1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-19 04:52:12 +01:00

Merge remote-tracking branch 'origin/amorale/OP-1750_perf_optimization' into next

This commit is contained in:
Alessio Morale 2015-03-20 22:43:11 +01:00
commit 59325f6292
6 changed files with 626 additions and 535 deletions

View File

@ -33,25 +33,26 @@
#include <math.h>
#include <stdint.h>
#include <pios_math.h>
#include <mathmisc.h>
// constants/macros/typdefs
#define NUMX 13 // number of states, X is the state vector
#define NUMW 9 // number of plant noise inputs, w is disturbance noise vector
#define NUMV 10 // number of measurements, v is the measurement noise vector
#define NUMU 6 // number of deterministic inputs, U is the input vector
#pragma GCC optimize "O3"
// Private functions
void CovariancePrediction(float F[NUMX][NUMX], float G[NUMX][NUMW],
float Q[NUMW], float dT, float P[NUMX][NUMX]);
void SerialUpdate(float H[NUMV][NUMX], float R[NUMV], float Z[NUMV],
float Y[NUMV], float P[NUMX][NUMX], float X[NUMX],
uint16_t SensorsUsed);
void RungeKutta(float X[NUMX], float U[NUMU], float dT);
void StateEq(float X[NUMX], float U[NUMU], float Xdot[NUMX]);
void LinearizeFG(float X[NUMX], float U[NUMU], float F[NUMX][NUMX],
float G[NUMX][NUMW]);
void MeasurementEq(float X[NUMX], float Be[3], float Y[NUMV]);
void LinearizeH(float X[NUMX], float Be[3], float H[NUMV][NUMX]);
static void SerialUpdate(float H[NUMV][NUMX], float R[NUMV], float Z[NUMV],
float Y[NUMV], float P[NUMX][NUMX], float X[NUMX],
uint16_t SensorsUsed);
static void RungeKutta(float X[NUMX], float U[NUMU], float dT);
static void StateEq(float X[NUMX], float U[NUMU], float Xdot[NUMX]);
static void LinearizeFG(float X[NUMX], float U[NUMU], float F[NUMX][NUMX],
float G[NUMX][NUMW]);
static void MeasurementEq(float X[NUMX], float Be[3], float Y[NUMV]);
static void LinearizeH(float X[NUMX], float Be[3], float H[NUMV][NUMX]);
// Private variables
@ -60,29 +61,29 @@ void LinearizeH(float X[NUMX], float Be[3], float H[NUMV][NUMX]);
// LinearizeFG() and LinearizeH():
//
// usage F: usage G: usage H:
// 0123456789abc 012345678 0123456789abc
// -0123456789abc 012345678 0123456789abc
// 0...X......... ......... X............
// 1....X........ ......... .X...........
// 2.....X....... ......... ..X..........
// 3......XXXX... ...XXX... ...X.........
// 4......XXXX... ...XXX... ....X........
// 5......XXXX... ...XXX... .....X.......
// 6.......XXXXXX XXX...... ......XXXX...
// 7......X.XXXXX XXX...... ......XXXX...
// 8......XX.XXXX XXX...... ......XXXX...
// 9......XXX.XXX XXX...... ..X..........
// a............. ......X..
// b............. .......X.
// c............. ........X
// 6.....ooXXXXXX XXX...... ......XXXX...
// 7.....oXoXXXXX XXX...... ......XXXX...
// 8.....oXXoXXXX XXX...... ......XXXX...
// 9.....oXXXoXXX XXX...... ..X..........
// a............. ......Xoo
// b............. ......oXo
// c............. ......ooX
static const int8_t FrowMin[NUMX] = { 3, 4, 5, 6, 6, 6, 7, 6, 6, 6, 13, 13, 13 };
static const int8_t FrowMax[NUMX] = { 3, 4, 5, 9, 9, 9, 12, 12, 12, 12, -1, -1, -1 };
static int8_t FrowMin[NUMX] = { 3, 4, 5, 6, 6, 6, 5, 5, 5, 5, 13, 13, 13 };
static int8_t FrowMax[NUMX] = { 3, 4, 5, 9, 9, 9, 12, 12, 12, 12, -1, -1, -1 };
static const int8_t GrowMin[NUMX] = { 9, 9, 9, 3, 3, 3, 0, 0, 0, 0, 6, 7, 8 };
static const int8_t GrowMax[NUMX] = { -1, -1, -1, 5, 5, 5, 2, 2, 2, 2, 6, 7, 8 };
static int8_t GrowMin[NUMX] = { 9, 9, 9, 3, 3, 3, 0, 0, 0, 0, 6, 7, 8 };
static int8_t GrowMax[NUMX] = { -1, -1, -1, 5, 5, 5, 2, 2, 2, 2, 6, 7, 8 };
static const int8_t HrowMin[NUMV] = { 0, 1, 2, 3, 4, 5, 6, 6, 6, 2 };
static const int8_t HrowMax[NUMV] = { 0, 1, 2, 3, 4, 5, 9, 9, 9, 2 };
static int8_t HrowMin[NUMV] = { 0, 1, 2, 3, 4, 5, 6, 6, 6, 2 };
static int8_t HrowMax[NUMV] = { 0, 1, 2, 3, 4, 5, 9, 9, 9, 2 };
static struct EKFData {
// linearized system matrices
@ -182,8 +183,8 @@ void INSGetP(float PDiag[NUMX])
uint8_t i;
// retrieve diagonal elements (aka state variance)
for (i = 0; i < NUMX; i++) {
if (PDiag != 0) {
if (PDiag != 0) {
for (i = 0; i < NUMX; i++) {
PDiag[i] = ekf.P[i][i];
}
}
@ -289,7 +290,7 @@ void INSSetMagNorth(float B[3])
void INSStatePrediction(float gyro_data[3], float accel_data[3], float dT)
{
float U[6];
float qmag;
float invqmag;
// rate gyro inputs in units of rad/s
U[0] = gyro_data[0];
@ -304,11 +305,11 @@ void INSStatePrediction(float gyro_data[3], float accel_data[3], float dT)
// EKF prediction step
LinearizeFG(ekf.X, U, ekf.F, ekf.G);
RungeKutta(ekf.X, U, dT);
qmag = sqrtf(ekf.X[6] * ekf.X[6] + ekf.X[7] * ekf.X[7] + ekf.X[8] * ekf.X[8] + ekf.X[9] * ekf.X[9]);
ekf.X[6] /= qmag;
ekf.X[7] /= qmag;
ekf.X[8] /= qmag;
ekf.X[9] /= qmag;
invqmag = fast_invsqrtf(ekf.X[6] * ekf.X[6] + ekf.X[7] * ekf.X[7] + ekf.X[8] * ekf.X[8] + ekf.X[9] * ekf.X[9]);
ekf.X[6] *= invqmag;
ekf.X[7] *= invqmag;
ekf.X[8] *= invqmag;
ekf.X[9] *= invqmag;
// CovariancePrediction(ekf.F,ekf.G,ekf.Q,dT,ekf.P);
