mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2024-12-02 10:24:11 +01:00
Merge branch 'next' into fw_wiz
This commit is contained in:
commit
63be4f7b0e
@ -30,10 +30,10 @@
|
||||
struct path_status {
|
||||
float fractional_progress;
|
||||
float error;
|
||||
float correction_direction[2];
|
||||
float path_direction[2];
|
||||
float path_vector[3];
|
||||
float correction_vector[3];
|
||||
};
|
||||
|
||||
void path_progress(float *start_point, float *end_point, float *cur_point, struct path_status *status, uint8_t mode);
|
||||
void path_progress(PathDesiredData *path, float *cur_point, struct path_status *status);
|
||||
|
||||
#endif
|
||||
|
@ -52,4 +52,31 @@ static inline float boundf(float val, float boundary1, float boundary2)
|
||||
return val;
|
||||
}
|
||||
|
||||
static inline float squaref(float x)
|
||||
{
|
||||
return x * x;
|
||||
}
|
||||
|
||||
static inline float vector_lengthf(float *vector, const uint8_t dim)
|
||||
{
|
||||
float length = 0.0f;
|
||||
|
||||
for (int t = 0; t < dim; t++) {
|
||||
length += squaref(vector[t]);
|
||||
}
|
||||
return sqrtf(length);
|
||||
}
|
||||
|
||||
static inline void vector_normalizef(float *vector, const uint8_t dim)
|
||||
{
|
||||
float length = vector_lengthf(vector, dim);
|
||||
|
||||
if (length <= 0.0f || isnan(length)) {
|
||||
return;
|
||||
}
|
||||
for (int t = 0; t < dim; t++) {
|
||||
vector[t] /= length;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* MATHMISC_H */
|
||||
|
@ -26,49 +26,53 @@
|
||||
|
||||
#include <pios.h>
|
||||
#include <pios_math.h>
|
||||
|
||||
#include "paths.h"
|
||||
#include <mathmisc.h>
|
||||
|
||||
#include "uavobjectmanager.h" // <--.
|
||||
#include "pathdesired.h" // <-- needed only for correct ENUM macro usage with path modes (PATHDESIRED_MODE_xxx,
|
||||
#include "paths.h"
|
||||
// no direct UAVObject usage allowed in this file
|
||||
|
||||
// private functions
|
||||
static void path_endpoint(float *start_point, float *end_point, float *cur_point, struct path_status *status);
|
||||
static void path_vector(float *start_point, float *end_point, float *cur_point, struct path_status *status);
|
||||
static void path_circle(float *start_point, float *end_point, float *cur_point, struct path_status *status, bool clockwise);
|
||||
static void path_endpoint(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode);
|
||||
static void path_vector(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode);
|
||||
static void path_circle(PathDesiredData *path, float *cur_point, struct path_status *status, bool clockwise);
|
||||
|
||||
/**
|
||||
* @brief Compute progress along path and deviation from it
|
||||
* @param[in] start_point Starting point
|
||||
* @param[in] end_point Ending point
|
||||
* @param[in] path PathDesired structure
|
||||
* @param[in] cur_point Current location
|
||||
* @param[in] mode Path following mode
|
||||
* @param[out] status Structure containing progress along path and deviation
|
||||
*/
|
||||
void path_progress(float *start_point, float *end_point, float *cur_point, struct path_status *status, uint8_t mode)
|
||||
void path_progress(PathDesiredData *path, float *cur_point, struct path_status *status)
|
||||
{
|
||||
switch (mode) {
|
||||
switch (path->Mode) {
|
||||
case PATHDESIRED_MODE_FLYVECTOR:
|
||||
return path_vector(path, cur_point, status, true);
|
||||
|
||||
break;
|
||||
case PATHDESIRED_MODE_DRIVEVECTOR:
|
||||
return path_vector(start_point, end_point, cur_point, status);
|
||||
return path_vector(path, cur_point, status, false);
|
||||
|
||||
break;
|
||||
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
|
||||
case PATHDESIRED_MODE_DRIVECIRCLERIGHT:
|
||||
return path_circle(start_point, end_point, cur_point, status, 1);
|
||||
return path_circle(path, cur_point, status, 1);
|
||||
|
||||
break;
|
||||
case PATHDESIRED_MODE_FLYCIRCLELEFT:
|
||||
case PATHDESIRED_MODE_DRIVECIRCLELEFT:
|
||||
return path_circle(start_point, end_point, cur_point, status, 0);
|
||||
return path_circle(path, cur_point, status, 0);
|
||||
|
||||
break;
|
||||
case PATHDESIRED_MODE_FLYENDPOINT:
|
||||
return path_endpoint(path, cur_point, status, true);
|
||||
|
||||
break;
|
||||
case PATHDESIRED_MODE_DRIVEENDPOINT:
|
||||
default:
|
||||
// use the endpoint as default failsafe if called in unknown modes
|
||||
return path_endpoint(start_point, end_point, cur_point, status);
|
||||
return path_endpoint(path, cur_point, status, false);
|
||||
|
||||
break;
|
||||
}
|
||||
@ -76,135 +80,153 @@ void path_progress(float *start_point, float *end_point, float *cur_point, struc
|
||||
|
||||
/**
|
||||
* @brief Compute progress towards endpoint. Deviation equals distance
|
||||
* @param[in] start_point Starting point
|
||||
* @param[in] end_point Ending point
|
||||
* @param[in] path PathDesired
|
||||
* @param[in] cur_point Current location
|
||||
* @param[out] status Structure containing progress along path and deviation
|
||||
* @param[in] mode3D set true to include altitude in distance and progress calculation
|
||||
*/
|
||||
static void path_endpoint(float *start_point, float *end_point, float *cur_point, struct path_status *status)
|
||||
static void path_endpoint(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode3D)
|
||||
{
|
||||
float path_north, path_east, diff_north, diff_east;
|
||||
float diff[3];
|
||||
float dist_path, dist_diff;
|
||||
|
||||
// we do not correct in this mode
|
||||
status->correction_direction[0] = status->correction_direction[1] = 0;
|
||||
|
||||
// Distance to go
|
||||
path_north = end_point[0] - start_point[0];
|
||||
path_east = end_point[1] - start_point[1];
|
||||
status->path_vector[0] = path->End.North - path->Start.North;
|
||||
status->path_vector[1] = path->End.East - path->Start.East;
|
||||
status->path_vector[2] = mode3D ? path->End.Down - path->Start.Down : 0.0f;
|
||||
|
||||
// Current progress location relative to end
|
||||
diff_north = end_point[0] - cur_point[0];
|
||||
diff_east = end_point[1] - cur_point[1];
|
||||
diff[0] = path->End.North - cur_point[0];
|
||||
diff[1] = path->End.East - cur_point[1];
|
||||
diff[2] = mode3D ? path->End.Down - cur_point[2] : 0.0f;
|
||||
|
||||
dist_diff = sqrtf(diff_north * diff_north + diff_east * diff_east);
|
||||
dist_path = sqrtf(path_north * path_north + path_east * path_east);
|
||||
dist_diff = vector_lengthf(diff, 3);
|
||||
dist_path = vector_lengthf(status->path_vector, 3);
|
||||
|
||||
if (dist_diff < 1e-6f) {
|
||||
status->fractional_progress = 1;
|
||||
status->error = 0;
|
||||
status->path_direction[0] = status->path_direction[1] = 0;
|
||||
status->error = 0.0f;
|
||||
status->correction_vector[0] = status->correction_vector[1] = status->correction_vector[2] = 0.0f;
|
||||
// we have no base movement direction in this mode
|
||||
status->path_vector[0] = status->path_vector[1] = status->path_vector[2] = 0.0f;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
status->fractional_progress = 1 - dist_diff / (1 + dist_path);
|
||||
if (fmaxf(dist_path, 1.0f) > dist_diff) {
|
||||
status->fractional_progress = 1 - dist_diff / fmaxf(dist_path, 1.0f);
|
||||
} else {
|
||||
status->fractional_progress = 0; // we don't want fractional_progress to become negative
|
||||
}
|
||||
status->error = dist_diff;
|
||||
|
||||
// Compute direction to travel
|
||||
status->path_direction[0] = diff_north / dist_diff;
|
||||
status->path_direction[1] = diff_east / dist_diff;
|
||||
// Compute correction vector
|
||||
status->correction_vector[0] = diff[0];
|
||||
status->correction_vector[1] = diff[1];
|
||||
status->correction_vector[2] = diff[2];
|
||||
|
||||
// base movement direction in this mode is a constant velocity offset on top of correction in the same direction
|
||||
status->path_vector[0] = path->EndingVelocity * status->correction_vector[0] / dist_diff;
|
||||
status->path_vector[1] = path->EndingVelocity * status->correction_vector[1] / dist_diff;
|
||||
status->path_vector[2] = path->EndingVelocity * status->correction_vector[2] / dist_diff;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Compute progress along path and deviation from it
|
||||
* @param[in] start_point Starting point
|
||||
* @param[in] end_point Ending point
|
||||
* @param[in] path PathDesired
|
||||
* @param[in] cur_point Current location
|
||||
* @param[out] status Structure containing progress along path and deviation
|
||||
* @param[in] mode3D set true to include altitude in distance and progress calculation
|
||||
*/
|
||||
static void path_vector(float *start_point, float *end_point, float *cur_point, struct path_status *status)
|
||||
static void path_vector(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode3D)
|
||||
{
|
||||
float path_north, path_east, diff_north, diff_east;
|
||||
float diff[3];
|
||||
float dist_path;
|
||||
float dot;
|
||||
float normal[2];
|
||||
float velocity;
|
||||
float track_point[3];
|
||||
|
||||
// Distance to go
|
||||
path_north = end_point[0] - start_point[0];
|
||||
path_east = end_point[1] - start_point[1];
|
||||
status->path_vector[0] = path->End.North - path->Start.North;
|
||||
status->path_vector[1] = path->End.East - path->Start.East;
|
||||
status->path_vector[2] = mode3D ? path->End.Down - path->Start.Down : 0.0f;
|
||||
|
||||
// Current progress location relative to start
|
||||
diff_north = cur_point[0] - start_point[0];
|
||||
diff_east = cur_point[1] - start_point[1];
|
||||
diff[0] = cur_point[0] - path->Start.North;
|
||||
diff[1] = cur_point[1] - path->Start.East;
|
||||
diff[2] = mode3D ? cur_point[2] - path->Start.Down : 0.0f;
|
||||
|
||||
dot = path_north * diff_north + path_east * diff_east;
|
||||
dist_path = sqrtf(path_north * path_north + path_east * path_east);
|
||||
dot = status->path_vector[0] * diff[0] + status->path_vector[1] * diff[1] + status->path_vector[2] * diff[2];
|
||||
dist_path = vector_lengthf(status->path_vector, 3);
|
||||
|
||||
if (dist_path < 1e-6f) {
|
||||
// if the path is too short, we cannot determine vector direction.
|
||||
if (dist_path > 1e-6f) {
|
||||
// Compute direction to travel & progress
|
||||
status->fractional_progress = dot / (dist_path * dist_path);
|
||||
} else {
|
||||
// Fly towards the endpoint to prevent flying away,
|
||||
// but assume progress=1 either way.
|
||||
path_endpoint(start_point, end_point, cur_point, status);
|
||||
path_endpoint(path, cur_point, status, mode3D);
|
||||
status->fractional_progress = 1;
|
||||
return;
|
||||
}
|
||||
// Compute point on track that is closest to our current position.
