mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2024-11-30 08:24:11 +01:00
Make the revo attitude now use the separate gyro object. CopterControl
attitude still needs an update.
This commit is contained in:
parent
d22e0e66dd
commit
53cb5b67d1
@ -55,7 +55,6 @@
|
|||||||
#include "gyros.h"
|
#include "gyros.h"
|
||||||
#include "attitudeactual.h"
|
#include "attitudeactual.h"
|
||||||
#include "attitudesettings.h"
|
#include "attitudesettings.h"
|
||||||
#include "baroaltitude.h"
|
|
||||||
#include "flightstatus.h"
|
#include "flightstatus.h"
|
||||||
#include "CoordinateConversions.h"
|
#include "CoordinateConversions.h"
|
||||||
|
|
||||||
@ -80,10 +79,8 @@ const uint32_t SENSOR_QUEUE_SIZE = 10;
|
|||||||
static void SensorTask(void *parameters);
|
static void SensorTask(void *parameters);
|
||||||
static void AttitudeTask(void *parameters);
|
static void AttitudeTask(void *parameters);
|
||||||
|
|
||||||
static float gyro_correct_int[3] = {0,0,0};
|
static int32_t updateSensors();
|
||||||
|
static int32_t updateAttitudeComplimentary();
|
||||||
static int8_t updateSensors(AttitudeRawData *);
|
|
||||||
static void updateAttitude();
|
|
||||||
static void settingsUpdatedCb(UAVObjEvent * objEv);
|
static void settingsUpdatedCb(UAVObjEvent * objEv);
|
||||||
|
|
||||||
static float accelKi = 0;
|
static float accelKi = 0;
|
||||||
@ -94,7 +91,10 @@ static int16_t accelbias[3];
|
|||||||
static float R[3][3];
|
static float R[3][3];
|
||||||
static int8_t rotate = 0;
|
static int8_t rotate = 0;
|
||||||
static bool zero_during_arming = false;
|
static bool zero_during_arming = false;
|
||||||
|
|
||||||
|
// These values are initialized by settings but can be updated by the attitude algorithm
|
||||||
static bool bias_correct_gyro = true;
|
static bool bias_correct_gyro = true;
|
||||||
|
static float gyro_bias[3] = {0,0,0};
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* API for sensor fusion algorithms:
|
* API for sensor fusion algorithms:
|
||||||
@ -133,9 +133,10 @@ int32_t AttitudeStart(void)
|
|||||||
int32_t AttitudeInitialize(void)
|
int32_t AttitudeInitialize(void)
|
||||||
{
|
{
|
||||||
AttitudeActualInitialize();
|
AttitudeActualInitialize();
|
||||||
AttitudeRawInitialize();
|
GyrosInitialize();
|
||||||
|
AccelsInitialize();
|
||||||
|
MagnetometerInitialize();
|
||||||
AttitudeSettingsInitialize();
|
AttitudeSettingsInitialize();
|
||||||
BaroAltitudeInitialize();
|
|
||||||
|
|
||||||
// Initialize quaternion
|
// Initialize quaternion
|
||||||
AttitudeActualData attitude;
|
AttitudeActualData attitude;
|
||||||
@ -147,9 +148,9 @@ int32_t AttitudeInitialize(void)
|
|||||||
AttitudeActualSet(&attitude);
|
AttitudeActualSet(&attitude);
|
||||||
|
|
||||||
// Cannot trust the values to init right above if BL runs
|
// Cannot trust the values to init right above if BL runs
|
||||||
gyro_correct_int[0] = 0;
|
gyro_bias[0] = 0;
|
||||||
gyro_correct_int[1] = 0;
|
gyro_bias[1] = 0;
|
||||||
gyro_correct_int[2] = 0;
|
gyro_bias[2] = 0;
|
||||||
|
|
||||||
for(uint8_t i = 0; i < 3; i++)
|
for(uint8_t i = 0; i < 3; i++)
|
||||||
for(uint8_t j = 0; j < 3; j++)
|
for(uint8_t j = 0; j < 3; j++)
|
||||||
@ -218,15 +219,10 @@ static void SensorTask(void *parameters)
|
|||||||
init = 1;
|
init = 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Update the sensor readings
|
|
||||||
AttitudeRawData attitudeRaw;
|
|
||||||
AttitudeRawGet(&attitudeRaw);
|
|
||||||
|
|
||||||
if(updateSensors(&attitudeRaw) != 0)
|
if(updateSensors() != 0)
|