// Update Nav solution structure
@ -373,8 +374,8 @@ void VelBaroCorrection(float Vel[3], float BaroAlt)
void INSCorrection(float mag_data[3], float Pos[3], float Vel[3],
float BaroAlt, uint16_t SensorsUsed)
{
float Z[10], Y[10];
float Bmag, qmag;
float Z[10] = { 0 };
float Y[10] = { 0 };
// GPS Position in meters and in local NED frame
Z[0] = Pos[0];
@ -385,14 +386,15 @@ void INSCorrection(float mag_data[3], float Pos[3], float Vel[3],
Z[3] = Vel[0];
Z[4] = Vel[1];
Z[5] = Vel[2];
// magnetometer data in any units (use unit vector) and in body frame
Bmag =
sqrtf(mag_data[0] * mag_data[0] + mag_data[1] * mag_data[1] +
mag_data[2] * mag_data[2]);
Z[6] = mag_data[0] / Bmag;
Z[7] = mag_data[1] / Bmag;
Z[8] = mag_data[2] / Bmag;
if (SensorsUsed & MAG_SENSORS) {
float invBmag = fast_invsqrtf(mag_data[0] * mag_data[0] + mag_data[1] * mag_data[1] + mag_data[2] * mag_data[2]);
Z[6] = mag_data[0] * invBmag;
Z[7] = mag_data[1] * invBmag;
Z[8] = mag_data[2] * invBmag;
}
// barometric altimeter in meters and in local NED frame
Z[9] = BaroAlt;
@ -401,12 +403,12 @@ void INSCorrection(float mag_data[3], float Pos[3], float Vel[3],
LinearizeH(ekf.X, ekf.Be, ekf.H);
MeasurementEq(ekf.X, ekf.Be, Y);
SerialUpdate(ekf.H, ekf.R, Z, Y, ekf.P, ekf.X, SensorsUsed);
qmag = sqrtf(ekf.X[6] * ekf.X[6] + ekf.X[7] * ekf.X[7] + ekf.X[8] * ekf.X[8] + ekf.X[9] * ekf.X[9]);
ekf.X[6] /= qmag;
ekf.X[7] /= qmag;
ekf.X[8] /= qmag;
ekf.X[9] /= qmag;
float invqmag = fast_invsqrtf(ekf.X[6] * ekf.X[6] + ekf.X[7] * ekf.X[7] + ekf.X[8] * ekf.X[8] + ekf.X[9] * ekf.X[9]);
ekf.X[6] *= invqmag;
ekf.X[7] *= invqmag;
ekf.X[8] *= invqmag;
ekf.X[9] *= invqmag;
// Update Nav solution structure
Nav.Pos[0] = ekf.X[0];
Nav.Pos[1] = ekf.X[1];
@ -434,60 +436,78 @@ void INSCorrection(float mag_data[3], float Pos[3], float Vel[3],
// The first Method is very specific to this implementation
// ************************************************
__attribute__((optimize("O3")))
void CovariancePrediction(float F[NUMX][NUMX], float G[NUMX][NUMW],
float Q[NUMW], float dT, float P[NUMX][NUMX])
{
// Pnew = (I+F*T)*P*(I+F*T)' + (T^2)*G*Q*G' = (T^2)[(P/T + F*P)*(I/T + F') + G*Q*G')]
float dT1 = 1.0f / dT; // multiplication is faster than division on fpu.
float dTsq = dT * dT;
const float dT1 = 1.0f / dT; // multiplication is faster than division on fpu.
const float dTsq = dT * dT;
float Dummy[NUMX][NUMX];
int8_t i;
int8_t k;
for (i = 0; i < NUMX; i++) { // Calculate Dummy = (P/T +F*P)
float *Firow = F[i];
float *Pirow = P[i];
float *Dirow = Dummy[i];
int8_t Fistart = FrowMin[i];
int8_t Fiend = FrowMax[i];
float *Firow = F[i];
float *Pirow = P[i];
float *Dirow = Dummy[i];
const int8_t Fistart = FrowMin[i];
const int8_t Fiend = FrowMax[i];
int8_t j;
for (j = 0; j < NUMX; j++) {
Dirow[j] = Pirow[j] * dT1; // Dummy = P / T ...
int8_t k;
for (k = Fistart; k <= Fiend; k++) {
}
for (k = Fistart; k <= Fiend; k++) {
for (j = 0; j < NUMX; j++) {
Dirow[j] += Firow[k] * P[k][j]; // [] + F * P
}
}
}
for (i = 0; i < NUMX; i++) { // Calculate Pnew = (T^2) [Dummy/T + Dummy*F' + G*Qw*G']
float *Dirow = Dummy[i];
float *Girow = G[i];
float *Pirow = P[i];
int8_t Gistart = GrowMin[i];
int8_t Giend = GrowMax[i];
float *Dirow = Dummy[i];
float *Girow = G[i];
float *Pirow = P[i];
const int8_t Gistart = GrowMin[i];
const int8_t Giend = GrowMax[i];
int8_t j;
for (j = i; j < NUMX; j++) { // Use symmetry, ie only find upper triangular
float Ptmp = Dirow[j] * dT1; // Pnew = Dummy / T ...
{
float *Fjrow = F[j];
int8_t Fjstart = FrowMin[j];
int8_t Fjend = FrowMax[j];
int8_t k;
for (k = Fjstart; k <= Fjend; k++) {
Ptmp += Dirow[k] * Fjrow[k]; // [] + Dummy*F' ...
}
for (j = i; j < NUMX; j++) { // Use symmetry, ie only find upper triangular
float Ptmp = Dirow[j] * dT1; // Pnew = Dummy / T ...
const float *Fjrow = F[j];
int8_t Fjstart = FrowMin[j];
int8_t Fjend = FrowMax[j];
k = Fjstart;
while (k <= Fjend - 3) {
Ptmp += Dirow[k] * Fjrow[k]; // [] + Dummy*F' ...
Ptmp += Dirow[k + 1] * Fjrow[k + 1];
Ptmp += Dirow[k + 2] * Fjrow[k + 2];
Ptmp += Dirow[k + 3] * Fjrow[k + 3];
k += 4;
}
while (k <= Fjend) {
Ptmp += Dirow[k] * Fjrow[k];
k++;
}
{
float *Gjrow = G[j];
int8_t Gjstart = MAX(Gistart, GrowMin[j]);
int8_t Gjend = MIN(Giend, GrowMax[j]);
int8_t k;
for (k = Gjstart; k <= Gjend; k++) {
Ptmp += Q[k] * Girow[k] * Gjrow[k]; // [] + G*Q*G' ...
float *Gjrow = G[j];
const int8_t Gjstart = MAX(Gistart, GrowMin[j]);
const int8_t Gjend = MIN(Giend, GrowMax[j]);
k = Gjstart;
while (k <= Gjend - 2) {
Ptmp += Q[k] * Girow[k] * Gjrow[k]; // [] + G*Q*G' ...
Ptmp += Q[k + 1] * Girow[k + 1] * Gjrow[k + 1];
Ptmp += Q[k + 2] * Girow[k + 2] * Gjrow[k + 2];
k += 3;
}
if (k <= Gjend) {
Ptmp += Q[k] * Girow[k] * Gjrow[k];
if (k <= Gjend - 1) {
Ptmp += Q[k + 1] * Girow[k + 1] * Gjrow[k + 1];
}
}
@ -511,7 +531,6 @@ void CovariancePrediction(float F[NUMX][NUMX], float G[NUMX][NUMW],
// The SensorsUsed variable is a bitwise mask indicating which sensors
// should be used in the update.
