1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-02 10:24:11 +01:00

OP-156 AHRS: Run the accel data through a fifo so it can output raw data faster

than the ekf runs and also be more tolerant of timing jitter

git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2191 ebee16cc-31ac-478f-84a7-5cbb03baadba
This commit is contained in:
peabody124 2010-12-04 17:34:29 +00:00 committed by peabody124
parent 45e3ed27a7
commit 4e8c6588b6
2 changed files with 66 additions and 38 deletions

View File

@ -38,6 +38,8 @@
#include "ahrs_spi_comm.h" #include "ahrs_spi_comm.h"
#include "insgps.h" #include "insgps.h"
#include "CoordinateConversions.h" #include "CoordinateConversions.h"
#include <stdbool.h>
#include "fifo_buffer.h"
#define INSGPS_GPS_TIMEOUT 2 /* 2 seconds triggers reinit of position */ #define INSGPS_GPS_TIMEOUT 2 /* 2 seconds triggers reinit of position */
#define INSGPS_GPS_MINSAT 6 /* 2 seconds triggers reinit of position */ #define INSGPS_GPS_MINSAT 6 /* 2 seconds triggers reinit of position */
@ -48,7 +50,7 @@
// For debugging the raw sensors // For debugging the raw sensors
//#define DUMP_RAW //#define DUMP_RAW
//#define DUMP_FRIENDLY //#define DUMP_FRIENDLY
#define DUMP_EKF //#define DUMP_EKF
volatile int8_t ahrs_algorithm; volatile int8_t ahrs_algorithm;
@ -59,6 +61,7 @@ void simple_update();
/* Data accessors */ /* Data accessors */
void adc_callback(float *); void adc_callback(float *);
bool get_accel_gyro_data();
void process_mag_data(); void process_mag_data();
void reset_values(); void reset_values();
void calibrate_sensors(void); void calibrate_sensors(void);
@ -99,16 +102,19 @@ struct altitude_sensor altitude_data;
struct gps_sensor gps_data; struct gps_sensor gps_data;
//! The oversampling rate, ekf is 2k / this //! The oversampling rate, ekf is 2k / this
static uint8_t adc_oversampling = 30; static uint8_t adc_oversampling = 15;
//! Offset correction of barometric alt, to match gps data //! Offset correction of barometric alt, to match gps data
static float baro_offset = 0; static float baro_offset = 0;
typedef enum { AHRS_IDLE, AHRS_DATA_READY, AHRS_PROCESSING } states; typedef enum { AHRS_IDLE, AHRS_DATA_READY, AHRS_PROCESSING } states;
volatile states ahrs_state;
volatile int32_t ekf_too_slow; volatile int32_t ekf_too_slow;
volatile int32_t total_conversion_blocks; volatile int32_t total_conversion_blocks;
//! Buffer to allow ADC to run a bit faster than EKF
uint8_t adc_fifo_buf[sizeof(float) * 6 * 4] __attribute__ ((aligned(4))); // align to 32-bit to try and provide speed improvement
t_fifo_buffer adc_fifo_buffer;
/** /**
* @} * @}
@ -456,6 +462,9 @@ int main()
AHRS_ADC_Config(adc_oversampling); AHRS_ADC_Config(adc_oversampling);
AHRS_ADC_SetCallback(adc_callback); AHRS_ADC_SetCallback(adc_callback);
/* ADC buffer */
fifoBuf_init(&adc_fifo_buffer, adc_fifo_buf, sizeof(adc_fifo_buf));
/* Setup the Accelerometer FS (Full-Scale) GPIO */ /* Setup the Accelerometer FS (Full-Scale) GPIO */
PIOS_GPIO_Enable(0); PIOS_GPIO_Enable(0);
SET_ACCEL_6G; SET_ACCEL_6G;
@ -471,9 +480,7 @@ int main()
reset_values(); reset_values();
ahrs_state = AHRS_IDLE;
AhrsInitComms(); AhrsInitComms();
ahrs_state = AHRS_IDLE;
while(!AhrsLinkReady()) { while(!AhrsLinkReady()) {
AhrsPoll(); AhrsPoll();
} }
@ -528,8 +535,8 @@ for all data to be up to date before doing anything*/
running_counts = counter_val - last_counter_idle_end; running_counts = counter_val - last_counter_idle_end;
last_counter_idle_start = counter_val; last_counter_idle_start = counter_val;
while (ahrs_state != AHRS_DATA_READY); // This function blocks till data avilable
ahrs_state = AHRS_PROCESSING; get_accel_gyro_data();
counter_val = timer_count(); counter_val = timer_count();
idle_counts = counter_val - last_counter_idle_start; idle_counts = counter_val - last_counter_idle_start;
