1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-02-05 21:52:10 +01:00

POI orbit + some code run thru code formatter

This commit is contained in:
sambas 2013-04-14 12:23:47 +03:00
parent 6989468d17
commit 589290dbd7
8 changed files with 3082 additions and 3189 deletions

View File

@ -32,8 +32,8 @@
// no direct UAVObject usage allowed in this file
// private functions
static void path_endpoint( float * start_point, float * end_point, float * cur_point, struct path_status * status);
static void path_vector( float * start_point, float * end_point, float * cur_point, struct path_status * status);
static void path_endpoint(float * start_point, float * end_point, float * cur_point, struct path_status * status);
static void path_vector(float * start_point, float * end_point, float * cur_point, struct path_status * status);
static void path_circle(float * start_point, float * end_point, float * cur_point, struct path_status * status, bool clockwise);
/**
@ -46,7 +46,7 @@ static void path_circle(float * start_point, float * end_point, float * cur_poin
*/
void path_progress(float * start_point, float * end_point, float * cur_point, struct path_status * status, uint8_t mode)
{
switch(mode) {
switch (mode) {
case PATHDESIRED_MODE_FLYVECTOR:
case PATHDESIRED_MODE_DRIVEVECTOR:
return path_vector(start_point, end_point, cur_point, status);
@ -75,7 +75,7 @@ void path_progress(float * start_point, float * end_point, float * cur_point, st
* @param[in] cur_point Current location
* @param[out] status Structure containing progress along path and deviation
*/
static void path_endpoint( float * start_point, float * end_point, float * cur_point, struct path_status * status)
static void path_endpoint(float * start_point, float * end_point, float * cur_point, struct path_status * status)
{
float path_north, path_east, diff_north, diff_east;
float dist_path, dist_diff;
@ -91,10 +91,10 @@ static void path_endpoint( float * start_point, float * end_point, float * cur_p
diff_north = end_point[0] - cur_point[0];
diff_east = end_point[1] - cur_point[1];
dist_diff = sqrtf( diff_north * diff_north + diff_east * diff_east );
dist_path = sqrtf( path_north * path_north + path_east * path_east );
dist_diff = sqrtf(diff_north * diff_north + diff_east * diff_east);
dist_path = sqrtf(path_north * path_north + path_east * path_east);
if(dist_diff < 1e-6 ) {
if (dist_diff < 1e-6) {
status->fractional_progress = 1;
status->error = 0;
status->path_direction[0] = status->path_direction[1] = 0;
@ -117,7 +117,7 @@ static void path_endpoint( float * start_point, float * end_point, float * cur_p
* @param[in] cur_point Current location
* @param[out] status Structure containing progress along path and deviation
*/
static void path_vector( float * start_point, float * end_point, float * cur_point, struct path_status * status)
static void path_vector(float * start_point, float * end_point, float * cur_point, struct path_status * status)
{
float path_north, path_east, diff_north, diff_east;
float dist_path;
@ -133,13 +133,13 @@ static void path_vector( float * start_point, float * end_point, float * cur_poi
diff_east = cur_point[1] - start_point[1];
dot = path_north * diff_north + path_east * diff_east;
dist_path = sqrtf( path_north * path_north + path_east * path_east );
dist_path = sqrtf(path_north * path_north + path_east * path_east);
if(dist_path < 1e-6) {
if (dist_path < 1e-6) {
// if the path is too short, we cannot determine vector direction.
// Fly towards the endpoint to prevent flying away,
// but assume progress=1 either way.
path_endpoint( start_point, end_point, cur_point, status );
path_endpoint(start_point, end_point, cur_point, status);
status->fractional_progress = 1;
return;
}
@ -174,7 +174,7 @@ static void path_vector( float * start_point, float * end_point, float * cur_poi
static void path_circle(float * start_point, float * end_point, float * cur_point, struct path_status * status, bool clockwise)
{
float radius_north, radius_east, diff_north, diff_east;
float radius,cradius;
float radius, cradius;
float normal[2];
float progress;
float a_diff, a_radius;
@ -187,8 +187,8 @@ static void path_circle(float * start_point, float * end_point, float * cur_poin
diff_north = cur_point[0] - end_point[0];
diff_east = cur_point[1] - end_point[1];
radius = sqrtf( powf(radius_north,2) + powf(radius_east,2) );
cradius = sqrtf( powf(diff_north,2) + powf(diff_east,2) );
radius = sqrtf(powf(radius_north, 2) + powf(radius_east, 2));
cradius = sqrtf(powf(diff_north, 2) + powf(diff_east, 2));
if (cradius < 1e-6) {
// cradius is zero, just fly somewhere and make sure correction is still a normal
@ -211,35 +211,37 @@ static void path_circle(float * start_point, float * end_point, float * cur_poin
normal[1] = -diff_north / cradius;
}
// normalize progress to 0..1
a_diff = atan2f( diff_north, diff_east);
a_radius = atan2f( radius_north, radius_east);
a_diff = atan2f(diff_north, diff_east);
a_radius = atan2f(radius_north, radius_east);
if(a_diff<0)
a_diff+=2*M_PI;
if(a_radius<0)
a_radius+=2*M_PI;
if (a_diff < 0) {
a_diff += 2 * M_PI;
}
if (a_radius < 0) {
a_radius += 2 * M_PI;
}
progress = (a_diff - a_radius + M_PI) / (2 * M_PI);
if(progress<0)
progress+=1.0;
else if(progress>=1)
progress-=1.0;
if(clockwise)
{
progress=1-progress;
if (progress < 0) {
progress += 1.0;
} else if (progress >= 1) {
progress -= 1.0;
}
if (clockwise) {
progress = 1 - progress;
}
status->fractional_progress = progress;
// error is current radius minus wanted radius - positive if too close
status->error = radius - cradius;
// Compute direction to correct error
status->correction_direction[0] = (status->error>0?1:-1) * diff_north / cradius;
status->correction_direction[1] = (status->error>0?1:-1) * diff_east / cradius;
status->correction_direction[0] = (status->error > 0 ? 1 : -1) * diff_north / cradius;
status->correction_direction[1] = (status->error > 0 ? 1 : -1) * diff_east / cradius;
// Compute direction to travel
status->path_direction[0] = normal[0];

View File

@ -131,8 +131,8 @@ static void altitudeTask(void *parameters)
#if defined(PIOS_INCLUDE_HCSR04)
SonarAltitudeData sonardata;
int32_t value=0,timeout=5;
float coeff=0.25,height_out=0,height_in=0;
int32_t value = 0, timeout = 5;
float coeff = 0.25, height_out = 0, height_in = 0;
if(hwsettings_rcvrport==HWSETTINGS_CC_RCVRPORT_DISABLED) {
PIOS_HCSR04_Trigger();
}
@ -149,25 +149,23 @@ static void altitudeTask(void *parameters)
#if defined(PIOS_INCLUDE_HCSR04)
// Compute the current altitude
if(hwsettings_rcvrport==HWSETTINGS_CC_RCVRPORT_DISABLED) {
if(PIOS_HCSR04_Completed())
{
if(PIOS_HCSR04_Completed()) {
value = PIOS_HCSR04_Get();
if((value>100) && (value < 15000)) //from 3.4cm to 5.1m
{
height_in = value*0.00034f/2.0f;
//from 3.4cm to 5.1m
if((value > 100) && (value < 15000)) {
height_in = value * 0.00034f / 2.0f;
height_out = (height_out * (1 - coeff)) + (height_in * coeff);
sonardata.Altitude = height_out; // m/us
}
// Update the AltitudeActual UAVObject
SonarAltitudeSet(&sonardata);
timeout=5;
timeout = 5;
PIOS_HCSR04_Trigger();
}
if(!(timeout--))
{
if(!(timeout--)) {
//retrigger
timeout=5;
timeout = 5;
PIOS_HCSR04_Trigger();
}
}

View File

@ -90,8 +90,8 @@ static void altitudeTask(void *parameters)
#if defined(PIOS_INCLUDE_HCSR04)
SonarAltitudeData sonardata;
int32_t value=0,timeout=10,sample_rate=0;
float coeff=0.25,height_out=0,height_in=0;
int32_t value = 0, timeout = 10, sample_rate = 0;
float coeff = 0.25, height_out = 0, height_in = 0;
PIOS_HCSR04_Trigger();
#endif
@ -110,30 +110,27 @@ static void altitudeTask(void *parameters)
#if defined(PIOS_INCLUDE_HCSR04)
// Compute the current altitude
// depends on baro samplerate
if(!(sample_rate--))
{
if(PIOS_HCSR04_Completed())
{
if(!(sample_rate--)) {
if(PIOS_HCSR04_Completed()) {
value = PIOS_HCSR04_Get();
if((value>100) && (value < 15000)) //from 3.4cm to 5.1m
{
height_in = value*0.00034f/2.0f;
//from 3.4cm to 5.1m
if((value > 100) && (value < 15000)) {
height_in = value * 0.00034f / 2.0f;
height_out = (height_out * (1 - coeff)) + (height_in * coeff);
sonardata.Altitude = height_out; // m/us
}
// Update the SonarAltitude UAVObject
SonarAltitudeSet(&sonardata);
timeout=10;
timeout = 10;
PIOS_HCSR04_Trigger();
}
if(!(timeout--))
{
if(!(timeout--)) {
//retrigger
timeout=10;
timeout = 10;
PIOS_HCSR04_Trigger();
}
sample_rate=25;
sample_rate = 25;
}
#endif
float temp, press;