// ************************************************
void SerialUpdate(float H[NUMV][NUMX], float R[NUMV], float Z[NUMV],
float Y[NUMV], float P[NUMX][NUMX], float X[NUMX],
uint16_t SensorsUsed)
@ -524,7 +543,10 @@ void SerialUpdate(float H[NUMV][NUMX], float R[NUMV], float Z[NUMV],
if (SensorsUsed & (0x01 << m)) { // use this sensor for update
for (j = 0; j < NUMX; j++) { // Find Hp = H*P
HP[j] = 0;
for (k = HrowMin[m]; k <= HrowMax[m]; k++) {
}
for (k = HrowMin[m]; k <= HrowMax[m]; k++) {
for (j = 0; j < NUMX; j++) { // Find Hp = H*P
HP[j] += H[m][k] * P[k][j];
}
}
@ -532,14 +554,13 @@ void SerialUpdate(float H[NUMV][NUMX], float R[NUMV], float Z[NUMV],
for (k = HrowMin[m]; k <= HrowMax[m]; k++) {
HPHR += HP[k] * H[m][k];
}
float invHPHR = 1.0f / HPHR;
for (k = 0; k < NUMX; k++) {
Km[k] = HP[k] / HPHR; // find K = HP/HPHR
Km[k] = HP[k] * invHPHR; // find K = HP/HPHR
}
for (i = 0; i < NUMX; i++) { // Find P(m)= P(m-1) + K*HP
for (j = i; j < NUMX; j++) {
P[i][j] = P[j][i] =
P[i][j] - Km[i] * HP[j];
P[i][j] = P[j][i] = P[i][j] - Km[i] * HP[j];
}
}
@ -560,8 +581,8 @@ void SerialUpdate(float H[NUMV][NUMX], float R[NUMV], float Z[NUMV],
void RungeKutta(float X[NUMX], float U[NUMU], float dT)
{
float dT2 =
dT / 2.0f, K1[NUMX], K2[NUMX], K3[NUMX], K4[NUMX], Xlast[NUMX];
const float dT2 = dT / 2.0f;
float K1[NUMX], K2[NUMX], K3[NUMX], K4[NUMX], Xlast[NUMX];
uint8_t i;
for (i = 0; i < NUMX; i++) {
@ -585,7 +606,7 @@ void RungeKutta(float X[NUMX], float U[NUMU], float dT)
for (i = 0; i < NUMX; i++) {
X[i] =
Xlast[i] + dT * (K1[i] + 2.0f * K2[i] + 2.0f * K3[i] +
K4[i]) / 6.0f;
K4[i]) * (1.0f / 6.0f);
}
}
@ -608,7 +629,7 @@ void RungeKutta(float X[NUMX], float U[NUMU], float dT)
// H is output of LinearizeH(), all elements not set should be zero
// ************************************************
void StateEq(float X[NUMX], float U[NUMU], float Xdot[NUMX])
static void StateEq(float X[NUMX], float U[NUMU], float Xdot[NUMX])
{
float ax, ay, az, wx, wy, wz, q0, q1, q2, q3;

View File

@ -108,8 +108,8 @@ static void radioRxTask(void *parameters);
static void PPMInputTask(void *parameters);
static int32_t UAVTalkSendHandler(uint8_t *buf, int32_t length);
static int32_t RadioSendHandler(uint8_t *buf, int32_t length);
static void ProcessTelemetryStream(UAVTalkConnection inConnectionHandle, UAVTalkConnection outConnectionHandle, uint8_t rxbyte);
static void ProcessRadioStream(UAVTalkConnection inConnectionHandle, UAVTalkConnection outConnectionHandle, uint8_t rxbyte);
static void ProcessTelemetryStream(UAVTalkConnection inConnectionHandle, UAVTalkConnection outConnectionHandle, uint8_t *rxbuffer, uint8_t count);
static void ProcessRadioStream(UAVTalkConnection inConnectionHandle, UAVTalkConnection outConnectionHandle, uint8_t *rxbuffer, uint8_t count);
static void objectPersistenceUpdatedCb(UAVObjEvent *objEv);
static void registerObject(UAVObjHandle obj);
@ -403,14 +403,12 @@ static void radioRxTask(__attribute__((unused)) void *parameters)
PIOS_WDG_UpdateFlag(PIOS_WDG_RADIORX);
#endif
if (PIOS_COM_RADIO) {
uint8_t serial_data[1];
uint8_t serial_data[16];
uint16_t bytes_to_process = PIOS_COM_ReceiveBuffer(PIOS_COM_RADIO, serial_data, sizeof(serial_data), MAX_PORT_DELAY);
if (bytes_to_process > 0) {
if (data->parseUAVTalk) {
// Pass the data through the UAVTalk parser.
for (uint8_t i = 0; i < bytes_to_process; i++) {
ProcessRadioStream(data->radioUAVTalkCon, data->telemUAVTalkCon, serial_data[i]);
}
ProcessRadioStream(data->radioUAVTalkCon, data->telemUAVTalkCon, serial_data, bytes_to_process);
} else if (PIOS_COM_TELEMETRY) {
// Send the data straight to the telemetry port.
// Following call can fail with -2 error code (buffer full) or -3 error code (could not acquire send mutex)
@ -448,12 +446,10 @@ static void telemetryRxTask(__attribute__((unused)) void *parameters)
}
#endif /* PIOS_INCLUDE_USB */
if (inputPort) {
uint8_t serial_data[1];
uint8_t serial_data[16];
uint16_t bytes_to_process = PIOS_COM_ReceiveBuffer(inputPort, serial_data, sizeof(serial_data), MAX_PORT_DELAY);
if (bytes_to_process > 0) {
for (uint8_t i = 0; i < bytes_to_process; i++) {
ProcessTelemetryStream(data->telemUAVTalkCon, data->radioUAVTalkCon, serial_data[i]);
}
ProcessTelemetryStream(data->telemUAVTalkCon, data->radioUAVTalkCon, serial_data, bytes_to_process);
}
} else {
vTaskDelay(5);
@ -597,42 +593,45 @@ static int32_t RadioSendHandler(uint8_t *buf, int32_t length)
* @param[in] outConnectionHandle The UAVTalk connection handle on the radio port.
* @param[in] rxbyte The received byte.
*/
static void ProcessTelemetryStream(UAVTalkConnection inConnectionHandle, UAVTalkConnection outConnectionHandle, uint8_t rxbyte)
static void ProcessTelemetryStream(UAVTalkConnection inConnectionHandle, UAVTalkConnection outConnectionHandle, uint8_t *rxbuffer, uint8_t length)
{
// Keep reading until we receive a completed packet.
UAVTalkRxState state = UAVTalkProcessInputStreamQuiet(inConnectionHandle, rxbyte);
uint8_t position = 0;
if (state == UAVTALK_STATE_COMPLETE) {
// We only want to unpack certain telemetry objects
uint32_t objId = UAVTalkGetPacketObjId(inConnectionHandle);
switch (objId) {
case OPLINKSTATUS_OBJID:
case OPLINKSETTINGS_OBJID:
case OPLINKRECEIVER_OBJID:
case MetaObjectId(OPLINKSTATUS_OBJID):
case MetaObjectId(OPLINKSETTINGS_OBJID):
case MetaObjectId(OPLINKRECEIVER_OBJID):
UAVTalkReceiveObject(inConnectionHandle);
break;
case OBJECTPERSISTENCE_OBJID:
case MetaObjectId(OBJECTPERSISTENCE_OBJID):
// receive object locally
// some objects will send back a response to telemetry
// FIXME:
// OPLM will ack or nack all objects requests and acked object sends
// Receiver will probably also ack / nack the same messages
// This has some consequences like :
// Second ack/nack will not match an open transaction or will apply to wrong transaction
// Question : how does GCS handle receiving the same object twice
// The OBJECTPERSISTENCE logic can be broken too if for example OPLM nacks and then REVO acks...