||||||
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
|
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
|
||||||
else {
|
else {
|
||||||
// Only update attitude when sensor data is good
|
|
||||||
AttitudeRawSet(&attitudeRaw);
|
|
||||||
// TODO: Push data onto queue
|
// TODO: Push data onto queue
|
||||||
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
|
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
|
||||||
}
|
}
|
||||||
@ -251,7 +247,7 @@ static void AttitudeTask(void *parameters)
|
|||||||
while (1) {
|
while (1) {
|
||||||
|
|
||||||
// This function blocks on data queue
|
// This function blocks on data queue
|
||||||
updateAttitude();
|
updateAttitudeComplimentary();
|
||||||
|
|
||||||
PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE);
|
PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE);
|
||||||
}
|
}
|
||||||
@ -262,7 +258,6 @@ uint32_t accel_samples;
|
|||||||
uint32_t gyro_samples;
|
uint32_t gyro_samples;
|
||||||
struct pios_bma180_data accel;
|
struct pios_bma180_data accel;
|
||||||
struct pios_mpu6000_data gyro;
|
struct pios_mpu6000_data gyro;
|
||||||
AttitudeRawData raw;
|
|
||||||
int32_t accel_accum[3] = {0, 0, 0};
|
int32_t accel_accum[3] = {0, 0, 0};
|
||||||
int32_t gyro_accum[3] = {0,0,0};
|
int32_t gyro_accum[3] = {0,0,0};
|
||||||
float scaling;
|
float scaling;
|
||||||
@ -272,7 +267,7 @@ float scaling;
|
|||||||
* @param[in] attitudeRaw Populate the UAVO instead of saving right here
|
* @param[in] attitudeRaw Populate the UAVO instead of saving right here
|
||||||
* @return 0 if successfull, -1 if not
|
* @return 0 if successfull, -1 if not
|
||||||
*/
|
*/
|
||||||
static int8_t updateSensors(AttitudeRawData * attitudeRaw)
|
static int32_t updateSensors()
|
||||||
{
|
{
|
||||||
int32_t read_good;
|
int32_t read_good;
|
||||||
int32_t count;
|
int32_t count;
|
||||||
@ -302,16 +297,15 @@ static int8_t updateSensors(AttitudeRawData * attitudeRaw)
|
|||||||
|
|
||||||
// Not the swaping of channel orders
|
// Not the swaping of channel orders
|
||||||
scaling = PIOS_BMA180_GetScale();
|
scaling = PIOS_BMA180_GetScale();
|
||||||
attitudeRaw->accels[ATTITUDERAW_ACCELS_X] = (accels[0] - accelbias[0]) * scaling;
|
AccelsData accelsData; // Skip get as we set all the fields
|
||||||
attitudeRaw->accels[ATTITUDERAW_ACCELS_Y] = (accels[1] - accelbias[1]) * scaling;
|
accelsData.x = (accels[0] - accelbias[0]) * scaling;
|
||||||
attitudeRaw->accels[ATTITUDERAW_ACCELS_Z] = (accels[2] - accelbias[2]) * scaling;
|
accelsData.y = (accels[1] - accelbias[1]) * scaling;
|
||||||
|
accelsData.z = (accels[2] - accelbias[2]) * scaling;
|
||||||
|
accelsData.temperature = 25.0f + ((float) accel.temperature - 2.0f) / 2.0f;
|
||||||
|
AccelsSet(&accelsData);
|
||||||
|
|
||||||
// Push the data onto the queue for attitude to consume
|
// Push the data onto the queue for attitude to consume
|
||||||
struct accel_data accel_data;
|
if(xQueueSendToBack(accelQueue, (void *) &accelsData, 0) != pdTRUE) {
|
||||||
accel_data.x = attitudeRaw->accels[ATTITUDERAW_ACCELS_X];
|
|
||||||
accel_data.y = attitudeRaw->accels[ATTITUDERAW_ACCELS_X];
|
|
||||||
accel_data.z = attitudeRaw->accels[ATTITUDERAW_ACCELS_X];
|
|
||||||
if(xQueueSendToBack(accelQueue, (void *) &accel_data, 0) != pdTRUE) {
|
|
||||||
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_WARNING);
|
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_WARNING);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -332,67 +326,54 @@ static int8_t updateSensors(AttitudeRawData * attitudeRaw)