|
||||
track_point[0] = status->fractional_progress * status->path_vector[0] + path->Start.North;
|
||||
track_point[1] = status->fractional_progress * status->path_vector[1] + path->Start.East;
|
||||
track_point[2] = status->fractional_progress * status->path_vector[2] + path->Start.Down;
|
||||
|
||||
// Compute the normal to the path
|
||||
normal[0] = -path_east / dist_path;
|
||||
normal[1] = path_north / dist_path;
|
||||
status->correction_vector[0] = track_point[0] - cur_point[0];
|
||||
status->correction_vector[1] = track_point[1] - cur_point[1];
|
||||
status->correction_vector[2] = track_point[2] - cur_point[2];
|
||||
|
||||
status->fractional_progress = dot / (dist_path * dist_path);
|
||||
status->error = normal[0] * diff_north + normal[1] * diff_east;
|
||||
status->error = vector_lengthf(status->correction_vector, 3);
|
||||
|
||||
// Compute direction to correct error
|
||||
status->correction_direction[0] = (status->error > 0) ? -normal[0] : normal[0];
|
||||
status->correction_direction[1] = (status->error > 0) ? -normal[1] : normal[1];
|
||||
|
||||
// Now just want magnitude of error
|
||||
status->error = fabs(status->error);
|
||||
|
||||
// Compute direction to travel
|
||||
status->path_direction[0] = path_north / dist_path;
|
||||
status->path_direction[1] = path_east / dist_path;
|
||||
// correct movement vector to current velocity
|
||||
velocity = path->StartingVelocity + boundf(status->fractional_progress, 0.0f, 1.0f) * (path->EndingVelocity - path->StartingVelocity);
|
||||
status->path_vector[0] = velocity * status->path_vector[0] / dist_path;
|
||||
status->path_vector[1] = velocity * status->path_vector[1] / dist_path;
|
||||
status->path_vector[2] = velocity * status->path_vector[2] / dist_path;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Compute progress along circular path and deviation from it
|
||||
* @param[in] start_point Starting point
|
||||
* @param[in] end_point Center point
|
||||
* @param[in] path PathDesired
|
||||
* @param[in] cur_point Current location
|
||||
* @param[out] status Structure containing progress along path and deviation
|
||||
*/
|
||||
static void path_circle(float *start_point, float *end_point, float *cur_point, struct path_status *status, bool clockwise)
|
||||
static void path_circle(PathDesiredData *path, float *cur_point, struct path_status *status, bool clockwise)
|
||||
{
|
||||
float radius_north, radius_east, diff_north, diff_east;
|
||||
float radius_north, radius_east, diff_north, diff_east, diff_down;
|
||||
float radius, cradius;
|
||||
float normal[2];
|
||||
float progress;
|
||||
float a_diff, a_radius;
|
||||
|
||||
// Radius
|
||||
radius_north = end_point[0] - start_point[0];
|
||||
radius_east = end_point[1] - start_point[1];
|
||||
radius_north = path->End.North - path->Start.North;
|
||||
radius_east = path->End.East - path->Start.East;
|
||||
|
||||
// Current location relative to center
|
||||
diff_north = cur_point[0] - end_point[0];
|
||||
diff_east = cur_point[1] - end_point[1];
|
||||
diff_north = cur_point[0] - path->End.North;
|
||||
diff_east = cur_point[1] - path->End.East;
|
||||
diff_down = cur_point[2] - path->End.Down;
|
||||
|
||||
radius = sqrtf(powf(radius_north, 2) + powf(radius_east, 2));
|
||||
cradius = sqrtf(powf(diff_north, 2) + powf(diff_east, 2));
|
||||
radius = sqrtf(squaref(radius_north) + squaref(radius_east));
|
||||
cradius = sqrtf(squaref(diff_north) + squaref(diff_east));
|
||||
|
||||
// circles are always horizontal (for now - TODO: allow 3d circles - problem: clockwise/counterclockwise does no longer apply)
|
||||
status->path_vector[2] = 0.0f;
|
||||
|
||||
// error is current radius minus wanted radius - positive if too close
|
||||
status->error = radius - cradius;
|
||||
|
||||
if (cradius < 1e-6f) {
|
||||
// cradius is zero, just fly somewhere and make sure correction is still a normal
|
||||
// cradius is zero, just fly somewhere
|
||||
status->fractional_progress = 1;
|
||||
status->error = radius;
|
||||
status->correction_direction[0] = 0;
|
||||
status->correction_direction[1] = 1;
|
||||
status->path_direction[0] = 1;
|
||||
status->path_direction[1] = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
status->correction_vector[0] = 0;
|
||||
status->correction_vector[1] = 0;
|
||||
status->path_vector[0] = path->EndingVelocity;
|
||||
status->path_vector[1] = 0;
|
||||
} else {
|
||||
if (clockwise) {
|
||||
// Compute the normal to the radius clockwise
|
||||
normal[0] = -diff_east / cradius;
|
||||
@ -228,28 +250,28 @@ static void path_circle(float *start_point, float *end_point, float *cur_point,
|
||||
|
||||
progress = (a_diff - a_radius + M_PI_F) / (2.0f * M_PI_F);
|
||||
|
||||
if (progress < 0) {
|
||||
if (progress < 0.0f) {
|
||||
progress += 1.0f;
|
||||
} else if (progress >= 1.0f) {
|
||||
progress -= 1.0f;
|
||||
}
|
||||
|
||||
if (clockwise) {
|
||||
progress = 1 - progress;
|
||||
progress = 1.0f - progress;
|
||||
}
|
||||
|
||||
status->fractional_progress = progress;
|
||||
|
||||
// error is current radius minus wanted radius - positive if too close
|
||||
status->error = radius - cradius;
|
||||
// Compute direction to travel
|
||||
status->path_vector[0] = normal[0] * path->EndingVelocity;
|
||||
status->path_vector[1] = normal[1] * path->EndingVelocity;
|
||||
|
||||
// Compute direction to correct error
|
||||
status->correction_direction[0] = (status->error > 0 ? 1 : -1) * diff_north / cradius;
|
||||
status->correction_direction[1] = (status->error > 0 ? 1 : -1) * diff_east / cradius;
|
||||
status->correction_vector[0] = status->error * diff_north / cradius;
|
||||
status->correction_vector[1] = status->error * diff_east / cradius;
|
||||
}
|
||||
|
||||
// Compute direction to travel
|
||||
status->path_direction[0] = normal[0];
|
||||
status->path_direction[1] = normal[1];
|
||||
status->correction_vector[2] = -diff_down;
|
||||
|
||||
status->error = fabs(status->error);
|
||||
}
|
||||
|
@ -70,8 +70,6 @@ void plan_setup_positionHold()
|
||||
|
||||
FlightModeSettingsPositionHoldOffsetData offset;
|
||||
FlightModeSettingsPositionHoldOffsetGet(&offset);
|
||||
float startingVelocity;
|
||||
FlightModeSettingsPositionHoldStartingVelocityGet(&startingVelocity);
|
||||
|
||||
pathDesired.End.North = positionState.North;
|
||||
pathDesired.End.East = positionState.East;
|
||||
@ -79,7 +77,7 @@ void plan_setup_positionHold()
|
||||
pathDesired.Start.North = positionState.North + offset.Horizontal; // in FlyEndPoint the direction of this vector does not matter
|
||||
pathDesired.Start.East = positionState.East;
|
||||
pathDesired.Start.Down = positionState.Down;
|
||||
pathDesired.StartingVelocity = startingVelocity;
|
||||
pathDesired.StartingVelocity = 0.0f;
|
||||
pathDesired.EndingVelocity = 0.0f;
|
||||
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
|
||||
|
||||
@ -110,8 +108,6 @@ void plan_setup_returnToBase()
|
||||
destDown = MIN(positionStateDown, takeoffLocation.Down) - destDown;
|
||||
FlightModeSettingsPositionHoldOffsetData offset;
|
||||
FlightModeSettingsPositionHoldOffsetGet(&offset);
|
||||
float startingVelocity;
|
||||
FlightModeSettingsPositionHoldStartingVelocityGet(&startingVelocity);
|
||||
|
||||
pathDesired.End.North = takeoffLocation.North;
|
||||
pathDesired.End.East = takeoffLocation.East;
|
||||
@ -121,16 +117,27 @@ void plan_setup_returnToBase()
|
||||
pathDesired.Start.East = takeoffLocation.East;
|
||||
pathDesired.Start.Down = destDown;
|
||||
|
||||
pathDesired.StartingVelocity = startingVelocity;
|
||||
pathDesired.StartingVelocity = 0.0f;
|
||||
pathDesired.EndingVelocity = 0.0f;
|
||||
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
|
||||
|
||||
PathDesiredSet(&pathDesired);
|
||||
}
|
||||
|
||||
static PiOSDeltatimeConfig landdT;
|
||||
void plan_setup_land()
|
||||
{
|
||||
float descendspeed;
|
||||
|
||||
plan_setup_positionHold();
|
||||
|
||||
FlightModeSettingsLandingVelocityGet(&descendspeed);
|
||||
PathDesiredData pathDesired;
|
||||
PathDesiredGet(&pathDesired);
|
||||
pathDesired.StartingVelocity = descendspeed;
|
||||
pathDesired.EndingVelocity = descendspeed;
|
||||
PathDesiredSet(&pathDesired);
|
||||
PIOS_DELTATIME_Init(&landdT, UPDATE_EXPECTED, UPDATE_MIN, UPDATE_MAX, UPDATE_ALPHA);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -138,12 +145,18 @@ void plan_setup_land()
|
||||
*/
|
||||
void plan_run_land()
|
||||
{
|
||||
float downPos, descendspeed;
|
||||
PathDesiredEndData pathDesiredEnd;
|
||||
|
||||
PathDesiredEndGet(&pathDesiredEnd);
|
||||
PositionStateDownGet(&downPos); // current down position
|
||||
PathDesiredEndGet(&pathDesiredEnd); // desired position
|
||||
PathDesiredEndingVelocityGet(&descendspeed);
|
||||
|
||||
PositionStateDownGet(&pathDesiredEnd.Down);
|
||||
pathDesiredEnd.Down += 5;
|
||||
// desired position is updated to match the desired descend speed but don't run ahead
|
||||
// too far if the current position can't keep up. This normaly means we have landed.
|
||||
if (pathDesiredEnd.Down - downPos < 10) {
|
||||
pathDesiredEnd.Down += descendspeed * PIOS_DELTATIME_GetAverageSeconds(&landdT);
|
||||
}
|
||||
|
||||
PathDesiredEndSet(&pathDesiredEnd);
|
||||
}
|
||||
@ -366,8 +379,6 @@ void plan_setup_AutoCruise()
|
||||
|
||||
FlightModeSettingsPositionHoldOffsetData offset;
|
||||
FlightModeSettingsPositionHoldOffsetGet(&offset);
|
||||
float startingVelocity;
|
||||
FlightModeSettingsPositionHoldStartingVelocityGet(&startingVelocity);
|
||||
|
||||
// initialization is flight in direction of the nose.
