|
||||
float phi; // geodetic latitude
|
||||
float HeightAboveEllipsoid; // height above the ellipsoid (HaE)
|
||||
} WMMtype_CoordGeodetic;
|
||||
|
||||
typedef struct {
|
||||
float lambda; // longitude
|
||||
float phig; // geocentric latitude
|
||||
float r; // distance from the center of the ellipsoid
|
||||
} WMMtype_CoordSpherical;
|
||||
|
||||
typedef struct {
|
||||
uint16_t Year;
|
||||
uint16_t Month;
|
||||
uint16_t Day;
|
||||
float DecimalYear;
|
||||
} WMMtype_Date;
|
||||
|
||||
typedef struct {
|
||||
float Pcup[NUMPCUP]; // Legendre Function
|
||||
float dPcup[NUMPCUP]; // Derivative of Lagendre fn
|
||||
} WMMtype_LegendreFunction;
|
||||
|
||||
typedef struct {
|
||||
float Bx; // North
|
||||
float By; // East
|
||||
float Bz; // Down
|
||||
} WMMtype_MagneticResults;
|
||||
|
||||
typedef struct {
|
||||
|
||||
float RelativeRadiusPower[WMM_MAX_MODEL_DEGREES+1]; // [earth_reference_radius_km / sph. radius ]^n
|
||||
float cos_mlambda[WMM_MAX_MODEL_DEGREES+1]; // cp(m) - cosine of (m*spherical coord. longitude
|
||||
float sin_mlambda[WMM_MAX_MODEL_DEGREES+1]; // sp(m) - sine of (m*spherical coord. longitude)
|
||||
} WMMtype_SphericalHarmonicVariables;
|
||||
|
||||
typedef struct {
|
||||
float Decl; /* 1. Angle between the magnetic field vector and true north, positive east*/
|
||||
float Incl; /*2. Angle between the magnetic field vector and the horizontal plane, positive down*/
|
||||
float F; /*3. Magnetic Field Strength*/
|
||||
float H; /*4. Horizontal Magnetic Field Strength*/
|
||||
float X; /*5. Northern component of the magnetic field vector*/
|
||||
float Y; /*6. Eastern component of the magnetic field vector*/
|
||||
float Z; /*7. Downward component of the magnetic field vector*/
|
||||
float GV; /*8. The Grid Variation*/
|
||||
float Decldot; /*9. Yearly Rate of change in declination*/
|
||||
float Incldot; /*10. Yearly Rate of change in inclination*/
|
||||
float Fdot; /*11. Yearly rate of change in Magnetic field strength*/
|
||||
float Hdot; /*12. Yearly rate of change in horizontal field strength*/
|
||||
float Xdot; /*13. Yearly rate of change in the northern component*/
|
||||
float Ydot; /*14. Yearly rate of change in the eastern component*/
|
||||
float Zdot; /*15. Yearly rate of change in the downward component*/
|
||||
float GVdot; /*16. Yearly rate of chnage in grid variation*/
|
||||
} WMMtype_GeoMagneticElements;
|
||||
|
||||
// Internal Function Prototypes
|
||||
void WMM_Set_Coeff_Array(float coeffs[][6]);
|
||||
void WMM_GeodeticToSpherical(WMMtype_Ellipsoid Ellip, WMMtype_CoordGeodetic CoordGeodetic, WMMtype_CoordSpherical *CoordSpherical);
|
||||
uint16_t WMM_DateToYear (WMMtype_Date *CalendarDate, char *Error);
|
||||
void WMM_TimelyModifyMagneticModel(WMMtype_Date UserDate, WMMtype_MagneticModel *MagneticModel, WMMtype_MagneticModel *TimedMagneticModel);
|
||||
|
||||
uint16_t WMM_Geomag(WMMtype_Ellipsoid Ellip,
|
||||
WMMtype_CoordSpherical CoordSpherical,
|
||||
WMMtype_CoordGeodetic CoordGeodetic,
|
||||
WMMtype_MagneticModel *TimedMagneticModel,
|
||||
WMMtype_GeoMagneticElements *GeoMagneticElements);