@ -556,13 +563,36 @@ for all data to be up to date before doing anything*/
ins_indoor_update(); ins_indoor_update();
break; break;
} }
ahrs_state = AHRS_IDLE;
} }
return 0; return 0;
} }
/**
* @brief Get the accel and gyro data from whichever source when available
*
* This function will act as the HAL for the new INS sensors
*/
bool get_accel_gyro_data()
{
float accel[6];
float gyro[6];
while(fifoBuf_getUsed(&adc_fifo_buffer) < (sizeof(accel) + sizeof(gyro)));
fifoBuf_getData(&adc_fifo_buffer, &accel[0], sizeof(float) * 3);
fifoBuf_getData(&adc_fifo_buffer, &gyro[0], sizeof(float) * 3);
fifoBuf_getData(&adc_fifo_buffer, &accel[3], sizeof(float) * 3);
fifoBuf_getData(&adc_fifo_buffer, &gyro[3], sizeof(float) * 3);
accel_data.filtered.x = (accel[0] + accel[3]) / 2;
accel_data.filtered.y = (accel[1] + accel[4]) / 2;
accel_data.filtered.z = (accel[2] + accel[5]) / 2;
gyro_data.filtered.x = (gyro[0] + gyro[3]) / 2;
gyro_data.filtered.y = (gyro[1] + gyro[4]) / 2;
gyro_data.filtered.z = (gyro[2] + gyro[5]) / 2;
return true;
}
/** /**
* @brief Downsample the analog data * @brief Downsample the analog data
* @return none * @return none
@ -577,15 +607,23 @@ for all data to be up to date before doing anything*/
*/ */
void adc_callback(float * downsampled_data) void adc_callback(float * downsampled_data)
{ {
float accel[3], gyro[3];
// Accel data is (y,x,z) in first third and fifth byte. Convert to m/s // Accel data is (y,x,z) in first third and fifth byte. Convert to m/s
accel_data.filtered.y = (downsampled_data[0] * accel_data.calibration.scale[1]) + accel_data.calibration.bias[1]; accel[0] = (downsampled_data[2] * accel_data.calibration.scale[0]) + accel_data.calibration.bias[0];
accel_data.filtered.x = (downsampled_data[2] * accel_data.calibration.scale[0]) + accel_data.calibration.bias[0]; accel[1] = (downsampled_data[0] * accel_data.calibration.scale[1]) + accel_data.calibration.bias[1];
accel_data.filtered.z = (downsampled_data[4] * accel_data.calibration.scale[2]) + accel_data.calibration.bias[2]; accel[2] = (downsampled_data[4] * accel_data.calibration.scale[2]) + accel_data.calibration.bias[2];
// Gyro data is (x,y,z) in second, fifth and seventh byte. Convert to rad/s // Gyro data is (x,y,z) in second, fifth and seventh byte. Convert to rad/s
gyro_data.filtered.x = (downsampled_data[1] * gyro_data.calibration.scale[0]) + gyro_data.calibration.bias[0]; gyro[0] = (downsampled_data[1] * gyro_data.calibration.scale[0]) + gyro_data.calibration.bias[0];
gyro_data.filtered.y = (downsampled_data[3] * gyro_data.calibration.scale[1]) + gyro_data.calibration.bias[1]; gyro[1] = (downsampled_data[3] * gyro_data.calibration.scale[1]) + gyro_data.calibration.bias[1];
gyro_data.filtered.z = (downsampled_data[5] * gyro_data.calibration.scale[2]) + gyro_data.calibration.bias[2]; gyro[2] = (downsampled_data[5] * gyro_data.calibration.scale[2]) + gyro_data.calibration.bias[2];
if(fifoBuf_getFree(&adc_fifo_buffer) >= (sizeof(accel) + sizeof(gyro))) {
fifoBuf_putData(&adc_fifo_buffer, (uint8_t *) &accel[0], sizeof(accel));
fifoBuf_putData(&adc_fifo_buffer, (uint8_t *) &gyro[0], sizeof(gyro));
} else {
ekf_too_slow++;
}
AttitudeRawData raw; AttitudeRawData raw;
@ -598,13 +636,13 @@ void adc_callback(float * downsampled_data)
raw.gyrotemp[0] = downsampled_data[6]; raw.gyrotemp[0] = downsampled_data[6];
raw.gyrotemp[1] = downsampled_data[7]; raw.gyrotemp[1] = downsampled_data[7];
raw.gyros_filtered[0] = gyro_data.filtered.x * 180 / M_PI; raw.gyros_filtered[0] = gyro[0] * 180 / M_PI;
raw.gyros_filtered[1] = gyro_data.filtered.y * 180 / M_PI; raw.gyros_filtered[1] = gyro[1] * 180 / M_PI;
raw.gyros_filtered[2] = gyro_data.filtered.z * 180 / M_PI; raw.gyros_filtered[2] = gyro[2] * 180 / M_PI;