|
||||
// the velocity is not relevant, as it will be reset by the run function even during first call
|
||||
@ -387,7 +398,7 @@ void plan_setup_AutoCruise()
|
||||
pathDesired.Start.North = pathDesired.End.North + offset.Horizontal; // in FlyEndPoint the direction of this vector does not matter
|
||||
pathDesired.Start.East = pathDesired.End.East;
|
||||
pathDesired.Start.Down = pathDesired.End.Down;
|
||||
pathDesired.StartingVelocity = startingVelocity;
|
||||
pathDesired.StartingVelocity = 0.0f;
|
||||
pathDesired.EndingVelocity = 0.0f;
|
||||
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
|
||||
|
||||
|
@ -149,7 +149,6 @@ int32_t configuration_check()
|
||||
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_RETURNTOBASE:
|
||||
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_AUTOCRUISE:
|
||||
ADDSEVERITY(!coptercontrol);
|
||||
ADDSEVERITY(PIOS_TASK_MONITOR_IsRunning(TASKINFO_RUNNING_PATHFOLLOWER));
|
||||
ADDSEVERITY(navCapableFusion);
|
||||
break;
|
||||
default:
|
||||
|
@ -1,772 +0,0 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
*
|
||||
* @file fixedwingpathfollower.c
|
||||
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
||||
* @brief This module compared @ref PositionActuatl to @ref ActiveWaypoint
|
||||
* and sets @ref AttitudeDesired. It only does this when the FlightMode field
|
||||
* of @ref ManualControlCommand is Auto.
|
||||
*
|
||||
* @see The GNU Public License (GPL) Version 3
|
||||
*
|
||||
*****************************************************************************/
|
||||
/*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License along
|
||||
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
/**
|
||||
* Input object: ActiveWaypoint
|
||||
* Input object: PositionState
|
||||
* Input object: ManualControlCommand
|
||||
* Output object: AttitudeDesired
|
||||
*
|
||||
* This module will periodically update the value of the AttitudeDesired object.
|
||||
*
|
||||
* The module executes in its own thread in this example.
|
||||
*
|
||||
* Modules have no API, all communication to other modules is done through UAVObjects.
|
||||
* However modules may use the API exposed by shared libraries.
|
||||
* See the OpenPilot wiki for more details.
|
||||
* http://www.openpilot.org/OpenPilot_Application_Architecture
|
||||
*
|
||||
*/
|
||||
|
||||
#include <openpilot.h>
|
||||
|
||||
#include "hwsettings.h"
|
||||
#include "attitudestate.h"
|
||||
#include "pathdesired.h" // object that will be updated by the module
|
||||
#include "positionstate.h"
|
||||
#include "flightstatus.h"
|
||||
#include "pathstatus.h"
|
||||
#include "airspeedstate.h"
|
||||
#include "fixedwingpathfollowersettings.h"
|
||||
#include "fixedwingpathfollowerstatus.h"
|
||||
#include "homelocation.h"
|
||||
#include "stabilizationdesired.h"
|
||||
#include "stabilizationsettings.h"
|
||||
#include "systemsettings.h"
|
||||
#include "velocitydesired.h"
|
||||
#include "velocitystate.h"
|
||||
#include "taskinfo.h"
|
||||
#include <pios_struct_helper.h>
|
||||
#include <sanitycheck.h>
|
||||
|
||||
#include "sin_lookup.h"
|
||||
#include "paths.h"
|
||||
#include "CoordinateConversions.h"
|
||||
|
||||
// Private constants
|
||||
#define MAX_QUEUE_SIZE 4
|
||||
#define STACK_SIZE_BYTES 1548
|
||||
#define TASK_PRIORITY (tskIDLE_PRIORITY + 2)
|
||||
|
||||
// Private variables
|
||||
static bool followerEnabled = false;
|
||||
static xTaskHandle pathfollowerTaskHandle;
|
||||
static PathDesiredData pathDesired;
|
||||
static PathStatusData pathStatus;
|
||||
static FixedWingPathFollowerSettingsData fixedwingpathfollowerSettings;
|
||||
|
||||
// Private functions
|
||||
static void pathfollowerTask(void *parameters);
|
||||
static void SettingsUpdatedCb(UAVObjEvent *ev);
|
||||
static void updatePathVelocity();
|
||||
static uint8_t updateFixedDesiredAttitude();
|
||||
static void updateFixedAttitude();
|
||||
static void airspeedStateUpdatedCb(UAVObjEvent *ev);
|
||||
static bool correctCourse(float *C, float *V, float *F, float s);
|
||||
|
||||
/**
|
||||
* Initialise the module, called on startup
|
||||
* \returns 0 on success or -1 if initialisation failed
|
||||
*/
|
||||
int32_t FixedWingPathFollowerStart()
|
||||
{
|
||||
if (followerEnabled) {
|
||||
// Start main task
|
||||
xTaskCreate(pathfollowerTask, "PathFollower", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &pathfollowerTaskHandle);
|
||||
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_PATHFOLLOWER, pathfollowerTaskHandle);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Initialise the module, called on startup
|
||||
* \returns 0 on success or -1 if initialisation failed
|
||||
*/
|
||||
int32_t FixedWingPathFollowerInitialize()
|
||||
{
|
||||
HwSettingsInitialize();
|
||||
HwSettingsOptionalModulesData optionalModules;
|
||||
HwSettingsOptionalModulesGet(&optionalModules);
|
||||
FrameType_t frameType = GetCurrentFrameType();
|
||||
|
||||
if ((optionalModules.FixedWingPathFollower == HWSETTINGS_OPTIONALMODULES_ENABLED) ||
|
||||
(frameType == FRAME_TYPE_FIXED_WING)) {
|
||||
followerEnabled = true;
|
||||
FixedWingPathFollowerSettingsInitialize();
|
||||
FixedWingPathFollowerStatusInitialize();
|
||||
PathDesiredInitialize();
|
||||
PathStatusInitialize();
|
||||
VelocityDesiredInitialize();
|
||||
AirspeedStateInitialize();
|
||||
} else {
|
||||
followerEnabled = false;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
MODULE_INITCALL(FixedWingPathFollowerInitialize, FixedWingPathFollowerStart);
|
||||
|
||||
static float northVelIntegral = 0.0f;
|
||||
static float eastVelIntegral = 0.0f;
|
||||
static float downVelIntegral = 0.0f;
|
||||
|
||||
static float courseIntegral = 0.0f;
|
||||
static float speedIntegral = 0.0f;
|
||||
static float powerIntegral = 0.0f;
|
||||
static float airspeedErrorInt = 0.0f;
|
||||
|
||||
// correct speed by measured airspeed
|
||||
static float indicatedAirspeedStateBias = 0.0f;
|
||||
|
||||
/**
|
||||
* Module thread, should not return.
|
||||
*/
|
||||
static void pathfollowerTask(__attribute__((unused)) void *parameters)
|
||||
{
|
||||
SystemSettingsData systemSettings;
|
||||
FlightStatusData flightStatus;
|
||||
|
||||
portTickType lastUpdateTime;
|
||||
|
||||
AirspeedStateConnectCallback(airspeedStateUpdatedCb);
|
||||
FixedWingPathFollowerSettingsConnectCallback(SettingsUpdatedCb);
|
||||
PathDesiredConnectCallback(SettingsUpdatedCb);
|
||||
|
||||
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
|
||||
PathDesiredGet(&pathDesired);
|
||||
|
||||
// Main task loop
|
||||
lastUpdateTime = xTaskGetTickCount();
|
||||
while (1) {
|
||||
// Conditions when this runs:
|
||||
// 1. Must have FixedWing type airframe
|
||||
// 2. Flight mode is PositionHold and PathDesired.Mode is Endpoint OR
|
||||
// FlightMode is PathPlanner and PathDesired.Mode is Endpoint or Path
|
||||
|
||||
SystemSettingsGet(&systemSettings);
|
||||
if ((systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWING) &&
|
||||
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGELEVON) &&
|
||||
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGVTAIL)) {
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
|
||||
vTaskDelay(1000);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Continue collecting data if not enough time
|
||||
vTaskDelayUntil(&lastUpdateTime, fixedwingpathfollowerSettings.UpdatePeriod / portTICK_RATE_MS);
|
||||
|
||||
|
||||
FlightStatusGet(&flightStatus);
|
||||
PathStatusGet(&pathStatus);
|
||||
|
||||
uint8_t result;
|
||||
// Check the combinations of flightmode and pathdesired mode
|
||||
if (flightStatus.ControlChain.PathFollower == FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
|
||||
if (flightStatus.ControlChain.PathPlanner == FLIGHTSTATUS_CONTROLCHAIN_FALSE) {
|
||||
if (pathDesired.Mode == PATHDESIRED_MODE_FLYENDPOINT) {
|
||||
updatePathVelocity();
|
||||
result = updateFixedDesiredAttitude();
|
||||
if (result) {
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
|
||||
} else {
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
|
||||
}
|
||||
} else {
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
|
||||
}
|
||||
} else {
|
||||
pathStatus.UID = pathDesired.UID;
|
||||
pathStatus.Status = PATHSTATUS_STATUS_INPROGRESS;
|
||||
switch (pathDesired.Mode) {
|
||||
case PATHDESIRED_MODE_FLYENDPOINT:
|
||||
case PATHDESIRED_MODE_FLYVECTOR:
|
||||
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
|
||||
case PATHDESIRED_MODE_FLYCIRCLELEFT:
|
||||
updatePathVelocity();
|
||||
result = updateFixedDesiredAttitude();
|
||||
if (result) {
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
|
||||
} else {
|
||||
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
|
||||
}
|
||||
break;
|
||||
case PATHDESIRED_MODE_FIXEDATTITUDE:
|
||||
updateFixedAttitude(pathDesired.ModeParameters);
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
|
||||
break;
|
||||
case PATHDESIRED_MODE_DISARMALARM:
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
|
||||
break;
|
||||
default:
|
||||
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Be cleaner and get rid of global variables
|
||||
northVelIntegral = 0.0f;
|
||||
eastVelIntegral = 0.0f;
|
||||
downVelIntegral = 0.0f;
|
||||
courseIntegral = 0.0f;
|
||||
speedIntegral = 0.0f;
|
||||
powerIntegral = 0.0f;
|
||||
}
|
||||
PathStatusSet(&pathStatus);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute desired velocity from the current position and path
|
||||
*
|
||||
* Takes in @ref PositionState and compares it to @ref PathDesired
|
||||
* and computes @ref VelocityDesired
|
||||
*/
|
||||
static void updatePathVelocity()
|
||||
{
|
||||
PositionStateData positionState;
|
||||
|
||||
PositionStateGet(&positionState);
|
||||
VelocityStateData velocityState;
|
||||
VelocityStateGet(&velocityState);
|
||||
|
||||
// look ahead fixedwingpathfollowerSettings.CourseFeedForward seconds
|
||||
float cur[3] = { positionState.North + (velocityState.North * fixedwingpathfollowerSettings.CourseFeedForward),
|
||||
positionState.East + (velocityState.East * fixedwingpathfollowerSettings.CourseFeedForward),
|
||||
positionState.Down + (velocityState.Down * fixedwingpathfollowerSettings.CourseFeedForward) };
|
||||
struct path_status progress;
|
||||
|
||||
path_progress(cast_struct_to_array(pathDesired.Start, pathDesired.Start.North),
|
||||
cast_struct_to_array(pathDesired.End, pathDesired.End.North),
|
||||
cur, &progress, pathDesired.Mode);
|