|
|||||||
float gyros[3] = {(float) gyro_accum[1] / gyro_samples, (float) gyro_accum[0] / gyro_samples, -(float) gyro_accum[2] / gyro_samples};
|
float gyros[3] = {(float) gyro_accum[1] / gyro_samples, (float) gyro_accum[0] / gyro_samples, -(float) gyro_accum[2] / gyro_samples};
|
||||||
|
|
||||||
scaling = PIOS_MPU6000_GetScale();
|
scaling = PIOS_MPU6000_GetScale();
|
||||||
attitudeRaw->gyros[ATTITUDERAW_GYROS_X] = gyros[0] * scaling;
|
GyrosData gyrosData; // Skip get as we set all the fields
|
||||||
attitudeRaw->gyros[ATTITUDERAW_GYROS_Y] = gyros[1] * scaling;
|
gyrosData.x = gyros[0] * scaling;
|
||||||
attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] = gyros[2] * scaling;
|
gyrosData.y = gyros[1] * scaling;
|
||||||
|
gyrosData.z = gyros[2] * scaling;
|
||||||
|
gyrosData.temperature = 35.0f + ((float) gyro.temperature + 512.0f) / 340.0f;
|
||||||
|
// Don't set yet. We push raw data to queue but then bias correct for other modules
|
||||||
|
|
||||||
// Push the data onto the queue for attitude to consume
|
// Push the data onto the queue for attitude to consume
|
||||||
struct gyro_data gyro_data;
|
if(xQueueSendToBack(gyroQueue, (void *) &gyrosData, 0) != pdTRUE) {
|
||||||
gyro_data.x = attitudeRaw->gyros[ATTITUDERAW_GYROS_X];
|
|
||||||
gyro_data.y = attitudeRaw->gyros[ATTITUDERAW_GYROS_Y];
|
|
||||||
gyro_data.z = attitudeRaw->gyros[ATTITUDERAW_GYROS_Z];
|
|
||||||
if(xQueueSendToBack(gyroQueue, (void *) &gyro_data, 0) != pdTRUE) {
|
|
||||||
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_WARNING);
|
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_WARNING);
|
||||||
}
|
}
|
||||||
|
|
||||||
// From data sheet 35 deg C corresponds to -13200, and 280 LSB per C
|
// Apply bias correction to the gyros
|
||||||
attitudeRaw->temperature[ATTITUDERAW_TEMPERATURE_GYRO] = 35.0f + ((float) gyro.temperature + 512.0f) / 340.0f;
|
|
||||||
|
|
||||||
// From the data sheet 25 deg C corresponds to 2 and 2 LSB per C
|
|
||||||
attitudeRaw->temperature[ATTITUDERAW_TEMPERATURE_ACCEL] = 25.0f + ((float) accel.temperature - 2.0f) / 2.0f;
|
|
||||||
|
|
||||||
if(bias_correct_gyro) {
|
if(bias_correct_gyro) {
|
||||||
// Applying integral component here so it can be seen on the gyros and correct bias
|
gyrosData.x += gyro_bias[0];
|
||||||
attitudeRaw->gyros[ATTITUDERAW_GYROS_X] += gyro_correct_int[0];
|
gyrosData.y += gyro_bias[1];
|
||||||
attitudeRaw->gyros[ATTITUDERAW_GYROS_Y] += gyro_correct_int[1];
|
gyrosData.z += gyro_bias[2];
|
||||||
attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] += gyro_correct_int[2];
|
|
||||||
}
|
}
|
||||||
|
GyrosSet(&gyrosData);
|
||||||
// Hack for tweaking gyro gains with the old settings
|
|
||||||
scaling = gyroGain / 0.42;
|
|
||||||
attitudeRaw->gyros[ATTITUDERAW_GYROS_X] *= scaling;
|
|
||||||
attitudeRaw->gyros[ATTITUDERAW_GYROS_Y] *= scaling;
|
|
||||||
attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] *= scaling;
|
|
||||||
|
|
||||||
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
|
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
|
||||||
// and make it average zero (weakly)
|
// and make it average zero (weakly)
|
||||||
gyro_correct_int[2] += - attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] * yawBiasRate;
|
gyro_bias[2] += - gyrosData.z * yawBiasRate;
|
||||||
|
|
||||||
|
|
||||||
if (PIOS_HMC5883_NewDataAvailable()) {
|
if (PIOS_HMC5883_NewDataAvailable()) {
|
||||||
int16_t values[3];
|
int16_t values[3];
