1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-03-21 13:28:58 +01:00

Improve the simulated sensors to produce (I think) consistent data now

This commit is contained in:
James Cotton 2012-03-14 16:48:02 -05:00
parent 0b342ea3d6
commit 543500ed78

View File

@ -97,6 +97,7 @@ int32_t SensorsInitialize(void)
BaroAltitudeInitialize();
GyrosInitialize();
GyrosBiasInitialize();
GPSPositionInitialize();
MagnetometerInitialize();
RevoCalibrationInitialize();
@ -105,7 +106,7 @@ int32_t SensorsInitialize(void)
/**
* Start the task. Expects all objects to be initialized by this point.
* \returns 0 on success or -1 if initialisation failed
*pick \returns 0 on success or -1 if initialisation failed
*/
int32_t SensorsStart(void)
{
@ -140,7 +141,7 @@ static void SensorsTask(void *parameters)
homeLocation.Set = HOMELOCATION_SET_TRUE;
HomeLocationSet(&homeLocation);
sensor_sim_type = MODEL_AGNOSTIC;
sensor_sim_type = MODEL_QUADCOPTER;
// Main task loop
lastSysTime = xTaskGetTickCount();
@ -151,8 +152,8 @@ static void SensorsTask(void *parameters)
static int i;
i++;
if (i % 5000 == 0) {
float dT = PIOS_DELAY_DiffuS(last_time) / 10.0e6;
fprintf(stderr, "Sensor relative timing: %f\n", dT);
//float dT = PIOS_DELAY_DiffuS(last_time) / 10.0e6;
//fprintf(stderr, "Sensor relative timing: %f\n", dT);
last_time = PIOS_DELAY_GetRaw();
}
@ -278,18 +279,21 @@ static void simulateModelAgnostic()
MagnetometerSet(&mag);
}
float thrustToDegs = 50;
bool overideAttitude = false;
static void simulateModelQuadcopter()
{
static float pos[3] = {0,0,0};
static float vel[3] = {0,0,0};
static float ned_accel[3] = {0,0,0};
static double pos[3] = {0,0,0};
static double vel[3] = {0,0,0};
static double ned_accel[3] = {0,0,0};
static float q[4] = {1,0,0,0};
static float rpy[3] = {0,0,0}; // Low pass filtered actuator
float T[3];
double T[3];
float Rbe[3][3];
const float ACTUATOR_ALPHA = 0.99;
const float MAX_THRUST = 9.81 * 2;
const float K_FRICTION = 1;
static uint32_t last_time;
@ -298,23 +302,47 @@ static void simulateModelQuadcopter()
dT = 2e-3;
last_time = PIOS_DELAY_GetRaw();
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
ActuatorDesiredData actuatorDesired;
ActuatorDesiredGet(&actuatorDesired);
rpy[0] = actuatorDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA;
rpy[1] = actuatorDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA;
rpy[2] = actuatorDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA;
float thrust = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) ? actuatorDesired.Throttle * MAX_THRUST : 0;
if (thrust < 0)
thrust = 0;
if (thrust != thrust)
thrust = 0;
// float control_scaling = thrust * thrustToDegs;
// // In rad/s
// rpy[0] = control_scaling * actuatorDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA;
// rpy[1] = control_scaling * actuatorDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA;
// rpy[2] = control_scaling * actuatorDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA;
//
// GyrosData gyrosData; // Skip get as we set all the fields
// gyrosData.x = rpy[0] * 180 / M_PI + rand_gauss();
// gyrosData.y = rpy[1] * 180 / M_PI + rand_gauss();
// gyrosData.z = rpy[2] * 180 / M_PI + rand_gauss();
RateDesiredData rateDesired;
RateDesiredGet(&rateDesired);
rpy[0] = thrust / MAX_THRUST * rateDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA;
rpy[1] = thrust / MAX_THRUST * rateDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA;
rpy[2] = thrust / MAX_THRUST * rateDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA;