UAVTalkReceiveObject(inConnectionHandle);
// relay packet to remote modem
UAVTalkRelayPacket(inConnectionHandle, outConnectionHandle);
break;
default:
// all other packets are relayed to the remote modem
UAVTalkRelayPacket(inConnectionHandle, outConnectionHandle);
break;
// Keep reading until we receive a completed packet.
while (position < length) {
UAVTalkRxState state = UAVTalkProcessInputStreamQuiet(inConnectionHandle, rxbuffer, length, &position);
if (state == UAVTALK_STATE_COMPLETE) {
// We only want to unpack certain telemetry objects
uint32_t objId = UAVTalkGetPacketObjId(inConnectionHandle);
switch (objId) {
case OPLINKSTATUS_OBJID:
case OPLINKSETTINGS_OBJID:
case OPLINKRECEIVER_OBJID:
case MetaObjectId(OPLINKSTATUS_OBJID):
case MetaObjectId(OPLINKSETTINGS_OBJID):
case MetaObjectId(OPLINKRECEIVER_OBJID):
UAVTalkReceiveObject(inConnectionHandle);
break;
case OBJECTPERSISTENCE_OBJID:
case MetaObjectId(OBJECTPERSISTENCE_OBJID):
// receive object locally
// some objects will send back a response to telemetry
// FIXME:
// OPLM will ack or nack all objects requests and acked object sends
// Receiver will probably also ack / nack the same messages
// This has some consequences like :
// Second ack/nack will not match an open transaction or will apply to wrong transaction
// Question : how does GCS handle receiving the same object twice
// The OBJECTPERSISTENCE logic can be broken too if for example OPLM nacks and then REVO acks...
UAVTalkReceiveObject(inConnectionHandle);
// relay packet to remote modem
UAVTalkRelayPacket(inConnectionHandle, outConnectionHandle);
break;
default:
// all other packets are relayed to the remote modem
UAVTalkRelayPacket(inConnectionHandle, outConnectionHandle);
break;
}
}
}
}
@ -642,39 +641,43 @@ static void ProcessTelemetryStream(UAVTalkConnection inConnectionHandle, UAVTalk
*
* @param[in] inConnectionHandle The UAVTalk connection handle on the radio port.
* @param[in] outConnectionHandle The UAVTalk connection handle on the telemetry port.
* @param[in] rxbyte The received byte.
* @param[in] rxbuffer The received buffer.
* @param[in] length buffer length
*/
static void ProcessRadioStream(UAVTalkConnection inConnectionHandle, UAVTalkConnection outConnectionHandle, uint8_t rxbyte)
static void ProcessRadioStream(UAVTalkConnection inConnectionHandle, UAVTalkConnection outConnectionHandle, uint8_t *rxbuffer, uint8_t length)
{
// Keep reading until we receive a completed packet.
UAVTalkRxState state = UAVTalkProcessInputStreamQuiet(inConnectionHandle, rxbyte);
uint8_t position = 0;
if (state == UAVTALK_STATE_COMPLETE) {
// We only want to unpack certain objects from the remote modem
// Similarly we only want to relay certain objects to the telemetry port
uint32_t objId = UAVTalkGetPacketObjId(inConnectionHandle);
switch (objId) {
case OPLINKSTATUS_OBJID:
case OPLINKSETTINGS_OBJID:
case MetaObjectId(OPLINKSTATUS_OBJID):
case MetaObjectId(OPLINKSETTINGS_OBJID):
// Ignore object...
// These objects are shadowed by the modem and are not transmitted to the telemetry port
// - OPLINKSTATUS_OBJID : ground station will receive the OPLM link status instead
// - OPLINKSETTINGS_OBJID : ground station will read and write the OPLM settings instead
break;
case OPLINKRECEIVER_OBJID:
case MetaObjectId(OPLINKRECEIVER_OBJID):
// Receive object locally
// These objects are received by the modem and are not transmitted to the telemetry port
// - OPLINKRECEIVER_OBJID : not sure why
// some objects will send back a response to the remote modem
UAVTalkReceiveObject(inConnectionHandle);
break;
default:
// all other packets are relayed to the telemetry port
UAVTalkRelayPacket(inConnectionHandle, outConnectionHandle);
break;
// Keep reading until we receive a completed packet.
while (position < length) {
UAVTalkRxState state = UAVTalkProcessInputStreamQuiet(inConnectionHandle, rxbuffer, length, &position);
if (state == UAVTALK_STATE_COMPLETE) {
// We only want to unpack certain objects from the remote modem
// Similarly we only want to relay certain objects to the telemetry port
uint32_t objId = UAVTalkGetPacketObjId(inConnectionHandle);
switch (objId) {
case OPLINKSTATUS_OBJID:
case OPLINKSETTINGS_OBJID:
case MetaObjectId(OPLINKSTATUS_OBJID):
case MetaObjectId(OPLINKSETTINGS_OBJID):
// Ignore object...
// These objects are shadowed by the modem and are not transmitted to the telemetry port
// - OPLINKSTATUS_OBJID : ground station will receive the OPLM link status instead
// - OPLINKSETTINGS_OBJID : ground station will read and write the OPLM settings instead
break;
case OPLINKRECEIVER_OBJID:
case MetaObjectId(OPLINKRECEIVER_OBJID):
// Receive object locally
// These objects are received by the modem and are not transmitted to the telemetry port
// - OPLINKRECEIVER_OBJID : not sure why
// some objects will send back a response to the remote modem
UAVTalkReceiveObject(inConnectionHandle);
break;
default:
// all other packets are relayed to the telemetry port
UAVTalkRelayPacket(inConnectionHandle, outConnectionHandle);
break;
}
}
}
}

View File

@ -345,7 +345,6 @@ MODULE_INITCALL(StateEstimationInitialize, StateEstimationStart);
*/
static void StateEstimationCb(void)
{
static enum { RUNSTATE_LOAD = 0, RUNSTATE_FILTER = 1, RUNSTATE_SAVE = 2 } runState = RUNSTATE_LOAD;
static filterResult alarm = FILTERRESULT_OK;
static filterResult lastAlarm = FILTERRESULT_UNINITIALISED;
static uint16_t alarmcounter = 0;
@ -361,193 +360,171 @@ static void StateEstimationCb(void)
return;
}
switch (runState) {
case RUNSTATE_LOAD:
alarm = FILTERRESULT_OK;
alarm = FILTERRESULT_OK;
// set alarm to warning if called through timeout
if (updatedSensors == 0) {
if (PIOS_DELAY_DiffuS(last_time) > 1000 * TIMEOUT_MS) {
alarm = FILTERRESULT_WARNING;
}
} else {
last_time = PIOS_DELAY_GetRaw();
// set alarm to warning if called through timeout
if (updatedSensors == 0) {
if (PIOS_DELAY_DiffuS(last_time) > 1000 * TIMEOUT_MS) {
alarm = FILTERRESULT_WARNING;
}
} else {
last_time = PIOS_DELAY_GetRaw();
}
// check if a new filter chain should be initialized
if (fusionAlgorithm != revoSettings.FusionAlgorithm) {
FlightStatusData fs;
FlightStatusGet(&fs);
if (fs.Armed == FLIGHTSTATUS_ARMED_DISARMED || fusionAlgorithm == FILTER_INIT_FORCE) {
const filterPipeline *newFilterChain;
switch (revoSettings.FusionAlgorithm) {
case REVOSETTINGS_FUSIONALGORITHM_BASICCOMPLEMENTARY:
newFilterChain = cfQueue;
break;
case REVOSETTINGS_FUSIONALGORITHM_COMPLEMENTARYMAG:
newFilterChain = cfmiQueue;
break;
case REVOSETTINGS_FUSIONALGORITHM_COMPLEMENTARYMAGGPSOUTDOOR:
newFilterChain = cfmQueue;
break;
case REVOSETTINGS_FUSIONALGORITHM_INS13INDOOR:
newFilterChain = ekf13iQueue;
break;
case REVOSETTINGS_FUSIONALGORITHM_GPSNAVIGATIONINS13:
newFilterChain = ekf13Queue;
break;
default:
newFilterChain = NULL;
}
// initialize filters in chain
current = newFilterChain;
bool error = 0;
while (current != NULL) {
int32_t result = current->filter->init((stateFilter *)current->filter);
if (result != 0) {
error = 1;
break;
}
current = current->next;