|
||||||
PIOS_HMC5883_ReadMag(values);
|
PIOS_HMC5883_ReadMag(values);
|
||||||
attitudeRaw->magnetometers[ATTITUDERAW_MAGNETOMETERS_X] = -values[0];
|
MagnetometerData mag; // Skip get as we set all the fields
|
||||||
attitudeRaw->magnetometers[ATTITUDERAW_MAGNETOMETERS_Y] = -values[1];
|
mag.x = -values[0];
|
||||||
attitudeRaw->magnetometers[ATTITUDERAW_MAGNETOMETERS_Z] = -values[2];
|
mag.y = -values[1];
|
||||||
|
mag.z = -values[2];
|
||||||
|
MagnetometerSet(&mag);
|
||||||
}
|
}
|
||||||
|
|
||||||
AttitudeRawSet(&raw);
|
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
float accel_mag;
|
float accel_mag;
|
||||||
float qmag;
|
float qmag;
|
||||||
static void updateAttitude()
|
static int32_t updateAttitudeComplimentary()
|
||||||
{
|
{
|
||||||
struct gyro_data gyro_data;
|
GyrosData gyrosData;
|
||||||
struct accel_data accel_data;
|
AccelsData accelsData;
|
||||||
|
|
||||||
if(xQueueReceive(gyroQueue, (void *) &gyro_data, 10 / portTICK_RATE_MS) != pdTRUE ||
|
if(xQueueReceive(gyroQueue, (void *) &gyrosData, 10 / portTICK_RATE_MS) != pdTRUE ||
|
||||||
xQueueReceive(accelQueue, (void *) &accel_data, 10 / portTICK_RATE_MS) != pdTRUE) {
|
xQueueReceive(accelQueue, (void *) &accelsData, 10 / portTICK_RATE_MS) != pdTRUE) {
|
||||||
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
|
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
|
||||||
return;
|
return -1;
|
||||||
}
|
}
|
||||||
|
|
||||||
static int32_t timeval;
|
static int32_t timeval;
|
||||||
@ -414,32 +395,32 @@ static void updateAttitude()
|
|||||||
grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2]));
|
grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2]));
|
||||||
grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1]));
|
grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1]));
|
||||||
grot[2] = -(q[0] * q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]);
|
grot[2] = -(q[0] * q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]);
|
||||||
CrossProduct((const float *) &accel_data.x, (const float *) grot, accel_err);
|
CrossProduct((const float *) &accelsData.x, (const float *) grot, accel_err);
|
||||||
|
|
||||||
// Account for accel magnitude
|
// Account for accel magnitude
|
||||||
accel_mag = accel_data.x*accel_data.x + accel_data.y*accel_data.y + accel_data.z*accel_data.z;
|
accel_mag = accelsData.x*accelsData.x + accelsData.y*accelsData.y + accelsData.z*accelsData.z;
|
||||||
accel_mag = sqrtf(accel_mag);
|
accel_mag = sqrtf(accel_mag);
|
||||||
accel_err[0] /= accel_mag;
|
accel_err[0] /= accel_mag;
|
||||||
accel_err[1] /= accel_mag;
|
accel_err[1] /= accel_mag;
|
||||||
accel_err[2] /= accel_mag;
|
accel_err[2] /= accel_mag;
|
||||||
|
|
||||||
// Accumulate integral of error. Scale here so that units are (deg/s) but Ki has units of s
|
// Accumulate integral of error. Scale here so that units are (deg/s) but Ki has units of s
|
||||||
gyro_correct_int[0] += accel_err[0] * accelKi;
|
gyro_bias[0] += accel_err[0] * accelKi;
|
||||||
gyro_correct_int[1] += accel_err[1] * accelKi;
|
gyro_bias[1] += accel_err[1] * accelKi;
|
||||||
|
|
||||||
// Correct rates based on error, integral component dealt with in updateSensors
|
// Correct rates based on error, integral component dealt with in updateSensors
|
||||||
gyro_data.x += accel_err[0] * accelKp / dT;
|
gyrosData.x += accel_err[0] * accelKp / dT;
|
||||||
gyro_data.y += accel_err[1] * accelKp / dT;
|
gyrosData.y += accel_err[1] * accelKp / dT;
|
||||||
gyro_data.z += accel_err[2] * accelKp / dT;