GyrosData gyrosData; // Skip get as we set all the fields
gyrosData.x = rpy[0] + rand_gauss();
gyrosData.y = rpy[1] + rand_gauss();
gyrosData.z = rpy[2] + rand_gauss();
// Apply bias correction to the gyros
GyrosBiasData gyrosBias;
GyrosBiasGet(&gyrosBias);
gyrosData.x += gyrosBias.x;
gyrosData.y += gyrosBias.y;
gyrosData.z += gyrosBias.z;
// GyrosBiasData gyrosBias;
// GyrosBiasGet(&gyrosBias);
// gyrosData.x += gyrosBias.x;
// gyrosData.y += gyrosBias.y;
// gyrosData.z += gyrosBias.z;
GyrosSet(&gyrosData);
// Predict the attitude forward in time
@ -330,25 +358,43 @@ static void simulateModelQuadcopter()
q[2] = q[2] + qdot[2];
q[3] = q[3] + qdot[3];
float thrust = actuatorDesired.Throttle * MAX_THRUST;
if (thrust != thrust)
thrust = 0;
if(overideAttitude){
AttitudeActualData attitudeActual;
AttitudeActualGet(&attitudeActual);
attitudeActual.q1 = q[0];
attitudeActual.q2 = q[1];
attitudeActual.q3 = q[2];
attitudeActual.q4 = q[3];
AttitudeActualSet(&attitudeActual);
}
Quaternion2R(q,Rbe);
ned_accel[0] = thrust * Rbe[0][2];
ned_accel[1] = thrust * Rbe[1][2];
ned_accel[2] = thrust * Rbe[2][2];
ned_accel[2] -= 9.81;
// Apply acceleration based on velocity
ned_accel[0] -= K_FRICTION * vel[0];
ned_accel[1] -= K_FRICTION * vel[1];
ned_accel[2] += K_FRICTION * vel[2];
// Predict the velocity forward in time
vel[0] = vel[0] + ned_accel[0] * dT;
vel[1] = vel[1] + ned_accel[1] * dT;
vel[2] = vel[2] + ned_accel[2] * dT;
vel[2] = vel[2] - ned_accel[2] * dT;
// Predict the position forward in time
pos[0] = pos[0] + vel[0] * dT;
pos[1] = pos[1] + vel[1] * dT;
pos[2] = pos[2] + vel[2] * dT;
// Simulate hitting ground
if(pos[2] > 0) {
pos[2] = 0;
vel[2] = 0;
ned_accel[2] = -9.81;
}
// Transform the accels back in to body frame
AccelsData accelsData; // Skip get as we set all the fields
@ -360,28 +406,33 @@ static void simulateModelQuadcopter()
BaroAltitudeData baroAltitude;
BaroAltitudeGet(&baroAltitude);
baroAltitude.Altitude = pos[2];
baroAltitude.Altitude = -pos[2];
BaroAltitudeSet(&baroAltitude);
HomeLocationData homeLocation;
HomeLocationGet(&homeLocation);
T[0] = homeLocation.Altitude+6.378137E6f;
T[1] = cosf(homeLocation.Latitude / 10e6)*(homeLocation.Altitude+6.378137E6f);
T[0] = homeLocation.Altitude+6.378137E6f * M_PI / 180;
T[1] = cosf(homeLocation.Latitude / 10e6)*(homeLocation.Altitude+6.378137E6f) * M_PI / 180;
T[2] = -1.0f;
GPSPositionData gpsPosition;
GPSPositionGet(&gpsPosition);
gpsPosition.Latitude = homeLocation.Latitude + pos[0] / T[0];
gpsPosition.Longitude = homeLocation.Longitude + pos[1] / T[1];
gpsPosition.Altitude = homeLocation.Altitude + pos[2] / T[2];
gpsPosition.Latitude = homeLocation.Latitude + (pos[0] / T[0] * 10.0e6);
gpsPosition.Longitude = homeLocation.Longitude + (pos[1] / T[1] * 10.0e6);
gpsPosition.Altitude = homeLocation.Altitude + (pos[2] / T[2] * 10.0e6);
gpsPosition.Groundspeed = sqrt(vel[0] * vel[0] + vel[1] * vel[1]);
gpsPosition.Heading = 180 / M_PI * atan2(vel[0], vel[1]);
gpsPosition.Satellites = 7;
gpsPosition.PDOP = 1;
GPSPositionSet(&gpsPosition);
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
// and make it average zero (weakly)
MagnetometerData mag;
mag.x = 400;
mag.y = 0;
mag.z = 800;
mag.x = homeLocation.Be[0] * Rbe[0][0] + homeLocation.Be[1] * Rbe[0][1] + homeLocation.Be[2] * Rbe[0][2];
mag.y = homeLocation.Be[0] * Rbe[1][0] + homeLocation.Be[1] * Rbe[1][1] + homeLocation.Be[2] * Rbe[1][2];
mag.z = homeLocation.Be[0] * Rbe[2][0] + homeLocation.Be[1] * Rbe[2][1] + homeLocation.Be[2] * Rbe[2][2];
MagnetometerSet(&mag);
}