1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-18 03:52:11 +01:00

OP-1317 Added two file (actually renames)

This commit is contained in:
Andres 2014-05-10 14:51:22 +02:00
parent 02e62f91ed
commit 530c0aa967
2 changed files with 259 additions and 0 deletions

View File

@ -0,0 +1,217 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup AirspeedModule Airspeed Module
* @brief Use attitude and velocity data to estimate airspeed
* @{
*
* @file imu_airspeed.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief IMU based airspeed calculation
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "openpilot.h"
#include "velocitystate.h"
#include "attitudestate.h"
#include "airspeedsensor.h"
#include "airspeedsettings.h"
#include "imu_airspeed.h"
#include "CoordinateConversions.h"
#include <pios_math.h>
// Private constants
#define EPS_REORIENTATION 1e-8f
#define EPS_VELOCITY 1.f
// Private types
// structure with smoothed fuselage orientation, ground speed and their changes in time
struct IMUGlobals {
float xB[3];
float dxB[3];
float Vel[3];
float dVel[3];
};
// Private variables
static struct IMUGlobals *imu;
// Private functions
// a simple square inline function based on multiplication faster than powf(x,2.0f)
static inline float Sq(float x)
{
return x * x;
}
/*
* Initialize function loads first data sets, and allocates memory for structure.
*/
void imu_airspeedInitialize()
{
// This method saves memory in case we don't use the module.
imu = (struct IMUGlobals *)pvPortMalloc(sizeof(struct IMUGlobals));
// airspeed calculation variables
VelocityStateInitialize();
VelocityStateData velData;
VelocityStateGet(&velData);
AttitudeStateData attData;
AttitudeStateGet(&attData);
// for Holt-Winters double exponential smoothing (s smooth variable, b smooth trend)
// s1 = x1
// b1 = x1 - x0
// Calculate x of body frame
QuaternionC2xB(attData.q1, attData.q2, attData.q3, attData.q4, imu->xB);
// ground speed
imu->Vel[0] = velData.North;
imu->Vel[1] = velData.East;
imu->Vel[2] = velData.Down;
// trend assumed to be zero
imu->dxB[0] = imu->dxB[1] = imu->dxB[2] = 0.f;
imu->dVel[0] = imu->dVel[1] = imu->dVel[2] = 0.f;
}
/*
* Calculate airspeed as a function of groundspeed and vehicle attitude.
* Adapted from "IMU Wind Estimation (Theory)", by William Premerlani.
* The idea is that V_gps=V_air+V_wind. If we assume wind constant, =>
* V_gps_2-V_gps_1 = (V_air_2+V_wind_2) -(V_air_1+V_wind_1) = V_air_2 - V_air_1.
* If we assume airspeed constant, => V_gps_2-V_gps_1 = |V|*(f_2 - f1),
* where "f" is the fuselage vector in earth coordinates.
* We then solve for |V| = |V_gps_2-V_gps_1|/ |f_2 - f1|.
* Adapted to: |V| = (V_gps_2-V_gps_1) dot (f2_-f_1) / |f_2 - f1|^2.
*
* See OP-1317 imu_wind_estimation.pdf for details on the adaptation
* Need a low pass filter to filter out spikes in non coordinated maneuvers
* Note: filtering of xB and gpsV is more effective than of the airspeed itself. Reason: derivative of oscillating part is scaled
* by 1/period, i.e. fast oscillation => small period => large oscillation in derivative => large oscillation in airspeed
* Idea: treat gpsV and xB as noisy time series with trend and
* apply Holt-Winters double exponential smoothing to avoid smoothing out of trend (=derivative)
* s1 = x1
* b1 = x1 - x0
* s_{k+1} = alpha*x_{k+1} + (1-alpha)*(s_k + b_k)
* b_{k+1} = beta*(s_{k+1} - s_k) + (1-beta)b_k
*/
void imu_airspeedGet(AirspeedSensorData *airspeedData, AirspeedSettingsData *airspeedSettings)
{
const float alpha = airspeedSettings->GroundSpeedBasedEstimationLowPassAlpha;
const float beta = airspeedSettings->GroundSpeedBasedEstimationLowPassAlpha;
// get values and conduct smoothing of ground speed and orientation independently of the calculation of airspeed
{ // Scoping to save memory
float xB[3];
AttitudeStateData attData;
AttitudeStateGet(&attData);
VelocityStateData velData;
VelocityStateGet(&velData);
