mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2025-03-21 13:28:58 +01:00
Improve the simulated sensors to produce (I think) consistent data now
This commit is contained in:
parent
0b342ea3d6
commit
543500ed78
@ -97,6 +97,7 @@ int32_t SensorsInitialize(void)
|
||||
BaroAltitudeInitialize();
|
||||
GyrosInitialize();
|
||||
GyrosBiasInitialize();
|
||||
GPSPositionInitialize();
|
||||
MagnetometerInitialize();
|
||||
RevoCalibrationInitialize();
|
||||
|
||||
@ -105,7 +106,7 @@ int32_t SensorsInitialize(void)
|
||||
|
||||
/**
|
||||
* Start the task. Expects all objects to be initialized by this point.
|
||||
* \returns 0 on success or -1 if initialisation failed
|
||||
*pick \returns 0 on success or -1 if initialisation failed
|
||||
*/
|
||||
int32_t SensorsStart(void)
|
||||
{
|
||||
@ -140,7 +141,7 @@ static void SensorsTask(void *parameters)
|
||||
homeLocation.Set = HOMELOCATION_SET_TRUE;
|
||||
HomeLocationSet(&homeLocation);
|
||||
|
||||
sensor_sim_type = MODEL_AGNOSTIC;
|
||||
sensor_sim_type = MODEL_QUADCOPTER;
|
||||
|
||||
// Main task loop
|
||||
lastSysTime = xTaskGetTickCount();
|
||||
@ -151,8 +152,8 @@ static void SensorsTask(void *parameters)
|
||||
static int i;
|
||||
i++;
|
||||
if (i % 5000 == 0) {
|
||||
float dT = PIOS_DELAY_DiffuS(last_time) / 10.0e6;
|
||||
fprintf(stderr, "Sensor relative timing: %f\n", dT);
|
||||
//float dT = PIOS_DELAY_DiffuS(last_time) / 10.0e6;
|
||||
//fprintf(stderr, "Sensor relative timing: %f\n", dT);
|
||||
last_time = PIOS_DELAY_GetRaw();
|
||||
}
|
||||
|
||||
@ -278,18 +279,21 @@ static void simulateModelAgnostic()
|
||||
MagnetometerSet(&mag);
|
||||
}
|
||||
|
||||
float thrustToDegs = 50;
|
||||
bool overideAttitude = false;
|
||||
static void simulateModelQuadcopter()
|
||||
{
|
||||
static float pos[3] = {0,0,0};
|
||||
static float vel[3] = {0,0,0};
|
||||
static float ned_accel[3] = {0,0,0};
|
||||
static double pos[3] = {0,0,0};
|
||||
static double vel[3] = {0,0,0};
|
||||
static double ned_accel[3] = {0,0,0};
|
||||
static float q[4] = {1,0,0,0};
|
||||
static float rpy[3] = {0,0,0}; // Low pass filtered actuator
|
||||
float T[3];
|
||||
double T[3];
|
||||
float Rbe[3][3];
|
||||
|
||||
const float ACTUATOR_ALPHA = 0.99;
|
||||
const float MAX_THRUST = 9.81 * 2;
|
||||
const float K_FRICTION = 1;
|
||||
|
||||
static uint32_t last_time;
|
||||
|
||||
@ -298,23 +302,47 @@ static void simulateModelQuadcopter()
|
||||
dT = 2e-3;
|
||||
last_time = PIOS_DELAY_GetRaw();
|
||||
|
||||
FlightStatusData flightStatus;
|
||||
FlightStatusGet(&flightStatus);
|
||||
ActuatorDesiredData actuatorDesired;
|
||||
ActuatorDesiredGet(&actuatorDesired);
|
||||
rpy[0] = actuatorDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA;
|
||||
rpy[1] = actuatorDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA;
|
||||