|
||||
|
||||
uint16_t WMM_AssociatedLegendreFunction( WMMtype_CoordSpherical CoordSpherical, uint16_t nMax, WMMtype_LegendreFunction *LegendreFunction);
|
||||
|
||||
uint16_t WMM_CalculateGeoMagneticElements(WMMtype_MagneticResults *MagneticResultsGeo, WMMtype_GeoMagneticElements *GeoMagneticElements);
|
||||
|
||||
uint16_t WMM_CalculateSecularVariation(WMMtype_MagneticResults MagneticVariation, WMMtype_GeoMagneticElements *MagneticElements);
|
||||
|
||||
uint16_t WMM_ComputeSphericalHarmonicVariables( WMMtype_Ellipsoid Ellip,
|
||||
WMMtype_CoordSpherical CoordSpherical,
|
||||
uint16_t nMax,
|
||||
WMMtype_SphericalHarmonicVariables * SphVariables);
|
||||
|
||||
uint16_t WMM_PcupLow( float *Pcup, float *dPcup, float x, uint16_t nMax);
|
||||
|
||||
uint16_t WMM_PcupHigh( float *Pcup, float *dPcup, float x, uint16_t nMax);
|
||||
|
||||
uint16_t WMM_RotateMagneticVector(WMMtype_CoordSpherical ,
|
||||
WMMtype_CoordGeodetic CoordGeodetic,
|
||||
WMMtype_MagneticResults MagneticResultsSph,
|
||||
WMMtype_MagneticResults *MagneticResultsGeo);
|
||||
|
||||
uint16_t WMM_SecVarSummation(WMMtype_LegendreFunction *LegendreFunction,
|
||||
WMMtype_MagneticModel *MagneticModel,
|
||||
WMMtype_SphericalHarmonicVariables SphVariables,
|
||||
WMMtype_CoordSpherical CoordSpherical,
|
||||
WMMtype_MagneticResults *MagneticResults);
|
||||
|
||||
uint16_t WMM_SecVarSummationSpecial(WMMtype_MagneticModel *MagneticModel,
|
||||
WMMtype_SphericalHarmonicVariables SphVariables,
|
||||
WMMtype_CoordSpherical CoordSpherical,
|
||||
WMMtype_MagneticResults *MagneticResults);
|
||||
|
||||
uint16_t WMM_Summation( WMMtype_LegendreFunction *LegendreFunction,
|
||||
WMMtype_MagneticModel *MagneticModel,
|
||||
WMMtype_SphericalHarmonicVariables SphVariables,
|
||||
WMMtype_CoordSpherical CoordSpherical,
|
||||
WMMtype_MagneticResults *MagneticResults);
|
||||
|
||||
uint16_t WMM_SummationSpecial(WMMtype_MagneticModel *MagneticModel,
|
||||
WMMtype_SphericalHarmonicVariables SphVariables,
|
||||
WMMtype_CoordSpherical CoordSpherical,
|
||||
WMMtype_MagneticResults *MagneticResults);
|
||||
|
||||
|
||||
#endif /* WMMINTERNAL_H_ */
|
34
flight/AHRS/inc/WorldMagModel.h
Normal file
34
flight/AHRS/inc/WorldMagModel.h
Normal file
@ -0,0 +1,34 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
*
|
||||
* @file WorldMagModel.h
|
||||
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
||||
* @brief Include file of the WorldMagModel exposed functionality.
|
||||
*
|
||||
* @see The GNU Public License (GPL) Version 3
|
||||
*
|
||||
*****************************************************************************/
|
||||
/*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License along
|
||||
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
#ifndef WORLDMAGMODEL_H_
|
||||
#define WORLDMAGMODEL_H_
|
||||
|
||||
// Exposed Function Prototypes
|
||||
void WMM_Initialize();
|
||||
void WMM_GetMagVector(float Lat, float Lon, float AltEllipsoid, uint16_t Month, uint16_t Day, uint16_t Year, float B[3]);
|
||||
|
||||
#endif /* WORLDMAGMODEL_H_ */
|
Loading…
x
Reference in New Issue
Block a user