|
gyrosData.z += accel_err[2] * accelKp / dT;
|
||||||
|
|
||||||
|
|
||||||
// Work out time derivative from INSAlgo writeup
|
// Work out time derivative from INSAlgo writeup
|
||||||
// Also accounts for the fact that gyros are in deg/s
|
// Also accounts for the fact that gyros are in deg/s
|
||||||
float qdot[4];
|
float qdot[4];
|
||||||
qdot[0] = (-q[1] * gyro_data.x - q[2] * gyro_data.y - q[3] * gyro_data.z) * dT * F_PI / 180 / 2;
|
qdot[0] = (-q[1] * gyrosData.x - q[2] * gyrosData.y - q[3] * gyrosData.z) * dT * F_PI / 180 / 2;
|
||||||
qdot[1] = (q[0] * gyro_data.x - q[3] * gyro_data.y + q[2] * gyro_data.z) * dT * F_PI / 180 / 2;
|
qdot[1] = (q[0] * gyrosData.x - q[3] * gyrosData.y + q[2] * gyrosData.z) * dT * F_PI / 180 / 2;
|
||||||
qdot[2] = (q[3] * gyro_data.x + q[0] * gyro_data.y - q[1] * gyro_data.z) * dT * F_PI / 180 / 2;
|
qdot[2] = (q[3] * gyrosData.x + q[0] * gyrosData.y - q[1] * gyrosData.z) * dT * F_PI / 180 / 2;
|
||||||
qdot[3] = (-q[2] * gyro_data.x + q[1] * gyro_data.y + q[0] * gyro_data.z) * dT * F_PI / 180 / 2;
|
qdot[3] = (-q[2] * gyrosData.x + q[1] * gyrosData.y + q[0] * gyrosData.z) * dT * F_PI / 180 / 2;
|
||||||
|
|
||||||
// Take a time step
|
// Take a time step
|
||||||
q[0] = q[0] + qdot[0];
|
q[0] = q[0] + qdot[0];
|
||||||
@ -479,6 +460,7 @@ static void updateAttitude()
|
|||||||
|
|
||||||
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
|
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
|
||||||
|
|
||||||
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void settingsUpdatedCb(UAVObjEvent * objEv) {
|
static void settingsUpdatedCb(UAVObjEvent * objEv) {
|
||||||
@ -498,9 +480,9 @@ static void settingsUpdatedCb(UAVObjEvent * objEv) {
|
|||||||
accelbias[1] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Y];
|
accelbias[1] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Y];
|
||||||
accelbias[2] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Z];
|
accelbias[2] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Z];
|
||||||
|
|
||||||
gyro_correct_int[0] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_X] / 100.0f;
|
gyro_bias[0] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_X] / 100.0f;
|
||||||
gyro_correct_int[1] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Y] / 100.0f;
|
gyro_bias[1] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Y] / 100.0f;
|
||||||
gyro_correct_int[2] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Z] / 100.0f;
|
gyro_bias[2] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Z] / 100.0f;
|
||||||
|
|
||||||
// Indicates not to expend cycles on rotation
|
// Indicates not to expend cycles on rotation
|
||||||
if(attitudeSettings.BoardRotation[0] == 0 && attitudeSettings.BoardRotation[1] == 0 &&
|
if(attitudeSettings.BoardRotation[0] == 0 && attitudeSettings.BoardRotation[1] == 0 &&
|
||||||
|
@ -38,7 +38,7 @@
|
|||||||
#include "ratedesired.h"
|
#include "ratedesired.h"
|
||||||
#include "stabilizationdesired.h"
|
#include "stabilizationdesired.h"
|
||||||
#include "attitudeactual.h"
|
#include "attitudeactual.h"
|
||||||
#include "attituderaw.h"
|
#include "gyros.h"
|
||||||
#include "flightstatus.h"
|
#include "flightstatus.h"
|
||||||
#include "manualcontrol.h" // Just to get a macro
|
#include "manualcontrol.h" // Just to get a macro
|
||||||
#include "CoordinateConversions.h"
|
#include "CoordinateConversions.h"
|
||||||
@ -124,7 +124,7 @@ int32_t StabilizationInitialize()
|
|||||||
|
|
||||||
// Listen for updates.