||||
|
||||
float groundspeed;
|
||||
float altitudeSetpoint;
|
||||
switch (pathDesired.Mode) {
|
||||
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
|
||||
case PATHDESIRED_MODE_DRIVECIRCLERIGHT:
|
||||
case PATHDESIRED_MODE_FLYCIRCLELEFT:
|
||||
case PATHDESIRED_MODE_DRIVECIRCLELEFT:
|
||||
groundspeed = pathDesired.EndingVelocity;
|
||||
altitudeSetpoint = pathDesired.End.Down;
|
||||
break;
|
||||
case PATHDESIRED_MODE_FLYENDPOINT:
|
||||
case PATHDESIRED_MODE_DRIVEENDPOINT:
|
||||
case PATHDESIRED_MODE_FLYVECTOR:
|
||||
case PATHDESIRED_MODE_DRIVEVECTOR:
|
||||
default:
|
||||
groundspeed = pathDesired.StartingVelocity + (pathDesired.EndingVelocity - pathDesired.StartingVelocity) *
|
||||
boundf(progress.fractional_progress, 0.0f, 1.0f);
|
||||
altitudeSetpoint = pathDesired.Start.Down + (pathDesired.End.Down - pathDesired.Start.Down) *
|
||||
boundf(progress.fractional_progress, 0.0f, 1.0f);
|
||||
break;
|
||||
}
|
||||
// make sure groundspeed is not zero
|
||||
if (groundspeed < 1e-6f) {
|
||||
groundspeed = 1e-6f;
|
||||
}
|
||||
|
||||
// calculate velocity - can be zero if waypoints are too close
|
||||
VelocityDesiredData velocityDesired;
|
||||
velocityDesired.North = progress.path_direction[0];
|
||||
velocityDesired.East = progress.path_direction[1];
|
||||
|
||||
float error_speed = progress.error * fixedwingpathfollowerSettings.HorizontalPosP;
|
||||
|
||||
// if a plane is crossing its desired flightpath facing the wrong way (away from flight direction)
|
||||
// it would turn towards the flightpath to get on its desired course. This however would reverse the correction vector
|
||||
// once it crosses the flightpath again, which would make it again turn towards the flightpath (but away from its desired heading)
|
||||
// leading to an S-shape snake course the wrong way
|
||||
// this only happens especially if HorizontalPosP is too high, as otherwise the angle between velocity desired and path_direction won't
|
||||
// turn steep unless there is enough space complete the turn before crossing the flightpath
|
||||
// in this case the plane effectively needs to be turned around
|
||||
// indicators:
|
||||
// difference between correction_direction and velocitystate >90 degrees and
|
||||
// difference between path_direction and velocitystate >90 degrees ( 4th sector, facing away from everything )
|
||||
// fix: ignore correction, steer in path direction until the situation has become better (condition doesn't apply anymore)
|
||||
if ( // calculating angles < 90 degrees through dot products
|
||||
((progress.path_direction[0] * velocityState.North + progress.path_direction[1] * velocityState.East) < 0.0f) &&
|
||||
((progress.correction_direction[0] * velocityState.North + progress.correction_direction[1] * velocityState.East) < 0.0f)) {
|
||||
error_speed = 0.0f;
|
||||
}
|
||||
|
||||
// calculate correction - can also be zero if correction vector is 0 or no error present
|
||||
velocityDesired.North += progress.correction_direction[0] * error_speed;
|
||||
velocityDesired.East += progress.correction_direction[1] * error_speed;
|
||||
|
||||
// scale to correct length
|
||||
float l = sqrtf(velocityDesired.North * velocityDesired.North + velocityDesired.East * velocityDesired.East);
|
||||
if (l > 1e-9f) {
|
||||
velocityDesired.North *= groundspeed / l;
|
||||
velocityDesired.East *= groundspeed / l;
|
||||
}
|
||||
|
||||
float downError = altitudeSetpoint - positionState.Down;
|
||||
velocityDesired.Down = downError * fixedwingpathfollowerSettings.VerticalPosP;
|
||||
|
||||
// update pathstatus
|
||||
pathStatus.error = progress.error;
|
||||
pathStatus.fractional_progress = progress.fractional_progress;
|
||||
|
||||
VelocityDesiredSet(&velocityDesired);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Compute desired attitude from a fixed preset
|
||||
*
|
||||
*/
|
||||
static void updateFixedAttitude(float *attitude)
|
||||
{
|
||||
StabilizationDesiredData stabDesired;
|
||||
|
||||
StabilizationDesiredGet(&stabDesired);
|
||||
stabDesired.Roll = attitude[0];
|
||||
stabDesired.Pitch = attitude[1];
|
||||
stabDesired.Yaw = attitude[2];
|
||||
stabDesired.Thrust = attitude[3];
|
||||
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
||||
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
||||
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
|
||||
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
|
||||
StabilizationDesiredSet(&stabDesired);
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute desired attitude from the desired velocity
|
||||
*
|
||||
* Takes in @ref NedState which has the acceleration in the
|
||||
* NED frame as the feedback term and then compares the
|
||||
* @ref VelocityState against the @ref VelocityDesired
|
||||
*/
|
||||
static uint8_t updateFixedDesiredAttitude()
|
||||
{
|
||||
uint8_t result = 1;
|
||||
|
||||
float dT = fixedwingpathfollowerSettings.UpdatePeriod / 1000.0f; // Convert from [ms] to [s]
|
||||
|
||||
VelocityDesiredData velocityDesired;
|
||||
VelocityStateData velocityState;
|
||||
StabilizationDesiredData stabDesired;
|
||||
AttitudeStateData attitudeState;
|
||||
StabilizationSettingsData stabSettings;
|
||||
FixedWingPathFollowerStatusData fixedwingpathfollowerStatus;
|
||||
AirspeedStateData airspeedState;
|
||||
SystemSettingsData systemSettings;
|
||||
|
||||
float groundspeedProjection;
|
||||
float indicatedAirspeedState;
|
||||
float indicatedAirspeedDesired;
|
||||
float airspeedError;
|
||||
|
||||
float pitchCommand;
|
||||
|
||||
float descentspeedDesired;
|
||||
float descentspeedError;
|
||||
float powerCommand;
|
||||
|
||||
float airspeedVector[2];
|
||||
float fluidMovement[2];
|
||||
float courseComponent[2];
|
||||
float courseError;
|
||||
float courseCommand;
|
||||
|
||||
FixedWingPathFollowerStatusGet(&fixedwingpathfollowerStatus);
|
||||
|
||||
VelocityStateGet(&velocityState);
|
||||
StabilizationDesiredGet(&stabDesired);
|
||||
VelocityDesiredGet(&velocityDesired);
|
||||
AttitudeStateGet(&attitudeState);
|
||||
StabilizationSettingsGet(&stabSettings);
|
||||
AirspeedStateGet(&airspeedState);
|
||||
SystemSettingsGet(&systemSettings);
|
||||
|
||||
/**
|
||||
* Compute speed error and course
|
||||
*/
|
||||
// missing sensors for airspeed-direction we have to assume within
|
||||
// reasonable error that measured airspeed is actually the airspeed
|
||||
// component in forward pointing direction
|
||||
// airspeedVector is normalized
|
||||
airspeedVector[0] = cos_lookup_deg(attitudeState.Yaw);
|
||||
airspeedVector[1] = sin_lookup_deg(attitudeState.Yaw);
|
||||
|
||||
// current ground speed projected in forward direction
|
||||
groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
|
||||
|
||||
// note that airspeedStateBias is ( calibratedAirspeed - groundspeedProjection ) at the time of measurement,
|
||||
// but thanks to accelerometers, groundspeedProjection reacts faster to changes in direction
|
||||
// than airspeed and gps sensors alone
|
||||
indicatedAirspeedState = groundspeedProjection + indicatedAirspeedStateBias;
|
||||
|
||||
// fluidMovement is a vector describing the aproximate movement vector of
|
||||
// the surrounding fluid in 2d space (aka wind vector)
|
||||
fluidMovement[0] = velocityState.North - (indicatedAirspeedState * airspeedVector[0]);
|
||||
fluidMovement[1] = velocityState.East - (indicatedAirspeedState * airspeedVector[1]);
|
||||
|
||||
// calculate the movement vector we need to fly to reach velocityDesired -
|
||||
// taking fluidMovement into account
|
||||
courseComponent[0] = velocityDesired.North - fluidMovement[0];
|
||||
courseComponent[1] = velocityDesired.East - fluidMovement[1];
|
||||
|
||||
indicatedAirspeedDesired = boundf(sqrtf(courseComponent[0] * courseComponent[0] + courseComponent[1] * courseComponent[1]),
|
||||
fixedwingpathfollowerSettings.HorizontalVelMin,
|
||||
fixedwingpathfollowerSettings.HorizontalVelMax);
|
||||
|
||||
// if we could fly at arbitrary speeds, we'd just have to move towards the
|
||||
// courseComponent vector as previously calculated and we'd be fine
|
||||
// unfortunately however we are bound by min and max air speed limits, so
|
||||
// we need to recalculate the correct course to meet at least the
|
||||
// velocityDesired vector direction at our current speed
|
||||
// this overwrites courseComponent
|
||||
bool valid = correctCourse(courseComponent, (float *)&velocityDesired.North, fluidMovement, indicatedAirspeedDesired);
|
||||
|
||||
// Error condition: wind speed too high, we can't go where we want anymore
|
||||
fixedwingpathfollowerStatus.Errors.Wind = 0;
|
||||
if ((!valid) &&
|
||||
fixedwingpathfollowerSettings.Safetymargins.Wind > 0.5f) { // alarm switched on
|
||||
fixedwingpathfollowerStatus.Errors.Wind = 1;
|
||||
result = 0;
|
||||
}
|
||||
|
||||
// Airspeed error
|
||||
airspeedError = indicatedAirspeedDesired - indicatedAirspeedState;
|
||||
|
||||
// Vertical speed error
|
||||
descentspeedDesired = boundf(
|
||||
velocityDesired.Down,
|
||||
-fixedwingpathfollowerSettings.VerticalVelMax,
|
||||
fixedwingpathfollowerSettings.VerticalVelMax);
|
||||
descentspeedError = descentspeedDesired - velocityState.Down;
|
||||
|
||||
// Error condition: plane too slow or too fast
|
||||
fixedwingpathfollowerStatus.Errors.Highspeed = 0;
|
||||
fixedwingpathfollowerStatus.Errors.Lowspeed = 0;
|
||||
if (indicatedAirspeedState > systemSettings.AirSpeedMax * fixedwingpathfollowerSettings.Safetymargins.Overspeed) {
|
||||
fixedwingpathfollowerStatus.Errors.Overspeed = 1;
|
||||
result = 0;
|
||||
}
|
||||
if (indicatedAirspeedState > fixedwingpathfollowerSettings.HorizontalVelMax * fixedwingpathfollowerSettings.Safetymargins.Highspeed) {
|
||||
fixedwingpathfollowerStatus.Errors.Highspeed = 1;
|
||||
result = 0;
|
||||
}
|
||||
if (indicatedAirspeedState < fixedwingpathfollowerSettings.HorizontalVelMin * fixedwingpathfollowerSettings.Safetymargins.Lowspeed) {
|
||||
fixedwingpathfollowerStatus.Errors.Lowspeed = 1;
|
||||
result = 0;
|
||||
}
|
||||
if (indicatedAirspeedState < systemSettings.AirSpeedMin * fixedwingpathfollowerSettings.Safetymargins.Stallspeed) {
|
||||
fixedwingpathfollowerStatus.Errors.Stallspeed = 1;
|
||||
result = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute desired thrust command
|
||||
*/
|
||||
// compute saturated integral error thrust response. Make integral leaky for better performance. Approximately 30s time constant.