}
if (error) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
return;
} else {
// set new fusion algortithm
filterChain = newFilterChain;
fusionAlgorithm = revoSettings.FusionAlgorithm;
}
}
}
// read updated sensor UAVObjects and set initial state
states.updated = updatedSensors;
updatedSensors = 0;
// fetch sensors, check values, and load into state struct
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(GyroSensor, gyro, x, y, z);
if (IS_SET(states.updated, SENSORUPDATES_gyro)) {
gyroRaw[0] = states.gyro[0];
gyroRaw[1] = states.gyro[1];
gyroRaw[2] = states.gyro[2];
}
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(AccelSensor, accel, x, y, z);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(MagSensor, boardMag, x, y, z);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(AuxMagSensor, auxMag, x, y, z);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(GPSVelocitySensor, vel, North, East, Down);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_1_DIMENSION_WITH_CUSTOM_EXTRA_CHECK(BaroSensor, baro, Altitude, true);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_2_DIMENSION_WITH_CUSTOM_EXTRA_CHECK(AirspeedSensor, airspeed, CalibratedAirspeed, TrueAirspeed, s.SensorConnected == AIRSPEEDSENSOR_SENSORCONNECTED_TRUE);
// GPS position data (LLA) is not fetched here since it does not contain floats. The filter must do all checks itself
// at this point sensor state is stored in "states" with some rudimentary filtering applied
// apply all filters in the current filter chain
current = filterChain;
// we are not done, re-dispatch self execution
runState = RUNSTATE_FILTER;
PIOS_CALLBACKSCHEDULER_Dispatch(stateEstimationCallback);
break;
case RUNSTATE_FILTER:
if (current != NULL) {
filterResult result = current->filter->filter((stateFilter *)current->filter, &states);
if (result > alarm) {
alarm = result;
}
current = current->next;
}
// we are not done, re-dispatch self execution
if (!current) {
runState = RUNSTATE_SAVE;
}
PIOS_CALLBACKSCHEDULER_Dispatch(stateEstimationCallback);
break;
case RUNSTATE_SAVE:
// the final output of filters is saved in state variables
// EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(GyroState, gyro, x, y, z) // replaced by performance shortcut
if (IS_SET(states.updated, SENSORUPDATES_gyro)) {
gyroDelta[0] = states.gyro[0] - gyroRaw[0];
gyroDelta[1] = states.gyro[1] - gyroRaw[1];
gyroDelta[2] = states.gyro[2] - gyroRaw[2];
}
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(AccelState, accel, x, y, z);
if (IS_SET(states.updated, SENSORUPDATES_mag)) {
MagStateData s;
MagStateGet(&s);
s.x = states.mag[0];
s.y = states.mag[1];
s.z = states.mag[2];
switch (states.magStatus) {
case MAGSTATUS_OK:
s.Source = MAGSTATE_SOURCE_ONBOARD;
// check if a new filter chain should be initialized
if (fusionAlgorithm != revoSettings.FusionAlgorithm) {
FlightStatusData fs;
FlightStatusGet(&fs);
if (fs.Armed == FLIGHTSTATUS_ARMED_DISARMED || fusionAlgorithm == FILTER_INIT_FORCE) {
const filterPipeline *newFilterChain;
switch ((RevoSettingsFusionAlgorithmOptions)revoSettings.FusionAlgorithm) {
case REVOSETTINGS_FUSIONALGORITHM_BASICCOMPLEMENTARY:
newFilterChain = cfQueue;
break;
case MAGSTATUS_AUX:
s.Source = MAGSTATE_SOURCE_AUX;
case REVOSETTINGS_FUSIONALGORITHM_COMPLEMENTARYMAG:
newFilterChain = cfmiQueue;
break;
case REVOSETTINGS_FUSIONALGORITHM_COMPLEMENTARYMAGGPSOUTDOOR:
newFilterChain = cfmQueue;
break;
case REVOSETTINGS_FUSIONALGORITHM_INS13INDOOR:
newFilterChain = ekf13iQueue;
break;
case REVOSETTINGS_FUSIONALGORITHM_GPSNAVIGATIONINS13:
newFilterChain = ekf13Queue;
break;
default:
s.Source = MAGSTATE_SOURCE_INVALID;
newFilterChain = NULL;
}
// initialize filters in chain
current = newFilterChain;
bool error = 0;
while (current != NULL) {
int32_t result = current->filter->init((stateFilter *)current->filter);
if (result != 0) {
error = 1;
break;
}
current = current->next;
}
if (error) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
return;
} else {
// set new fusion algortithm
filterChain = newFilterChain;
fusionAlgorithm = revoSettings.FusionAlgorithm;
}
MagStateSet(&s);
}
}
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(PositionState, pos, North, East, Down);
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(VelocityState, vel, North, East, Down);
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_2_DIMENSIONS(AirspeedState, airspeed, CalibratedAirspeed, TrueAirspeed);
// attitude nees manual conversion from quaternion to euler
if (IS_SET(states.updated, SENSORUPDATES_attitude)) { \
AttitudeStateData s;
AttitudeStateGet(&s);
s.q1 = states.attitude[0];
s.q2 = states.attitude[1];
s.q3 = states.attitude[2];
s.q4 = states.attitude[3];
Quaternion2RPY(&s.q1, &s.Roll);
AttitudeStateSet(&s);
// read updated sensor UAVObjects and set initial state
states.updated = updatedSensors;
updatedSensors = 0;
// fetch sensors, check values, and load into state struct
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(GyroSensor, gyro, x, y, z);
if (IS_SET(states.updated, SENSORUPDATES_gyro)) {
gyroRaw[0] = states.gyro[0];
gyroRaw[1] = states.gyro[1];
gyroRaw[2] = states.gyro[2];
}
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(AccelSensor, accel, x, y, z);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(MagSensor, boardMag, x, y, z);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(AuxMagSensor, auxMag, x, y, z);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(GPSVelocitySensor, vel, North, East, Down);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_1_DIMENSION_WITH_CUSTOM_EXTRA_CHECK(BaroSensor, baro, Altitude, true);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_2_DIMENSION_WITH_CUSTOM_EXTRA_CHECK(AirspeedSensor, airspeed, CalibratedAirspeed, TrueAirspeed, s.SensorConnected == AIRSPEEDSENSOR_SENSORCONNECTED_TRUE);
// GPS position data (LLA) is not fetched here since it does not contain floats. The filter must do all checks itself
// at this point sensor state is stored in "states" with some rudimentary filtering applied
// apply all filters in the current filter chain
current = filterChain;
// we are not done, re-dispatch self execution
while (current) {
filterResult result = current->filter->filter((stateFilter *)current->filter, &states);
if (result > alarm) {
alarm = result;
}
current = current->next;
}
// throttle alarms, raise alarm flags immediately
// but require system to run for a while before decreasing
// to prevent alarm flapping
if (alarm >= lastAlarm) {
// the final output of filters is saved in state variables
// EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(GyroState, gyro, x, y, z) // replaced by performance shortcut
if (IS_SET(states.updated, SENSORUPDATES_gyro)) {
gyroDelta[0] = states.gyro[0] - gyroRaw[0];
gyroDelta[1] = states.gyro[1] - gyroRaw[1];
gyroDelta[2] = states.gyro[2] - gyroRaw[2];
}
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(AccelState, accel, x, y, z);
if (IS_SET(states.updated, SENSORUPDATES_mag)) {
MagStateData s;