View File

@ -73,11 +73,7 @@
// Private types
typedef enum
{
ARM_STATE_DISARMED,
ARM_STATE_ARMING_MANUAL,
ARM_STATE_ARMED,
ARM_STATE_DISARMING_MANUAL,
ARM_STATE_DISARMING_TIMEOUT
ARM_STATE_DISARMED, ARM_STATE_ARMING_MANUAL, ARM_STATE_ARMED, ARM_STATE_DISARMING_MANUAL, ARM_STATE_DISARMING_TIMEOUT
} ArmState_t;
// Private variables
@ -114,7 +110,8 @@ static void applyLPF(float *value, ManualControlSettingsResponseTimeElem channel
#define RCVR_ACTIVITY_MONITOR_CHANNELS_PER_GROUP 12
#define RCVR_ACTIVITY_MONITOR_MIN_RANGE 10
struct rcvr_activity_fsm {
struct rcvr_activity_fsm
{
ManualControlSettingsChannelGroupsOptions group;
uint16_t prev[RCVR_ACTIVITY_MONITOR_CHANNELS_PER_GROUP];
uint8_t sample_count;
@ -132,7 +129,7 @@ static bool updateRcvrActivity(struct rcvr_activity_fsm * fsm);
int32_t ManualControlStart()
{
// Start main task
xTaskCreate(manualControlTask, (signed char *)"ManualControl", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &taskHandle);
xTaskCreate(manualControlTask, (signed char *) "ManualControl", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &taskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_MANUALCONTROL, taskHandle);
PIOS_WDG_RegisterFlag(PIOS_WDG_MANUAL);
@ -146,7 +143,7 @@ int32_t ManualControlInitialize()
{
/* Check the assumptions about uavobject enum's are correct */
if(!assumptions)
if (!assumptions)
return -1;
AccessoryDesiredInitialize();
@ -158,7 +155,7 @@ int32_t ManualControlInitialize()
return 0;
}
MODULE_INITCALL(ManualControlInitialize, ManualControlStart)
MODULE_INITCALL( ManualControlInitialize, ManualControlStart)
/**
* Module task
@ -224,7 +221,7 @@ static void manualControlTask(void *parameters)
if (ManualControlCommandReadOnly()) {
FlightTelemetryStatsData flightTelemStats;
FlightTelemetryStatsGet(&flightTelemStats);
if(flightTelemStats.Status != FLIGHTTELEMETRYSTATS_STATUS_CONNECTED) {
if (flightTelemStats.Status != FLIGHTTELEMETRYSTATS_STATUS_CONNECTED) {
/* trying to fly via GCS and lost connection. fall back to transmitter */
UAVObjMetadata metadata;
ManualControlCommandGetMetadata(&metadata);
@ -238,48 +235,47 @@ static void manualControlTask(void *parameters)
bool valid_input_detected = true;
// Read channel values in us
for (uint8_t n = 0;
n < MANUALCONTROLSETTINGS_CHANNELGROUPS_NUMELEM && n < MANUALCONTROLCOMMAND_CHANNEL_NUMELEM;
++n) {
for (uint8_t n = 0; n < MANUALCONTROLSETTINGS_CHANNELGROUPS_NUMELEM && n < MANUALCONTROLCOMMAND_CHANNEL_NUMELEM; ++n) {
extern uint32_t pios_rcvr_group_map[];
if (settings.ChannelGroups[n] >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
cmd.Channel[n] = PIOS_RCVR_INVALID;
} else {
cmd.Channel[n] = PIOS_RCVR_Read(pios_rcvr_group_map[settings.ChannelGroups[n]],
settings.ChannelNumber[n]);
cmd.Channel[n] = PIOS_RCVR_Read(pios_rcvr_group_map[settings.ChannelGroups[n]], settings.ChannelNumber[n]);
}
// If a channel has timed out this is not valid data and we shouldn't update anything
// until we decide to go to failsafe
if(cmd.Channel[n] == PIOS_RCVR_TIMEOUT)
if (cmd.Channel[n] == PIOS_RCVR_TIMEOUT)
valid_input_detected = false;
else
scaledChannel[n] = scaleChannel(cmd.Channel[n], settings.ChannelMax[n], settings.ChannelMin[n], settings.ChannelNeutral[n]);
}
// Check settings, if error raise alarm
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL] >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE ||
settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH] >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE ||
settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW] >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE ||
settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE] >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE ||
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL] >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE
|| settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH] >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE
|| settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW] >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE
|| settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE] >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE
||
// Check all channel mappings are valid
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL] == (uint16_t) PIOS_RCVR_INVALID ||
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH] == (uint16_t) PIOS_RCVR_INVALID ||
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW] == (uint16_t) PIOS_RCVR_INVALID ||
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE] == (uint16_t) PIOS_RCVR_INVALID ||
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL] == (uint16_t) PIOS_RCVR_INVALID
|| cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH] == (uint16_t) PIOS_RCVR_INVALID
|| cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW] == (uint16_t) PIOS_RCVR_INVALID
|| cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE] == (uint16_t) PIOS_RCVR_INVALID
||
// Check the driver exists
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL] == (uint16_t) PIOS_RCVR_NODRIVER ||
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH] == (uint16_t) PIOS_RCVR_NODRIVER ||
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW] == (uint16_t) PIOS_RCVR_NODRIVER ||
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE] == (uint16_t) PIOS_RCVR_NODRIVER ||
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL] == (uint16_t) PIOS_RCVR_NODRIVER
|| cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH] == (uint16_t) PIOS_RCVR_NODRIVER
|| cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW] == (uint16_t) PIOS_RCVR_NODRIVER
|| cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE] == (uint16_t) PIOS_RCVR_NODRIVER ||
// Check the FlightModeNumber is valid
settings.FlightModeNumber < 1 || settings.FlightModeNumber > MANUALCONTROLSETTINGS_FLIGHTMODEPOSITION_NUMELEM ||
// Similar checks for FlightMode channel but only if more than one flight mode has been set. Otherwise don't care
((settings.FlightModeNumber > 1) && (
settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_FLIGHTMODE] >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE ||
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_FLIGHTMODE] == (uint16_t) PIOS_RCVR_INVALID ||
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_FLIGHTMODE] == (uint16_t) PIOS_RCVR_NODRIVER))) {
((settings.FlightModeNumber > 1)
&& (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_FLIGHTMODE] >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE
|| cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_FLIGHTMODE] == (uint16_t) PIOS_RCVR_INVALID
|| cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_FLIGHTMODE] == (uint16_t) PIOS_RCVR_NODRIVER))) {
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_CRITICAL);
cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_FALSE;
@ -293,10 +289,14 @@ static void manualControlTask(void *parameters)
}
// decide if we have valid manual input or not
valid_input_detected &= validInputRange(settings.ChannelMin[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE], settings.ChannelMax[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE], cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE]) &&
validInputRange(settings.ChannelMin[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL], settings.ChannelMax[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL], cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL]) &&
validInputRange(settings.ChannelMin[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW], settings.ChannelMax[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW], cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW]) &&
validInputRange(settings.ChannelMin[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH], settings.ChannelMax[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH], cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH]);
valid_input_detected &= validInputRange(settings.ChannelMin[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE],
settings.ChannelMax[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE], cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE])
&& validInputRange(settings.ChannelMin[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL],
settings.ChannelMax[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL], cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL])
&& validInputRange(settings.ChannelMin[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW],
settings.ChannelMax[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW], cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW])
&& validInputRange(settings.ChannelMin[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH],
settings.ChannelMax[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH], cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH]);
// Implement hysteresis loop on connection status
if (valid_input_detected && (++connected_count > 10)) {
@ -322,24 +322,21 @@ static void manualControlTask(void *parameters)
AccessoryDesiredData accessory;
// Set Accessory 0
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY0] !=
MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY0] != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
accessory.AccessoryVal = 0;
if(AccessoryDesiredInstSet(0, &accessory) != 0)
if (AccessoryDesiredInstSet(0, &accessory) != 0)
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING);
}
// Set Accessory 1
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY1] !=
MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY1] != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
accessory.AccessoryVal = 0;
if(AccessoryDesiredInstSet(1, &accessory) != 0)
if (AccessoryDesiredInstSet(1, &accessory) != 0)
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING);
}
// Set Accessory 2
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY2] !=
MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY2] != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
accessory.AccessoryVal = 0;
if(AccessoryDesiredInstSet(2, &accessory) != 0)
if (AccessoryDesiredInstSet(2, &accessory) != 0)
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING);
}
@ -371,40 +368,37 @@ static void manualControlTask(void *parameters)
applyLPF(&cmd.Pitch, MANUALCONTROLSETTINGS_RESPONSETIME_PITCH, &settings, dT);
applyLPF(&cmd.Yaw, MANUALCONTROLSETTINGS_RESPONSETIME_YAW, &settings, dT);
#endif // USE_INPUT_LPF
if(cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE] != (uint16_t) PIOS_RCVR_INVALID &&
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE] != (uint16_t) PIOS_RCVR_NODRIVER &&
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE] != (uint16_t) PIOS_RCVR_TIMEOUT)
if (cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE] != (uint16_t) PIOS_RCVR_INVALID
&& cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE] != (uint16_t) PIOS_RCVR_NODRIVER
&& cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE] != (uint16_t) PIOS_RCVR_TIMEOUT)
cmd.Collective = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE];
AccessoryDesiredData accessory;
// Set Accessory 0
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY0] !=
MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY0] != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
accessory.AccessoryVal = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY0];
#ifdef USE_INPUT_LPF
applyLPF(&accessory.AccessoryVal, MANUALCONTROLSETTINGS_RESPONSETIME_ACCESSORY0, &settings, dT);
#endif
if(AccessoryDesiredInstSet(0, &accessory) != 0)
if (AccessoryDesiredInstSet(0, &accessory) != 0)
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING);
}
// Set Accessory 1
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY1] !=
MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY1] != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
accessory.AccessoryVal = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY1];
#ifdef USE_INPUT_LPF
applyLPF(&accessory.AccessoryVal, MANUALCONTROLSETTINGS_RESPONSETIME_ACCESSORY1, &settings, dT);
#endif
if(AccessoryDesiredInstSet(1, &accessory) != 0)
if (AccessoryDesiredInstSet(1, &accessory) != 0)
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING);
}
// Set Accessory 2
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY2] !=
MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY2] != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
accessory.AccessoryVal = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY2];
#ifdef USE_INPUT_LPF
applyLPF(&accessory.AccessoryVal, MANUALCONTROLSETTINGS_RESPONSETIME_ACCESSORY2, &settings, dT);
#endif
if(AccessoryDesiredInstSet(2, &accessory) != 0)
if (AccessoryDesiredInstSet(2, &accessory) != 0)
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING);
}
@ -435,7 +429,7 @@ static void manualControlTask(void *parameters)
// Depending on the mode update the Stabilization or Actuator objects
static uint8_t lastFlightMode = FLIGHTSTATUS_FLIGHTMODE_MANUAL;
switch(PARSE_FLIGHT_MODE(flightStatus.FlightMode)) {
switch (PARSE_FLIGHT_MODE(flightStatus.FlightMode)) {
case FLIGHTMODE_UNDEFINED:
// This reflects a bug in the code architecture!
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_CRITICAL);
@ -451,7 +445,7 @@ static void manualControlTask(void *parameters)
// call anything else. This just avoids errors.
break;
case FLIGHTMODE_GUIDANCE:
switch(flightStatus.FlightMode) {
switch (flightStatus.FlightMode) {
case FLIGHTSTATUS_FLIGHTMODE_ALTITUDEHOLD:
altitudeHoldDesired(&cmd, lastFlightMode != flightStatus.FlightMode);
break;
@ -484,8 +478,7 @@ static void resetRcvrActivity(struct rcvr_activity_fsm * fsm)
/* Clear all channel activity flags */
ReceiverActivityGet(&data);
if (data.ActiveGroup != RECEIVERACTIVITY_ACTIVEGROUP_NONE &&
data.ActiveChannel != 255) {
if (data.ActiveGroup != RECEIVERACTIVITY_ACTIVEGROUP_NONE && data.ActiveChannel != 255) {
data.ActiveGroup = RECEIVERACTIVITY_ACTIVEGROUP_NONE;
data.ActiveChannel = 255;
updated = true;
@ -499,7 +492,8 @@ static void resetRcvrActivity(struct rcvr_activity_fsm * fsm)
fsm->sample_count = 0;
}
static void updateRcvrActivitySample(uint32_t rcvr_id, uint16_t samples[], uint8_t max_channels) {
static void updateRcvrActivitySample(uint32_t rcvr_id, uint16_t samples[], uint8_t max_channels)
{
for (uint8_t channel = 1; channel <= max_channels; channel++) {
// Subtract 1 because channels are 1 indexed
samples[channel - 1] = PIOS_RCVR_Read(rcvr_id, channel);
@ -511,9 +505,7 @@ static bool updateRcvrActivityCompare(uint32_t rcvr_id, struct rcvr_activity_fsm
bool activity_updated = false;
/* Compare the current value to the previous sampled value */
for (uint8_t channel = 1;
channel <= RCVR_ACTIVITY_MONITOR_CHANNELS_PER_GROUP;
channel++) {
for (uint8_t channel = 1; channel <= RCVR_ACTIVITY_MONITOR_CHANNELS_PER_GROUP; channel++) {
uint16_t delta;
uint16_t prev = fsm->prev[channel - 1]; // Subtract 1 because channels are 1 indexed
uint16_t curr = PIOS_RCVR_Read(rcvr_id, channel);
@ -555,7 +547,7 @@ static bool updateRcvrActivityCompare(uint32_t rcvr_id, struct rcvr_activity_fsm
break;
}
ReceiverActivityActiveGroupSet((uint8_t*)&group);
ReceiverActivityActiveGroupSet((uint8_t*) &group);
ReceiverActivityActiveChannelSet(&channel);
activity_updated = true;
}
@ -580,9 +572,7 @@ static bool updateRcvrActivity(struct rcvr_activity_fsm * fsm)
if (fsm->sample_count == 0) {
/* Take a sample of each channel in this group */
updateRcvrActivitySample(pios_rcvr_group_map[fsm->group],
fsm->prev,
NELEMENTS(fsm->prev));
updateRcvrActivitySample(pios_rcvr_group_map[fsm->group], fsm->prev, NELEMENTS(fsm->prev));
fsm->sample_count++;
return (false);
}
@ -590,7 +580,7 @@ static bool updateRcvrActivity(struct rcvr_activity_fsm * fsm)
/* Compare with previous sample */
activity_updated = updateRcvrActivityCompare(pios_rcvr_group_map[fsm->group], fsm);
group_completed:
group_completed:
/* Reset the sample counter */
fsm->sample_count = 0;
@ -608,9 +598,7 @@ group_completed:
* extra 20ms delay in the main thread so we can speed up
* this algorithm.
*/
updateRcvrActivitySample(pios_rcvr_group_map[fsm->group],
fsm->prev,
NELEMENTS(fsm->prev));
updateRcvrActivitySample(pios_rcvr_group_map[fsm->group], fsm->prev, NELEMENTS(fsm->prev));
fsm->sample_count++;
break;
}
@ -641,7 +629,7 @@ static void updateStabilizationDesired(ManualControlCommandData * cmd, ManualCon
uint8_t * stab_settings;
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
switch(flightStatus.FlightMode) {
switch (flightStatus.FlightMode) {
case FLIGHTSTATUS_FLIGHTMODE_STABILIZED1:
stab_settings = settings->Stabilization1Settings;
break;
@ -662,35 +650,41 @@ static void updateStabilizationDesired(ManualControlCommandData * cmd, ManualCon
stabilization.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] = stab_settings[1];
stabilization.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = stab_settings[2];
stabilization.Roll = (stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_NONE) ? cmd->Roll :
stabilization.Roll =
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_NONE) ? cmd->Roll :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATE) ? cmd->Roll * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_ROLL] :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) ? cmd->Roll * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_ROLL] :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) ?
cmd->Roll * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_ROLL] :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) ? cmd->Roll * stabSettings.RollMax :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK) ? cmd->Roll * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_ROLL] :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR) ? cmd->Roll :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE) ? cmd->Roll * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_ROLL] :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE) ? cmd->Roll * stabSettings.RollMax :
0; // this is an invalid mode
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE) ?
cmd->Roll * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_ROLL] :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE) ? cmd->Roll * stabSettings.RollMax : 0; // this is an invalid mode
;
stabilization.Pitch = (stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_NONE) ? cmd->Pitch :
stabilization.Pitch =
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_NONE) ? cmd->Pitch :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATE) ? cmd->Pitch * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_PITCH] :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) ? cmd->Pitch * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_PITCH] :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) ?
cmd->Pitch * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_PITCH] :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) ? cmd->Pitch * stabSettings.PitchMax :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK) ? cmd->Pitch * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_PITCH] :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK) ?
cmd->Pitch * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_PITCH] :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR) ? cmd->Pitch :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE) ? cmd->Pitch * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_PITCH] :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE) ? cmd->Pitch * stabSettings.PitchMax :
0; // this is an invalid mode
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE) ?
cmd->Pitch * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_PITCH] :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE) ? cmd->Pitch * stabSettings.PitchMax : 0; // this is an invalid mode
stabilization.Yaw = (stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_NONE) ? cmd->Yaw :
stabilization.Yaw =
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_NONE) ? cmd->Yaw :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATE) ? cmd->Yaw * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_YAW] :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) ? cmd->Yaw * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_YAW] :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) ?
cmd->Yaw * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_YAW] :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) ? cmd->Yaw * stabSettings.YawMax :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK) ? cmd->Yaw * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_YAW] :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR) ? cmd->Yaw :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE) ? cmd->Yaw * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_YAW] :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE) ? cmd->Yaw * stabSettings.YawMax :
0; // this is an invalid mode
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE) ? cmd->Yaw * stabSettings.YawMax : 0; // this is an invalid mode
stabilization.Throttle = (cmd->Throttle < 0) ? -1 : cmd->Throttle;
StabilizationDesiredSet(&stabilization);
@ -755,7 +749,6 @@ static void updatePathDesired(ManualControlCommandData * cmd, bool changed,bool
}
}
static void updateLandDesired(ManualControlCommandData * cmd, bool changed)
{
static portTickType lastSysTime;
@ -821,12 +814,14 @@ static void altitudeHoldDesired(ManualControlCommandData * cmd, bool changed)
// After not being in this mode for a while init at current height
altitudeHoldDesired.Altitude = 0;
zeroed = false;
} else if (cmd->Throttle > DEADBAND_HIGH && zeroed)
} else if (cmd->Throttle > DEADBAND_HIGH && zeroed) {
altitudeHoldDesired.Altitude += (cmd->Throttle - DEADBAND_HIGH) * dT;
else if (cmd->Throttle < DEADBAND_LOW && zeroed)
} else if (cmd->Throttle < DEADBAND_LOW && zeroed) {
altitudeHoldDesired.Altitude += (cmd->Throttle - DEADBAND_LOW) * dT;
else if (cmd->Throttle >= DEADBAND_LOW && cmd->Throttle <= DEADBAND_HIGH) // Require the stick to enter the dead band before they can move height
} else if (cmd->Throttle >= DEADBAND_LOW && cmd->Throttle <= DEADBAND_HIGH) {
// Require the stick to enter the dead band before they can move height
zeroed = true;
}
AltitudeHoldDesiredSet(&altitudeHoldDesired);
}
@ -858,33 +853,36 @@ static float scaleChannel(int16_t value, int16_t max, int16_t min, int16_t neutr
float valueScaled;
// Scale
if ((max > min && value >= neutral) || (min > max && value <= neutral))
{
if (max != neutral)
valueScaled = (float)(value - neutral) / (float)(max - neutral);
else
if ((max > min && value >= neutral) || (min > max && value <= neutral)) {
if (max != neutral) {
valueScaled = (float) (value - neutral) / (float) (max - neutral);
} else {
valueScaled = 0;
}
else
{
if (min != neutral)
valueScaled = (float)(value - neutral) / (float)(neutral - min);
else
} else {
if (min != neutral) {
valueScaled = (float) (value - neutral) / (float) (neutral - min);
} else {
valueScaled = 0;
}
}
// Bound
if (valueScaled > 1.0) valueScaled = 1.0;
else
if (valueScaled < -1.0) valueScaled = -1.0;
if (valueScaled > 1.0) {
valueScaled = 1.0;
} else if (valueScaled < -1.0) {
valueScaled = -1.0;
}
return valueScaled;
}
static uint32_t timeDifferenceMs(portTickType start_time, portTickType end_time) {
if(end_time > start_time)
static uint32_t timeDifferenceMs(portTickType start_time, portTickType end_time)
{
if (end_time > start_time) {
return (end_time - start_time) * portTICK_RATE_MS;
return ((((portTICK_RATE_MS) -1) - start_time) + end_time) * portTICK_RATE_MS;
}
return ((((portTICK_RATE_MS) - 1) - start_time) + end_time) * portTICK_RATE_MS;
}
/**
@ -897,12 +895,9 @@ static bool okToArm(void)
SystemAlarmsData alarms;
SystemAlarmsGet(&alarms);
// Check each alarm
for (int i = 0; i < SYSTEMALARMS_ALARM_NUMELEM; i++)
{
if (alarms.Alarm[i] >= SYSTEMALARMS_ALARM_ERROR)
{ // found an alarm thats set
for (int i = 0; i < SYSTEMALARMS_ALARM_NUMELEM; i++) {
if (alarms.Alarm[i] >= SYSTEMALARMS_ALARM_ERROR) { // found an alarm thats set
if (i == SYSTEMALARMS_ALARM_GPS || i == SYSTEMALARMS_ALARM_TELEMETRY)
continue;
@ -932,11 +927,12 @@ static bool forcedDisArm(void)
* @brief Update the flightStatus object only if value changed. Reduces callbacks
* @param[in] val The new value
*/
static void setArmedIfChanged(uint8_t val) {
static void setArmedIfChanged(uint8_t val)
{
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
if(flightStatus.Armed != val) {
if (flightStatus.Armed != val) {
flightStatus.Armed = val;
FlightStatusSet(&flightStatus);
}
@ -968,7 +964,7 @@ static void processArm(ManualControlCommandData * cmd, ManualControlSettingsData
// The throttle is not low, in case we where arming or disarming, abort
if (!lowThrottle) {
switch(armState) {
switch (armState) {
case ARM_STATE_DISARMING_MANUAL:
case ARM_STATE_DISARMING_TIMEOUT:
armState = ARM_STATE_ARMED;
@ -990,18 +986,23 @@ static void processArm(ManualControlCommandData * cmd, ManualControlSettingsData
return;
}
// When the configuration is not "Always armed" and no "Always disarmed",
// the state will not be changed when the throttle is not low
static portTickType armedDisarmStart;
float armingInputLevel = 0;
// Calc channel see assumptions7
int8_t sign = ((settings->Arming-MANUALCONTROLSETTINGS_ARMING_ROLLLEFT)%2) ? -1 : 1;
switch ( (settings->Arming-MANUALCONTROLSETTINGS_ARMING_ROLLLEFT)/2 ) {
case ARMING_CHANNEL_ROLL: armingInputLevel = sign * cmd->Roll; break;
case ARMING_CHANNEL_PITCH: armingInputLevel = sign * cmd->Pitch; break;
case ARMING_CHANNEL_YAW: armingInputLevel = sign * cmd->Yaw; break;
int8_t sign = ((settings->Arming - MANUALCONTROLSETTINGS_ARMING_ROLLLEFT) % 2) ? -1 : 1;
switch ((settings->Arming - MANUALCONTROLSETTINGS_ARMING_ROLLLEFT) / 2) {
case ARMING_CHANNEL_ROLL:
armingInputLevel = sign * cmd->Roll;
break;
case ARMING_CHANNEL_PITCH:
armingInputLevel = sign * cmd->Pitch;
break;
case ARMING_CHANNEL_YAW:
armingInputLevel = sign * cmd->Yaw;
break;
}
bool manualArm = false;
@ -1012,7 +1013,7 @@ static void processArm(ManualControlCommandData * cmd, ManualControlSettingsData
else if (armingInputLevel >= +ARMED_THRESHOLD)
manualDisarm = true;
switch(armState) {
switch (armState) {
case ARM_STATE_DISARMED:
setArmedIfChanged(FLIGHTSTATUS_ARMED_DISARMED);
@ -1053,7 +1054,7 @@ static void processArm(ManualControlCommandData * cmd, ManualControlSettingsData
break;
case ARM_STATE_DISARMING_MANUAL:
if (manualDisarm &&(timeDifferenceMs(armedDisarmStart, lastSysTime) > ARMED_TIME_MS))
if (manualDisarm && (timeDifferenceMs(armedDisarmStart, lastSysTime) > ARMED_TIME_MS))
armState = ARM_STATE_DISARMED;
else if (!manualDisarm)
armState = ARM_STATE_ARMED;
@ -1092,8 +1093,7 @@ static void processFlightMode(ManualControlSettingsData *settings, float flightM
*/
bool validInputRange(int16_t min, int16_t max, uint16_t value)
{
if (min > max)
{
if (min > max) {
int16_t tmp = min;
min = max;
max = tmp;
@ -1108,8 +1108,7 @@ static void applyDeadband(float *value, float deadband)
{
if (fabs(*value) < deadband)
*value = 0.0f;
else
if (*value > 0.0f)
else if (*value > 0.0f)
*value -= deadband;
else
*value += deadband;
@ -1128,7 +1127,6 @@ static void applyLPF(float *value, ManualControlSettingsResponseTimeElem channel
}
}
#endif // USE_INPUT_LPF
/**
* Called whenever a critical configuration component changes
*/
@ -1137,8 +1135,6 @@ static void configurationUpdatedCb(UAVObjEvent * ev)
configuration_check();
}
/**
* @}
* @}