rpy[2] = actuatorDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA;
|
||||
|
||||
float thrust = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) ? actuatorDesired.Throttle * MAX_THRUST : 0;
|
||||
if (thrust < 0)
|
||||
thrust = 0;
|
||||
|
||||
if (thrust != thrust)
|
||||
thrust = 0;
|
||||
|
||||
// float control_scaling = thrust * thrustToDegs;
|
||||
// // In rad/s
|
||||
// rpy[0] = control_scaling * actuatorDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA;
|
||||
// rpy[1] = control_scaling * actuatorDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA;
|
||||
// rpy[2] = control_scaling * actuatorDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA;
|
||||
//
|
||||
// GyrosData gyrosData; // Skip get as we set all the fields
|
||||
// gyrosData.x = rpy[0] * 180 / M_PI + rand_gauss();
|
||||
// gyrosData.y = rpy[1] * 180 / M_PI + rand_gauss();
|
||||
// gyrosData.z = rpy[2] * 180 / M_PI + rand_gauss();
|
||||
|
||||
RateDesiredData rateDesired;
|
||||
RateDesiredGet(&rateDesired);
|
||||
|
||||
rpy[0] = thrust / MAX_THRUST * rateDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA;
|
||||
rpy[1] = thrust / MAX_THRUST * rateDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA;
|
||||
rpy[2] = thrust / MAX_THRUST * rateDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA;
|
||||
|
||||
GyrosData gyrosData; // Skip get as we set all the fields
|
||||
gyrosData.x = rpy[0] + rand_gauss();
|
||||
gyrosData.y = rpy[1] + rand_gauss();
|
||||
gyrosData.z = rpy[2] + rand_gauss();
|
||||
|
||||
|
||||
// Apply bias correction to the gyros
|
||||
GyrosBiasData gyrosBias;
|
||||
GyrosBiasGet(&gyrosBias);
|
||||
gyrosData.x += gyrosBias.x;
|
||||
gyrosData.y += gyrosBias.y;
|
||||
gyrosData.z += gyrosBias.z;
|
||||
// GyrosBiasData gyrosBias;
|
||||
// GyrosBiasGet(&gyrosBias);
|
||||
// gyrosData.x += gyrosBias.x;
|
||||
// gyrosData.y += gyrosBias.y;
|
||||
// gyrosData.z += gyrosBias.z;
|
||||
GyrosSet(&gyrosData);
|
||||
|
||||
// Predict the attitude forward in time
|
||||
@ -330,25 +358,43 @@ static void simulateModelQuadcopter()
|
||||
q[2] = q[2] + qdot[2];
|
||||
q[3] = q[3] + qdot[3];
|
||||
|
||||
float thrust = actuatorDesired.Throttle * MAX_THRUST;
|
||||
if (thrust != thrust)
|
||||
thrust = 0;
|
||||
|
||||
if(overideAttitude){
|
||||
AttitudeActualData attitudeActual;
|
||||
AttitudeActualGet(&attitudeActual);
|
||||
attitudeActual.q1 = q[0];
|
||||
attitudeActual.q2 = q[1];
|
||||
attitudeActual.q3 = q[2];
|
||||
attitudeActual.q4 = q[3];
|
||||
AttitudeActualSet(&attitudeActual);
|
||||
}
|
||||
|
||||
Quaternion2R(q,Rbe);
|
||||
ned_accel[0] = thrust * Rbe[0][2];
|
||||
ned_accel[1] = thrust * Rbe[1][2];
|
||||
ned_accel[2] = thrust * Rbe[2][2];
|
||||
ned_accel[2] -= 9.81;
|
||||
|
||||
// Apply acceleration based on velocity
|
||||
ned_accel[0] -= K_FRICTION * vel[0];