MagStateGet(&s);
s.x = states.mag[0];
s.y = states.mag[1];
s.z = states.mag[2];
switch (states.magStatus) {
case MAGSTATUS_OK:
s.Source = MAGSTATE_SOURCE_ONBOARD;
break;
case MAGSTATUS_AUX:
s.Source = MAGSTATE_SOURCE_AUX;
break;
default:
s.Source = MAGSTATE_SOURCE_INVALID;
}
MagStateSet(&s);
}
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(PositionState, pos, North, East, Down);
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(VelocityState, vel, North, East, Down);
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_2_DIMENSIONS(AirspeedState, airspeed, CalibratedAirspeed, TrueAirspeed);
// attitude nees manual conversion from quaternion to euler
if (IS_SET(states.updated, SENSORUPDATES_attitude)) { \
AttitudeStateData s;
AttitudeStateGet(&s);
s.q1 = states.attitude[0];
s.q2 = states.attitude[1];
s.q3 = states.attitude[2];
s.q4 = states.attitude[3];
Quaternion2RPY(&s.q1, &s.Roll);
AttitudeStateSet(&s);
}
// throttle alarms, raise alarm flags immediately
// but require system to run for a while before decreasing
// to prevent alarm flapping
if (alarm >= lastAlarm) {
lastAlarm = alarm;
alarmcounter = 0;
} else {
if (alarmcounter < 100) {
alarmcounter++;
} else {
lastAlarm = alarm;
alarmcounter = 0;
} else {
if (alarmcounter < 100) {
alarmcounter++;
} else {
lastAlarm = alarm;
alarmcounter = 0;
}
}
}
// clear alarms if everything is alright, then schedule callback execution after timeout
if (lastAlarm == FILTERRESULT_WARNING) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_WARNING);
} else if (lastAlarm == FILTERRESULT_CRITICAL) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_CRITICAL);
} else if (lastAlarm >= FILTERRESULT_ERROR) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
}
// clear alarms if everything is alright, then schedule callback execution after timeout
if (lastAlarm == FILTERRESULT_WARNING) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_WARNING);
} else if (lastAlarm == FILTERRESULT_CRITICAL) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_CRITICAL);
} else if (lastAlarm >= FILTERRESULT_ERROR) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
}
// we are done, re-schedule next self execution
runState = RUNSTATE_LOAD;
if (updatedSensors) {
PIOS_CALLBACKSCHEDULER_Dispatch(stateEstimationCallback);
} else {
PIOS_CALLBACKSCHEDULER_Schedule(stateEstimationCallback, TIMEOUT_MS, CALLBACK_UPDATEMODE_SOONER);
}
break;
if (updatedSensors) {
PIOS_CALLBACKSCHEDULER_Dispatch(stateEstimationCallback);
} else {
PIOS_CALLBACKSCHEDULER_Schedule(stateEstimationCallback, TIMEOUT_MS, CALLBACK_UPDATEMODE_SOONER);
}
}

View File

@ -130,8 +130,10 @@ int32_t TelemetryStart(void)
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_TELEMETRYRX, telemetryRxTaskHandle);
#ifdef PIOS_INCLUDE_RFM22B
xTaskCreate(radioRxTask, "RadioRx", STACK_SIZE_RADIO_RX_BYTES / 4, NULL, TASK_PRIORITY_RADRX, &radioRxTaskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_RADIORX, radioRxTaskHandle);
if (radioPort) {
xTaskCreate(radioRxTask, "RadioRx", STACK_SIZE_RADIO_RX_BYTES / 4, NULL, TASK_PRIORITY_RADRX, &radioRxTaskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_RADIORX, radioRxTaskHandle);
}
#endif
return 0;
@ -432,14 +434,12 @@ static void telemetryRxTask(__attribute__((unused)) void *parameters)
if (inputPort) {
// Block until data are available
uint8_t serial_data[1];
uint8_t serial_data[16];
uint16_t bytes_to_process;
bytes_to_process = PIOS_COM_ReceiveBuffer(inputPort, serial_data, sizeof(serial_data), 500);
if (bytes_to_process > 0) {
for (uint8_t i = 0; i < bytes_to_process; i++) {
UAVTalkProcessInputStream(uavTalkCon, serial_data[i]);
}
UAVTalkProcessInputStream(uavTalkCon, serial_data, bytes_to_process);
}
} else {
vTaskDelay(5);
@ -457,14 +457,12 @@ static void radioRxTask(__attribute__((unused)) void *parameters)
while (1) {
if (radioPort) {
// Block until data are available
uint8_t serial_data[1];
uint8_t serial_data[16];
uint16_t bytes_to_process;
bytes_to_process = PIOS_COM_ReceiveBuffer(radioPort, serial_data, sizeof(serial_data), 500);
if (bytes_to_process > 0) {
for (uint8_t i = 0; i < bytes_to_process; i++) {
UAVTalkProcessInputStream(radioUavTalkCon, serial_data[i]);
}
UAVTalkProcessInputStream(radioUavTalkCon, serial_data, bytes_to_process);
}
} else {
vTaskDelay(5);

View File

@ -57,8 +57,8 @@ UAVTalkOutputStream UAVTalkGetOutputStream(UAVTalkConnection connection);
int32_t UAVTalkSendObject(UAVTalkConnection connection, UAVObjHandle obj, uint16_t instId, uint8_t acked, int32_t timeoutMs);
int32_t UAVTalkSendObjectTimestamped(UAVTalkConnection connectionHandle, UAVObjHandle obj, uint16_t instId, uint8_t acked, int32_t timeoutMs);
int32_t UAVTalkSendObjectRequest(UAVTalkConnection connection, UAVObjHandle obj, uint16_t instId, int32_t timeoutMs);
UAVTalkRxState UAVTalkProcessInputStream(UAVTalkConnection connection, uint8_t rxbyte);
UAVTalkRxState UAVTalkProcessInputStreamQuiet(UAVTalkConnection connection, uint8_t rxbyte);
UAVTalkRxState UAVTalkProcessInputStream(UAVTalkConnection connectionHandle, uint8_t *rxbuffer, uint8_t length);
UAVTalkRxState UAVTalkProcessInputStreamQuiet(UAVTalkConnection connectionHandle, uint8_t *rxbuffer, uint8_t length, uint8_t *position);
int32_t UAVTalkRelayPacket(UAVTalkConnection inConnectionHandle, UAVTalkConnection outConnectionHandle);
int32_t UAVTalkReceiveObject(UAVTalkConnection connectionHandle);
void UAVTalkGetStats(UAVTalkConnection connection, UAVTalkStats *stats, bool reset);

View File

@ -53,7 +53,15 @@ static int32_t sendObject(UAVTalkConnectionData *connection, uint8_t type, uint3
static int32_t sendSingleObject(UAVTalkConnectionData *connection, uint8_t type, uint32_t objId, uint16_t instId, UAVObjHandle obj);
static int32_t receiveObject(UAVTalkConnectionData *connection, uint8_t type, uint32_t objId, uint16_t instId, uint8_t *data);
static void updateAck(UAVTalkConnectionData *connection, uint8_t type, uint32_t objId, uint16_t instId);
// UavTalk Process FSM functions
static bool UAVTalkProcess_SYNC(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position);
static bool UAVTalkProcess_TYPE(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position);
static bool UAVTalkProcess_OBJID(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position);
static bool UAVTalkProcess_INSTID(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position);
static bool UAVTalkProcess_SIZE(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position);
static bool UAVTalkProcess_TIMESTAMP(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position);
static bool UAVTalkProcess_DATA(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position);
static bool UAVTalkProcess_CS(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position);
/**
* Initialize the UAVTalk library
* \param[in] connection UAVTalkConnection to be used
@ -350,10 +358,12 @@ static int32_t objectTransaction(UAVTalkConnectionData *connection, uint8_t type
/**
* Process an byte from the telemetry stream.