View File

@ -29,7 +29,6 @@
*/
// ****************
#include "openpilot.h"
#include "osdgen.h"
#include "attitudeactual.h"
@ -47,29 +46,28 @@
#include "splash.h"
/*
static uint16_t angleA=0;
static int16_t angleB=90;
static int16_t angleC=0;
static int16_t sum=2;
static uint16_t angleA=0;
static int16_t angleB=90;
static int16_t angleC=0;
static int16_t sum=2;
static int16_t m_pitch=0;
static int16_t m_roll=0;
static int16_t m_yaw=0;
static int16_t m_batt=0;
static int16_t m_alt=0;
static int16_t m_pitch=0;
static int16_t m_roll=0;
static int16_t m_yaw=0;
static int16_t m_batt=0;
static int16_t m_alt=0;
static uint8_t m_gpsStatus=0;
static int32_t m_gpsLat=0;
static int32_t m_gpsLon=0;
static float m_gpsAlt=0;
static float m_gpsSpd=0;*/
static uint8_t m_gpsStatus=0;
static int32_t m_gpsLat=0;
static int32_t m_gpsLon=0;
static float m_gpsAlt=0;
static float m_gpsSpd=0;*/
extern uint8_t *draw_buffer_level;
extern uint8_t *draw_buffer_mask;
extern uint8_t *disp_buffer_level;
extern uint8_t *disp_buffer_mask;
TTime timex;
// ****************
@ -99,88 +97,81 @@ struct splashEntry
const uint16_t *mask;
};
struct splashEntry splash[3] = {
{ oplogo_width,
oplogo_height,
oplogo_bits,
oplogo_mask_bits },
{ level_width,
level_height,
level_bits,
level_mask_bits },
{ llama_width,
llama_height,
llama_bits,
llama_mask_bits },
struct splashEntry splash[3] =
{
{ oplogo_width, oplogo_height, oplogo_bits, oplogo_mask_bits },
{ level_width, level_height, level_bits, level_mask_bits },
{ llama_width, llama_height, llama_bits, llama_mask_bits },
};
uint16_t mirror(uint16_t source)
{
int result = ((source & 0x8000) >> 7) | ((source & 0x4000) >> 5) |
((source & 0x2000) >> 3) | ((source & 0x1000) >> 1) |
((source & 0x0800) << 1) | ((source & 0x0400) << 3) |
((source & 0x0200) << 5) | ((source & 0x0100) << 7) |
((source & 0x0080) >> 7) | ((source & 0x0040) >> 5) |
((source & 0x0020) >> 3) | ((source & 0x0010) >> 1) |
((source & 0x0008) << 1) | ((source & 0x0004) << 3) |
((source & 0x0002) << 5) | ((source & 0x0001) << 7);
int result = ((source & 0x8000) >> 7) | ((source & 0x4000) >> 5) | ((source & 0x2000) >> 3) | ((source & 0x1000) >> 1) | ((source & 0x0800) << 1)
| ((source & 0x0400) << 3) | ((source & 0x0200) << 5) | ((source & 0x0100) << 7) | ((source & 0x0080) >> 7) | ((source & 0x0040) >> 5)
| ((source & 0x0020) >> 3) | ((source & 0x0010) >> 1) | ((source & 0x0008) << 1) | ((source & 0x0004) << 3) | ((source & 0x0002) << 5)
| ((source & 0x0001) << 7);
return result;
}
void clearGraphics() {
void clearGraphics()
{
memset((uint8_t *) draw_buffer_mask, 0, GRAPHICS_WIDTH * GRAPHICS_HEIGHT);
memset((uint8_t *) draw_buffer_level, 0, GRAPHICS_WIDTH * GRAPHICS_HEIGHT);
}
void copyimage(uint16_t offsetx, uint16_t offsety, int image) {
void copyimage(uint16_t offsetx, uint16_t offsety, int image)
{
//check top/left position
if (!validPos(offsetx, offsety)) {
return;
}
struct splashEntry splash_info;
splash_info = splash[image];
offsetx=offsetx/8;
for (uint16_t y = offsety; y < ((splash_info.height)+offsety); y++) {
uint16_t x1=offsetx;
for (uint16_t x = offsetx; x < (((splash_info.width)/16)+offsetx); x++) {
draw_buffer_level[y*GRAPHICS_WIDTH+x1+1] = (uint8_t)(mirror(splash_info.level[(y-offsety)*((splash_info.width)/16)+(x-offsetx)])>>8);
draw_buffer_level[y*GRAPHICS_WIDTH+x1] = (uint8_t)(mirror(splash_info.level[(y-offsety)*((splash_info.width)/16)+(x-offsetx)])&0xFF);
draw_buffer_mask[y*GRAPHICS_WIDTH+x1+1] = (uint8_t)(mirror(splash_info.mask[(y-offsety)*((splash_info.width)/16)+(x-offsetx)])>>8);
draw_buffer_mask[y*GRAPHICS_WIDTH+x1] = (uint8_t)(mirror(splash_info.mask[(y-offsety)*((splash_info.width)/16)+(x-offsetx)])&0xFF);
x1+=2;
offsetx = offsetx / 8;
for (uint16_t y = offsety; y < ((splash_info.height) + offsety); y++) {
uint16_t x1 = offsetx;
for (uint16_t x = offsetx; x < (((splash_info.width) / 16) + offsetx); x++) {
draw_buffer_level[y * GRAPHICS_WIDTH + x1 + 1] = (uint8_t)(
mirror(splash_info.level[(y - offsety) * ((splash_info.width) / 16) + (x - offsetx)]) >> 8);
draw_buffer_level[y * GRAPHICS_WIDTH + x1] = (uint8_t)(
mirror(splash_info.level[(y - offsety) * ((splash_info.width) / 16) + (x - offsetx)]) & 0xFF);
draw_buffer_mask[y * GRAPHICS_WIDTH + x1 + 1] = (uint8_t)(
mirror(splash_info.mask[(y - offsety) * ((splash_info.width) / 16) + (x - offsetx)]) >> 8);
draw_buffer_mask[y * GRAPHICS_WIDTH + x1] = (uint8_t)(mirror(splash_info.mask[(y - offsety) * ((splash_info.width) / 16) + (x - offsetx)]) & 0xFF);
x1 += 2;
}
}
}
uint8_t validPos(uint16_t x, uint16_t y) {
if ( x < GRAPHICS_HDEADBAND || x >= GRAPHICS_WIDTH_REAL || y >= GRAPHICS_HEIGHT_REAL) {
uint8_t validPos(uint16_t x, uint16_t y)
{
if (x < GRAPHICS_HDEADBAND || x >= GRAPHICS_WIDTH_REAL || y >= GRAPHICS_HEIGHT_REAL) {
return 0;
}
return 1;
}
// Credit for this one goes to wikipedia! :-)
void drawCircle(uint16_t x0, uint16_t y0, uint16_t radius) {
void drawCircle(uint16_t x0, uint16_t y0, uint16_t radius)
{
int f = 1 - radius;
int ddF_x = 1;
int ddF_y = -2 * radius;
int x = 0;
int y = radius;
write_pixel_lm(x0, y0 + radius,1,1);
write_pixel_lm(x0, y0 - radius,1,1);
write_pixel_lm(x0 + radius, y0,1,1);
write_pixel_lm(x0 - radius, y0,1,1);
write_pixel_lm(x0, y0 + radius, 1, 1);
write_pixel_lm(x0, y0 - radius, 1, 1);
write_pixel_lm(x0 + radius, y0, 1, 1);
write_pixel_lm(x0 - radius, y0, 1, 1);
while(x < y)
{
while (x < y) {
// ddF_x == 2 * x + 1;
// ddF_y == -2 * y;
// f == x*x + y*y - radius*radius + 2*x - y + 1;
if(f >= 0)
{
if (f >= 0) {
y--;
ddF_y += 2;
f += ddF_y;
@ -188,32 +179,31 @@ void drawCircle(uint16_t x0, uint16_t y0, uint16_t radius) {
x++;
ddF_x += 2;
f += ddF_x;
write_pixel_lm(x0 + x, y0 + y,1,1);
write_pixel_lm(x0 - x, y0 + y,1,1);
write_pixel_lm(x0 + x, y0 - y,1,1);
write_pixel_lm(x0 - x, y0 - y,1,1);
write_pixel_lm(x0 + y, y0 + x,1,1);
write_pixel_lm(x0 - y, y0 + x,1,1);
write_pixel_lm(x0 + y, y0 - x,1,1);
write_pixel_lm(x0 - y, y0 - x,1,1);
write_pixel_lm(x0 + x, y0 + y, 1, 1);
write_pixel_lm(x0 - x, y0 + y, 1, 1);
write_pixel_lm(x0 + x, y0 - y, 1, 1);
write_pixel_lm(x0 - x, y0 - y, 1, 1);
write_pixel_lm(x0 + y, y0 + x, 1, 1);
write_pixel_lm(x0 - y, y0 + x, 1, 1);
write_pixel_lm(x0 + y, y0 - x, 1, 1);
write_pixel_lm(x0 - y, y0 - x, 1, 1);
}
}
void swap(uint16_t* a, uint16_t* b) {
void swap(uint16_t* a, uint16_t* b)
{
uint16_t temp = *a;
*a = *b;
*b = temp;
}
const static int8_t sinData[91] =
{ 0, 2, 3, 5, 7, 9, 10, 12, 14, 16, 17, 19, 21, 22, 24, 26, 28, 29, 31, 33, 34, 36, 37, 39, 41, 42, 44, 45, 47, 48, 50, 52, 53, 54, 56, 57, 59, 60, 62, 63, 64,
66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 87, 88, 89, 90, 91, 91, 92, 93, 93, 94, 95, 95, 96, 96, 97, 97, 97, 98,
98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100 };
const static int8_t sinData[91] = {
0, 2, 3, 5, 7, 9, 10, 12, 14, 16, 17, 19, 21, 22, 24, 26, 28, 29, 31, 33,
34, 36, 37, 39, 41, 42, 44, 45, 47, 48, 50, 52, 53, 54, 56, 57, 59, 60, 62,
63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 87, 88, 89, 90, 91, 91, 92, 93, 93, 94, 95, 95, 96, 96, 97, 97,
97, 98, 98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100};
static int8_t mySin(uint16_t angle) {
static int8_t mySin(uint16_t angle)
{
uint16_t pos = 0;
pos = angle % 360;
int8_t mult = 1;
@ -229,7 +219,8 @@ static int8_t mySin(uint16_t angle) {
return mult * (int8_t)(sinData[pos]);
}
static int8_t myCos(uint16_t angle) {
static int8_t myCos(uint16_t angle)
{
return mySin(angle + 90);
}
@ -247,10 +238,10 @@ static int8_t myCos(uint16_t angle) {
/// \param color the color to draw the pixels with.
void plotFourQuadrants(int32_t centerX, int32_t centerY, int32_t deltaX, int32_t deltaY)
{
write_pixel_lm(centerX + deltaX, centerY + deltaY,1,1); // Ist Quadrant
write_pixel_lm(centerX - deltaX, centerY + deltaY,1,1); // IInd Quadrant
write_pixel_lm(centerX - deltaX, centerY - deltaY,1,1); // IIIrd Quadrant
write_pixel_lm(centerX + deltaX, centerY - deltaY,1,1); // IVth Quadrant
write_pixel_lm(centerX + deltaX, centerY + deltaY, 1, 1); // Ist Quadrant
write_pixel_lm(centerX - deltaX, centerY + deltaY, 1, 1); // IInd Quadrant
write_pixel_lm(centerX - deltaX, centerY - deltaY, 1, 1); // IIIrd Quadrant
write_pixel_lm(centerX + deltaX, centerY - deltaY, 1, 1); // IVth Quadrant
}
/// Implements the midpoint ellipse drawing algorithm which is a bresenham
@ -275,15 +266,13 @@ void ellipse(int centerX, int centerY, int horizontalRadius, int verticalRadius)
plotFourQuadrants(centerX, centerY, x, y);
while(deltaY >= deltaX)
{
while (deltaY >= deltaX) {
x++;
deltaX += (doubleVerticalRadius << 1);
error += deltaX + doubleVerticalRadius;
if(error >= 0)
{
if (error >= 0) {
y--;
deltaY -= (doubleHorizontalRadius << 1);
@ -292,17 +281,16 @@ void ellipse(int centerX, int centerY, int horizontalRadius, int verticalRadius)
plotFourQuadrants(centerX, centerY, x, y);
}
error = (int64_t)(doubleVerticalRadius * (x + 1 / 2.0) * (x + 1 / 2.0) + doubleHorizontalRadius * (y - 1) * (y - 1) - doubleHorizontalRadius * doubleVerticalRadius);
error = (int64_t)(
doubleVerticalRadius * (x + 1 / 2.0) * (x + 1 / 2.0) + doubleHorizontalRadius * (y - 1) * (y - 1) - doubleHorizontalRadius * doubleVerticalRadius);
while (y>=0)
{
while (y >= 0) {
error += doubleHorizontalRadius;
y--;
deltaY -= (doubleHorizontalRadius<<1);
deltaY -= (doubleHorizontalRadius << 1);
error -= deltaY;
if(error <= 0)
{
if (error <= 0) {
x++;
deltaX += (doubleVerticalRadius << 1);
error += deltaX;
@ -312,17 +300,16 @@ void ellipse(int centerX, int centerY, int horizontalRadius, int verticalRadius)
}
}
void drawArrow(uint16_t x, uint16_t y, uint16_t angle, uint16_t size)
{
int16_t a = myCos(angle);
int16_t b = mySin(angle);
a = (a * (size/2)) / 100;
b = (b * (size/2)) / 100;
write_line_lm((x)-1 - b, (y)-1 + a, (x)-1 + b, (y)-1 - a, 1, 1); //Direction line
a = (a * (size / 2)) / 100;
b = (b * (size / 2)) / 100;
write_line_lm((x) - 1 - b, (y) - 1 + a, (x) - 1 + b, (y) - 1 - a, 1, 1); //Direction line
//write_line_lm((GRAPHICS_SIZE/2)-1 + a/2, (GRAPHICS_SIZE/2)-1 + b/2, (GRAPHICS_SIZE/2)-1 - a/2, (GRAPHICS_SIZE/2)-1 - b/2, 1, 1); //Arrow bottom line
write_line_lm((x)-1 + b, (y)-1 - a, (x)-1 - a/2, (y)-1 - b/2, 1, 1); // Arrow "wings"
write_line_lm((x)-1 + b, (y)-1 - a, (x)-1 + a/2, (y)-1 + b/2, 1, 1);
write_line_lm((x) - 1 + b, (y) - 1 - a, (x) - 1 - a / 2, (y) - 1 - b / 2, 1, 1); // Arrow "wings"
write_line_lm((x) - 1 + b, (y) - 1 - a, (x) - 1 + a / 2, (y) - 1 + b / 2, 1, 1);
}
void drawBox(uint16_t x1, uint16_t y1, uint16_t x2, uint16_t y2)
@ -379,7 +366,6 @@ void write_pixel_lm(unsigned int x, unsigned int y, int mmode, int lmode)
WRITE_WORD_MODE(draw_buffer_level, wordnum, mask, lmode);
}
/**
* write_hline: optimised horizontal line writing algorithm
*
@ -393,11 +379,12 @@ void write_hline(uint8_t *buff, unsigned int x0, unsigned int x1, unsigned int y
{
CLIP_COORDS(x0, y);
CLIP_COORDS(x1, y);
if(x0 > x1)
{
if (x0 > x1) {
SWAP(x0, x1);
}
if(x0 == x1) return;
if (x0 == x1) {
return;
}
/* This is an optimised algorithm for writing horizontal lines.
* We begin by finding the addresses of the x0 and x1 points. */
int addr0 = CALC_BUFF_ADDR(x0, y);
@ -407,22 +394,18 @@ void write_hline(uint8_t *buff, unsigned int x0, unsigned int x1, unsigned int y
int mask, mask_l, mask_r, i;
/* If the addresses are equal, we only need to write one word
* which is an island. */
if(addr0 == addr1)
{
if (addr0 == addr1) {
mask = COMPUTE_HLINE_ISLAND_MASK(addr0_bit, addr1_bit);
WRITE_WORD_MODE(buff, addr0, mask, mode);
}
} else {
/* Otherwise we need to write the edges and then the middle. */
else
{
mask_l = COMPUTE_HLINE_EDGE_L_MASK(addr0_bit);
mask_r = COMPUTE_HLINE_EDGE_R_MASK(addr1_bit);
WRITE_WORD_MODE(buff, addr0, mask_l, mode);
WRITE_WORD_MODE(buff, addr1, mask_r, mode);
// Now write 0xffff words from start+1 to end-1.
for(i = addr0 + 1; i <= addr1 - 1; i++)
{
uint8_t m=0xff;
for (i = addr0 + 1; i <= addr1 - 1; i++) {
uint8_t m = 0xff;
WRITE_WORD_MODE(buff, i, m, mode);
}
}
@ -461,8 +444,7 @@ void write_hline_outlined(unsigned int x0, unsigned int x1, unsigned int y, int
{
int stroke, fill;
SETUP_STROKE_FILL(stroke, fill, mode)
if(x0 > x1)
{
if (x0 > x1) {
SWAP(x0, x1);
}
// Draw the main body of the line.
@ -488,11 +470,12 @@ void write_vline(uint8_t *buff, unsigned int x, unsigned int y0, unsigned int y1
unsigned int a;
CLIP_COORDS(x, y0);
CLIP_COORDS(x, y1);
if(y0 > y1)
{
if (y0 > y1) {
SWAP(y0, y1);
}
if(y0 == y1) return;
if (y0 == y1) {
return;
}
/* This is an optimised algorithm for writing vertical lines.
* We begin by finding the addresses of the x,y0 and x,y1 points. */
int addr0 = CALC_BUFF_ADDR(x, y0);
@ -502,8 +485,7 @@ void write_vline(uint8_t *buff, unsigned int x, unsigned int y0, unsigned int y1
uint16_t mask = 1 << (7 - bitnum);
/* Run from addr0 to addr1 placing pixels. Increment by the number
* of words n each graphics line. */
for(a = addr0; a <= addr1; a += GRAPHICS_WIDTH_REAL / 8)
{
for (a = addr0; a <= addr1; a += GRAPHICS_WIDTH_REAL / 8) {
WRITE_WORD_MODE(buff, a, mask, mode);
}
}
@ -540,8 +522,7 @@ void write_vline_lm(unsigned int x, unsigned int y0, unsigned int y1, int lmode,
void write_vline_outlined(unsigned int x, unsigned int y0, unsigned int y1, int endcap0, int endcap1, int mode, int mmode)
{
int stroke, fill;
if(y0 > y1)
{
if (y0 > y1) {
SWAP(y0, y1);
}
SETUP_STROKE_FILL(stroke, fill, mode);
@ -574,7 +555,9 @@ void write_filled_rectangle(uint8_t *buff, unsigned int x, unsigned int y, unsig
CHECK_COORDS(x, y);
CHECK_COORD_X(x + width);
CHECK_COORD_Y(y + height);
if(width <= 0 || height <= 0) return;
if (width <= 0 || height <= 0) {
return;
}
// Calculate as if the rectangle was only a horizontal line. We then
// step these addresses through each row until we iterate `height` times.
int addr0 = CALC_BUFF_ADDR(x, y);
@ -583,26 +566,21 @@ void write_filled_rectangle(uint8_t *buff, unsigned int x, unsigned int y, unsig
int addr1_bit = CALC_BIT_IN_WORD(x + width);
int mask, mask_l, mask_r, i;
// If the addresses are equal, we need to write one word vertically.
if(addr0 == addr1)
{
if (addr0 == addr1) {
mask = COMPUTE_HLINE_ISLAND_MASK(addr0_bit, addr1_bit);
while(height--)
{
while (height--) {
WRITE_WORD_MODE(buff, addr0, mask, mode);
addr0 += GRAPHICS_WIDTH_REAL / 8;
}
}
} else {
// Otherwise we need to write the edges and then the middle repeatedly.
else
{
mask_l = COMPUTE_HLINE_EDGE_L_MASK(addr0_bit);
mask_r = COMPUTE_HLINE_EDGE_R_MASK(addr1_bit);
// Write edges first.
yy = 0;
addr0_old = addr0;
addr1_old = addr1;
while(yy < height)
{
while (yy < height) {
WRITE_WORD_MODE(buff, addr0, mask_l, mode);
WRITE_WORD_MODE(buff, addr1, mask_r, mode);
addr0 += GRAPHICS_WIDTH_REAL / 8;
@ -613,11 +591,9 @@ void write_filled_rectangle(uint8_t *buff, unsigned int x, unsigned int y, unsig
yy = 0;
addr0 = addr0_old;
addr1 = addr1_old;
while(yy < height)
{
for(i = addr0 + 1; i <= addr1 - 1; i++)
{
uint8_t m=0xff;
while (yy < height) {
for (i = addr0 + 1; i <= addr1 - 1; i++) {
uint8_t m = 0xff;
WRITE_WORD_MODE(buff, i, m, mode);
}
addr0 += GRAPHICS_WIDTH_REAL / 8;