|
||||
if (fixedwingpathfollowerSettings.PowerPI.Ki > 0.0f) {
|
||||
powerIntegral = boundf(powerIntegral + -descentspeedError * dT,
|
||||
-fixedwingpathfollowerSettings.PowerPI.ILimit / fixedwingpathfollowerSettings.PowerPI.Ki,
|
||||
fixedwingpathfollowerSettings.PowerPI.ILimit / fixedwingpathfollowerSettings.PowerPI.Ki
|
||||
) * (1.0f - 1.0f / (1.0f + 30.0f / dT));
|
||||
} else {
|
||||
powerIntegral = 0.0f;
|
||||
}
|
||||
|
||||
// Compute the cross feed from vertical speed to pitch, with saturation
|
||||
float speedErrorToPowerCommandComponent = boundf(
|
||||
(airspeedError / fixedwingpathfollowerSettings.HorizontalVelMin) * fixedwingpathfollowerSettings.AirspeedToPowerCrossFeed.Kp,
|
||||
-fixedwingpathfollowerSettings.AirspeedToPowerCrossFeed.Max,
|
||||
fixedwingpathfollowerSettings.AirspeedToPowerCrossFeed.Max
|
||||
);
|
||||
|
||||
// Compute final thrust response
|
||||
powerCommand = -descentspeedError * fixedwingpathfollowerSettings.PowerPI.Kp +
|
||||
powerIntegral * fixedwingpathfollowerSettings.PowerPI.Ki +
|
||||
speedErrorToPowerCommandComponent;
|
||||
|
||||
// Output internal state to telemetry
|
||||
fixedwingpathfollowerStatus.Error.Power = descentspeedError;
|
||||
fixedwingpathfollowerStatus.ErrorInt.Power = powerIntegral;
|
||||
fixedwingpathfollowerStatus.Command.Power = powerCommand;
|
||||
|
||||
// set thrust
|
||||
stabDesired.Thrust = boundf(fixedwingpathfollowerSettings.ThrustLimit.Neutral + powerCommand,
|
||||
fixedwingpathfollowerSettings.ThrustLimit.Min,
|
||||
fixedwingpathfollowerSettings.ThrustLimit.Max);
|
||||
|
||||
// Error condition: plane cannot hold altitude at current speed.
|
||||
fixedwingpathfollowerStatus.Errors.Lowpower = 0;
|
||||
if (fixedwingpathfollowerSettings.ThrustLimit.Neutral + powerCommand >= fixedwingpathfollowerSettings.ThrustLimit.Max && // thrust at maximum
|
||||
velocityState.Down > 0.0f && // we ARE going down
|
||||
descentspeedDesired < 0.0f && // we WANT to go up
|
||||
airspeedError > 0.0f && // we are too slow already
|
||||
fixedwingpathfollowerSettings.Safetymargins.Lowpower > 0.5f) { // alarm switched on
|
||||
fixedwingpathfollowerStatus.Errors.Lowpower = 1;
|
||||
result = 0;
|
||||
}
|
||||
// Error condition: plane keeps climbing despite minimum thrust (opposite of above)
|
||||
fixedwingpathfollowerStatus.Errors.Highpower = 0;
|
||||
if (fixedwingpathfollowerSettings.ThrustLimit.Neutral + powerCommand <= fixedwingpathfollowerSettings.ThrustLimit.Min && // thrust at minimum
|
||||
velocityState.Down < 0.0f && // we ARE going up
|
||||
descentspeedDesired > 0.0f && // we WANT to go down
|
||||
airspeedError < 0.0f && // we are too fast already
|
||||
fixedwingpathfollowerSettings.Safetymargins.Highpower > 0.5f) { // alarm switched on
|
||||
fixedwingpathfollowerStatus.Errors.Highpower = 1;
|
||||
result = 0;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Compute desired pitch command
|
||||
*/
|
||||
if (fixedwingpathfollowerSettings.SpeedPI.Ki > 0) {
|
||||
// Integrate with saturation
|
||||
airspeedErrorInt = boundf(airspeedErrorInt + airspeedError * dT,
|
||||
-fixedwingpathfollowerSettings.SpeedPI.ILimit / fixedwingpathfollowerSettings.SpeedPI.Ki,
|
||||
fixedwingpathfollowerSettings.SpeedPI.ILimit / fixedwingpathfollowerSettings.SpeedPI.Ki);
|
||||
}
|
||||
|
||||
// Compute the cross feed from vertical speed to pitch, with saturation
|
||||
float verticalSpeedToPitchCommandComponent = boundf(-descentspeedError * fixedwingpathfollowerSettings.VerticalToPitchCrossFeed.Kp,
|
||||
-fixedwingpathfollowerSettings.VerticalToPitchCrossFeed.Max,
|
||||
fixedwingpathfollowerSettings.VerticalToPitchCrossFeed.Max
|
||||
);
|
||||
|
||||
// Compute the pitch command as err*Kp + errInt*Ki + X_feed.
|
||||
pitchCommand = -(airspeedError * fixedwingpathfollowerSettings.SpeedPI.Kp
|
||||
+ airspeedErrorInt * fixedwingpathfollowerSettings.SpeedPI.Ki
|
||||
) + verticalSpeedToPitchCommandComponent;
|
||||
|
||||
fixedwingpathfollowerStatus.Error.Speed = airspeedError;
|
||||
fixedwingpathfollowerStatus.ErrorInt.Speed = airspeedErrorInt;
|
||||
fixedwingpathfollowerStatus.Command.Speed = pitchCommand;
|
||||
|
||||
stabDesired.Pitch = boundf(fixedwingpathfollowerSettings.PitchLimit.Neutral + pitchCommand,
|
||||
fixedwingpathfollowerSettings.PitchLimit.Min,
|
||||
fixedwingpathfollowerSettings.PitchLimit.Max);
|
||||
|
||||
// Error condition: high speed dive
|
||||
fixedwingpathfollowerStatus.Errors.Pitchcontrol = 0;
|
||||
if (fixedwingpathfollowerSettings.PitchLimit.Neutral + pitchCommand >= fixedwingpathfollowerSettings.PitchLimit.Max && // pitch demand is full up
|
||||
velocityState.Down > 0.0f && // we ARE going down
|
||||
descentspeedDesired < 0.0f && // we WANT to go up
|
||||
airspeedError < 0.0f && // we are too fast already
|
||||
fixedwingpathfollowerSettings.Safetymargins.Pitchcontrol > 0.5f) { // alarm switched on
|
||||
fixedwingpathfollowerStatus.Errors.Pitchcontrol = 1;
|
||||
result = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute desired roll command
|
||||
*/
|
||||
courseError = RAD2DEG(atan2f(courseComponent[1], courseComponent[0])) - attitudeState.Yaw;
|
||||
|
||||
if (courseError < -180.0f) {
|
||||
courseError += 360.0f;
|
||||
}
|
||||
if (courseError > 180.0f) {
|
||||
courseError -= 360.0f;
|
||||
}
|
||||
|
||||
// overlap calculation. Theres a dead zone behind the craft where the
|
||||
// counter-yawing of some craft while rolling could render a desired right
|
||||
// turn into a desired left turn. Making the turn direction based on
|
||||
// current roll angle keeps the plane committed to a direction once chosen
|
||||
if (courseError < -180.0f + (fixedwingpathfollowerSettings.ReverseCourseOverlap * 0.5f)
|
||||
&& attitudeState.Roll > 0.0f) {
|
||||
courseError += 360.0f;
|
||||
}
|
||||
if (courseError > 180.0f - (fixedwingpathfollowerSettings.ReverseCourseOverlap * 0.5f)
|
||||
&& attitudeState.Roll < 0.0f) {
|
||||
courseError -= 360.0f;
|
||||
}
|
||||
|
||||
courseIntegral = boundf(courseIntegral + courseError * dT * fixedwingpathfollowerSettings.CoursePI.Ki,
|
||||
-fixedwingpathfollowerSettings.CoursePI.ILimit,
|
||||
fixedwingpathfollowerSettings.CoursePI.ILimit);
|
||||
courseCommand = (courseError * fixedwingpathfollowerSettings.CoursePI.Kp +
|
||||
courseIntegral);
|
||||
|
||||
fixedwingpathfollowerStatus.Error.Course = courseError;
|
||||
fixedwingpathfollowerStatus.ErrorInt.Course = courseIntegral;
|
||||
fixedwingpathfollowerStatus.Command.Course = courseCommand;
|
||||
|
||||
stabDesired.Roll = boundf(fixedwingpathfollowerSettings.RollLimit.Neutral +
|
||||
courseCommand,
|
||||
fixedwingpathfollowerSettings.RollLimit.Min,
|
||||
fixedwingpathfollowerSettings.RollLimit.Max);
|
||||
|
||||
// TODO: find a check to determine loss of directional control. Likely needs some check of derivative
|
||||
|
||||
|
||||
/**
|
||||
* Compute desired yaw command
|
||||
*/
|
||||
// TODO implement raw control mode for yaw and base on Accels.Y
|
||||
stabDesired.Yaw = 0.0f;
|
||||
|
||||
|
||||
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
||||
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
||||
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
|
||||
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
|
||||
|
||||
StabilizationDesiredSet(&stabDesired);
|
||||
|
||||
FixedWingPathFollowerStatusSet(&fixedwingpathfollowerStatus);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
|
||||
{
|
||||
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
|
||||
PathDesiredGet(&pathDesired);
|
||||
}
|
||||
|
||||
static void airspeedStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
|
||||
{
|
||||
AirspeedStateData airspeedState;
|
||||
VelocityStateData velocityState;
|
||||
|
||||
AirspeedStateGet(&airspeedState);
|
||||
VelocityStateGet(&velocityState);
|
||||
float airspeedVector[2];
|
||||
float yaw;
|
||||
AttitudeStateYawGet(&yaw);
|
||||
airspeedVector[0] = cos_lookup_deg(yaw);
|
||||
airspeedVector[1] = sin_lookup_deg(yaw);
|
||||
// vector projection of groundspeed on airspeed vector to handle both forward and backwards movement
|
||||
float groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
|
||||
|
||||
indicatedAirspeedStateBias = airspeedState.CalibratedAirspeed - groundspeedProjection;
|
||||
// note - we do fly by Indicated Airspeed (== calibrated airspeed) however
|
||||
// since airspeed is updated less often than groundspeed, we use sudden
|
||||
// changes to groundspeed to offset the airspeed by the same measurement.
|
||||
// This has a side effect that in the absence of any airspeed updates, the
|
||||
// pathfollower will fly using groundspeed.