|
||||
ned_accel[1] -= K_FRICTION * vel[1];
|
||||
ned_accel[2] += K_FRICTION * vel[2];
|
||||
|
||||
// Predict the velocity forward in time
|
||||
vel[0] = vel[0] + ned_accel[0] * dT;
|
||||
vel[1] = vel[1] + ned_accel[1] * dT;
|
||||
vel[2] = vel[2] + ned_accel[2] * dT;
|
||||
vel[2] = vel[2] - ned_accel[2] * dT;
|
||||
|
||||
// Predict the position forward in time
|
||||
pos[0] = pos[0] + vel[0] * dT;
|
||||
pos[1] = pos[1] + vel[1] * dT;
|
||||
pos[2] = pos[2] + vel[2] * dT;
|
||||
|
||||
// Simulate hitting ground
|
||||
if(pos[2] > 0) {
|
||||
pos[2] = 0;
|
||||
vel[2] = 0;
|
||||
ned_accel[2] = -9.81;
|
||||
}
|
||||
|
||||
// Transform the accels back in to body frame
|
||||
AccelsData accelsData; // Skip get as we set all the fields
|
||||
@ -360,28 +406,33 @@ static void simulateModelQuadcopter()
|
||||
|
||||
BaroAltitudeData baroAltitude;
|
||||
BaroAltitudeGet(&baroAltitude);
|
||||
baroAltitude.Altitude = pos[2];
|
||||
baroAltitude.Altitude = -pos[2];
|
||||
BaroAltitudeSet(&baroAltitude);
|
||||
|
||||
HomeLocationData homeLocation;
|
||||
HomeLocationGet(&homeLocation);
|
||||
T[0] = homeLocation.Altitude+6.378137E6f;
|
||||
T[1] = cosf(homeLocation.Latitude / 10e6)*(homeLocation.Altitude+6.378137E6f);
|
||||
T[0] = homeLocation.Altitude+6.378137E6f * M_PI / 180;
|
||||
T[1] = cosf(homeLocation.Latitude / 10e6)*(homeLocation.Altitude+6.378137E6f) * M_PI / 180;
|
||||
T[2] = -1.0f;
|
||||
|
||||
GPSPositionData gpsPosition;
|
||||
GPSPositionGet(&gpsPosition);
|
||||
gpsPosition.Latitude = homeLocation.Latitude + pos[0] / T[0];
|
||||
gpsPosition.Longitude = homeLocation.Longitude + pos[1] / T[1];
|
||||
gpsPosition.Altitude = homeLocation.Altitude + pos[2] / T[2];
|
||||
gpsPosition.Latitude = homeLocation.Latitude + (pos[0] / T[0] * 10.0e6);
|
||||
gpsPosition.Longitude = homeLocation.Longitude + (pos[1] / T[1] * 10.0e6);
|
||||
gpsPosition.Altitude = homeLocation.Altitude + (pos[2] / T[2] * 10.0e6);
|
||||
gpsPosition.Groundspeed = sqrt(vel[0] * vel[0] + vel[1] * vel[1]);
|
||||
gpsPosition.Heading = 180 / M_PI * atan2(vel[0], vel[1]);
|
||||
gpsPosition.Satellites = 7;
|
||||
gpsPosition.PDOP = 1;
|
||||
GPSPositionSet(&gpsPosition);
|
||||
|
||||
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
|
||||
// and make it average zero (weakly)
|
||||
|
||||
MagnetometerData mag;
|
||||
mag.x = 400;
|
||||
mag.y = 0;
|
||||
mag.z = 800;
|
||||
mag.x = homeLocation.Be[0] * Rbe[0][0] + homeLocation.Be[1] * Rbe[0][1] + homeLocation.Be[2] * Rbe[0][2];
|
||||
mag.y = homeLocation.Be[0] * Rbe[1][0] + homeLocation.Be[1] * Rbe[1][1] + homeLocation.Be[2] * Rbe[1][2];
|
||||
mag.z = homeLocation.Be[0] * Rbe[2][0] + homeLocation.Be[1] * Rbe[2][1] + homeLocation.Be[2] * Rbe[2][2];
|
||||
MagnetometerSet(&mag);
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user