@ -681,16 +657,13 @@ void write_circle(uint8_t *buff, unsigned int cx, unsigned int cy, unsigned int
{
CHECK_COORDS(cx, cy);
int error = -r, x = r, y = 0;
while(x >= y)
{
if(dashp == 0 || (y % dashp) < (dashp / 2))
{
while (x >= y) {
if (dashp == 0 || (y % dashp) < (dashp / 2)) {
CIRCLE_PLOT_8(buff, cx, cy, x, y, mode);
}
error += (y * 2) + 1;
y++;
if(error >= 0)
{
if (error >= 0) {
--x;
error -= x * 2;
}
@ -716,10 +689,8 @@ void write_circle_outlined(unsigned int cx, unsigned int cy, unsigned int r, uns
// This is a two step procedure. First, we draw the outline of the
// circle, then we draw the inner part.
int error = -r, x = r, y = 0;
while(x >= y)
{
if(dashp == 0 || (y % dashp) < (dashp / 2))
{
while (x >= y) {
if (dashp == 0 || (y % dashp) < (dashp / 2)) {
CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x + 1, y, mmode);
CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x + 1, y, stroke);
CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x, y + 1, mmode);
@ -728,8 +699,7 @@ void write_circle_outlined(unsigned int cx, unsigned int cy, unsigned int r, uns
CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x - 1, y, stroke);
CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x, y - 1, mmode);
CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x, y - 1, stroke);
if(bmode == 1)
{
if (bmode == 1) {
CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x + 1, y + 1, mmode);
CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x + 1, y + 1, stroke);
CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x - 1, y - 1, mmode);
@ -738,8 +708,7 @@ void write_circle_outlined(unsigned int cx, unsigned int cy, unsigned int r, uns
}
error += (y * 2) + 1;
y++;
if(error >= 0)
{
if (error >= 0) {
--x;
error -= x * 2;
}
@ -747,17 +716,14 @@ void write_circle_outlined(unsigned int cx, unsigned int cy, unsigned int r, uns
error = -r;
x = r;
y = 0;
while(x >= y)
{
if(dashp == 0 || (y % dashp) < (dashp / 2))
{
while (x >= y) {
if (dashp == 0 || (y % dashp) < (dashp / 2)) {
CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x, y, mmode);
CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x, y, fill);
}
error += (y * 2) + 1;
y++;
if(error >= 0)
{
if (error >= 0) {
--x;
error -= x * 2;
}
@ -784,14 +750,11 @@ void write_circle_filled(uint8_t *buff, unsigned int cx, unsigned int cy, unsign
//
// Due to multiple writes to each set of pixels, we have a special exception
// for when using the toggling draw mode.
while(x >= y)
{
if(y != 0)
{
while (x >= y) {
if (y != 0) {
write_hline(buff, cx - x, cx + x, cy + y, mode);
write_hline(buff, cx - x, cx + x, cy - y, mode);
if(mode != 2 || (mode == 2 && xch && (cx - x) != (cx - y)))
{
if (mode != 2 || (mode == 2 && xch && (cx - x) != (cx - y))) {
write_hline(buff, cx - y, cx + y, cy + x, mode);
write_hline(buff, cx - y, cx + y, cy - x, mode);
xch = 0;
@ -799,16 +762,14 @@ void write_circle_filled(uint8_t *buff, unsigned int cx, unsigned int cy, unsign
}
error += (y * 2) + 1;
y++;
if(error >= 0)
{
if (error >= 0) {
--x;
xch = 1;
error -= x * 2;
}
}
// Handle toggle mode.
if(mode == 2)
{
if (mode == 2) {
write_hline(buff, cx - r, cx + r, cy, mode);
}
}
@ -827,13 +788,11 @@ void write_line(uint8_t *buff, unsigned int x0, unsigned int y0, unsigned int x1
{
// Based on http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
int steep = abs(y1 - y0) > abs(x1 - x0);
if(steep)
{
if (steep) {
SWAP(x0, y0);
SWAP(x1, y1);
}
if(x0 > x1)
{
if (x0 > x1) {
SWAP(x0, x1);
SWAP(y0, y1);
}
@ -843,23 +802,19 @@ void write_line(uint8_t *buff, unsigned int x0, unsigned int y0, unsigned int x1
int ystep;
int y = y0;
int x; //, lasty = y, stox = 0;
if(y0 < y1)
if (y0 < y1) {
ystep = 1;
else
} else {
ystep = -1;
for(x = x0; x < x1; x++)
{
if(steep)
{
write_pixel(buff, y, x, mode);
}
else
{
for (x = x0; x < x1; x++) {
if (steep) {
write_pixel(buff, y, x, mode);
} else {
write_pixel(buff, x, y, mode);
}
error -= deltay;
if(error < 0)
{
if (error < 0) {
y += ystep;
error += deltax;
}
@ -900,24 +855,19 @@ void write_line_outlined(unsigned int x0, unsigned int y0, unsigned int x1, unsi
// Based on http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
// This could be improved for speed.
int omode, imode;
if(mode == 0)
{
if (mode == 0) {
omode = 0;
imode = 1;
}
else
{
} else {
omode = 1;
imode = 0;
}
int steep = abs(y1 - y0) > abs(x1 - x0);
if(steep)
{
if (steep) {
SWAP(x0, y0);
SWAP(x1, y1);
}
if(x0 > x1)
{
if (x0 > x1) {
SWAP(x0, x1);
SWAP(y0, y1);
}
@ -927,30 +877,26 @@ void write_line_outlined(unsigned int x0, unsigned int y0, unsigned int x1, unsi
int ystep;
int y = y0;
int x;
if(y0 < y1)
if (y0 < y1) {
ystep = 1;
else
} else {
ystep = -1;
}
// Draw the outline.
for(x = x0; x < x1; x++)
{
if(steep)
{
for (x = x0; x < x1; x++) {
if (steep) {
write_pixel_lm(y - 1, x, mmode, omode);
write_pixel_lm(y + 1, x, mmode, omode);
write_pixel_lm(y, x - 1, mmode, omode);
write_pixel_lm(y, x + 1, mmode, omode);
}
else
{
} else {
write_pixel_lm(x - 1, y, mmode, omode);
write_pixel_lm(x + 1, y, mmode, omode);
write_pixel_lm(x, y - 1, mmode, omode);
write_pixel_lm(x, y + 1, mmode, omode);
}
error -= deltay;
if(error < 0)
{
if (error < 0) {
y += ystep;
error += deltax;
}
@ -958,19 +904,14 @@ void write_line_outlined(unsigned int x0, unsigned int y0, unsigned int x1, unsi
// Now draw the innards.
error = deltax / 2;
y = y0;
for(x = x0; x < x1; x++)
{
if(steep)
{
for (x = x0; x < x1; x++) {
if (steep) {
write_pixel_lm(y, x, mmode, imode);
}
else
{
} else {
write_pixel_lm(x, y, mmode, imode);
}
error -= deltay;
if(error < 0)
{
if (error < 0) {
y += ystep;
error += deltax;
}
@ -995,8 +936,9 @@ void write_word_misaligned(uint8_t *buff, uint16_t word, unsigned int addr, unsi
uint16_t lastmask = word << (16 - xoff);
WRITE_WORD_MODE(buff, addr+1, firstmask && 0x00ff, mode);
WRITE_WORD_MODE(buff, addr, (firstmask & 0xff00) >> 8, mode);
if(xoff > 0)
if (xoff > 0) {
WRITE_WORD_MODE(buff, addr+2, (lastmask & 0xff00) >> 8, mode);
}
}
/**
@ -1020,8 +962,9 @@ void write_word_misaligned_NAND(uint8_t *buff, uint16_t word, unsigned int addr,
uint16_t lastmask = word << (16 - xoff);
WRITE_WORD_NAND(buff, addr+1, firstmask & 0x00ff);
WRITE_WORD_NAND(buff, addr, (firstmask & 0xff00) >> 8);
if(xoff > 0)
if (xoff > 0) {
WRITE_WORD_NAND(buff, addr+2, (lastmask & 0xff00) >> 8);
}
}
/**
@ -1045,8 +988,9 @@ void write_word_misaligned_OR(uint8_t *buff, uint16_t word, unsigned int addr, u
uint16_t lastmask = word << (16 - xoff);
WRITE_WORD_OR(buff, addr+1, firstmask & 0x00ff);
WRITE_WORD_OR(buff, addr, (firstmask & 0xff00) >> 8);
if(xoff > 0)
if (xoff > 0) {
WRITE_WORD_OR(buff, addr + 2, (lastmask & 0xff00) >> 8);
}
}
@ -1077,21 +1021,21 @@ void write_word_misaligned_lm(uint16_t wordl, uint16_t wordm, unsigned int addr,
int fetch_font_info(uint8_t ch, int font, struct FontEntry *font_info, char *lookup)
{
// First locate the font struct.
if(font > SIZEOF_ARRAY(fonts))
return 0; // font does not exist, exit.*/
if (font > SIZEOF_ARRAY(fonts)) {
return 0; // font does not exist, exit.
}
// Load the font info; IDs are always sequential.
*font_info = fonts[font];
// Locate character in font lookup table. (If required.)
if(lookup != NULL)
{
if (lookup != NULL) {
*lookup = font_info->lookup[ch];
if(*lookup == 0xff)
if (*lookup == 0xff) {
return 0; // character doesn't exist, don't bother writing it.
}
}
return 1;
}
/**
* write_char16: Draw a character on the current draw buffer.
* Currently supports outlined characters and characters with
@ -1120,20 +1064,21 @@ void write_char16(char ch, unsigned int x, unsigned int y, int font)
// wide for now. Support for large characters may be added in future.
{
// Ensure we don't overflow.
if(x + wbit > GRAPHICS_WIDTH_REAL)
if (x + wbit > GRAPHICS_WIDTH_REAL) {
return;
}
// Load data pointer.
row = ch * font_info.height;
row_temp = row;
addr_temp = addr;
xshift = 16 - font_info.width;
// We can write mask words easily.
for(yy = y; yy < y + font_info.height; yy++)
{
if(font==3)
for (yy = y; yy < y + font_info.height; yy++) {
if (font == 3) {
write_word_misaligned_OR(draw_buffer_mask, font_mask12x18[row] << xshift, addr, wbit);
else
} else {
write_word_misaligned_OR(draw_buffer_mask, font_mask8x10[row] << xshift, addr, wbit);
}
addr += GRAPHICS_WIDTH_REAL / 8;
row++;
}
@ -1143,10 +1088,8 @@ void write_char16(char ch, unsigned int x, unsigned int y, int font)
// construct an AND mask and an OR mask, and apply each individually.
row = row_temp;
addr = addr_temp;
for(yy = y; yy < y + font_info.height; yy++)
{
if(font==3)
{
for (yy = y; yy < y + font_info.height; yy++) {
if (font == 3) {
level_bits = font_frame12x18[row];
//if(!(flags & FONT_INVERT)) // data is normally inverted
level_bits = ~level_bits;
@ -1169,8 +1112,6 @@ void write_char16(char ch, unsigned int x, unsigned int y, int font)
}
}
/**
* write_char: Draw a character on the current draw buffer.
* Currently supports outlined characters and characters with
@ -1201,19 +1142,18 @@ void write_char(char ch, unsigned int x, unsigned int y, int flags, int font)
fetch_font_info(ch, font, &font_info, &lookup);
// How big is the character? We handle characters up to 8 pixels
// wide for now. Support for large characters may be added in future.
if(font_info.width <= 8)
{
if (font_info.width <= 8) {
// Ensure we don't overflow.
if(x + wbit > GRAPHICS_WIDTH_REAL)
if (x + wbit > GRAPHICS_WIDTH_REAL) {
return;
}
// Load data pointer.
row = lookup * font_info.height * 2;
row_temp = row;
addr_temp = addr;
xshift = 16 - font_info.width;
// We can write mask words easily.
for(yy = y; yy < y + font_info.height; yy++)
{
for (yy = y; yy < y + font_info.height; yy++) {
write_word_misaligned_OR(draw_buffer_mask, font_info.data[row] << xshift, addr, wbit);
addr += GRAPHICS_WIDTH_REAL / 8;
row++;
@ -1224,11 +1164,12 @@ void write_char(char ch, unsigned int x, unsigned int y, int flags, int font)
// construct an AND mask and an OR mask, and apply each individually.
row = row_temp;
addr = addr_temp;
for(yy = y; yy < y + font_info.height; yy++)
{
for (yy = y; yy < y + font_info.height; yy++) {
level_bits = font_info.data[row + font_info.height];
if(!(flags & FONT_INVERT)) // data is normally inverted
if (!(flags & FONT_INVERT)) {
// data is normally inverted
level_bits = ~level_bits;
}
or_mask = font_info.data[row] << xshift;
and_mask = (font_info.data[row] & level_bits) << xshift;
write_word_misaligned_OR(draw_buffer_level, or_mask, addr, wbit);
@ -1242,51 +1183,51 @@ void write_char(char ch, unsigned int x, unsigned int y, int flags, int font)
}
/**
* calc_text_dimensions: Calculate the dimensions of a
* string in a given font. Supports new lines and
* carriage returns in text.
*
* @param str string to calculate dimensions of
* @param font_info font info structure
* @param xs horizontal spacing
* @param ys vertical spacing
* @param dim return result: struct FontDimensions
*/
* calc_text_dimensions: Calculate the dimensions of a
* string in a given font. Supports new lines and
* carriage returns in text.
*
* @param str string to calculate dimensions of
* @param font_info font info structure
* @param xs horizontal spacing
* @param ys vertical spacing
* @param dim return result: struct FontDimensions
*/
void calc_text_dimensions(char *str, struct FontEntry font, int xs, int ys, struct FontDimensions *dim)
{
int max_length = 0, line_length = 0, lines = 1;
while(*str != 0)
{
while (*str != 0) {
line_length++;
if(*str == '\n' || *str == '\r')
{
if(line_length > max_length)
if (*str == '\n' || *str == '\r') {
if (line_length > max_length) {
max_length = line_length;
}
line_length = 0;
lines++;
}
str++;
}
if(line_length > max_length)
if (line_length > max_length) {
max_length = line_length;
}
dim->width = max_length * (font.width + xs);
dim->height = lines * (font.height + ys);
}
/**
* write_string: Draw a string on the screen with certain
* alignment parameters.
*
* @param str string to write
* @param x x coordinate
* @param y y coordinate
* @param xs horizontal spacing
* @param ys horizontal spacing
* @param va vertical align
* @param ha horizontal align
* @param flags flags (passed to write_char)
* @param font font
*/
* write_string: Draw a string on the screen with certain
* alignment parameters.
*
* @param str string to write
* @param x x coordinate
* @param y y coordinate
* @param xs horizontal spacing
* @param ys horizontal spacing
* @param va vertical align
* @param ha horizontal align
* @param flags flags (passed to write_char)
* @param font font
*/
void write_string(char *str, unsigned int x, unsigned int y, unsigned int xs, unsigned int ys, int va, int ha, int flags, int font)
{
int xx = 0, yy = 0, xx_original = 0;
@ -1295,36 +1236,42 @@ void write_string(char *str, unsigned int x, unsigned int y, unsigned int xs, un
// Determine font info and dimensions/position of the string.
fetch_font_info(0, font, &font_info, NULL);
calc_text_dimensions(str, font_info, xs, ys, &dim);
switch(va)
{
case TEXT_VA_TOP: yy = y; break;
case TEXT_VA_MIDDLE: yy = y - (dim.height / 2); break;
case TEXT_VA_BOTTOM: yy = y - dim.height; break;
switch (va) {
case TEXT_VA_TOP:
yy = y;
break;
case TEXT_VA_MIDDLE:
yy = y - (dim.height / 2);
break;
case TEXT_VA_BOTTOM:
yy = y - dim.height;
break;
}
switch(ha)
{
case TEXT_HA_LEFT: xx = x; break;
case TEXT_HA_CENTER: xx = x - (dim.width / 2); break;
case TEXT_HA_RIGHT: xx = x - dim.width; break;
switch (ha) {
case TEXT_HA_LEFT:
xx = x;
break;
case TEXT_HA_CENTER:
xx = x - (dim.width / 2);
break;
case TEXT_HA_RIGHT:
xx = x - dim.width;
break;
}
// Then write each character.
xx_original = xx;
while(*str != 0)
{
if(*str == '\n' || *str == '\r')
{
while (*str != 0) {
if (*str == '\n' || *str == '\r') {
yy += ys + font_info.height;
xx = xx_original;
}
else
{
if(xx >= 0 && xx < GRAPHICS_WIDTH_REAL)
{
if(font_info.id<2)
} else {
if (xx >= 0 && xx < GRAPHICS_WIDTH_REAL) {
if (font_info.id < 2) {
write_char(*str, xx, yy, flags, font);
else
} else {
write_char16(*str, xx, yy, font);
}
}
xx += font_info.width + xs;
}
str++;
@ -1332,18 +1279,18 @@ void write_string(char *str, unsigned int x, unsigned int y, unsigned int xs, un
}
/**
* write_string_formatted: Draw a string with format escape
* sequences in it. Allows for complex text effects.
*
* @param str string to write (with format data)
* @param x x coordinate
* @param y y coordinate
* @param xs default horizontal spacing
* @param ys default horizontal spacing
* @param va vertical align
* @param ha horizontal align
* @param flags flags (passed to write_char)
*/
* write_string_formatted: Draw a string with format escape
* sequences in it. Allows for complex text effects.
*
* @param str string to write (with format data)
* @param x x coordinate
* @param y y coordinate
* @param xs default horizontal spacing
* @param ys default horizontal spacing
* @param va vertical align
* @param ha horizontal align
* @param flags flags (passed to write_char)
*/
void write_string_formatted(char *str, unsigned int x, unsigned int y, unsigned int xs, unsigned int ys, int va, int ha, int flags)
{
int fcode = 0, fptr = 0, font = 0, fwidth = 0, fheight = 0, xx = x, yy = y, max_xx = 0, max_height = 0;