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Function to calculate course vector C based on airspeed s, fluid movement F
|
||||
* and desired movement vector V
|
||||
* parameters in: V,F,s
|
||||
* parameters out: C
|
||||
* returns true if a valid solution could be found for V,F,s, false if not
|
||||
* C will be set to a best effort attempt either way
|
||||
*/
|
||||
static bool correctCourse(float *C, float *V, float *F, float s)
|
||||
{
|
||||
// Approach:
|
||||
// Let Sc be a circle around origin marking possible movement vectors
|
||||
// of the craft with airspeed s (all possible options for C)
|
||||
// Let Vl be a line through the origin along movement vector V where fr any
|
||||
// point v on line Vl v = k * (V / |V|) = k' * V
|
||||
// Let Wl be a line parallel to Vl where for any point v on line Vl exists
|
||||
// a point w on WL with w = v - F
|
||||
// Then any intersection between circle Sc and line Wl represents course
|
||||
// vector which would result in a movement vector
|
||||
// V' = k * ( V / |V|) = k' * V
|
||||
// If there is no intersection point, S is insufficient to compensate
|
||||
// for F and we can only try to fly in direction of V (thus having wind drift
|
||||
// but at least making progress orthogonal to wind)
|
||||
|
||||
s = fabsf(s);
|
||||
float f = sqrtf(F[0] * F[0] + F[1] * F[1]);
|
||||
|
||||
// normalize Cn=V/|V|, |V| must be >0
|
||||
float v = sqrtf(V[0] * V[0] + V[1] * V[1]);
|
||||
if (v < 1e-6f) {
|
||||
// if |V|=0, we aren't supposed to move, turn into the wind
|
||||
// (this allows hovering)
|
||||
C[0] = -F[0];
|
||||
C[1] = -F[1];
|
||||
// if desired airspeed matches fluidmovement a hover is actually
|
||||
// intended so return true
|
||||
return fabsf(f - s) < 1e-3f;
|
||||
}
|
||||
float Vn[2] = { V[0] / v, V[1] / v };
|
||||
|
||||
// project F on V
|
||||
float fp = F[0] * Vn[0] + F[1] * Vn[1];
|
||||
|
||||
// find component Fo of F that is orthogonal to V
|
||||
// (which is exactly the distance between Vl and Wl)
|
||||
float Fo[2] = { F[0] - (fp * Vn[0]), F[1] - (fp * Vn[1]) };
|
||||
float fo2 = Fo[0] * Fo[0] + Fo[1] * Fo[1];
|
||||
|
||||
// find k where k * Vn = C - Fo
|
||||
// |C|=s is the hypothenuse in any rectangular triangle formed by k * Vn and Fo
|
||||
// so k^2 + fo^2 = s^2 (since |Vn|=1)
|
||||
float k2 = s * s - fo2;
|
||||
if (k2 <= -1e-3f) {
|
||||
// there is no solution, we will be drifted off either way
|
||||
// fallback: fly stupidly in direction of V and hope for the best
|
||||
C[0] = V[0];
|
||||
C[1] = V[1];
|
||||
return false;
|
||||
} else if (k2 <= 1e-3f) {
|
||||
// there is exactly one solution: -Fo
|
||||
C[0] = -Fo[0];
|
||||
C[1] = -Fo[1];
|
||||
return true;
|
||||
}
|
||||
// we have two possible solutions k positive and k negative as there are
|
||||
// two intersection points between Wl and Sc
|
||||
// which one is better? two criteria:
|
||||
// 1. we MUST move in the right direction, if any k leads to -v its invalid
|
||||
// 2. we should minimize the speed error
|
||||
float k = sqrt(k2);
|
||||
float C1[2] = { -k * Vn[0] - Fo[0], -k * Vn[1] - Fo[1] };
|
||||
float C2[2] = { k *Vn[0] - Fo[0], k * Vn[1] - Fo[1] };
|
||||
// project C+F on Vn to find signed resulting movement vector length
|
||||
float vp1 = (C1[0] + F[0]) * Vn[0] + (C1[1] + F[1]) * Vn[1];
|
||||
float vp2 = (C2[0] + F[0]) * Vn[0] + (C2[1] + F[1]) * Vn[1];
|
||||
if (vp1 >= 0.0f && fabsf(v - vp1) < fabsf(v - vp2)) {
|
||||
// in this case the angle between course and resulting movement vector
|
||||
// is greater than 90 degrees - so we actually fly backwards
|
||||
C[0] = C1[0];
|
||||
C[1] = C1[1];
|
||||
return true;
|
||||
}
|
||||
C[0] = C2[0];
|
||||
C[1] = C2[1];
|
||||
if (vp2 >= 0.0f) {
|
||||
// in this case the angle between course and movement vector is less than
|
||||
// 90 degrees, but we do move in the right direction
|
||||
return true;
|
||||
} else {
|
||||
// in this case we actually get driven in the opposite direction of V
|
||||
// with both solutions for C
|
||||
// this might be reached in headwind stronger than maximum allowed
|
||||
// airspeed.
|
||||
return false;
|
||||
}
|
||||
}
|
1239
flight/modules/PathFollower/pathfollower.c
Normal file
1239
flight/modules/PathFollower/pathfollower.c
Normal file
@ -0,0 +1,1239 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
*
|
||||
* @file pathfollower.c
|
||||
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
||||
* @brief This module compared @ref PositionActuatl to @ref ActiveWaypoint
|
||||
* and sets @ref AttitudeDesired. It only does this when the FlightMode field
|
||||
* of @ref ManualControlCommand is Auto.
|
||||
*
|
||||
* @see The GNU Public License (GPL) Version 3
|
||||
*
|
||||
*****************************************************************************/
|
||||
/*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License along
|
||||
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
/**
|
||||
* Input object: PathDesired
|
||||
* Input object: PositionState
|
||||
* Input object: ManualControlCommand
|
||||
* Output object: StabilizationDesired
|
||||
*
|
||||
* This module acts as "autopilot" - it controls the setpoints of stabilization
|
||||
* based on current flight situation and desired flight path (PathDesired) as
|
||||
* directed by flightmode selection or pathplanner
|
||||
* This is a periodic delayed callback module
|
||||
*
|
||||
* Modules have no API, all communication to other modules is done through UAVObjects.
|
||||
* However modules may use the API exposed by shared libraries.
|
||||
* See the OpenPilot wiki for more details.
|
||||
* http://www.openpilot.org/OpenPilot_Application_Architecture
|
||||
*
|
||||
*/
|
||||
|
||||
#include <openpilot.h>
|
||||
|
||||
#include <callbackinfo.h>
|
||||
|
||||
#include <math.h>
|
||||
#include <pid.h>
|
||||
#include <CoordinateConversions.h>
|
||||
#include <pios_struct_helper.h>
|
||||
#include <sin_lookup.h>
|
||||
#include <pathdesired.h>
|
||||
#include <paths.h>
|
||||
#include <sanitycheck.h>
|
||||
|
||||
|
||||
#include <fixedwingpathfollowersettings.h>
|
||||
#include <fixedwingpathfollowerstatus.h>
|
||||
#include <vtolpathfollowersettings.h>
|
||||
#include <flightstatus.h>
|
||||
#include <pathstatus.h>
|
||||
#include <positionstate.h>
|
||||
#include <velocitystate.h>
|
||||
#include <velocitydesired.h>
|
||||
#include <stabilizationdesired.h>
|
||||
#include <airspeedstate.h>
|
||||
#include <attitudestate.h>
|
||||
#include <takeofflocation.h>
|
||||
#include <poilocation.h>
|
||||
#include <manualcontrolcommand.h>
|
||||
#include <systemsettings.h>
|
||||
#include <stabilizationbank.h>
|
||||
|
||||
|
||||
// Private constants
|
||||
|
||||
#define CALLBACK_PRIORITY CALLBACK_PRIORITY_LOW
|
||||
#define CBTASK_PRIORITY CALLBACK_TASK_FLIGHTCONTROL
|
||||
|
||||
#define PF_IDLE_UPDATE_RATE_MS 100
|
||||
|
||||
#define STACK_SIZE_BYTES 2048
|
||||
|
||||
#define DEADBAND_HIGH 0.10f
|
||||
#define DEADBAND_LOW -0.10f
|
||||
// Private types
|
||||
|
||||
struct Globals {
|
||||
struct pid PIDposH[2];
|
||||
struct pid PIDposV;
|
||||
struct pid PIDvel[3];
|
||||
struct pid PIDcourse;
|
||||
struct pid PIDspeed;
|
||||
struct pid PIDpower;
|
||||
float poiRadius;
|
||||
float vtolEmergencyFallback;
|
||||
bool vtolEmergencyFallbackSwitch;
|
||||
};
|
||||
|
||||
|
||||
// Private variables
|
||||
static DelayedCallbackInfo *pathFollowerCBInfo;
|
||||
static uint32_t updatePeriod = PF_IDLE_UPDATE_RATE_MS;
|
||||
static struct Globals global;
|
||||
static PathStatusData pathStatus;
|
||||
static PathDesiredData pathDesired;
|
||||
static FixedWingPathFollowerSettingsData fixedWingPathFollowerSettings;
|
||||
static VtolPathFollowerSettingsData vtolPathFollowerSettings;
|
||||
|
||||
// correct speed by measured airspeed
|
||||
static float indicatedAirspeedStateBias = 0.0f;
|
||||
|
||||
|
||||
// Private functions
|
||||
static void pathFollowerTask(void);
|
||||
static void resetGlobals();
|
||||
static void SettingsUpdatedCb(UAVObjEvent *ev);
|
||||
static uint8_t updateAutoPilotByFrameType();
|
||||
static uint8_t updateAutoPilotFixedWing();
|
||||
static uint8_t updateAutoPilotVtol();
|
||||
static float updateTailInBearing();
|
||||
static float updateCourseBearing();
|
||||
static float updatePathBearing();
|
||||
static float updatePOIBearing();
|
||||
static void processPOI();
|
||||
static void updatePathVelocity(float kFF, bool limited);
|
||||
static uint8_t updateFixedDesiredAttitude();
|
||||
static int8_t updateVtolDesiredAttitude(bool yaw_attitude, float yaw_direction);
|
||||
static void updateFixedAttitude();
|
||||
static void updateVtolDesiredAttitudeEmergencyFallback();
|
||||
static void airspeedStateUpdatedCb(UAVObjEvent *ev);
|
||||
static bool correctCourse(float *C, float *V, float *F, float s);
|
||||
|
||||
/**
|
||||
* Initialise the module, called on startup
|
||||
* \returns 0 on success or -1 if initialisation failed
|
||||
*/
|
||||
int32_t PathFollowerStart()
|
||||
{
|
||||
// Start main task
|
||||
PathStatusGet(&pathStatus);
|
||||
SettingsUpdatedCb(NULL);
|
||||
PIOS_CALLBACKSCHEDULER_Dispatch(pathFollowerCBInfo);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Initialise the module, called on startup
|
||||
* \returns 0 on success or -1 if initialisation failed
|
||||
*/
|
||||
int32_t PathFollowerInitialize()
|
||||
{
|
||||
// initialize objects
|
||||
FixedWingPathFollowerSettingsInitialize();
|
||||
FixedWingPathFollowerStatusInitialize();
|
||||
VtolPathFollowerSettingsInitialize();
|
||||
FlightStatusInitialize();
|
||||
PathStatusInitialize();
|
||||
PathDesiredInitialize();
|
||||
PositionStateInitialize();
|
||||
VelocityStateInitialize();
|
||||
VelocityDesiredInitialize();
|
||||
StabilizationDesiredInitialize();
|
||||
AirspeedStateInitialize();
|
||||
AttitudeStateInitialize();
|
||||
TakeOffLocationInitialize();
|
||||
PoiLocationInitialize();
|
||||
ManualControlCommandInitialize();
|
||||
SystemSettingsInitialize();
|
||||
StabilizationBankInitialize();
|
||||
|
||||
// reset integrals
|
||||
resetGlobals();
|
||||
|
||||
// Create object queue
|
||||
pathFollowerCBInfo = PIOS_CALLBACKSCHEDULER_Create(&pathFollowerTask, CALLBACK_PRIORITY, CBTASK_PRIORITY, CALLBACKINFO_RUNNING_PATHFOLLOWER, STACK_SIZE_BYTES);
|
||||
FixedWingPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
|
||||
VtolPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
|
||||
PathDesiredConnectCallback(SettingsUpdatedCb);
|
||||
AirspeedStateConnectCallback(airspeedStateUpdatedCb);
|
||||
|
||||
return 0;
|
||||
}
|
||||
MODULE_INITCALL(PathFollowerInitialize, PathFollowerStart);
|
||||
|
||||
|
||||
/**
|
||||
* Module thread, should not return.