* \param[in] connectionHandle UAVTalkConnection to be used
* \param[in] rxbyte Received byte
* \param[in] rxbuffer Received buffer
* \param[in/out] Length in bytes of received buffer
* \param[in/out] position Next item to be read inside rxbuffer
* \return UAVTalkRxState
*/
UAVTalkRxState UAVTalkProcessInputStreamQuiet(UAVTalkConnection connectionHandle, uint8_t rxbyte)
UAVTalkRxState UAVTalkProcessInputStreamQuiet(UAVTalkConnection connectionHandle, uint8_t *rxbuffer, uint8_t length, uint8_t *position)
{
UAVTalkConnectionData *connection;
@ -361,231 +371,83 @@ UAVTalkRxState UAVTalkProcessInputStreamQuiet(UAVTalkConnection connectionHandle
UAVTalkInputProcessor *iproc = &connection->iproc;
++connection->stats.rxBytes;
if (iproc->state == UAVTALK_STATE_ERROR || iproc->state == UAVTALK_STATE_COMPLETE) {
iproc->state = UAVTALK_STATE_SYNC;
}
if (iproc->rxPacketLength < 0xffff) {
// update packet byte count
iproc->rxPacketLength++;
}
uint8_t processedBytes = (*position);
uint8_t count = 0;
// Receive state machine
switch (iproc->state) {
case UAVTALK_STATE_SYNC:
if (rxbyte != UAVTALK_SYNC_VAL) {
connection->stats.rxSyncErrors++;
// stop processing as soon as a complete packet is received, error is encountered or buffer is processed entirely
while ((count = length - (*position)) > 0
&& iproc->state != UAVTALK_STATE_COMPLETE
&& iproc->state != UAVTALK_STATE_ERROR) {
// Receive state machine
if (iproc->state == UAVTALK_STATE_SYNC &&
!UAVTalkProcess_SYNC(connection, iproc, rxbuffer, length, position)) {
break;
}
// Initialize and update the CRC
iproc->cs = PIOS_CRC_updateByte(0, rxbyte);
iproc->rxPacketLength = 1;
iproc->rxCount = 0;
iproc->type = 0;
iproc->state = UAVTALK_STATE_TYPE;
break;
case UAVTALK_STATE_TYPE:
if ((rxbyte & UAVTALK_TYPE_MASK) != UAVTALK_TYPE_VER) {
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_SYNC;
if (iproc->state == UAVTALK_STATE_TYPE &&
!UAVTalkProcess_TYPE(connection, iproc, rxbuffer, length, position)) {
break;
}
// update the CRC
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
iproc->type = rxbyte;
iproc->packet_size = 0;
iproc->state = UAVTALK_STATE_SIZE;
break;
case UAVTALK_STATE_SIZE:
// update the CRC
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
if (iproc->rxCount == 0) {
iproc->packet_size += rxbyte;
iproc->rxCount++;
break;
}
iproc->packet_size += rxbyte << 8;
iproc->rxCount = 0;
if (iproc->packet_size < UAVTALK_MIN_HEADER_LENGTH || iproc->packet_size > UAVTALK_MAX_HEADER_LENGTH + UAVTALK_MAX_PAYLOAD_LENGTH) {
// incorrect packet size
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
if (iproc->state == UAVTALK_STATE_SIZE &&
!UAVTalkProcess_SIZE(connection, iproc, rxbuffer, length, position)) {
break;
}
iproc->objId = 0;
iproc->state = UAVTALK_STATE_OBJID;
break;
case UAVTALK_STATE_OBJID:
// update the CRC
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
iproc->objId += rxbyte << (8 * (iproc->rxCount++));
if (iproc->rxCount < 4) {
break;
}
iproc->rxCount = 0;
iproc->instId = 0;
iproc->state = UAVTALK_STATE_INSTID;
break;
case UAVTALK_STATE_INSTID:
// update the CRC
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
iproc->instId += rxbyte << (8 * (iproc->rxCount++));
if (iproc->rxCount < 2) {
break;
}
iproc->rxCount = 0;
UAVObjHandle obj = UAVObjGetByID(iproc->objId);
// Determine data length
if (iproc->type == UAVTALK_TYPE_OBJ_REQ || iproc->type == UAVTALK_TYPE_ACK || iproc->type == UAVTALK_TYPE_NACK) {
iproc->length = 0;
iproc->timestampLength = 0;
} else {
iproc->timestampLength = (iproc->type & UAVTALK_TIMESTAMPED) ? 2 : 0;
if (obj) {
iproc->length = UAVObjGetNumBytes(obj);
} else {
iproc->length = iproc->packet_size - iproc->rxPacketLength - iproc->timestampLength;
}
}
// Check length
if (iproc->length >= UAVTALK_MAX_PAYLOAD_LENGTH) {
// packet error - exceeded payload max length
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
if (iproc->state == UAVTALK_STATE_OBJID &&
!UAVTalkProcess_OBJID(connection, iproc, rxbuffer, length, position)) {
break;
}
// Check the lengths match
if ((iproc->rxPacketLength + iproc->timestampLength + iproc->length) != iproc->packet_size) {
// packet error - mismatched packet size
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
if (iproc->state == UAVTALK_STATE_INSTID &&
!UAVTalkProcess_INSTID(connection, iproc, rxbuffer, length, position)) {
break;
}
// Determine next state
if (iproc->type & UAVTALK_TIMESTAMPED) {
// If there is a timestamp get it
iproc->timestamp = 0;
iproc->state = UAVTALK_STATE_TIMESTAMP;
} else {
// If there is a payload get it, otherwise receive checksum
if (iproc->length > 0) {
iproc->state = UAVTALK_STATE_DATA;
} else {
iproc->state = UAVTALK_STATE_CS;
}
}
break;
case UAVTALK_STATE_TIMESTAMP:
// update the CRC
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
iproc->timestamp += rxbyte << (8 * (iproc->rxCount++));
if (iproc->rxCount < 2) {
break;
}
iproc->rxCount = 0;
// If there is a payload get it, otherwise receive checksum
if (iproc->length > 0) {
iproc->state = UAVTALK_STATE_DATA;
} else {
iproc->state = UAVTALK_STATE_CS;
}
break;
case UAVTALK_STATE_DATA:
// update the CRC
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
connection->rxBuffer[iproc->rxCount++] = rxbyte;
if (iproc->rxCount < iproc->length) {
break;
}
iproc->rxCount = 0;
iproc->state = UAVTALK_STATE_CS;
break;
case UAVTALK_STATE_CS:
// Check the CRC byte
if (rxbyte != iproc->cs) {
// packet error - faulty CRC
UAVT_DEBUGLOG_PRINTF("BAD CRC");
connection->stats.rxCrcErrors++;
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
if (iproc->state == UAVTALK_STATE_TIMESTAMP &&
!UAVTalkProcess_TIMESTAMP(connection, iproc, rxbuffer, length, position)) {
break;
}
if (iproc->rxPacketLength != (iproc->packet_size + UAVTALK_CHECKSUM_LENGTH)) {
// packet error - mismatched packet size
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
if (iproc->state == UAVTALK_STATE_DATA &&
!UAVTalkProcess_DATA(connection, iproc, rxbuffer, length, position)) {
break;
}
connection->stats.rxObjects++;
connection->stats.rxObjectBytes += iproc->length;
iproc->state = UAVTALK_STATE_COMPLETE;
break;
default:
iproc->state = UAVTALK_STATE_ERROR;
break;
if (iproc->state == UAVTALK_STATE_CS &&
!UAVTalkProcess_CS(connection, iproc, rxbuffer, length, position)) {
break;
}
}
// Done
processedBytes = (*position) - processedBytes;
connection->stats.rxBytes += processedBytes;
return iproc->state;
}
/**
* Process an byte from the telemetry stream.
* Process a buffer from the telemetry stream.