@ -1360,53 +1307,51 @@ void write_string_formatted(char *str, unsigned int x, unsigned int y, unsigned
// work out a bounding box. We'll parse again for the final output.
// This is a simple state machine parser.
char *ostr = str;
while(*str)
{
if(*str == '<' && fcode == 1) // escape code: skip
while (*str) {
if (*str == '<' && fcode == 1) {
// escape code: skip
fcode = 0;
if(*str == '<' && fcode == 0) // begin format code?
{
}
if (*str == '<' && fcode == 0) {
// begin format code?
fcode = 1;
fptr = 0;
}
if(*str == '>' && fcode == 1)
{
if (*str == '>' && fcode == 1) {
fcode = 0;
if(strcmp(fstack, "B")) // switch to "big" font (font #1)
{
if (strcmp(fstack, "B")) {
// switch to "big" font (font #1)
fwidth = bigfontwidth;
fheight = bigfontheight;
}
else if(strcmp(fstack, "S")) // switch to "small" font (font #0)
{
} else if (strcmp(fstack, "S")) {
// switch to "small" font (font #0)
fwidth = smallfontwidth;
fheight = smallfontheight;
}
if(fheight > max_height)
if (fheight > max_height) {
max_height = fheight;
}
// Skip over this byte. Go to next byte.
str++;
continue;
}
if(*str != '<' && *str != '>' && fcode == 1)
{
if (*str != '<' && *str != '>' && fcode == 1) {
// Add to the format stack (up to 10 bytes.)
if(fptr > 10) // stop adding bytes
{
if (fptr > 10) {
// stop adding bytes
str++; // go to next byte
continue;
}
fstack[fptr++] = *str;
fstack[fptr] = '\0'; // clear next byte (ready for next char or to terminate string.)
}
if(fcode == 0)
{
if (fcode == 0) {
// Not a format code, raw text.
xx += fwidth + xs;
if(*str == '\n')
{
if(xx > max_xx)
if (*str == '\n') {
if (xx > max_xx) {
max_xx = xx;
}
xx = x;
yy += fheight + ys;
}
@ -1439,26 +1384,25 @@ void write_string_formatted(char *str, unsigned int x, unsigned int y, unsigned
font = 0;
xx = 0;
yy = 0;
while(*str)
{
if(*str == '<' && fcode == 1) // escape code: skip
while (*str) {
if (*str == '<' && fcode == 1) {
// escape code: skip
fcode = 0;
if(*str == '<' && fcode == 0) // begin format code?
{
}
if (*str == '<' && fcode == 0) {
// begin format code?
fcode = 1;
fptr = 0;
}
if(*str == '>' && fcode == 1)
{
if (*str == '>' && fcode == 1) {
fcode = 0;
if(strcmp(fstack, "B")) // switch to "big" font (font #1)
{
if (strcmp(fstack, "B")) {
// switch to "big" font (font #1)
fwidth = bigfontwidth;
fheight = bigfontheight;
font = 1;
}
else if(strcmp(fstack, "S")) // switch to "small" font (font #0)
{
} else if (strcmp(fstack, "S")) {
// switch to "small" font (font #0)
fwidth = smallfontwidth;
fheight = smallfontheight;
font = 0;
@ -1467,27 +1411,25 @@ void write_string_formatted(char *str, unsigned int x, unsigned int y, unsigned
str++;
continue;
}
if(*str != '<' && *str != '>' && fcode == 1)
{
if (*str != '<' && *str != '>' && fcode == 1) {
// Add to the format stack (up to 10 bytes.)
if(fptr > 10) // stop adding bytes
{
if (fptr > 10) {
// stop adding bytes
str++; // go to next byte
continue;
}
fstack[fptr++] = *str;
fstack[fptr] = '\0'; // clear next byte (ready for next char or to terminate string.)
}
if(fcode == 0)
{
if (fcode == 0) {
// Not a format code, raw text. So we draw it.
// TODO - different font sizes.
write_char(*str, xx, yy + (max_height - fheight), flags, font);
xx += fwidth + xs;
if(*str == '\n')
{
if(xx > max_xx)
if (*str == '\n') {
if (xx > max_xx) {
max_xx = xx;
}
xx = x;
yy += fheight + ys;
}
@ -1496,86 +1438,81 @@ void write_string_formatted(char *str, unsigned int x, unsigned int y, unsigned
}
}
//SUPEROSD-
// graphics
void drawAttitude(uint16_t x, uint16_t y, int16_t pitch, int16_t roll, uint16_t size)
{
int16_t a = mySin(roll+360);
int16_t b = myCos(roll+360);
int16_t c = mySin(roll+90+360)*5/100;
int16_t d = myCos(roll+90+360)*5/100;
int16_t a = mySin(roll + 360);
int16_t b = myCos(roll + 360);
int16_t c = mySin(roll + 90 + 360) * 5 / 100;
int16_t d = myCos(roll + 90 + 360) * 5 / 100;
int16_t k;
int16_t l;
int16_t indi30x1=myCos(30)*(size/2+1) / 100;
int16_t indi30y1=mySin(30)*(size/2+1) / 100;
int16_t indi30x1 = myCos(30) * (size / 2 + 1) / 100;
int16_t indi30y1 = mySin(30) * (size / 2 + 1) / 100;
int16_t indi30x2=myCos(30)*(size/2+4) / 100;
int16_t indi30y2=mySin(30)*(size/2+4) / 100;
int16_t indi30x2 = myCos(30) * (size / 2 + 4) / 100;
int16_t indi30y2 = mySin(30) * (size / 2 + 4) / 100;
int16_t indi60x1=myCos(60)*(size/2+1) / 100;
int16_t indi60y1=mySin(60)*(size/2+1) / 100;
int16_t indi60x1 = myCos(60) * (size / 2 + 1) / 100;
int16_t indi60y1 = mySin(60) * (size / 2 + 1) / 100;
int16_t indi60x2=myCos(60)*(size/2+4) / 100;
int16_t indi60y2=mySin(60)*(size/2+4) / 100;
int16_t indi60x2 = myCos(60) * (size / 2 + 4) / 100;
int16_t indi60y2 = mySin(60) * (size / 2 + 4) / 100;
pitch=pitch%90;
if(pitch>90)
{
pitch=pitch-90;
pitch = pitch % 90;
if (pitch > 90) {
pitch = pitch - 90;
}
if(pitch<-90)
{
pitch=pitch+90;
if (pitch < -90) {
pitch = pitch + 90;
}
a = (a * (size/2)) / 100;
b = (b * (size/2)) / 100;
a = (a * (size / 2)) / 100;
b = (b * (size / 2)) / 100;
if(roll<-90 || roll>90)
pitch=pitch*-1;
k = a*pitch/90;
l = b*pitch/90;
if (roll < -90 || roll > 90) {
pitch = pitch * -1;
}
k = a * pitch / 90;
l = b * pitch / 90;
// scale
//0
//drawLine((x)-1-(size/2+4), (y)-1, (x)-1 - (size/2+1), (y)-1);
//drawLine((x)-1+(size/2+4), (y)-1, (x)-1 + (size/2+1), (y)-1);
write_line_outlined((x)-1-(size/2+4), (y)-1, (x)-1 - (size/2+1), (y)-1,0,0,0,1);
write_line_outlined((x)-1+(size/2+4), (y)-1, (x)-1 + (size/2+1), (y)-1,0,0,0,1);
write_line_outlined((x) - 1 - (size / 2 + 4), (y) - 1, (x) - 1 - (size / 2 + 1), (y) - 1, 0, 0, 0, 1);
write_line_outlined((x) - 1 + (size / 2 + 4), (y) - 1, (x) - 1 + (size / 2 + 1), (y) - 1, 0, 0, 0, 1);
//30
//drawLine((x)-1+indi30x1, (y)-1-indi30y1, (x)-1 + indi30x2, (y)-1 - indi30y2);
//drawLine((x)-1-indi30x1, (y)-1-indi30y1, (x)-1 - indi30x2, (y)-1 - indi30y2);
write_line_outlined((x)-1+indi30x1, (y)-1-indi30y1, (x)-1 + indi30x2, (y)-1 - indi30y2,0,0,0,1);
write_line_outlined((x)-1-indi30x1, (y)-1-indi30y1, (x)-1 - indi30x2, (y)-1 - indi30y2,0,0,0,1);
write_line_outlined((x) - 1 + indi30x1, (y) - 1 - indi30y1, (x) - 1 + indi30x2, (y) - 1 - indi30y2, 0, 0, 0, 1);
write_line_outlined((x) - 1 - indi30x1, (y) - 1 - indi30y1, (x) - 1 - indi30x2, (y) - 1 - indi30y2, 0, 0, 0, 1);
//60
//drawLine((x)-1+indi60x1, (y)-1-indi60y1, (x)-1 + indi60x2, (y)-1 - indi60y2);
//drawLine((x)-1-indi60x1, (y)-1-indi60y1, (x)-1 - indi60x2, (y)-1 - indi60y2);
write_line_outlined((x)-1+indi60x1, (y)-1-indi60y1, (x)-1 + indi60x2, (y)-1 - indi60y2,0,0,0,1);
write_line_outlined((x)-1-indi60x1, (y)-1-indi60y1, (x)-1 - indi60x2, (y)-1 - indi60y2,0,0,0,1);
write_line_outlined((x) - 1 + indi60x1, (y) - 1 - indi60y1, (x) - 1 + indi60x2, (y) - 1 - indi60y2, 0, 0, 0, 1);
write_line_outlined((x) - 1 - indi60x1, (y) - 1 - indi60y1, (x) - 1 - indi60x2, (y) - 1 - indi60y2, 0, 0, 0, 1);
//90
//drawLine((x)-1, (y)-1-(size/2+4), (x)-1, (y)-1 - (size/2+1));
write_line_outlined((x)-1, (y)-1-(size/2+4), (x)-1, (y)-1 - (size/2+1),0,0,0,1);
write_line_outlined((x) - 1, (y) - 1 - (size / 2 + 4), (x) - 1, (y) - 1 - (size / 2 + 1), 0, 0, 0, 1);
//roll
//drawLine((x)-1 - b, (y)-1 + a, (x)-1 + b, (y)-1 - a); //Direction line
write_line_outlined((x)-1 - b, (y)-1 + a, (x)-1 + b, (y)-1 - a,0,0,0,1); //Direction line
write_line_outlined((x) - 1 - b, (y) - 1 + a, (x) - 1 + b, (y) - 1 - a, 0, 0, 0, 1); //Direction line
//"wingtips"
//drawLine((x)-1 - b, (y)-1 + a, (x)-1 - b + d, (y)-1 + a - c);
//drawLine((x)-1 + b + d, (y)-1 - a - c, (x)-1 + b, (y)-1 - a);
write_line_outlined((x)-1 - b, (y)-1 + a, (x)-1 - b + d, (y)-1 + a - c,0,0,0,1);
write_line_outlined((x)-1 + b + d, (y)-1 - a - c, (x)-1 + b, (y)-1 - a,0,0,0,1);
write_line_outlined((x) - 1 - b, (y) - 1 + a, (x) - 1 - b + d, (y) - 1 + a - c, 0, 0, 0, 1);
write_line_outlined((x) - 1 + b + d, (y) - 1 - a - c, (x) - 1 + b, (y) - 1 - a, 0, 0, 0, 1);
//pitch
//drawLine((x)-1, (y)-1, (x)-1 - k, (y)-1 - l);
write_line_outlined((x)-1, (y)-1, (x)-1 - k, (y)-1 - l,0,0,0,1);
write_line_outlined((x) - 1, (y) - 1, (x) - 1 - k, (y) - 1 - l, 0, 0, 0, 1);
//drawCircle(x-1, y-1, 5);
//write_circle_outlined(x-1, y-1, 5,0,0,0,1);
@ -1585,7 +1522,7 @@ void drawAttitude(uint16_t x, uint16_t y, int16_t pitch, int16_t roll, uint16_t
void drawBattery(uint16_t x, uint16_t y, uint8_t battery, uint16_t size)
{
int i=0;
int i = 0;
int batteryLines;
//top
/*drawLine((x)-1+(size/2-size/4), (y)-1, (x)-1 + (size/2+size/4), (y)-1);
@ -1600,30 +1537,30 @@ void drawBattery(uint16_t x, uint16_t y, uint8_t battery, uint16_t size)
//right
drawLine((x)-1+size, (y)-1+2, (x)-1+size, (y)-1+size*3);*/
write_rectangle_outlined((x)-1, (y)-1+2,size,size*3,0,1);
write_vline_lm((x)-1+(size/2+size/4)+1,(y)-2,(y)-1+1,0,1);
write_vline_lm((x)-1+(size/2-size/4)-1,(y)-2,(y)-1+1,0,1);
write_hline_lm((x)-1+(size/2-size/4),(x)-1 + (size/2+size/4),(y)-2,0,1);
write_hline_lm((x)-1+(size/2-size/4),(x)-1 + (size/2+size/4),(y)-1,1,1);
write_hline_lm((x)-1+(size/2-size/4),(x)-1 + (size/2+size/4),(y)-1+1,1,1);
write_rectangle_outlined((x) - 1, (y) - 1 + 2, size, size * 3, 0, 1);
write_vline_lm((x) - 1 + (size / 2 + size / 4) + 1, (y) - 2, (y) - 1 + 1, 0, 1);
write_vline_lm((x) - 1 + (size / 2 - size / 4) - 1, (y) - 2, (y) - 1 + 1, 0, 1);
write_hline_lm((x) - 1 + (size / 2 - size / 4), (x) - 1 + (size / 2 + size / 4), (y) - 2, 0, 1);
write_hline_lm((x) - 1 + (size / 2 - size / 4), (x) - 1 + (size / 2 + size / 4), (y) - 1, 1, 1);
write_hline_lm((x) - 1 + (size / 2 - size / 4), (x) - 1 + (size / 2 + size / 4), (y) - 1 + 1, 1, 1);
batteryLines = battery*(size*3-2)/100;
for(i=0;i<batteryLines;i++)
{
write_hline_lm((x)-1,(x)-1 + size,(y)-1+size*3-i,1,1);
batteryLines = battery * (size * 3 - 2) / 100;
for (i = 0; i < batteryLines; i++) {
write_hline_lm((x) - 1, (x) - 1 + size, (y) - 1 + size * 3 - i, 1, 1);
}
}
void printTime(uint16_t x, uint16_t y) {
char temp[9]={0};
sprintf(temp,"%02d:%02d:%02d",timex.hour,timex.min,timex.sec);
void printTime(uint16_t x, uint16_t y)
{
char temp[9] =
{ 0 };
sprintf(temp, "%02d:%02d:%02d", timex.hour, timex.min, timex.sec);
//printTextFB(x,y,temp);
write_string(temp, x, y, 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 3);
}
/*
void drawAltitude(uint16_t x, uint16_t y, int16_t alt, uint8_t dir) {
void drawAltitude(uint16_t x, uint16_t y, int16_t alt, uint8_t dir) {
char temp[9]={0};
char updown=' ';
@ -1636,7 +1573,7 @@ void drawAltitude(uint16_t x, uint16_t y, int16_t alt, uint8_t dir) {
printTextFB(charx,y+2,temp);
// frame
drawBox(charx*16-3,y,charx*16+strlen(temp)*8+3,y+11);
}*/
}*/
/**
* hud_draw_vertical_scale: Draw a vertical scale.
@ -1655,27 +1592,25 @@ void drawAltitude(uint16_t x, uint16_t y, int16_t alt, uint8_t dir) {
* @param max_val maximum expected value (used to compute size of arrow ticker)
* @param flags special flags (see hud.h.)
*/
void hud_draw_vertical_scale(int v, int range, int halign, int x, int y, int height, int mintick_step, int majtick_step, int mintick_len, int majtick_len, int boundtick_len, int max_val, int flags)
void hud_draw_vertical_scale(int v, int range, int halign, int x, int y, int height, int mintick_step, int majtick_step, int mintick_len, int majtick_len,
int boundtick_len, int max_val, int flags)
{
char temp[15];//, temp2[15];
char temp[15]; //, temp2[15];
struct FontEntry font_info;
struct FontDimensions dim;
// Halign should be in a small span.
//MY_ASSERT(halign >= -1 && halign <= 1);
// Compute the position of the elements.
int majtick_start = 0, majtick_end = 0, mintick_start = 0, mintick_end = 0, boundtick_start = 0, boundtick_end = 0;
if(halign == -1)
{
if (halign == -1) {
majtick_start = x;
majtick_end = x + majtick_len;
mintick_start = x;
mintick_end = x + mintick_len;
boundtick_start = x;
boundtick_end = x + boundtick_len;
}
else if(halign == +1)
{
x=x-GRAPHICS_HDEADBAND;
} else if (halign == +1) {
x = x - GRAPHICS_HDEADBAND;
majtick_start = GRAPHICS_WIDTH_REAL - x - 1;
majtick_end = GRAPHICS_WIDTH_REAL - x - majtick_len - 1;
mintick_start = GRAPHICS_WIDTH_REAL - x - 1;
@ -1693,69 +1628,61 @@ void hud_draw_vertical_scale(int v, int range, int halign, int x, int y, int hei
int range_2 = range / 2; //, height_2 = height / 2;
int r = 0, rr = 0, rv = 0, ys = 0, style = 0; //calc_ys = 0,
// Iterate through each step.
for(r = -range_2; r <= +range_2; r++)
{
for (r = -range_2; r <= +range_2; r++) {
style = 0;
rr = r + range_2 - v; // normalise range for modulo, subtract value to move ticker tape
rv = -rr + range_2; // for number display
if(flags & HUD_VSCALE_FLAG_NO_NEGATIVE)
if (flags & HUD_VSCALE_FLAG_NO_NEGATIVE)
rr += majtick_step / 2;
if(rr % majtick_step == 0)
if (rr % majtick_step == 0)
style = 1; // major tick
else if(rr % mintick_step == 0)
else if (rr % mintick_step == 0)
style = 2; // minor tick
else
style = 0;
if(flags & HUD_VSCALE_FLAG_NO_NEGATIVE && rv < 0)
if (flags & HUD_VSCALE_FLAG_NO_NEGATIVE && rv < 0)
continue;
if(style)
{
if (style) {
// Calculate y position.
ys = ((long int)(r * height) / (long int)range) + y;
ys = ((long int) (r * height) / (long int) range) + y;
//sprintf(temp, "ys=%d", ys);
//con_puts(temp, 0);
// Depending on style, draw a minor or a major tick.
if(style == 1)
{
if (style == 1) {
write_hline_outlined(majtick_start, majtick_end, ys, 2, 2, 0, 1);
memset(temp, ' ', 10);
//my_itoa(rv, temp);
sprintf(temp,"%d",rv);
sprintf(temp, "%d", rv);
text_length = (strlen(temp) + 1) * small_font_char_width; // add 1 for margin
if(text_length > max_text_y)
if (text_length > max_text_y)
max_text_y = text_length;
if(halign == -1)
if (halign == -1)
write_string(temp, majtick_end + text_x_spacing, ys, 1, 0, TEXT_VA_MIDDLE, TEXT_HA_LEFT, 0, 1);
else
write_string(temp, majtick_end - text_x_spacing + 1, ys, 1, 0, TEXT_VA_MIDDLE, TEXT_HA_RIGHT, 0, 1);
}
else if(style == 2)
} else if (style == 2)
write_hline_outlined(mintick_start, mintick_end, ys, 2, 2, 0, 1);
}
}
// Generate the string for the value, as well as calculating its dimensions.
memset(temp, ' ', 10);
//my_itoa(v, temp);
sprintf(temp,"%d",v);
sprintf(temp, "%d", v);
// TODO: add auto-sizing.
calc_text_dimensions(temp, font_info, 1, 0, &dim);
int xx = 0, i = 0;
if(halign == -1)
if (halign == -1)
xx = majtick_end + text_x_spacing;
else
xx = majtick_end - text_x_spacing;
// Draw an arrow from the number to the point.
for(i = 0; i < arrow_len; i++)
{
if(halign == -1)
{
for (i = 0; i < arrow_len; i++) {
if (halign == -1) {
write_pixel_lm(xx - arrow_len + i, y - i - 1, 1, 1);
write_pixel_lm(xx - arrow_len + i, y + i - 1, 1, 1);
write_hline_lm(xx + dim.width - 1, xx - arrow_len + i + 1, y - i - 1, 0, 1);
write_hline_lm(xx + dim.width - 1, xx - arrow_len + i + 1, y + i - 1, 0, 1);
}
else
{
} else {
write_pixel_lm(xx + arrow_len - i, y - i - 1, 1, 1);
write_pixel_lm(xx + arrow_len - i, y + i - 1, 1, 1);
write_hline_lm(xx - dim.width - 1, xx + arrow_len - i - 1, y - i - 1, 0, 1);
@ -1765,33 +1692,29 @@ void hud_draw_vertical_scale(int v, int range, int halign, int x, int y, int hei
// write_hline_lm(xx - dim.width - 1, xx + (arrow_len - i), y - i - 1, 1, 1);
// write_hline_lm(xx - dim.width - 1, xx + (arrow_len - i), y + i - 1, 1, 1);