|
||||
*/
|
||||
static void pathFollowerTask(void)
|
||||
{
|
||||
FlightStatusData flightStatus;
|
||||
|
||||
FlightStatusGet(&flightStatus);
|
||||
|
||||
if (flightStatus.ControlChain.PathFollower != FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
|
||||
resetGlobals();
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_UNINITIALISED);
|
||||
PIOS_CALLBACKSCHEDULER_Schedule(pathFollowerCBInfo, PF_IDLE_UPDATE_RATE_MS, CALLBACK_UPDATEMODE_SOONER);
|
||||
return;
|
||||
}
|
||||
|
||||
if (flightStatus.FlightMode == FLIGHTSTATUS_FLIGHTMODE_POI) { // TODO Hack from vtolpathfollower, move into manualcontrol!
|
||||
processPOI();
|
||||
}
|
||||
|
||||
pathStatus.UID = pathDesired.UID;
|
||||
pathStatus.Status = PATHSTATUS_STATUS_INPROGRESS;
|
||||
switch (pathDesired.Mode) {
|
||||
case PATHDESIRED_MODE_FLYENDPOINT:
|
||||
case PATHDESIRED_MODE_FLYVECTOR:
|
||||
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
|
||||
case PATHDESIRED_MODE_FLYCIRCLELEFT:
|
||||
{
|
||||
uint8_t result = updateAutoPilotByFrameType();
|
||||
if (result) {
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
|
||||
} else {
|
||||
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case PATHDESIRED_MODE_FIXEDATTITUDE:
|
||||
updateFixedAttitude(pathDesired.ModeParameters);
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
|
||||
break;
|
||||
case PATHDESIRED_MODE_DISARMALARM:
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
|
||||
break;
|
||||
default:
|
||||
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_ERROR);
|
||||
break;
|
||||
}
|
||||
PathStatusSet(&pathStatus);
|
||||
|
||||
PIOS_CALLBACKSCHEDULER_Schedule(pathFollowerCBInfo, updatePeriod, CALLBACK_UPDATEMODE_SOONER);
|
||||
}
|
||||
|
||||
|
||||
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
|
||||
{
|
||||
FixedWingPathFollowerSettingsGet(&fixedWingPathFollowerSettings);
|
||||
|
||||
pid_configure(&global.PIDcourse, fixedWingPathFollowerSettings.CoursePI.Kp, fixedWingPathFollowerSettings.CoursePI.Ki, 0.0f, fixedWingPathFollowerSettings.CoursePI.ILimit);
|
||||
pid_configure(&global.PIDspeed, fixedWingPathFollowerSettings.SpeedPI.Kp, fixedWingPathFollowerSettings.SpeedPI.Ki, 0.0f, fixedWingPathFollowerSettings.SpeedPI.ILimit);
|
||||
pid_configure(&global.PIDpower, fixedWingPathFollowerSettings.PowerPI.Kp, fixedWingPathFollowerSettings.PowerPI.Ki, 0.0f, fixedWingPathFollowerSettings.PowerPI.ILimit);
|
||||
|
||||
|
||||
VtolPathFollowerSettingsGet(&vtolPathFollowerSettings);
|
||||
|
||||
pid_configure(&global.PIDvel[0], vtolPathFollowerSettings.HorizontalVelPID.Kp, vtolPathFollowerSettings.HorizontalVelPID.Ki, vtolPathFollowerSettings.HorizontalVelPID.Kd, vtolPathFollowerSettings.HorizontalVelPID.ILimit);
|
||||
pid_configure(&global.PIDvel[1], vtolPathFollowerSettings.HorizontalVelPID.Kp, vtolPathFollowerSettings.HorizontalVelPID.Ki, vtolPathFollowerSettings.HorizontalVelPID.Kd, vtolPathFollowerSettings.HorizontalVelPID.ILimit);
|
||||
pid_configure(&global.PIDvel[2], vtolPathFollowerSettings.VerticalVelPID.Kp, vtolPathFollowerSettings.VerticalVelPID.Ki, vtolPathFollowerSettings.VerticalVelPID.Kd, vtolPathFollowerSettings.VerticalVelPID.ILimit);
|
||||
|
||||
PathDesiredGet(&pathDesired);
|
||||
}
|
||||
|
||||
|
||||
static void airspeedStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
|
||||
{
|
||||
AirspeedStateData airspeedState;
|
||||
VelocityStateData velocityState;
|
||||
|
||||
AirspeedStateGet(&airspeedState);
|
||||
VelocityStateGet(&velocityState);
|
||||
float airspeedVector[2];
|
||||
float yaw;
|
||||
AttitudeStateYawGet(&yaw);
|
||||
airspeedVector[0] = cos_lookup_deg(yaw);
|
||||
airspeedVector[1] = sin_lookup_deg(yaw);
|
||||
// vector projection of groundspeed on airspeed vector to handle both forward and backwards movement
|
||||
float groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
|
||||
|
||||
indicatedAirspeedStateBias = airspeedState.CalibratedAirspeed - groundspeedProjection;
|
||||
// note - we do fly by Indicated Airspeed (== calibrated airspeed) however
|
||||
// since airspeed is updated less often than groundspeed, we use sudden
|
||||
// changes to groundspeed to offset the airspeed by the same measurement.
|
||||
// This has a side effect that in the absence of any airspeed updates, the
|
||||
// pathfollower will fly using groundspeed.
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* reset integrals
|
||||
*/
|
||||
static void resetGlobals()
|
||||
{
|
||||
pid_zero(&global.PIDposH[0]);
|
||||
pid_zero(&global.PIDposH[1]);
|
||||
pid_zero(&global.PIDposV);
|
||||
pid_zero(&global.PIDvel[0]);
|
||||
pid_zero(&global.PIDvel[1]);
|
||||
pid_zero(&global.PIDvel[2]);
|
||||
pid_zero(&global.PIDcourse);
|
||||
pid_zero(&global.PIDspeed);
|
||||
pid_zero(&global.PIDpower);
|
||||
global.poiRadius = 0.0f;
|
||||
global.vtolEmergencyFallback = 0;
|
||||
global.vtolEmergencyFallbackSwitch = false;
|
||||
}
|
||||
|
||||
static uint8_t updateAutoPilotByFrameType()
|
||||
{
|
||||
FrameType_t frameType = GetCurrentFrameType();
|
||||
|
||||
if (frameType == FRAME_TYPE_CUSTOM || frameType == FRAME_TYPE_GROUND) {
|
||||
switch (vtolPathFollowerSettings.TreatCustomCraftAs) {
|
||||
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_FIXEDWING:
|
||||
frameType = FRAME_TYPE_FIXED_WING;
|
||||
break;
|
||||
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_VTOL:
|
||||
frameType = FRAME_TYPE_MULTIROTOR;
|
||||
break;
|
||||
}
|
||||
}
|
||||
switch (frameType) {
|
||||
case FRAME_TYPE_MULTIROTOR:
|
||||
case FRAME_TYPE_HELI:
|
||||
updatePeriod = vtolPathFollowerSettings.UpdatePeriod;
|
||||
return updateAutoPilotVtol();
|
||||
|
||||
break;
|
||||
case FRAME_TYPE_FIXED_WING:
|
||||
default:
|
||||
updatePeriod = fixedWingPathFollowerSettings.UpdatePeriod;
|
||||
return updateAutoPilotFixedWing();
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* fixed wing autopilot:
|
||||
* straight forward:
|
||||
* 1. update path velocity for limited motion crafts
|
||||
* 2. update attitude according to default fixed wing pathfollower algorithm
|
||||
*/
|
||||
static uint8_t updateAutoPilotFixedWing()
|
||||
{
|
||||
pid_configure(&global.PIDposH[0], fixedWingPathFollowerSettings.HorizontalPosP, 0.0f, 0.0f, 0.0f);
|
||||
pid_configure(&global.PIDposH[1], fixedWingPathFollowerSettings.HorizontalPosP, 0.0f, 0.0f, 0.0f);
|
||||
pid_configure(&global.PIDposV, fixedWingPathFollowerSettings.VerticalPosP, 0.0f, 0.0f, 0.0f);
|
||||
updatePathVelocity(fixedWingPathFollowerSettings.CourseFeedForward, true);
|
||||
return updateFixedDesiredAttitude();
|
||||
}
|
||||
|
||||
/**
|
||||
* vtol autopilot
|
||||
* use hover capable algorithm with unlimeted movement calculation. if that fails (flyaway situation due to compass failure)
|
||||
* fall back to emergency fallback autopilot to keep minimum amount of flight control
|
||||
*/
|
||||
static uint8_t updateAutoPilotVtol()
|
||||
{
|
||||
enum { RETURN_0 = 0, RETURN_1 = 1, RETURN_RESULT } returnmode;
|
||||
enum { FOLLOWER_REGULAR, FOLLOWER_FALLBACK } followermode;
|
||||
uint8_t result = 0;
|
||||
|
||||
// decide on behaviour based on settings and system state
|
||||
if (global.vtolEmergencyFallbackSwitch) {
|
||||
returnmode = RETURN_0;
|
||||
followermode = FOLLOWER_FALLBACK;
|
||||
} else {
|
||||
if (vtolPathFollowerSettings.FlyawayEmergencyFallback == VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_ALWAYS) {
|
||||
returnmode = RETURN_1;
|
||||
followermode = FOLLOWER_FALLBACK;
|
||||
} else {
|
||||
returnmode = RETURN_RESULT;
|
||||
followermode = FOLLOWER_REGULAR;
|
||||
}
|
||||
}
|
||||
|
||||
// vertical positon control PID loops works the same in both regular and fallback modes, setup according to settings
|
||||
pid_configure(&global.PIDposV, vtolPathFollowerSettings.VerticalPosPI.Kp, vtolPathFollowerSettings.HorizontalPosPI.Ki, 0.0f, vtolPathFollowerSettings.HorizontalPosPI.ILimit);
|
||||
|
||||
switch (followermode) {
|
||||
case FOLLOWER_REGULAR:
|
||||
{
|
||||
// horizontal position control PID loop works according to settings in regular mode, allowing integral terms
|
||||
pid_configure(&global.PIDposH[0], vtolPathFollowerSettings.HorizontalPosPI.Kp, vtolPathFollowerSettings.HorizontalPosPI.Ki, 0.0f, vtolPathFollowerSettings.HorizontalPosPI.ILimit);
|
||||
pid_configure(&global.PIDposH[1], vtolPathFollowerSettings.HorizontalPosPI.Kp, vtolPathFollowerSettings.HorizontalPosPI.Ki, 0.0f, vtolPathFollowerSettings.HorizontalPosPI.ILimit);
|
||||
updatePathVelocity(vtolPathFollowerSettings.CourseFeedForward, false);
|
||||
|
||||
// yaw behaviour is configurable in vtolpathfollower, select yaw control algorithm
|
||||
bool yaw_attitude = true;
|
||||
float yaw = 0.0f;
|
||||
switch (vtolPathFollowerSettings.YawControl) {
|
||||
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_MANUAL:
|
||||
yaw_attitude = false;
|
||||
break;
|
||||
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_TAILIN:
|
||||
yaw = updateTailInBearing();
|
||||
break;
|
||||
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_MOVEMENTDIRECTION:
|
||||
yaw = updateCourseBearing();
|
||||
break;
|
||||
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_PATHDIRECTION:
|
||||
yaw = updatePathBearing();
|
||||
break;
|
||||