* \param[in] connection UAVTalkConnection to be used
* \param[in] rxbyte Received byte
* \param[in] rxbuffer Received buffer
* \param[in] count bytes inside rxbuffer
* \return UAVTalkRxState
*/
UAVTalkRxState UAVTalkProcessInputStream(UAVTalkConnection connectionHandle, uint8_t rxbyte)
UAVTalkRxState UAVTalkProcessInputStream(UAVTalkConnection connectionHandle, uint8_t *rxbuffer, uint8_t length)
{
UAVTalkRxState state = UAVTalkProcessInputStreamQuiet(connectionHandle, rxbyte);
uint8_t position = 0;
UAVTalkRxState state = UAVTALK_STATE_ERROR;
if (state == UAVTALK_STATE_COMPLETE) {
UAVTalkReceiveObject(connectionHandle);
while (position < length) {
state = UAVTalkProcessInputStreamQuiet(connectionHandle, rxbuffer, length, &position);
if (state == UAVTALK_STATE_COMPLETE) {
UAVTalkReceiveObject(connectionHandle);
}
}
return state;
}
@ -1000,6 +862,236 @@ static int32_t sendSingleObject(UAVTalkConnectionData *connection, uint8_t type,
return 0;
}
/*
* Functions that implements the UAVTalk Process FSM. return false to break out of current cycle
*/
static bool UAVTalkProcess_SYNC(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, __attribute__((unused)) uint8_t length, uint8_t *position)
{
uint8_t rxbyte = rxbuffer[(*position)++];
if (rxbyte != UAVTALK_SYNC_VAL) {
connection->stats.rxSyncErrors++;
return false;
}
// Initialize and update the CRC
iproc->cs = PIOS_CRC_updateByte(0, rxbyte);
iproc->rxPacketLength = 1;
iproc->rxCount = 0;
iproc->type = 0;
iproc->state = UAVTALK_STATE_TYPE;
return true;
}
static bool UAVTalkProcess_TYPE(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, __attribute__((unused)) uint8_t length, uint8_t *position)
{
uint8_t rxbyte = rxbuffer[(*position)++];
if ((rxbyte & UAVTALK_TYPE_MASK) != UAVTALK_TYPE_VER) {
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_SYNC;
return false;
}
// update the CRC
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
iproc->type = rxbyte;
iproc->rxPacketLength++;
iproc->packet_size = 0;
iproc->state = UAVTALK_STATE_SIZE;
return true;
}
static bool UAVTalkProcess_SIZE(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position)
{
while (iproc->rxCount < 2 && length > (*position)) {
uint8_t rxbyte = rxbuffer[(*position)++];
// update the CRC
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
iproc->packet_size += rxbyte << 8 * iproc->rxCount;
iproc->rxCount++;
}
if (iproc->rxCount < 2) {
return false;;
}
iproc->rxCount = 0;
if (iproc->packet_size < UAVTALK_MIN_HEADER_LENGTH || iproc->packet_size > UAVTALK_MAX_HEADER_LENGTH + UAVTALK_MAX_PAYLOAD_LENGTH) {
// incorrect packet size
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
return false;
}
iproc->rxPacketLength += 2;
iproc->objId = 0;
iproc->state = UAVTALK_STATE_OBJID;
return true;
}
static bool UAVTalkProcess_OBJID(__attribute__((unused)) UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position)
{
while (iproc->rxCount < 4 && length > (*position)) {
uint8_t rxbyte = rxbuffer[(*position)++];
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
iproc->objId += rxbyte << (8 * (iproc->rxCount++));
}
if (iproc->rxCount < 4) {
return false;
}
iproc->rxCount = 0;
iproc->rxPacketLength += 4;
iproc->instId = 0;
iproc->state = UAVTALK_STATE_INSTID;
return true;
}
static bool UAVTalkProcess_INSTID(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position)
{
while (iproc->rxCount < 2 && length > (*position)) {
uint8_t rxbyte = rxbuffer[(*position)++];
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
iproc->instId += rxbyte << (8 * (iproc->rxCount++));
}
if (iproc->rxCount < 2) {
return false;
}
iproc->rxPacketLength += 2;
iproc->rxCount = 0;
UAVObjHandle obj = UAVObjGetByID(iproc->objId);
// Determine data length
if (iproc->type == UAVTALK_TYPE_OBJ_REQ || iproc->type == UAVTALK_TYPE_ACK || iproc->type == UAVTALK_TYPE_NACK) {
iproc->length = 0;
iproc->timestampLength = 0;
} else {
iproc->timestampLength = (iproc->type & UAVTALK_TIMESTAMPED) ? 2 : 0;
if (obj) {
iproc->length = UAVObjGetNumBytes(obj);
} else {
iproc->length = iproc->packet_size - iproc->rxPacketLength - iproc->timestampLength;
}
}
// Check length
if (iproc->length >= UAVTALK_MAX_PAYLOAD_LENGTH) {
// packet error - exceeded payload max length
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
return false;
}
// Check the lengths match
if ((iproc->rxPacketLength + iproc->timestampLength + iproc->length) != iproc->packet_size) {
// packet error - mismatched packet size
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
return false;
}
// Determine next state
if (iproc->type & UAVTALK_TIMESTAMPED) {
// If there is a timestamp get it
iproc->timestamp = 0;
iproc->state = UAVTALK_STATE_TIMESTAMP;
} else {
// If there is a payload get it, otherwise receive checksum
if (iproc->length > 0) {
iproc->state = UAVTALK_STATE_DATA;
} else {
iproc->state = UAVTALK_STATE_CS;
}
}
return true;
}
static bool UAVTalkProcess_TIMESTAMP(__attribute__((unused)) UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position)
{
while (iproc->rxCount < 2 && length > (*position)) {
uint8_t rxbyte = rxbuffer[(*position)++];
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
iproc->timestamp += rxbyte << (8 * (iproc->rxCount++));
}
if (iproc->rxCount < 2) {
return false;;
}
iproc->rxCount = 0;
iproc->rxPacketLength += 2;
// If there is a payload get it, otherwise receive checksum
if (iproc->length > 0) {
iproc->state = UAVTALK_STATE_DATA;
} else {
iproc->state = UAVTALK_STATE_CS;
}
return true;
}
static bool UAVTalkProcess_DATA(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position)
{
uint8_t toCopy = iproc->length - iproc->rxCount;
if (toCopy > length - (*position)) {
toCopy = length - (*position);
}
memcpy(&connection->rxBuffer[iproc->rxCount], &rxbuffer[(*position)], toCopy);
(*position) += toCopy;
// update the CRC
iproc->cs = PIOS_CRC_updateCRC(iproc->cs, &connection->rxBuffer[iproc->rxCount], toCopy);
iproc->rxCount += toCopy;
iproc->rxPacketLength += toCopy;
if (iproc->rxCount < iproc->length) {
return false;
}
iproc->rxCount = 0;
iproc->state = UAVTALK_STATE_CS;
return true;
}
static bool UAVTalkProcess_CS(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, __attribute__((unused)) uint8_t length, uint8_t *position)
{
// Check the CRC byte
uint8_t rxbyte = rxbuffer[(*position)++];
if (rxbyte != iproc->cs) {
// packet error - faulty CRC
UAVT_DEBUGLOG_PRINTF("BAD CRC");
connection->stats.rxCrcErrors++;
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
return false;;
}
iproc->rxPacketLength++;
if (iproc->rxPacketLength != (iproc->packet_size + UAVTALK_CHECKSUM_LENGTH)) {
// packet error - mismatched packet size
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
return false;;
}
connection->stats.rxObjects++;
connection->stats.rxObjectBytes += iproc->length;
iproc->state = UAVTALK_STATE_COMPLETE;
return true;
}
/**
* @}
* @}