|
// Listen for updates.
|
||||||
// AttitudeActualConnectQueue(queue);
|
// AttitudeActualConnectQueue(queue);
|
||||||
AttitudeRawConnectQueue(queue);
|
GyrosConnectQueue(queue);
|
||||||
|
|
||||||
StabilizationSettingsConnectCallback(SettingsUpdatedCb);
|
StabilizationSettingsConnectCallback(SettingsUpdatedCb);
|
||||||
SettingsUpdatedCb(StabilizationSettingsHandle());
|
SettingsUpdatedCb(StabilizationSettingsHandle());
|
||||||
@ -149,7 +149,7 @@ static void stabilizationTask(void* parameters)
|
|||||||
StabilizationDesiredData stabDesired;
|
StabilizationDesiredData stabDesired;
|
||||||
RateDesiredData rateDesired;
|
RateDesiredData rateDesired;
|
||||||
AttitudeActualData attitudeActual;
|
AttitudeActualData attitudeActual;
|
||||||
AttitudeRawData attitudeRaw;
|
GyrosData gyrosData;
|
||||||
FlightStatusData flightStatus;
|
FlightStatusData flightStatus;
|
||||||
|
|
||||||
SettingsUpdatedCb((UAVObjEvent *) NULL);
|
SettingsUpdatedCb((UAVObjEvent *) NULL);
|
||||||
@ -176,7 +176,7 @@ static void stabilizationTask(void* parameters)
|
|||||||
FlightStatusGet(&flightStatus);
|
FlightStatusGet(&flightStatus);
|
||||||
StabilizationDesiredGet(&stabDesired);
|
StabilizationDesiredGet(&stabDesired);
|
||||||
AttitudeActualGet(&attitudeActual);
|
AttitudeActualGet(&attitudeActual);
|
||||||
AttitudeRawGet(&attitudeRaw);
|
GyrosGet(&gyrosData);
|
||||||
|
|
||||||
#if defined(DIAGNOSTICS)
|
#if defined(DIAGNOSTICS)
|
||||||
RateDesiredGet(&rateDesired);
|
RateDesiredGet(&rateDesired);
|
||||||
@ -220,9 +220,9 @@ static void stabilizationTask(void* parameters)
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
for(uint8_t i = 0; i < MAX_AXES; i++) {
|
gyro_filtered[0] = gyro_filtered[0] * gyro_alpha + gyrosData.x * (1 - gyro_alpha);
|
||||||
gyro_filtered[i] = gyro_filtered[i] * gyro_alpha + attitudeRaw.gyros[i] * (1 - gyro_alpha);
|
gyro_filtered[1] = gyro_filtered[1] * gyro_alpha + gyrosData.y * (1 - gyro_alpha);
|
||||||
}
|
gyro_filtered[2] = gyro_filtered[2] * gyro_alpha + gyrosData.z * (1 - gyro_alpha);
|
||||||
|
|
||||||
float *attitudeDesiredAxis = &stabDesired.Roll;
|
float *attitudeDesiredAxis = &stabDesired.Roll;
|
||||||
float *actuatorDesiredAxis = &actuatorDesired.Roll;
|
float *actuatorDesiredAxis = &actuatorDesired.Roll;
|
||||||
|
Loading…
Reference in New Issue
Block a user