}
if(halign == -1)
{
if (halign == -1) {
write_hline_lm(xx, xx + dim.width - 1, y - arrow_len, 1, 1);
write_hline_lm(xx, xx + dim.width - 1, y + arrow_len - 2, 1, 1);
write_vline_lm(xx + dim.width - 1, y - arrow_len, y + arrow_len - 2, 1, 1);
}
else
{
} else {
write_hline_lm(xx, xx - dim.width - 1, y - arrow_len, 1, 1);
write_hline_lm(xx, xx - dim.width - 1, y + arrow_len - 2, 1, 1);
write_vline_lm(xx - dim.width - 1, y - arrow_len, y + arrow_len - 2, 1, 1);
}
// Draw the text.
if(halign == -1)
if (halign == -1)
write_string(temp, xx, y, 1, 0, TEXT_VA_MIDDLE, TEXT_HA_LEFT, 0, 0);
else
write_string(temp, xx, y, 1, 0, TEXT_VA_MIDDLE, TEXT_HA_RIGHT, 0, 0);
// Then, add a slow cut off on the edges, so the text doesn't sharply
// disappear. We simply clear the areas above and below the ticker, and we
// use little markers on the edges.
if(halign == -1)
{
write_filled_rectangle_lm(majtick_end + text_x_spacing, y + (height / 2) - (font_info.height / 2), max_text_y - boundtick_start, font_info.height, 0, 0);
write_filled_rectangle_lm(majtick_end + text_x_spacing, y - (height / 2) - (font_info.height / 2), max_text_y - boundtick_start, font_info.height, 0, 0);
}
else
{
if (halign == -1) {
write_filled_rectangle_lm(majtick_end + text_x_spacing, y + (height / 2) - (font_info.height / 2), max_text_y - boundtick_start, font_info.height, 0,
0);
write_filled_rectangle_lm(majtick_end + text_x_spacing, y - (height / 2) - (font_info.height / 2), max_text_y - boundtick_start, font_info.height, 0,
0);
} else {
write_filled_rectangle_lm(majtick_end - text_x_spacing - max_text_y, y + (height / 2) - (font_info.height / 2), max_text_y, font_info.height, 0, 0);
write_filled_rectangle_lm(majtick_end - text_x_spacing - max_text_y, y - (height / 2) - (font_info.height / 2), max_text_y, font_info.height, 0, 0);
}
@ -1826,42 +1749,43 @@ void hud_draw_linear_compass(int v, int range, int width, int x, int y, int mint
textoffset = 8;
int r, style, rr, xs; // rv,
int range_2 = range / 2;
for(r = -range_2; r <= +range_2; r++)
{
for (r = -range_2; r <= +range_2; r++) {
style = 0;
rr = (v + r + 360) % 360; // normalise range for modulo, add to move compass track
//rv = -rr + range_2; // for number display
if(rr % majtick_step == 0)
if (rr % majtick_step == 0)
style = 1; // major tick
else if(rr % mintick_step == 0)
else if (rr % mintick_step == 0)
style = 2; // minor tick
if(style)
{
if (style) {
// Calculate x position.
xs = ((long int)(r * width) / (long int)range) + x;
xs = ((long int) (r * width) / (long int) range) + x;
// Draw it.
if(style == 1)
{
if (style == 1) {
write_vline_outlined(xs, majtick_start, majtick_end, 2, 2, 0, 1);
// Draw heading above this tick.
// If it's not one of north, south, east, west, draw the heading.
// Otherwise, draw one of the identifiers.
if(rr % 90 != 0)
{
if (rr % 90 != 0) {
// We abbreviate heading to two digits. This has the side effect of being easy to compute.
headingstr[0] = '0' + (rr / 100);
headingstr[1] = '0' + ((rr / 10) % 10);
headingstr[2] = 0;
headingstr[3] = 0; // nul to terminate
}
else
{
switch(rr)
{
case 0: headingstr[0] = 'N'; break;
case 90: headingstr[0] = 'E'; break;
case 180: headingstr[0] = 'S'; break;
case 270: headingstr[0] = 'W'; break;
} else {
switch (rr) {
case 0:
headingstr[0] = 'N';
break;
case 90:
headingstr[0] = 'E';
break;
case 180:
headingstr[0] = 'S';
break;
case 270:
headingstr[0] = 'W';
break;
}
headingstr[1] = 0;
headingstr[2] = 0;
@ -1869,8 +1793,7 @@ void hud_draw_linear_compass(int v, int range, int width, int x, int y, int mint
}
// +1 fudge...!
write_string(headingstr, xs + 1, majtick_start + textoffset, 1, 0, TEXT_VA_MIDDLE, TEXT_HA_CENTER, 0, 1);
}
else if(style == 2)
} else if (style == 2)
write_vline_outlined(xs, mintick_start, mintick_end, 2, 2, 0, 1);
}
}
@ -1886,226 +1809,201 @@ void hud_draw_linear_compass(int v, int range, int width, int x, int y, int mint
headingstr[1] = '0' + ((v / 10) % 10);
headingstr[2] = '0' + (v % 10);
headingstr[3] = 0;
write_string(headingstr, x + 1, majtick_start + textoffset+2, 0, 0, TEXT_VA_MIDDLE, TEXT_HA_CENTER, 1, 3);
write_string(headingstr, x + 1, majtick_start + textoffset + 2, 0, 0, TEXT_VA_MIDDLE, TEXT_HA_CENTER, 1, 3);
}
// CORE draw routines end here
void draw_artificial_horizon(float angle, float pitch, int16_t l_x, int16_t l_y, int16_t size )
void draw_artificial_horizon(float angle, float pitch, int16_t l_x, int16_t l_y, int16_t size)
{
float alpha;
uint8_t vertical=0,horizontal=0;
int16_t x1,x2;
int16_t y1,y2;
int16_t refx,refy;
alpha=DEG2RAD(angle);
refx=l_x + size/2;
refy=l_y + size/2;
uint8_t vertical = 0, horizontal = 0;
int16_t x1, x2;
int16_t y1, y2;
int16_t refx, refy;
alpha = DEG2RAD(angle);
refx = l_x + size / 2;
refy = l_y + size / 2;
//
float k=0;
float dx = sinf(alpha)*(pitch/90.0f*(size/2));
float dy = cosf(alpha)*(pitch/90.0f*(size/2));
int16_t x0 = (size/2)-dx;
int16_t y0 = (size/2)+dy;
float k = 0;
float dx = sinf(alpha) * (pitch / 90.0f * (size / 2));
float dy = cosf(alpha) * (pitch / 90.0f * (size / 2));
int16_t x0 = (size / 2) - dx;
int16_t y0 = (size / 2) + dy;
// calculate the line function
if((angle != 90) && (angle != -90))
{
if ((angle != 90) && (angle != -90)) {
k = tanf(alpha);
vertical = 0;
if(k==0)
{
horizontal=1;
if (k == 0) {
horizontal = 1;
}
}
else
{
} else {
vertical = 1;
}
// crossing point of line
if(!vertical && !horizontal)
{
if (!vertical && !horizontal) {
// y-y0=k(x-x0)
int16_t x=0;
int16_t y=k*(x-x0)+y0;
int16_t x = 0;
int16_t y = k * (x - x0) + y0;
// find right crossing point
x1=x;
y1=y;
if(y<0)
{
y1=0;
x1=((y1-y0)+k*x0)/k;
x1 = x;
y1 = y;
if (y < 0) {
y1 = 0;
x1 = ((y1 - y0) + k * x0) / k;
}
if(y>size)
{
y1=size;
x1=((y1-y0)+k*x0)/k;
if (y > size) {
y1 = size;
x1 = ((y1 - y0) + k * x0) / k;
}
// left crossing point
x=size;
y=k*(x-x0)+y0;
x2=x;
y2=y;
if(y<0)
{
y2=0;
x2=((y2-y0)+k*x0)/k;
x = size;
y = k * (x - x0) + y0;
x2 = x;
y2 = y;
if (y < 0) {
y2 = 0;
x2 = ((y2 - y0) + k * x0) / k;
}
if(y>size)
{
y2=size;
x2=((y2-y0)+k*x0)/k;
if (y > size) {
y2 = size;
x2 = ((y2 - y0) + k * x0) / k;
}
// move to location
// horizon line
write_line_outlined(x1+l_x,y1+l_y,x2+l_x,y2+l_y,0,0,0,1);
write_line_outlined(x1 + l_x, y1 + l_y, x2 + l_x, y2 + l_y, 0, 0, 0, 1);
//fill
if(angle<=0 && angle>-90)
{
if (angle <= 0 && angle > -90) {
//write_string("1", APPLY_HDEADBAND((GRAPHICS_RIGHT/2)),APPLY_VDEADBAND(GRAPHICS_BOTTOM-10), 0, 0, TEXT_VA_BOTTOM, TEXT_HA_CENTER, 0, 3);
for(int i=y2;i<size;i++)
{
x2=((i-y0)+k*x0)/k;
if(x2>size)
x2=size;
if(x2<0)
x2=0;
write_hline_lm(x2+l_x,size+l_x,i+l_y,1,1);
for (int i = y2; i < size; i++) {
x2 = ((i - y0) + k * x0) / k;
if (x2 > size) {
x2 = size;
}
if (x2 < 0) {
x2 = 0;
}
else if(angle<-90)
{
write_hline_lm(x2 + l_x, size + l_x, i + l_y, 1, 1);
}
} else if (angle < -90) {
//write_string("2", APPLY_HDEADBAND((GRAPHICS_RIGHT/2)),APPLY_VDEADBAND(GRAPHICS_BOTTOM-10), 0, 0, TEXT_VA_BOTTOM, TEXT_HA_CENTER, 0, 3);
for(int i=0;i<y2;i++)
{
x2=((i-y0)+k*x0)/k;
if(x2>size)
x2=size;
if(x2<0)
x2=0;
write_hline_lm(size+l_x,x2+l_x,i+l_y,1,1);
for (int i = 0; i < y2; i++) {
x2 = ((i - y0) + k * x0) / k;
if (x2 > size) {
x2 = size;
}
if (x2 < 0) {
x2 = 0;
}
else if(angle>0 && angle<90)
{
write_hline_lm(size + l_x, x2 + l_x, i + l_y, 1, 1);
}
} else if (angle > 0 && angle < 90) {
//write_string("3", APPLY_HDEADBAND((GRAPHICS_RIGHT/2)),APPLY_VDEADBAND(GRAPHICS_BOTTOM-10), 0, 0, TEXT_VA_BOTTOM, TEXT_HA_CENTER, 0, 3);
for(int i=y1;i<size;i++)
{
x2=((i-y0)+k*x0)/k;
if(x2>size)
x2=size;
if(x2<0)
x2=0;
write_hline_lm(0+l_x,x2+l_x,i+l_y,1,1);
for (int i = y1; i < size; i++) {
x2 = ((i - y0) + k * x0) / k;
if (x2 > size) {
x2 = size;
}
if (x2 < 0) {
x2 = 0;
}
else if(angle>90)
{
write_hline_lm(0 + l_x, x2 + l_x, i + l_y, 1, 1);
}
} else if (angle > 90) {
//write_string("4", APPLY_HDEADBAND((GRAPHICS_RIGHT/2)),APPLY_VDEADBAND(GRAPHICS_BOTTOM-10), 0, 0, TEXT_VA_BOTTOM, TEXT_HA_CENTER, 0, 3);
for(int i=0;i<y1;i++)
{
x2=((i-y0)+k*x0)/k;
if(x2>size)
x2=size;
if(x2<0)
x2=0;
write_hline_lm(x2+l_x,0+l_x,i+l_y,1,1);
for (int i = 0; i < y1; i++) {
x2 = ((i - y0) + k * x0) / k;
if (x2 > size) {
x2 = size;
}
if (x2 < 0) {
x2 = 0;
}
write_hline_lm(x2 + l_x, 0 + l_x, i + l_y, 1, 1);
}
}
}
else if(vertical)
{
} else if (vertical) {
// horizon line
write_line_outlined(x0+l_x,0+l_y,x0+l_x,size+l_y,0,0,0,1);
if(angle==90)
{
write_line_outlined(x0 + l_x, 0 + l_y, x0 + l_x, size + l_y, 0, 0, 0, 1);
if (angle == 90) {
//write_string("5", APPLY_HDEADBAND((GRAPHICS_RIGHT/2)),APPLY_VDEADBAND(GRAPHICS_BOTTOM-10), 0, 0, TEXT_VA_BOTTOM, TEXT_HA_CENTER, 0, 3);
for(int i=0;i<size;i++)
{
write_hline_lm(0+l_x,x0+l_x,i+l_y,1,1);
for (int i = 0; i < size; i++) {
write_hline_lm(0 + l_x, x0 + l_x, i + l_y, 1, 1);
}
}
else
{
} else {
//write_string("6", APPLY_HDEADBAND((GRAPHICS_RIGHT/2)),APPLY_VDEADBAND(GRAPHICS_BOTTOM-10), 0, 0, TEXT_VA_BOTTOM, TEXT_HA_CENTER, 0, 3);
for(int i=0;i<size;i++)
{
write_hline_lm(size+l_x,x0+l_x,i+l_y,1,1);
for (int i = 0; i < size; i++) {
write_hline_lm(size + l_x, x0 + l_x, i + l_y, 1, 1);
}
}
}
else if(horizontal)
{
} else if (horizontal) {
// horizon line
write_hline_outlined(0+l_x,size+l_x,y0+l_y,0,0,0,1);
if(angle<0)
{
write_hline_outlined(0 + l_x, size + l_x, y0 + l_y, 0, 0, 0, 1);
if (angle < 0) {
//write_string("7", APPLY_HDEADBAND((GRAPHICS_RIGHT/2)),APPLY_VDEADBAND(GRAPHICS_BOTTOM-10), 0, 0, TEXT_VA_BOTTOM, TEXT_HA_CENTER, 0, 3);
for(int i=0;i<y0;i++)
{
write_hline_lm(0+l_x,size+l_x,i+l_y,1,1);
for (int i = 0; i < y0; i++) {
write_hline_lm(0 + l_x, size + l_x, i + l_y, 1, 1);
}
}
else
{
} else {
//write_string("8", APPLY_HDEADBAND((GRAPHICS_RIGHT/2)),APPLY_VDEADBAND(GRAPHICS_BOTTOM-10), 0, 0, TEXT_VA_BOTTOM, TEXT_HA_CENTER, 0, 3);
for(int i=y0;i<size;i++)
{
write_hline_lm(0+l_x,size+l_x,i+l_y,1,1);
for (int i = y0; i < size; i++) {
write_hline_lm(0 + l_x, size + l_x, i + l_y, 1, 1);
}
}
}
//sides
write_line_outlined(l_x,l_y,l_x,l_y+size,0,0,0,1);
write_line_outlined(l_x+size,l_y,l_x+size,l_y+size,0,0,0,1);
write_line_outlined(l_x, l_y, l_x, l_y + size, 0, 0, 0, 1);
write_line_outlined(l_x + size, l_y, l_x + size, l_y +s ize, 0, 0, 0, 1);
//plane
write_line_outlined(refx-5,refy,refx+6,refy,0,0,0,1);
write_line_outlined(refx,refy,refx,refy-3,0,0,0,1);
write_line_outlined(refx - 5, refy, refx + 6, refy, 0, 0, 0, 1);
write_line_outlined(refx, refy, refx, refy - 3, 0, 0, 0, 1);
}
void introText(){
write_string("ver 0.2", APPLY_HDEADBAND((GRAPHICS_RIGHT/2)),APPLY_VDEADBAND(GRAPHICS_BOTTOM-10), 0, 0, TEXT_VA_BOTTOM, TEXT_HA_CENTER, 0, 3);
void introText()
{
write_string("ver 0.2", APPLY_HDEADBAND((GRAPHICS_RIGHT / 2)), APPLY_VDEADBAND(GRAPHICS_BOTTOM - 10), 0, 0, TEXT_VA_BOTTOM, TEXT_HA_CENTER, 0, 3);
}
void introGraphics() {
void introGraphics()
{
/* logo */
int image=0;
int image = 0;
struct splashEntry splash_info;
splash_info = splash[image];
copyimage(APPLY_HDEADBAND(GRAPHICS_RIGHT/2-(splash_info.width)/2), APPLY_VDEADBAND(GRAPHICS_BOTTOM/2-(splash_info.height)/2),image);
copyimage(APPLY_HDEADBAND(GRAPHICS_RIGHT / 2 - (splash_info.width) / 2), APPLY_VDEADBAND(GRAPHICS_BOTTOM / 2 - (splash_info.height) / 2), image);
/* frame */
drawBox(APPLY_HDEADBAND(0),APPLY_VDEADBAND(0),APPLY_HDEADBAND(GRAPHICS_RIGHT-8),APPLY_VDEADBAND(GRAPHICS_BOTTOM));
drawBox(APPLY_HDEADBAND(0), APPLY_VDEADBAND(0), APPLY_HDEADBAND(GRAPHICS_RIGHT-8), APPLY_VDEADBAND(GRAPHICS_BOTTOM));
// Must mask out last half-word because SPI keeps clocking it out otherwise
for (uint32_t i = 0; i < 8; i++) {
write_vline( draw_buffer_level,GRAPHICS_WIDTH_REAL-i-1,0,GRAPHICS_HEIGHT_REAL-1,0);
write_vline( draw_buffer_mask,GRAPHICS_WIDTH_REAL-i-1,0,GRAPHICS_HEIGHT_REAL-1,0);
write_vline(draw_buffer_level, GRAPHICS_WIDTH_REAL - i - 1, 0, GRAPHICS_HEIGHT_REAL - 1, 0);
write_vline(draw_buffer_mask, GRAPHICS_WIDTH_REAL - i - 1, 0, GRAPHICS_HEIGHT_REAL - 1, 0);
}
}
void calcHomeArrow(int16_t m_yaw)
{
HomeLocationData home;
HomeLocationGet (&home);
HomeLocationGet(&home);
GPSPositionData gpsData;
GPSPositionGet (&gpsData);
GPSPositionGet(&gpsData);
/** http://www.movable-type.co.uk/scripts/latlong.html **/
float lat1, lat2, lon1, lon2, a, c, d, x, y, brng, u2g;
float elevation;
float gcsAlt=home.Altitude; // Home MSL altitude
float uavAlt=gpsData.Altitude; // UAV MSL altitude
float dAlt=uavAlt-gcsAlt; // Altitude difference
float gcsAlt = home.Altitude; // Home MSL altitude
float uavAlt = gpsData.Altitude; // UAV MSL altitude
float dAlt = uavAlt - gcsAlt; // Altitude difference
// Convert to radians
lat1 = DEG2RAD(home.Latitude)/10000000.0f; // Home lat
lon1 = DEG2RAD(home.Longitude)/10000000.0f; // Home lon
lat2 = DEG2RAD(gpsData.Latitude)/10000000.0f; // UAV lat
lon2 = DEG2RAD(gpsData.Longitude)/10000000.0f; // UAV lon
lat1 = DEG2RAD(home.Latitude) / 10000000.0f; // Home lat
lon1 = DEG2RAD(home.Longitude) / 10000000.0f; // Home lon
lat2 = DEG2RAD(gpsData.Latitude) / 10000000.0f; // UAV lat
lon2 = DEG2RAD(gpsData.Longitude) / 10000000.0f; // UAV lon
// Bearing
/**
@ -2114,16 +2012,18 @@ void calcHomeArrow(int16_t m_yaw)
Math.sin(lat1)*Math.cos(lat2)*Math.cos(dLon);
var brng = Math.atan2(y, x).toDeg();
**/
y = sinf(lon2-lon1) * cosf(lat2);
x = cosf(lat1) * sinf(lat2) - sinf(lat1) * cosf(lat2) * cosf(lon2-lon1);
y = sinf(lon2 - lon1) * cosf(lat2);
x = cosf(lat1) * sinf(lat2) - sinf(lat1) * cosf(lat2) * cosf(lon2 - lon1);
brng = RAD2DEG(atan2f(y,x));
if(brng<0)
brng+=360;
if (brng < 0) {
brng += 360;
}
// yaw corrected bearing, needs compass
u2g=brng-180-m_yaw;
if(u2g<0)
u2g+=360;
u2g = brng - 180 - m_yaw;
if (u2g < 0) {
u2g += 360;
}
// Haversine formula for distance
/**
@ -2136,60 +2036,58 @@ void calcHomeArrow(int16_t m_yaw)
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c;
**/
a = sinf((lat2-lat1)/2) * sinf((lat2-lat1)/2) +
cosf(lat1) * cosf(lat2) *
sinf((lon2-lon1)/2) * sinf((lon2-lon1)/2);
c = 2 * atan2f(sqrtf(a), sqrtf(1-a));
a = sinf((lat2 - lat1) / 2) * sinf((lat2 - lat1) / 2) + cosf(lat1) * cosf(lat2) * sinf((lon2 - lon1) / 2) * sinf((lon2 - lon1) / 2);
c = 2 * atan2f(sqrtf(a), sqrtf(1 - a));
d = 6371 * 1000 * c;
// Elevation v depends servo direction
if(d!=0)
elevation = 90-RAD2DEG(atanf(dAlt/d));
if (d != 0)
elevation = 90 - RAD2DEG(atanf(dAlt/d));
else
elevation = 0;
//! TODO: sanity check
char temp[50]={0};
sprintf(temp,"hea:%d",(int)brng);
char temp[50] =
{ 0 };
sprintf(temp, "hea:%d", (int) brng);
write_string(temp, APPLY_HDEADBAND(GRAPHICS_RIGHT/2-30), APPLY_VDEADBAND(30), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2);
sprintf(temp,"ele:%d",(int)elevation);
sprintf(temp, "ele:%d", (int) elevation);
write_string(temp, APPLY_HDEADBAND(GRAPHICS_RIGHT/2-30), APPLY_VDEADBAND(30+10), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2);
sprintf(temp,"dis:%d",(int)d);
sprintf(temp, "dis:%d", (int) d);
write_string(temp, APPLY_HDEADBAND(GRAPHICS_RIGHT/2-30), APPLY_VDEADBAND(30+10+10), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2);
sprintf(temp,"u2g:%d",(int)u2g);
sprintf(temp, "u2g:%d", (int) u2g);
write_string(temp, APPLY_HDEADBAND(GRAPHICS_RIGHT/2-30), APPLY_VDEADBAND(30+10+10+10), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2);