raw.accels_filtered[0] = accel_data.filtered.x; raw.accels_filtered[0] = accel[0];
raw.accels_filtered[1] = accel_data.filtered.y; raw.accels_filtered[1] = accel[1];
raw.accels_filtered[2] = accel_data.filtered.z; raw.accels_filtered[2] = accel[2];
raw.magnetometers[0] = mag_data.scaled.axis[0]; raw.magnetometers[0] = mag_data.scaled.axis[0];
raw.magnetometers[1] = mag_data.scaled.axis[1]; raw.magnetometers[1] = mag_data.scaled.axis[1];
@ -622,14 +660,6 @@ void adc_callback(float * downsampled_data)
} }
AttitudeRawSet(&raw); AttitudeRawSet(&raw);
if (ahrs_state == AHRS_IDLE) {
ahrs_state = AHRS_DATA_READY;
} else {
// Track how many times an interrupt occurred before EKF finished processing
ekf_too_slow++;
}
total_conversion_blocks++;
} }
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C) #if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
@ -691,8 +721,8 @@ void calibrate_sensors()
for (i = 0, j = 0; i < NBIAS; i++) { for (i = 0, j = 0; i < NBIAS; i++) {
while (ahrs_state != AHRS_DATA_READY) ;
ahrs_state = AHRS_PROCESSING; get_accel_gyro_data();
gyro_bias[0] += gyro_data.filtered.x / NBIAS; gyro_bias[0] += gyro_data.filtered.x / NBIAS;
gyro_bias[1] += gyro_data.filtered.y / NBIAS; gyro_bias[1] += gyro_data.filtered.y / NBIAS;
@ -700,7 +730,6 @@ void calibrate_sensors()
accel_bias[0] += accel_data.filtered.x / NBIAS; accel_bias[0] += accel_data.filtered.x / NBIAS;
accel_bias[1] += accel_data.filtered.y / NBIAS; accel_bias[1] += accel_data.filtered.y / NBIAS;
accel_bias[2] += accel_data.filtered.z / NBIAS; accel_bias[2] += accel_data.filtered.z / NBIAS;
ahrs_state = AHRS_IDLE;
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C) #if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
if(PIOS_HMC5843_NewDataAvailable()) { if(PIOS_HMC5843_NewDataAvailable()) {
@ -731,8 +760,7 @@ void calibrate_sensors()
accel_data.calibration.variance[2] = 0; accel_data.calibration.variance[2] = 0;
for (i = 0, j = 0; j < NVAR; j++) { for (i = 0, j = 0; j < NVAR; j++) {
while (ahrs_state != AHRS_DATA_READY) ; get_accel_gyro_data();
ahrs_state = AHRS_PROCESSING;
gyro_data.calibration.variance[0] += pow(gyro_data.filtered.x-gyro_bias[0],2) / NVAR; gyro_data.calibration.variance[0] += pow(gyro_data.filtered.x-gyro_bias[0],2) / NVAR;
gyro_data.calibration.variance[1] += pow(gyro_data.filtered.y-gyro_bias[1],2) / NVAR; gyro_data.calibration.variance[1] += pow(gyro_data.filtered.y-gyro_bias[1],2) / NVAR;
@ -740,7 +768,7 @@ void calibrate_sensors()
accel_data.calibration.variance[0] += pow(accel_data.filtered.x-accel_bias[0],2) / NVAR; accel_data.calibration.variance[0] += pow(accel_data.filtered.x-accel_bias[0],2) / NVAR;
accel_data.calibration.variance[1] += pow(accel_data.filtered.y-accel_bias[1],2) / NVAR; accel_data.calibration.variance[1] += pow(accel_data.filtered.y-accel_bias[1],2) / NVAR;
accel_data.calibration.variance[2] += pow(accel_data.filtered.z-accel_bias[2],2) / NVAR; accel_data.calibration.variance[2] += pow(accel_data.filtered.z-accel_bias[2],2) / NVAR;
ahrs_state = AHRS_IDLE;
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C) #if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
if(PIOS_HMC5843_NewDataAvailable()) { if(PIOS_HMC5843_NewDataAvailable()) {
j ++; j ++;

View File

@ -92,8 +92,8 @@ int32_t StabilizationInitialize()
queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent)); queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent));
// Listen for updates. // Listen for updates.
AttitudeActualConnectQueue(queue); // AttitudeActualConnectQueue(queue);
// AttitudeRawConnectQueue(queue); AttitudeRawConnectQueue(queue);
StabilizationSettingsConnectCallback(SettingsUpdatedCb); StabilizationSettingsConnectCallback(SettingsUpdatedCb);
SettingsUpdatedCb(StabilizationSettingsHandle()); SettingsUpdatedCb(StabilizationSettingsHandle());