// Calculate rotation matrix
QuaternionC2xB(attData.q1, attData.q2, attData.q3, attData.q4, xB);
// Holt-Winters double exponential smoothing
// Orientation xB
float sk = imu->xB[0];
imu->xB[0] = alpha * xB[0] + (1.f - alpha) * (sk + imu->dxB[0]);
imu->dxB[0] = beta * (imu->xB[0] - sk) + (1.f - beta) * imu->dxB[0];
sk = imu->xB[1];
imu->xB[1] = alpha * xB[1] + (1.f - alpha) * (sk + imu->dxB[1]);
imu->dxB[1] = beta * (imu->xB[1] - sk) + (1.f - beta) * imu->dxB[1];
sk = imu->xB[2];
imu->xB[2] = alpha * xB[2] + (1.f - alpha) * (sk + imu->dxB[2]);
imu->dxB[2] = beta * (imu->xB[2] - sk) + (1.f - beta) * imu->dxB[2];
// Ground speed Vel
sk = imu->Vel[0];
imu->Vel[0] = alpha * velData.North + (1.f - alpha) * (sk + imu->dVel[0]);
imu->dVel[0] = beta * (imu->Vel[0] - sk) + (1.f - beta) * imu->dVel[0];
sk = imu->Vel[1];
imu->Vel[1] = alpha * velData.East + (1.f - alpha) * (sk + imu->dVel[1]);
imu->dVel[1] = beta * (imu->Vel[1] - sk) + (1.f - beta) * imu->dVel[1];
sk = imu->Vel[2];
imu->Vel[2] = alpha * velData.Down + (1.f - alpha) * (sk + imu->dVel[2]);
imu->dVel[2] = beta * (imu->Vel[2] - sk) + (1.f - beta) * imu->dVel[2];
/////// for debugging purposes only! ////////////
airspeedData->f[0] = imu->xB[0];
airspeedData->f[1] = imu->xB[1];
airspeedData->f[2] = imu->xB[2];
airspeedData->v[0] = imu->Vel[0];
airspeedData->v[1] = imu->Vel[1];
airspeedData->v[2] = imu->Vel[2];
airspeedData->df[0] = imu->dxB[0];
airspeedData->df[1] = imu->dxB[1];
airspeedData->df[2] = imu->dxB[2];
airspeedData->dv[0] = imu->dVel[0];
airspeedData->dv[1] = imu->dVel[1];
airspeedData->dv[2] = imu->dVel[2];
airspeedData->absdf = Sq(imu->dxB[0]) + Sq(imu->dxB[1]) + Sq(imu->dxB[2]);
airspeedData->dvdotdf = imu->dVel[0] * imu->dxB[0] + imu->dVel[1] * imu->dxB[1] + imu->dVel[2] * imu->dxB[2];
//////////////////////////////////////////////////
}
// Calculate the norm^2 of the difference between the two fuselage vectors
const float normDiffAttitude2 = Sq(imu->dxB[0]) + Sq(imu->dxB[1]) + Sq(imu->dxB[2]);
const float normVel2 = Sq(imu->Vel[0]) + Sq(imu->Vel[1]) + Sq(imu->Vel[2]);
// Some reorientation needed to be able to calculate airspeed and calculate only for sufficient velocity
if (normDiffAttitude2 > EPS_REORIENTATION && normVel2 > EPS_VELOCITY) {
// Calculate scalar product of difference vectors
const float dvdtDotdfdt = imu->dVel[0] * imu->dxB[0] + imu->dVel[1] * imu->dxB[1] + imu->dVel[2] * imu->dxB[2];
// Airspeed modulus: |v| = dv/dt * dxB/dt / |dxB/dt|^2
// airspeed is always REAL because normDiffAttitude2 > EPS_REORIENTATION > 0 and REAL dvdtDotdfdt
const float airspeed = dvdtDotdfdt / normDiffAttitude2;
if (!IS_REAL(airspeedData->CalibratedAirspeed)) {
airspeedData->CalibratedAirspeed = 0;
airspeedData->SensorConnected = AIRSPEEDSENSOR_SENSORCONNECTED_FALSE;
AlarmsSet(SYSTEMALARMS_ALARM_AIRSPEED, SYSTEMALARMS_ALARM_ERROR);
} else {
airspeedData->CalibratedAirspeed = airspeed;
airspeedData->SensorConnected = AIRSPEEDSENSOR_SENSORCONNECTED_TRUE;
AlarmsSet(SYSTEMALARMS_ALARM_AIRSPEED, SYSTEMALARMS_ALARM_OK);
}
} else {
airspeedData->CalibratedAirspeed = 0;
airspeedData->SensorConnected = AIRSPEEDSENSOR_SENSORCONNECTED_FALSE;
AlarmsSet(SYSTEMALARMS_ALARM_AIRSPEED, SYSTEMALARMS_ALARM_WARNING);
}
}
/**
* @}
* @}
*/

View File

@ -0,0 +1,42 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup AirspeedModule Airspeed Module
* @brief Calculate airspeed as a function of the difference between sequential ground velocity and attitude measurements
* @{
*
* @file imu_airspeed.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief Airspeed module, reads temperature and pressure from BMP085
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef IMU_AIRSPEED_H
#define IMU_AIRSPEED_H
void imu_airspeedInitialize();
void imu_airspeedGet(AirspeedSensorData *airspeedData, AirspeedSettingsData *airspeedSettings);
#endif // IMU_AIRSPEED_H
/**
* @}
* @}
*/