sprintf(temp,"%c%c",(int)(u2g/22.5f)*2+0x90,(int)(u2g/22.5f)*2+0x91);
sprintf(temp, "%c%c", (int) (u2g / 22.5f) * 2 + 0x90, (int) (u2g / 22.5f) * 2 + 0x91);
write_string(temp, APPLY_HDEADBAND(250), APPLY_VDEADBAND(40+10+10), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 3);
}
int lama=10;
int lama = 10;
int lama_loc[2][30];
void lamas(void)
{
char temp[10]={0};
char temp[10] =
{ 0 };
lama++;
if(lama%10==0)
{
for(int z=0; z<30;z++)
{
if (lama % 10 == 0) {
for (int z = 0; z < 30; z++) {
lama_loc[0][z]=rand()%(GRAPHICS_RIGHT-10);
lama_loc[1][z]=rand()%(GRAPHICS_BOTTOM-10);
lama_loc[0][z] = rand() % (GRAPHICS_RIGHT - 10);
lama_loc[1][z] = rand() % (GRAPHICS_BOTTOM - 10);
}
}
for(int z=0; z<30;z++)
{
sprintf(temp,"%c",0xe8+(lama_loc[0][z]%2));
write_string(temp,APPLY_HDEADBAND(lama_loc[0][z]),APPLY_VDEADBAND(lama_loc[1][z]), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2);
for (int z = 0; z < 30; z++) {
sprintf(temp, "%c", 0xe8 + (lama_loc[0][z] % 2));
write_string(temp, APPLY_HDEADBAND(lama_loc[0][z]), APPLY_VDEADBAND(lama_loc[1][z]), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2);
}
}
//main draw function
void updateGraphics() {
void updateGraphics()
{
OsdSettingsData OsdSettings;
OsdSettingsGet (&OsdSettings);
OsdSettingsGet(&OsdSettings);
AttitudeActualData attitude;
AttitudeActualGet(&attitude);
GPSPositionData gpsData;
@ -2199,36 +2097,36 @@ void updateGraphics() {
BaroAltitudeData baro;
BaroAltitudeGet(&baro);
PIOS_Servo_Set(0,OsdSettings.White);
PIOS_Servo_Set(1,OsdSettings.Black);
PIOS_Servo_Set(0, OsdSettings.White);
PIOS_Servo_Set(1, OsdSettings.Black);
switch (OsdSettings.Screen) {
case 0: // Dave simple
{
if(home.Set == HOMELOCATION_SET_FALSE)
{
char temps[20]={0};
sprintf(temps,"HOME NOT SET");
if (home.Set == HOMELOCATION_SET_FALSE) {
char temps[20] =
{ 0 };
sprintf(temps, "HOME NOT SET");
//printTextFB(x,y,temp);
write_string(temps, APPLY_HDEADBAND(GRAPHICS_RIGHT/2), (GRAPHICS_BOTTOM/2), 0, 0, TEXT_VA_TOP, TEXT_HA_CENTER, 0, 3);
write_string(temps, APPLY_HDEADBAND(GRAPHICS_RIGHT/2), (GRAPHICS_BOTTOM / 2), 0, 0, TEXT_VA_TOP, TEXT_HA_CENTER, 0, 3);
}
char temp[50]={0};
char temp[50] =
{ 0 };
memset(temp, ' ', 40);
sprintf(temp,"Lat:%11.7f",gpsData.Latitude/10000000.0f);
sprintf(temp, "Lat:%11.7f", gpsData.Latitude / 10000000.0f);
write_string(temp, APPLY_HDEADBAND(20), APPLY_VDEADBAND(GRAPHICS_BOTTOM-30), 0, 0, TEXT_VA_BOTTOM, TEXT_HA_LEFT, 0, 3);
sprintf(temp,"Lon:%11.7f",gpsData.Longitude/10000000.0f);
sprintf(temp, "Lon:%11.7f", gpsData.Longitude / 10000000.0f);
write_string(temp, APPLY_HDEADBAND(20), APPLY_VDEADBAND(GRAPHICS_BOTTOM-10), 0, 0, TEXT_VA_BOTTOM, TEXT_HA_LEFT, 0, 3);
sprintf(temp,"Sat:%d",(int)gpsData.Satellites);
sprintf(temp, "Sat:%d", (int) gpsData.Satellites);
write_string(temp, APPLY_HDEADBAND(GRAPHICS_RIGHT-40), APPLY_VDEADBAND(30), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
/* Print ADC voltage FLIGHT*/
sprintf(temp,"V:%5.2fV",(PIOS_ADC_PinGet(2)*3*6.1f/4096));
sprintf(temp, "V:%5.2fV", (PIOS_ADC_PinGet(2) * 3 * 6.1f / 4096));
write_string(temp, APPLY_HDEADBAND(20), APPLY_VDEADBAND(20), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 3);
if(gpsData.Heading>180)
calcHomeArrow((int16_t)(gpsData.Heading-360));
if (gpsData.Heading > 180)
calcHomeArrow((int16_t)(gpsData.Heading - 360));
else
calcHomeArrow((int16_t)(gpsData.Heading));
}
@ -2259,63 +2157,61 @@ void updateGraphics() {
angleC+=2;*/
// GPS HACK
if(gpsData.Heading>180)
calcHomeArrow((int16_t)(gpsData.Heading-360));
if (gpsData.Heading > 180)
calcHomeArrow((int16_t)(gpsData.Heading - 360));
else
calcHomeArrow((int16_t)(gpsData.Heading));
/* Draw Attitude Indicator */
if(OsdSettings.Attitude == OSDSETTINGS_ATTITUDE_ENABLED)
{
drawAttitude(APPLY_HDEADBAND(OsdSettings.AttitudeSetup[OSDSETTINGS_ATTITUDESETUP_X]),APPLY_VDEADBAND(OsdSettings.AttitudeSetup[OSDSETTINGS_ATTITUDESETUP_Y]),attitude.Pitch,attitude.Roll,96);
if (OsdSettings.Attitude == OSDSETTINGS_ATTITUDE_ENABLED) {
drawAttitude(APPLY_HDEADBAND(OsdSettings.AttitudeSetup[OSDSETTINGS_ATTITUDESETUP_X]),
APPLY_VDEADBAND(OsdSettings.AttitudeSetup[OSDSETTINGS_ATTITUDESETUP_Y]), attitude.Pitch, attitude.Roll, 96);
}
//write_string("Hello OP-OSD", 60, 12, 1, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 0);
//printText16( 60, 12,"Hello OP-OSD");
char temp[50]={0};
char temp[50] =
{ 0 };
memset(temp, ' ', 40);
sprintf(temp,"Lat:%11.7f",gpsData.Latitude/10000000.0f);
sprintf(temp, "Lat:%11.7f", gpsData.Latitude / 10000000.0f);
write_string(temp, APPLY_HDEADBAND(5), APPLY_VDEADBAND(5), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2);
sprintf(temp,"Lon:%11.7f",gpsData.Longitude/10000000.0f);
sprintf(temp, "Lon:%11.7f", gpsData.Longitude / 10000000.0f);
write_string(temp, APPLY_HDEADBAND(5), APPLY_VDEADBAND(15), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2);
sprintf(temp,"Fix:%d",(int)gpsData.Status);
sprintf(temp, "Fix:%d", (int) gpsData.Status);
write_string(temp, APPLY_HDEADBAND(5), APPLY_VDEADBAND(25), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2);
sprintf(temp,"Sat:%d",(int)gpsData.Satellites);
sprintf(temp, "Sat:%d", (int) gpsData.Satellites);
write_string(temp, APPLY_HDEADBAND(5), APPLY_VDEADBAND(35), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2);
/* Print RTC time */
if(OsdSettings.Time == OSDSETTINGS_TIME_ENABLED)
{
printTime(APPLY_HDEADBAND(OsdSettings.TimeSetup[OSDSETTINGS_TIMESETUP_X]),APPLY_VDEADBAND(OsdSettings.TimeSetup[OSDSETTINGS_TIMESETUP_Y]));
if (OsdSettings.Time == OSDSETTINGS_TIME_ENABLED) {
printTime(APPLY_HDEADBAND(OsdSettings.TimeSetup[OSDSETTINGS_TIMESETUP_X]), APPLY_VDEADBAND(OsdSettings.TimeSetup[OSDSETTINGS_TIMESETUP_Y]));
}
/* Print Number of detected video Lines */
sprintf(temp,"Lines:%4d",PIOS_Video_GetOSDLines());
write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 8)),APPLY_VDEADBAND(5), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
sprintf(temp, "Lines:%4d", PIOS_Video_GetOSDLines());
write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 8)), APPLY_VDEADBAND(5), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
/* Print ADC voltage */
//sprintf(temp,"Rssi:%4dV",(int)(PIOS_ADC_PinGet(4)*3000/4096));
//write_string(temp, (GRAPHICS_WIDTH_REAL - 2),15, 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
sprintf(temp,"Rssi:%4.2fV",(PIOS_ADC_PinGet(5)*3.0f/4096.0f));
write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 8)),APPLY_VDEADBAND(15), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
sprintf(temp, "Rssi:%4.2fV", (PIOS_ADC_PinGet(5) * 3.0f / 4096.0f));
write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 8)), APPLY_VDEADBAND(15), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
/* Print CPU temperature */
sprintf(temp,"Temp:%4.2fC",(PIOS_ADC_PinGet(3)*0.29296875f-264));
write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 8)),APPLY_VDEADBAND(25), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
sprintf(temp, "Temp:%4.2fC", (PIOS_ADC_PinGet(3) * 0.29296875f - 264));
write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 8)), APPLY_VDEADBAND(25), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
/* Print ADC voltage FLIGHT*/
sprintf(temp,"FltV:%4.2fV",(PIOS_ADC_PinGet(2)*3.0f*6.1f/4096.0f));
write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 8)),APPLY_VDEADBAND(35), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
sprintf(temp, "FltV:%4.2fV", (PIOS_ADC_PinGet(2) * 3.0f * 6.1f / 4096.0f));
write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 8)), APPLY_VDEADBAND(35), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
/* Print ADC voltage VIDEO*/
sprintf(temp,"VidV:%4.2fV",(PIOS_ADC_PinGet(4)*3.0f*6.1f/4096.0f));
write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 8)),APPLY_VDEADBAND(45), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
sprintf(temp, "VidV:%4.2fV", (PIOS_ADC_PinGet(4) * 3.0f * 6.1f / 4096.0f));
write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 8)), APPLY_VDEADBAND(45), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
/* Print ADC voltage RSSI */
//sprintf(temp,"Curr:%4dA",(int)(PIOS_ADC_PinGet(0)*300*61/4096));
//write_string(temp, (GRAPHICS_WIDTH_REAL - 2),60, 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
/* Draw Battery Gauge */
/*m_batt++;
uint8_t dir=3;
@ -2339,26 +2235,21 @@ void updateGraphics() {
//drawAltitude(200,50,m_alt,dir);
//drawArrow(96,GRAPHICS_HEIGHT_REAL/2,angleB,32);
// Draw airspeed (left side.)
if(OsdSettings.Speed == OSDSETTINGS_SPEED_ENABLED)
{
hud_draw_vertical_scale((int)gpsData.Groundspeed, 100, -1, APPLY_HDEADBAND(OsdSettings.SpeedSetup[OSDSETTINGS_SPEEDSETUP_X]),
if (OsdSettings.Speed == OSDSETTINGS_SPEED_ENABLED) {
hud_draw_vertical_scale((int) gpsData.Groundspeed, 100, -1, APPLY_HDEADBAND(OsdSettings.SpeedSetup[OSDSETTINGS_SPEEDSETUP_X]),
APPLY_VDEADBAND(OsdSettings.SpeedSetup[OSDSETTINGS_SPEEDSETUP_Y]), 100, 10, 20, 7, 12, 15, 1000, HUD_VSCALE_FLAG_NO_NEGATIVE);
}
// Draw altimeter (right side.)
if(OsdSettings.Altitude == OSDSETTINGS_ALTITUDE_ENABLED)
{
hud_draw_vertical_scale((int)gpsData.Altitude, 200, +1, APPLY_HDEADBAND(OsdSettings.AltitudeSetup[OSDSETTINGS_ALTITUDESETUP_X]),
if (OsdSettings.Altitude == OSDSETTINGS_ALTITUDE_ENABLED) {
hud_draw_vertical_scale((int) gpsData.Altitude, 200, +1, APPLY_HDEADBAND(OsdSettings.AltitudeSetup[OSDSETTINGS_ALTITUDESETUP_X]),
APPLY_VDEADBAND(OsdSettings.AltitudeSetup[OSDSETTINGS_ALTITUDESETUP_Y]), 100, 20, 100, 7, 12, 15, 500, 0);
}
// Draw compass.
if(OsdSettings.Heading == OSDSETTINGS_HEADING_ENABLED)
{
if(attitude.Yaw<0) {
hud_draw_linear_compass(360+attitude.Yaw, 150, 120, APPLY_HDEADBAND(OsdSettings.HeadingSetup[OSDSETTINGS_HEADINGSETUP_X]),
if (OsdSettings.Heading == OSDSETTINGS_HEADING_ENABLED) {
if (attitude.Yaw < 0) {
hud_draw_linear_compass(360 + attitude.Yaw, 150, 120, APPLY_HDEADBAND(OsdSettings.HeadingSetup[OSDSETTINGS_HEADINGSETUP_X]),
APPLY_VDEADBAND(OsdSettings.HeadingSetup[OSDSETTINGS_HEADINGSETUP_Y]), 15, 30, 7, 12, 0);
} else {
hud_draw_linear_compass(attitude.Yaw, 150, 120, APPLY_HDEADBAND(OsdSettings.HeadingSetup[OSDSETTINGS_HEADINGSETUP_X]),
@ -2369,20 +2260,16 @@ void updateGraphics() {
break;
case 2:
{
int size=64;
int x=((GRAPHICS_RIGHT/2)-(size/2)),y=(GRAPHICS_BOTTOM-size-2);
draw_artificial_horizon(-attitude.Roll,attitude.Pitch,APPLY_HDEADBAND(x),APPLY_VDEADBAND(y),size);
hud_draw_vertical_scale((int)gpsData.Groundspeed, 20, +1, APPLY_HDEADBAND(GRAPHICS_RIGHT-(x-1)),
APPLY_VDEADBAND(y+(size/2)), size, 5, 10, 4, 7, 10, 100, HUD_VSCALE_FLAG_NO_NEGATIVE);
if(OsdSettings.AltitudeSource == OSDSETTINGS_ALTITUDESOURCE_BARO)
{
hud_draw_vertical_scale((int)baro.Altitude, 50, -1, APPLY_HDEADBAND((x+size+1)),
APPLY_VDEADBAND(y+(size/2)), size, 10, 20, 4, 7, 10, 500, 0);
}
else
{
hud_draw_vertical_scale((int)gpsData.Altitude, 50, -1, APPLY_HDEADBAND((x+size+1)),
APPLY_VDEADBAND(y+(size/2)), size, 10, 20, 4, 7, 10, 500, 0);
int size = 64;
int x = ((GRAPHICS_RIGHT / 2) - (size / 2)), y = (GRAPHICS_BOTTOM - size - 2);
draw_artificial_horizon(-attitude.Roll, attitude.Pitch, APPLY_HDEADBAND(x), APPLY_VDEADBAND(y), size);
hud_draw_vertical_scale((int) gpsData.Groundspeed, 20, +1, APPLY_HDEADBAND(GRAPHICS_RIGHT-(x-1)), APPLY_VDEADBAND(y+(size/2)), size, 5, 10, 4, 7,
10, 100, HUD_VSCALE_FLAG_NO_NEGATIVE);
if (OsdSettings.AltitudeSource == OSDSETTINGS_ALTITUDESOURCE_BARO) {
hud_draw_vertical_scale((int) baro.Altitude, 50, -1, APPLY_HDEADBAND((x+size+1)), APPLY_VDEADBAND(y+(size/2)), size, 10, 20, 4, 7, 10, 500, 0);
} else {
hud_draw_vertical_scale((int) gpsData.Altitude, 50, -1, APPLY_HDEADBAND((x+size+1)), APPLY_VDEADBAND(y+(size/2)), size, 10, 20, 4, 7, 10, 500,
0);
}
}
@ -2396,32 +2283,32 @@ void updateGraphics() {
case 5:
case 6:
{
int image=OsdSettings.Screen-4;
int image = OsdSettings.Screen - 4;
struct splashEntry splash_info;
splash_info = splash[image];
copyimage(APPLY_HDEADBAND(GRAPHICS_RIGHT/2-(splash_info.width)/2), APPLY_VDEADBAND(GRAPHICS_BOTTOM/2-(splash_info.height)/2),image);
copyimage(APPLY_HDEADBAND(GRAPHICS_RIGHT/2-(splash_info.width)/2), APPLY_VDEADBAND(GRAPHICS_BOTTOM/2-(splash_info.height)/2), image);
}
break;
default:
write_vline_lm( APPLY_HDEADBAND(GRAPHICS_RIGHT/2),APPLY_VDEADBAND(0),APPLY_VDEADBAND(GRAPHICS_BOTTOM),1,1);
write_hline_lm( APPLY_HDEADBAND(0),APPLY_HDEADBAND(GRAPHICS_RIGHT),APPLY_VDEADBAND(GRAPHICS_BOTTOM/2),1,1);
write_vline_lm(APPLY_HDEADBAND(GRAPHICS_RIGHT/2), APPLY_VDEADBAND(0), APPLY_VDEADBAND(GRAPHICS_BOTTOM), 1, 1);
write_hline_lm(APPLY_HDEADBAND(0), APPLY_HDEADBAND(GRAPHICS_RIGHT), APPLY_VDEADBAND(GRAPHICS_BOTTOM/2), 1, 1);
break;
}
// Must mask out last half-word because SPI keeps clocking it out otherwise
for (uint32_t i = 0; i < 8; i++) {
write_vline( draw_buffer_level,GRAPHICS_WIDTH_REAL-i-1,0,GRAPHICS_HEIGHT_REAL-1,0);
write_vline( draw_buffer_mask,GRAPHICS_WIDTH_REAL-i-1,0,GRAPHICS_HEIGHT_REAL-1,0);
write_vline(draw_buffer_level, GRAPHICS_WIDTH_REAL - i - 1, 0, GRAPHICS_HEIGHT_REAL - 1, 0);
write_vline(draw_buffer_mask, GRAPHICS_WIDTH_REAL - i - 1, 0, GRAPHICS_HEIGHT_REAL - 1, 0);
}
}
void updateOnceEveryFrame() {
void updateOnceEveryFrame()
{
clearGraphics();
updateGraphics();
}
// ****************
/**
* Initialise the gps module
@ -2432,8 +2319,8 @@ void updateOnceEveryFrame() {
int32_t osdgenStart(void)
{
// Start gps task
vSemaphoreCreateBinary( osdSemaphore);
xTaskCreate(osdgenTask, (signed char *)"OSDGEN", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &osdgenTaskHandle);
vSemaphoreCreateBinary(osdSemaphore);
xTaskCreate(osdgenTask, (signed char *) "OSDGEN", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &osdgenTaskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_OSDGEN, osdgenTaskHandle);
return 0;
@ -2462,7 +2349,7 @@ int32_t osdgenInitialize(void)
return 0;
}
MODULE_INITCALL(osdgenInitialize, osdgenStart)
MODULE_INITCALL( osdgenInitialize, osdgenStart)
// ****************
/**
@ -2475,34 +2362,28 @@ static void osdgenTask(void *parameters)
// Loop forever
//lastSysTime = xTaskGetTickCount();
OsdSettingsData OsdSettings;
OsdSettingsGet (&OsdSettings);
OsdSettingsGet(&OsdSettings);
PIOS_Servo_Set(0,OsdSettings.White);
PIOS_Servo_Set(1,OsdSettings.Black);
PIOS_Servo_Set(0, OsdSettings.White);
PIOS_Servo_Set(1, OsdSettings.Black);
// intro
for(int i=0; i<63; i++)
{
if( xSemaphoreTake( osdSemaphore, LONG_TIME ) == pdTRUE )
{
for (int i = 0; i < 63; i++) {
if (xSemaphoreTake(osdSemaphore, LONG_TIME) == pdTRUE) {
clearGraphics();
introGraphics();
}
}
for(int i=0; i<63; i++)
{
if( xSemaphoreTake( osdSemaphore, LONG_TIME ) == pdTRUE )
{
for (int i = 0; i < 63; i++) {
if (xSemaphoreTake(osdSemaphore, LONG_TIME) == pdTRUE) {
clearGraphics();
introGraphics();
introText();
}
}
while (1)
{
if( xSemaphoreTake( osdSemaphore, LONG_TIME ) == pdTRUE )
{
while (1) {
if (xSemaphoreTake(osdSemaphore, LONG_TIME) == pdTRUE) {
updateOnceEveryFrame();
}
//xSemaphoreTake(osdSemaphore, portMAX_DELAY);
@ -2510,7 +2391,6 @@ static void osdgenTask(void *parameters)
}
}
// ****************
/**

View File

@ -75,7 +75,6 @@
#include "poilocation.h"
#include "accessorydesired.h"
// Private constants
#define MAX_QUEUE_SIZE 4
#define STACK_SIZE_BYTES 1548
@ -88,9 +87,9 @@
// Private variables
static xTaskHandle pathfollowerTaskHandle;
static PathDesiredData pathDesired;
static PathStatusData pathStatus;
static VtolPathFollowerSettingsData vtolpathfollowerSettings;
static float poiRadius;
// Private functions
static void vtolPathFollowerTask(void *parameters);
@ -113,7 +112,7 @@ int32_t VtolPathFollowerStart()
{
if (vtolpathfollower_enabled) {
// Start main task
xTaskCreate(vtolPathFollowerTask, (signed char *)"VtolPathFollower", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &pathfollowerTaskHandle);
xTaskCreate(vtolPathFollowerTask, (signed char *) "VtolPathFollower", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &pathfollowerTaskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_PATHFOLLOWER, pathfollowerTaskHandle);
}
@ -148,7 +147,7 @@ int32_t VtolPathFollowerInitialize()
return 0;
}
MODULE_INITCALL(VtolPathFollowerInitialize, VtolPathFollowerStart)
MODULE_INITCALL( VtolPathFollowerInitialize, VtolPathFollowerStart)
static float northVelIntegral = 0;
static float eastVelIntegral = 0;
@ -170,11 +169,9 @@ static void vtolPathFollowerTask(void *parameters)
portTickType lastUpdateTime;
VtolPathFollowerSettingsConnectCallback(SettingsUpdatedCb);
PathDesiredConnectCallback(SettingsUpdatedCb);
AccessoryDesiredConnectCallback(accessoryUpdated);
VtolPathFollowerSettingsGet(&vtolpathfollowerSettings);
PathDesiredGet(&pathDesired);
// Main task loop
lastUpdateTime = xTaskGetTickCount();
@ -186,19 +183,13 @@ static void vtolPathFollowerTask(void *parameters)
// FlightMode is PathPlanner and PathDesired.Mode is Endpoint or Path
SystemSettingsGet(&systemSettings);
if ( (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_VTOL) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_QUADP) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_QUADP) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_QUADX) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXA) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXAX) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXACOAX) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTO) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTOV) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTOCOAXP) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_TRI) )
{
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_WARNING);
if ((systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_VTOL) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_QUADP)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_QUADP) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_QUADX)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXA) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXAX)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXACOAX) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTO)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTOV) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTOCOAXP)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_TRI)) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
vTaskDelay(1000);
continue;
}
@ -211,24 +202,26 @@ static void vtolPathFollowerTask(void *parameters)
FlightStatusGet(&flightStatus);
PathStatusGet(&pathStatus);
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
// Check the combinations of flightmode and pathdesired mode
switch(flightStatus.FlightMode) {
switch (flightStatus.FlightMode) {
case FLIGHTSTATUS_FLIGHTMODE_LAND:
case FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD:
case FLIGHTSTATUS_FLIGHTMODE_RETURNTOBASE:
if (pathDesired.Mode == PATHDESIRED_MODE_FLYENDPOINT) {
updateEndpointVelocity();
updateVtolDesiredAttitude(false);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_OK);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
} else {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_ERROR);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_ERROR);
}
break;
case FLIGHTSTATUS_FLIGHTMODE_PATHPLANNER:
pathStatus.UID = pathDesired.UID;
pathStatus.Status = PATHSTATUS_STATUS_INPROGRESS;
switch(pathDesired.Mode) {
switch (pathDesired.Mode) {
// TODO: Make updateVtolDesiredAttitude and velocity report success and update PATHSTATUS_STATUS accordingly
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_FLYVECTOR:
@ -236,18 +229,18 @@ static void vtolPathFollowerTask(void *parameters)
case PATHDESIRED_MODE_FLYCIRCLELEFT:
updatePathVelocity();
updateVtolDesiredAttitude(false);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_OK);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
break;
case PATHDESIRED_MODE_FIXEDATTITUDE:
updateFixedAttitude(pathDesired.ModeParameters);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_OK);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
break;
case PATHDESIRED_MODE_DISARMALARM:
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_CRITICAL);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
break;
default:
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_ERROR);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_ERROR);
break;
}
PathStatusSet(&pathStatus);
@ -258,7 +251,7 @@ static void vtolPathFollowerTask(void *parameters)
updateVtolDesiredAttitude(true);
updatePOIBearing();
} else {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_ERROR);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_ERROR);
}
break;
default:
@ -288,6 +281,12 @@ static void vtolPathFollowerTask(void *parameters)
*/
static void updatePOIBearing()
{
const float DEADBAND_HIGH = 0.10;
const float DEADBAND_LOW = -0.10;
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
PositionActualData positionActual;
PositionActualGet(&positionActual);
CameraDesiredData cameraDesired;
@ -296,41 +295,73 @@ static void updatePOIBearing()
StabilizationDesiredGet(&stabDesired);
PoiLocationData poi;
PoiLocationGet(&poi);
//use poi here
//HomeLocationData poi;
//HomeLocationGet (&poi);
float dLoc[3];
float yaw=0;
float elevation=0;
float yaw = 0;
float elevation = 0;
dLoc[0]=positionActual.North-poi.North;
dLoc[1]=positionActual.East-poi.East;
dLoc[2]=positionActual.Down-poi.Down;
dLoc[0] = positionActual.North - poi.North;
dLoc[1] = positionActual.East - poi.East;
dLoc[2] = positionActual.Down - poi.Down;
if(dLoc[1]<0)
yaw=RAD2DEG(atan2f(dLoc[1],dLoc[0]))+180;
else
yaw=RAD2DEG(atan2f(dLoc[1],dLoc[0]))-180;
if (dLoc[1] < 0) {
yaw = RAD2DEG(atan2f(dLoc[1],dLoc[0])) + 180;
} else {
yaw = RAD2DEG(atan2f(dLoc[1],dLoc[0])) - 180;
}
// distance
float distance = sqrtf(powf(dLoc[0],2)+powf(dLoc[1],2));
float distance = sqrtf(powf(dLoc[0], 2) + powf(dLoc[1], 2));
//not above
if(distance!=0) {
//You can feed this into camerastabilization
elevation=RAD2DEG(atan2f(dLoc[2],distance));
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
float changeRadius = 0;
// Move closer or further, radially
if (manualControlData.Pitch > DEADBAND_HIGH) {
changeRadius = (manualControlData.Pitch - DEADBAND_HIGH) * dT * 100.0f;
} else if (manualControlData.Pitch < DEADBAND_LOW) {
changeRadius = (manualControlData.Pitch - DEADBAND_LOW) * dT * 100.0f;
}
stabDesired.Yaw=yaw;
// move along circular path
float pathAngle = 0;
if (manualControlData.Roll > DEADBAND_HIGH) {
pathAngle = -(manualControlData.Roll - DEADBAND_HIGH) * dT * 300.0f;
} else if (manualControlData.Roll < DEADBAND_LOW) {
pathAngle = -(manualControlData.Roll - DEADBAND_LOW) * dT * 300.0f;
} else if (manualControlData.Roll >= DEADBAND_LOW && manualControlData.Roll <= DEADBAND_HIGH) {
// change radius only when not circling
poiRadius = distance + changeRadius;
}
// don't try to move any closer
if (poiRadius >= 3.0f || changeRadius > 0) {
if (pathAngle != 0 || changeRadius != 0) {
pathDesired.End[PATHDESIRED_END_NORTH] = poi.North + (poiRadius * cosf((pathAngle + yaw - 180.0f) * DEG2RAD));
pathDesired.End[PATHDESIRED_END_EAST] = poi.East + (poiRadius * sinf((pathAngle + yaw - 180.0f) * DEG2RAD));
pathDesired.StartingVelocity = 1;
pathDesired.EndingVelocity = 0;
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
PathDesiredSet(&pathDesired);
}
}
//not above
if (distance >= 3.0f) {
//You can feed this into camerastabilization
elevation = RAD2DEG(atan2f(dLoc[2],distance));
stabDesired.Yaw = yaw + (pathAngle / 2.0f);
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
cameraDesired.Yaw=yaw;
cameraDesired.PitchOrServo2=elevation;
//cameraDesired.Yaw=yaw;
//cameraDesired.PitchOrServo2=elevation;
CameraDesiredSet(&cameraDesired);
StabilizationDesiredSet(&stabDesired);
}
}
/**
* Compute desired velocity from the current position and path
*
@ -342,10 +373,13 @@ static void updatePathVelocity()
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
float downCommand;
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
PositionActualData positionActual;
PositionActualGet(&positionActual);
float cur[3] = {positionActual.North, positionActual.East, positionActual.Down};
float cur[3] =
{ positionActual.North, positionActual.East, positionActual.Down };
struct path_status progress;
path_progress(pathDesired.Start, pathDesired.End, cur, &progress, pathDesired.Mode);
@ -360,17 +394,16 @@ static void updatePathVelocity()
break;
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_DRIVEENDPOINT:
groundspeed = pathDesired.EndingVelocity - pathDesired.EndingVelocity *
bound(progress.fractional_progress,0,1);
if(progress.fractional_progress > 1)
groundspeed = pathDesired.EndingVelocity - pathDesired.EndingVelocity * bound(progress.fractional_progress, 0, 1);
if (progress.fractional_progress > 1)
groundspeed = 0;
break;
case PATHDESIRED_MODE_FLYVECTOR:
case PATHDESIRED_MODE_DRIVEVECTOR:
default:
groundspeed = pathDesired.StartingVelocity + (pathDesired.EndingVelocity - pathDesired.StartingVelocity) *
bound(progress.fractional_progress,0,1);
if(progress.fractional_progress > 1)
groundspeed = pathDesired.StartingVelocity
+ (pathDesired.EndingVelocity - pathDesired.StartingVelocity) * bound(progress.fractional_progress, 0, 1);
if (progress.fractional_progress > 1)
groundspeed = 0;
break;
}
@ -380,28 +413,25 @@ static void updatePathVelocity()
velocityDesired.East = progress.path_direction[1] * groundspeed;
float error_speed = progress.error * vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_KP];
float correction_velocity[2] = {progress.correction_direction[0] * error_speed,
progress.correction_direction[1] * error_speed};
float correction_velocity[2] =
{ progress.correction_direction[0] * error_speed, progress.correction_direction[1] * error_speed };
float total_vel = sqrtf(powf(correction_velocity[0],2) + powf(correction_velocity[1],2));
float total_vel = sqrtf(powf(correction_velocity[0], 2) + powf(correction_velocity[1], 2));
float scale = 1;
if(total_vel > vtolpathfollowerSettings.HorizontalVelMax)
if (total_vel > vtolpathfollowerSettings.HorizontalVelMax)
scale = vtolpathfollowerSettings.HorizontalVelMax / total_vel;
velocityDesired.North += progress.correction_direction[0] * error_speed * scale;
velocityDesired.East += progress.correction_direction[1] * error_speed * scale;
float altitudeSetpoint = pathDesired.Start[2] + (pathDesired.End[2] - pathDesired.Start[2]) *
bound(progress.fractional_progress,0,1);
float altitudeSetpoint = pathDesired.Start[2] + (pathDesired.End[2] - pathDesired.Start[2]) * bound(progress.fractional_progress, 0, 1);
float downError = altitudeSetpoint - positionActual.Down;
downPosIntegral = bound(downPosIntegral + downError * dT * vtolpathfollowerSettings.VerticalPosPI[VTOLPATHFOLLOWERSETTINGS_VERTICALPOSPI_KI],
-vtolpathfollowerSettings.VerticalPosPI[VTOLPATHFOLLOWERSETTINGS_VERTICALPOSPI_ILIMIT],
vtolpathfollowerSettings.VerticalPosPI[VTOLPATHFOLLOWERSETTINGS_VERTICALPOSPI_ILIMIT]);
downCommand = (downError * vtolpathfollowerSettings.VerticalPosPI[VTOLPATHFOLLOWERSETTINGS_VERTICALPOSPI_KP] + downPosIntegral);
velocityDesired.Down = bound(downCommand,
-vtolpathfollowerSettings.VerticalVelMax,
vtolpathfollowerSettings.VerticalVelMax);
velocityDesired.Down = bound(downCommand, -vtolpathfollowerSettings.VerticalVelMax, vtolpathfollowerSettings.VerticalVelMax);
// update pathstatus
pathStatus.error = progress.error;
@ -420,6 +450,9 @@ void updateEndpointVelocity()
{
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
PositionActualData positionActual;
VelocityDesiredData velocityDesired;
@ -450,12 +483,12 @@ void updateEndpointVelocity()
HomeLocationGet(&homeLocation);
float lat = homeLocation.Latitude / 10.0e6f * DEG2RAD;
float alt = homeLocation.Altitude;
float T[3] = { alt+6.378137E6f,
cosf(lat)*(alt+6.378137E6f),
-1.0f};
float NED[3] = {T[0] * ((gpsPosition.Latitude - homeLocation.Latitude) / 10.0e6f * DEG2RAD),
T[1] * ((gpsPosition.Longitude - homeLocation.Longitude) / 10.0e6f * DEG2RAD),
T[2] * ((gpsPosition.Altitude + gpsPosition.GeoidSeparation - homeLocation.Altitude))};
float T[3] =
{ alt + 6.378137E6f, cosf(lat) * (alt + 6.378137E6f), -1.0f };
float NED[3] =
{ T[0] * ((gpsPosition.Latitude - homeLocation.Latitude) / 10.0e6f * DEG2RAD), T[1]
* ((gpsPosition.Longitude - homeLocation.Longitude) / 10.0e6f * DEG2RAD), T[2]
* ((gpsPosition.Altitude + gpsPosition.GeoidSeparation - homeLocation.Altitude)) };
northPos = NED[0];
eastPos = NED[1];
@ -472,20 +505,18 @@ void updateEndpointVelocity()
northPosIntegral = bound(northPosIntegral + northError * dT * vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_KI],
-vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_ILIMIT],
vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_ILIMIT]);
northCommand = (northError * vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_KP] +
northPosIntegral);
northCommand = (northError * vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_KP] + northPosIntegral);
eastError = pathDesired.End[PATHDESIRED_END_EAST] - eastPos;
eastPosIntegral = bound(eastPosIntegral + eastError * dT * vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_KI],
-vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_ILIMIT],
vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_ILIMIT]);
eastCommand = (eastError * vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_KP] +
eastPosIntegral);
eastCommand = (eastError * vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_KP] + eastPosIntegral);
// Limit the maximum velocity
float total_vel = sqrtf(powf(northCommand,2) + powf(eastCommand,2));
float total_vel = sqrtf(powf(northCommand, 2) + powf(eastCommand, 2));
float scale = 1;
if(total_vel > vtolpathfollowerSettings.HorizontalVelMax)
if (total_vel > vtolpathfollowerSettings.HorizontalVelMax)
scale = vtolpathfollowerSettings.HorizontalVelMax / total_vel;
velocityDesired.North = northCommand * scale;
@ -496,9 +527,7 @@ void updateEndpointVelocity()
-vtolpathfollowerSettings.VerticalPosPI[VTOLPATHFOLLOWERSETTINGS_VERTICALPOSPI_ILIMIT],
vtolpathfollowerSettings.VerticalPosPI[VTOLPATHFOLLOWERSETTINGS_VERTICALPOSPI_ILIMIT]);
downCommand = (downError * vtolpathfollowerSettings.VerticalPosPI[VTOLPATHFOLLOWERSETTINGS_VERTICALPOSPI_KP] + downPosIntegral);
velocityDesired.Down = bound(downCommand,
-vtolpathfollowerSettings.VerticalVelMax,
vtolpathfollowerSettings.VerticalVelMax);
velocityDesired.Down = bound(downCommand, -vtolpathfollowerSettings.VerticalVelMax, vtolpathfollowerSettings.VerticalVelMax);
VelocityDesiredSet(&velocityDesired);
}
@ -600,20 +629,18 @@ static void updateVtolDesiredAttitude(bool yaw_attitude)
northVelIntegral = bound(northVelIntegral + northError * dT * vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_KI],
-vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_ILIMIT],
vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_ILIMIT]);
northCommand = (northError * vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_KP] +
northVelIntegral -
nedAccel.North * vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_KD] +
velocityDesired.North * vtolpathfollowerSettings.VelocityFeedforward);
northCommand = (northError * vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_KP] + northVelIntegral
- nedAccel.North * vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_KD]
+ velocityDesired.North * vtolpathfollowerSettings.VelocityFeedforward);
// Compute desired east command
eastError = velocityDesired.East - eastVel;
eastVelIntegral = bound(eastVelIntegral + eastError * dT * vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_KI],
-vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_ILIMIT],
vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_ILIMIT]);
eastCommand = (eastError * vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_KP] +
eastVelIntegral -
nedAccel.East * vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_KD] +
velocityDesired.East * vtolpathfollowerSettings.VelocityFeedforward);
eastCommand = (eastError * vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_KP] + eastVelIntegral
- nedAccel.East * vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_KD]
+ velocityDesired.East * vtolpathfollowerSettings.VelocityFeedforward);
// Compute desired down command
downError = velocityDesired.Down - downVel;
@ -622,22 +649,19 @@ static void updateVtolDesiredAttitude(bool yaw_attitude)
downVelIntegral = bound(downVelIntegral + downError * dT * vtolpathfollowerSettings.VerticalVelPID[VTOLPATHFOLLOWERSETTINGS_VERTICALVELPID_KI],
-vtolpathfollowerSettings.VerticalVelPID[VTOLPATHFOLLOWERSETTINGS_VERTICALVELPID_ILIMIT],
vtolpathfollowerSettings.VerticalVelPID[VTOLPATHFOLLOWERSETTINGS_VERTICALVELPID_ILIMIT]);
downCommand = (downError * vtolpathfollowerSettings.VerticalVelPID[VTOLPATHFOLLOWERSETTINGS_VERTICALVELPID_KP] +
downVelIntegral -
nedAccel.Down * vtolpathfollowerSettings.VerticalVelPID[VTOLPATHFOLLOWERSETTINGS_VERTICALVELPID_KD]);
downCommand = (downError * vtolpathfollowerSettings.VerticalVelPID[VTOLPATHFOLLOWERSETTINGS_VERTICALVELPID_KP] + downVelIntegral
- nedAccel.Down * vtolpathfollowerSettings.VerticalVelPID[VTOLPATHFOLLOWERSETTINGS_VERTICALVELPID_KD]);
stabDesired.Throttle = bound(downCommand + throttleOffset, 0, 1);
// Project the north and east command signals into the pitch and roll based on yaw. For this to behave well the
// craft should move similarly for 5 deg roll versus 5 deg pitch
stabDesired.Pitch = bound(-northCommand * cosf(attitudeActual.Yaw * M_PI / 180) +
-eastCommand * sinf(attitudeActual.Yaw * M_PI / 180),
stabDesired.Pitch = bound(-northCommand * cosf(attitudeActual.Yaw * M_PI / 180) + -eastCommand * sinf(attitudeActual.Yaw * M_PI / 180),
-vtolpathfollowerSettings.MaxRollPitch, vtolpathfollowerSettings.MaxRollPitch);
stabDesired.Roll = bound(-northCommand * sinf(attitudeActual.Yaw * M_PI / 180) +
eastCommand * cosf(attitudeActual.Yaw * M_PI / 180),
stabDesired.Roll = bound(-northCommand * sinf(attitudeActual.Yaw * M_PI / 180) + eastCommand * cosf(attitudeActual.Yaw * M_PI / 180),
-vtolpathfollowerSettings.MaxRollPitch, vtolpathfollowerSettings.MaxRollPitch);
if(vtolpathfollowerSettings.ThrottleControl == VTOLPATHFOLLOWERSETTINGS_THROTTLECONTROL_FALSE) {
if (vtolpathfollowerSettings.ThrottleControl == VTOLPATHFOLLOWERSETTINGS_THROTTLECONTROL_FALSE) {
// For now override throttle with manual control. Disable at your risk, quad goes to China.
ManualControlCommandData manualControl;
ManualControlCommandGet(&manualControl);
@ -646,7 +670,7 @@ static void updateVtolDesiredAttitude(bool yaw_attitude)
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
if(yaw_attitude) {
if (yaw_attitude) {
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
} else {
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
@ -675,15 +699,15 @@ static void updateNedAccel()
//rotate avg accels into earth frame and store it
AttitudeActualData attitudeActual;
AttitudeActualGet(&attitudeActual);
q[0]=attitudeActual.q1;
q[1]=attitudeActual.q2;
q[2]=attitudeActual.q3;
q[3]=attitudeActual.q4;
q[0] = attitudeActual.q1;
q[1] = attitudeActual.q2;
q[2] = attitudeActual.q3;
q[3] = attitudeActual.q4;
Quaternion2R(q, Rbe);
for (uint8_t i=0; i<3; i++){
accel_ned[i]=0;
for (uint8_t j=0; j<3; j++)
accel_ned[i] += Rbe[j][i]*accel[j];
for (uint8_t i = 0; i < 3; i++) {
accel_ned[i] = 0;
for (uint8_t j = 0; j < 3; j++)
accel_ned[i] += Rbe[j][i] * accel[j];
}
accel_ned[2] += 9.81f;
@ -711,7 +735,6 @@ static float bound(float val, float min, float max)
static void SettingsUpdatedCb(UAVObjEvent * ev)
{
VtolPathFollowerSettingsGet(&vtolpathfollowerSettings);
PathDesiredGet(&pathDesired);
}
static void accessoryUpdated(UAVObjEvent* ev)
@ -719,20 +742,20 @@ static void accessoryUpdated(UAVObjEvent* ev)
if (ev->obj != AccessoryDesiredHandle())
return;
PositionActualData positionActual;
PositionActualGet(&positionActual);
AccessoryDesiredData accessory;
PoiLearnSettingsData poiLearn;
PoiLearnSettingsGet(&poiLearn);
PoiLocationData poi;
PoiLocationGet(&poi);
if (poiLearn.Input != POILEARNSETTINGS_INPUT_NONE) {
if (AccessoryDesiredInstGet(poiLearn.Input - POILEARNSETTINGS_INPUT_ACCESSORY0, &accessory) == 0) {
if(accessory.AccessoryVal<-0.5f)
{
poi.North=positionActual.North;
poi.East=positionActual.East;
poi.Down=positionActual.Down;
if (accessory.AccessoryVal < -0.5f) {
PositionActualData positionActual;
PositionActualGet(&positionActual);
PoiLocationData poi;
PoiLocationGet(&poi);
poi.North = positionActual.North;
poi.East = positionActual.East;
poi.Down = positionActual.Down;
PoiLocationSet(&poi);
}
}

View File

@ -49,10 +49,11 @@ bool AeroSimRCSimulator::setupProcess()
void AeroSimRCSimulator::setupUdpPorts(const QString &host, int inPort, int outPort)
{
Q_UNUSED(outPort)
if (inSocket->bind(QHostAddress(host), inPort))
if (inSocket->bind(QHostAddress(host), inPort)) {
emit processOutput("Successfully bound to address " + host + ", port " + QString::number(inPort) + "\n");
else
} else {
emit processOutput("Cannot bind to address " + host + ", port " + QString::number(inPort) + "\n");
}
}
void AeroSimRCSimulator::transmitUpdate()
@ -79,20 +80,16 @@ void AeroSimRCSimulator::transmitUpdate()
float yaw = -1;
float throttle = -1;
if(flightStatusData.FlightMode == FlightStatus::FLIGHTMODE_MANUAL)
{
if (flightStatusData.FlightMode == FlightStatus::FLIGHTMODE_MANUAL) {
// Read joystick input
if(flightStatusData.Armed == FlightStatus::ARMED_ARMED)
{
if (flightStatusData.Armed == FlightStatus::ARMED_ARMED) {
// Note: Pitch sign is reversed in FG ?
roll = manCtrlData.Roll;
pitch = -manCtrlData.Pitch;
yaw = manCtrlData.Yaw;
throttle = manCtrlData.Throttle;
}
}
else
{
} else {
// Read ActuatorDesired from autopilot
actData = actDesired->getData();
@ -101,12 +98,13 @@ void AeroSimRCSimulator::transmitUpdate()
yaw = actData.Yaw;
throttle = (actData.Throttle*2.0)-1.0;
}
channels[0]=roll;
channels[1]=pitch;
if(throttle<-1)
throttle=-1;
channels[2]=throttle;
channels[3]=yaw;
channels[0] = roll;
channels[1] = pitch;
if(throttle < -1) {
throttle = -1;
}
channels[2] = throttle;
channels[3] = yaw;
// read flight status
quint8 armed;
@ -120,8 +118,9 @@ void AeroSimRCSimulator::transmitUpdate()
QDataStream stream(&data, QIODevice::WriteOnly);
stream.setFloatingPointPrecision(QDataStream::SinglePrecision);
stream << quint32(0x52434D44); // magic header, "RCMD"
for (int i = 0; i < 10; ++i)
for (int i = 0; i < 10; ++i) {
stream << channels[i]; // channels
}
stream << armed << mode; // flight status
stream << udpCounterASrecv; // packet counter
@ -193,10 +192,10 @@ void AeroSimRCSimulator::processUpdate(const QByteArray &data)
memset(&out, 0, sizeof(Output2Hardware));
out.delT=delT;
out.delT = delT;
/*************************************************************************************/
for (int i=0; i< AEROSIM_RCCHANNEL_NUMELEM; i++){
for (int i=0; i< AEROSIM_RCCHANNEL_NUMELEM; i++) {
out.rc_channel[i]=ch[i]; //Elements in rc_channel are between -1 and 1
}
@ -245,22 +244,20 @@ void AeroSimRCSimulator::processUpdate(const QByteArray &data)
out.groundspeed = qSqrt(velX * velX + velY * velY);
/**********************************************************************************************/
out.dstN = posY * 1;
out.dstE = posX * 1;
out.dstD = posZ * -1;
out.dstN = posY;
out.dstE = posX;
out.dstD = -posZ;
out.velNorth = velY * 1;
out.velEast = velX * 1;
out.velDown = velZ * -1;
out.velNorth = velY;
out.velEast = velX;
out.velDown = -velZ;
out.voltage = volt;
out.current = curr;
out.consumption = cons*1000.0;
out.consumption = cons * 1000.0;
updateUAVOs(out);
#ifdef DBG_TIMERS
static int cntRX = 0;
if (cntRX >= 100) {

View File

@ -130,7 +130,7 @@ endif
ifeq ($(DEBUG), YES)
CFLAGS += -DDEBUG
else
CFLAGS += -fdata-sections -ffunction-sections
CFLAGS += -ffunction-sections #-fdata-sections
endif
# Compiler flags to generate dependency files