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_POI:
|
||||
yaw = updatePOIBearing();
|
||||
break;
|
||||
}
|
||||
result = updateVtolDesiredAttitude(yaw_attitude, yaw);
|
||||
|
||||
// switch to emergency follower if follower indicates problems
|
||||
if (!result && (vtolPathFollowerSettings.FlyawayEmergencyFallback != VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_DISABLED)) {
|
||||
global.vtolEmergencyFallbackSwitch = true;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case FOLLOWER_FALLBACK:
|
||||
{
|
||||
// fallback loop only cares about intended horizontal flight direction, simplify control behaviour accordingly
|
||||
pid_configure(&global.PIDposH[0], 1.0f, 0.0f, 0.0f, 0.0f);
|
||||
pid_configure(&global.PIDposH[1], 1.0f, 0.0f, 0.0f, 0.0f);
|
||||
updatePathVelocity(vtolPathFollowerSettings.CourseFeedForward, true);
|
||||
|
||||
// emergency follower has no return value
|
||||
updateVtolDesiredAttitudeEmergencyFallback();
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
switch (returnmode) {
|
||||
case RETURN_RESULT:
|
||||
return result;
|
||||
|
||||
default:
|
||||
// returns either 0 or 1 according to enum definition above
|
||||
return returnmode;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Compute bearing of current takeoff location
|
||||
*/
|
||||
static float updateTailInBearing()
|
||||
{
|
||||
PositionStateData p;
|
||||
|
||||
PositionStateGet(&p);
|
||||
TakeOffLocationData t;
|
||||
TakeOffLocationGet(&t);
|
||||
// atan2f always returns in between + and - 180 degrees
|
||||
return RAD2DEG(atan2f(p.East - t.East, p.North - t.North));
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute bearing of current movement direction
|
||||
*/
|
||||
static float updateCourseBearing()
|
||||
{
|
||||
VelocityStateData v;
|
||||
|
||||
VelocityStateGet(&v);
|
||||
// atan2f always returns in between + and - 180 degrees
|
||||
return RAD2DEG(atan2f(v.East, v.North));
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute bearing of current path direction
|
||||
*/
|
||||
static float updatePathBearing()
|
||||
{
|
||||
PositionStateData positionState;
|
||||
|
||||
PositionStateGet(&positionState);
|
||||
|
||||
float cur[3] = { positionState.North,
|
||||
positionState.East,
|
||||
positionState.Down };
|
||||
struct path_status progress;
|
||||
|
||||
path_progress(&pathDesired, cur, &progress);
|
||||
|
||||
// atan2f always returns in between + and - 180 degrees
|
||||
return RAD2DEG(atan2f(progress.path_vector[1], progress.path_vector[0]));
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute bearing between current position and POI
|
||||
*/
|
||||
static float updatePOIBearing()
|
||||
{
|
||||
PoiLocationData poi;
|
||||
|
||||
PoiLocationGet(&poi);
|
||||
PositionStateData positionState;
|
||||
PositionStateGet(&positionState);
|
||||
|
||||
const float dT = updatePeriod / 1000.0f;
|
||||
float dLoc[3];
|
||||
float yaw = 0;
|
||||
/*float elevation = 0;*/
|
||||
|
||||
dLoc[0] = positionState.North - poi.North;
|
||||
dLoc[1] = positionState.East - poi.East;
|
||||
dLoc[2] = positionState.Down - poi.Down;
|
||||
|
||||
if (dLoc[1] < 0) {
|
||||
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) + 180.0f;
|
||||
} else {
|
||||
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) - 180.0f;
|
||||
}
|
||||
ManualControlCommandData manualControlData;
|
||||
ManualControlCommandGet(&manualControlData);
|
||||
|
||||
float pathAngle = 0;
|
||||
if (manualControlData.Roll > DEADBAND_HIGH) {
|
||||
pathAngle = -(manualControlData.Roll - DEADBAND_HIGH) * dT * 300.0f;
|
||||
} else if (manualControlData.Roll < DEADBAND_LOW) {
|
||||
pathAngle = -(manualControlData.Roll - DEADBAND_LOW) * dT * 300.0f;
|
||||
}
|
||||
|
||||
return yaw + (pathAngle / 2.0f);
|
||||
}
|
||||
|
||||
/**
|
||||
* process POI control logic TODO: this should most likely go into manualcontrol!!!!
|
||||
* TODO: the whole process of POI handling likely needs cleanup and rethinking, might be broken since manualcontrol was refactored currently
|
||||
**/
|
||||
static void processPOI()
|
||||
{
|
||||
const float dT = updatePeriod / 1000.0f;
|
||||
|
||||
|
||||
PositionStateData positionState;
|
||||
|
||||
PositionStateGet(&positionState);
|
||||
// TODO put commented out camera feature code back in place either
|
||||
// permanently or optionally or remove it
|
||||
// CameraDesiredData cameraDesired;
|
||||
// CameraDesiredGet(&cameraDesired);
|
||||
StabilizationDesiredData stabDesired;
|
||||
StabilizationDesiredGet(&stabDesired);
|
||||
PoiLocationData poi;
|
||||
PoiLocationGet(&poi);
|
||||
|
||||
float dLoc[3];
|
||||
float yaw = 0;
|
||||
// TODO camera feature
|
||||
/*float elevation = 0;*/
|
||||
|
||||
dLoc[0] = positionState.North - poi.North;
|
||||
dLoc[1] = positionState.East - poi.East;
|
||||
dLoc[2] = positionState.Down - poi.Down;
|
||||
|
||||
if (dLoc[1] < 0) {
|
||||
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) + 180.0f;
|
||||
} else {
|
||||
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) - 180.0f;
|
||||
}
|
||||
|
||||
// distance
|
||||
float distance = sqrtf(powf(dLoc[0], 2.0f) + powf(dLoc[1], 2.0f));
|
||||
|
||||
ManualControlCommandData manualControlData;
|
||||
ManualControlCommandGet(&manualControlData);
|
||||
|
||||
float changeRadius = 0;
|
||||
// Move closer or further, radially
|
||||
if (manualControlData.Pitch > DEADBAND_HIGH) {
|
||||
changeRadius = (manualControlData.Pitch - DEADBAND_HIGH) * dT * 100.0f;
|
||||
} else if (manualControlData.Pitch < DEADBAND_LOW) {
|
||||
changeRadius = (manualControlData.Pitch - DEADBAND_LOW) * dT * 100.0f;
|
||||
}
|
||||
|
||||
// move along circular path
|
||||
float pathAngle = 0;
|
||||
if (manualControlData.Roll > DEADBAND_HIGH) {
|
||||
pathAngle = -(manualControlData.Roll - DEADBAND_HIGH) * dT * 300.0f;
|
||||
} else if (manualControlData.Roll < DEADBAND_LOW) {
|
||||
pathAngle = -(manualControlData.Roll - DEADBAND_LOW) * dT * 300.0f;
|
||||
} else if (manualControlData.Roll >= DEADBAND_LOW && manualControlData.Roll <= DEADBAND_HIGH) {
|
||||
// change radius only when not circling
|
||||
global.poiRadius = distance + changeRadius;
|
||||
}
|
||||
|
||||
// don't try to move any closer
|
||||
if (global.poiRadius >= 3.0f || changeRadius > 0) {
|
||||
if (fabsf(pathAngle) > 0.0f || fabsf(changeRadius) > 0.0f) {
|
||||
pathDesired.End.North = poi.North + (global.poiRadius * cosf(DEG2RAD(pathAngle + yaw - 180.0f)));
|
||||
pathDesired.End.East = poi.East + (global.poiRadius * sinf(DEG2RAD(pathAngle + yaw - 180.0f)));
|
||||
pathDesired.StartingVelocity = 1.0f;
|
||||
pathDesired.EndingVelocity = 0.0f;
|
||||
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
|
||||
PathDesiredSet(&pathDesired);
|
||||
}
|
||||
}
|
||||
// not above
|
||||
if (distance >= 3.0f) {
|
||||
// TODO camera feature
|
||||
// You can feed this into camerastabilization
|
||||
/*elevation = RAD2DEG(atan2f(dLoc[2],distance));*/
|
||||
|
||||
// cameraDesired.Yaw=yaw;
|
||||
// cameraDesired.PitchOrServo2=elevation;
|
||||
|
||||
// CameraDesiredSet(&cameraDesired);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute desired velocity from the current position and path
|
||||
*/
|
||||
static void updatePathVelocity(float kFF, bool limited)
|
||||
{
|
||||
PositionStateData positionState;
|
||||
|
||||
PositionStateGet(&positionState);
|
||||
VelocityStateData velocityState;
|
||||
VelocityStateGet(&velocityState);
|
||||
|
||||
const float dT = updatePeriod / 1000.0f;
|
||||
|
||||
// look ahead kFF seconds
|
||||
float cur[3] = { positionState.North + (velocityState.North * kFF),
|
||||
positionState.East + (velocityState.East * kFF),
|
||||
positionState.Down + (velocityState.Down * kFF) };
|
||||
struct path_status progress;
|
||||
|
||||
path_progress(&pathDesired, cur, &progress);
|
||||
|
||||
// calculate velocity - can be zero if waypoints are too close
|
||||
VelocityDesiredData velocityDesired;
|
||||
velocityDesired.North = progress.path_vector[0];
|
||||
velocityDesired.East = progress.path_vector[1];
|
||||
velocityDesired.Down = progress.path_vector[2];
|
||||
|
||||
if (limited &&
|
||||
// if a plane is crossing its desired flightpath facing the wrong way (away from flight direction)
|
||||
// it would turn towards the flightpath to get on its desired course. This however would reverse the correction vector
|
||||
// once it crosses the flightpath again, which would make it again turn towards the flightpath (but away from its desired heading)
|
||||
// leading to an S-shape snake course the wrong way
|
||||
// this only happens especially if HorizontalPosP is too high, as otherwise the angle between velocity desired and path_direction won't
|
||||
// turn steep unless there is enough space complete the turn before crossing the flightpath
|
||||
// in this case the plane effectively needs to be turned around
|
||||
// indicators:
|
||||
// difference between correction_direction and velocitystate >90 degrees and
|
||||
// difference between path_direction and velocitystate >90 degrees ( 4th sector, facing away from everything )
|
||||
// fix: ignore correction, steer in path direction until the situation has become better (condition doesn't apply anymore)
|
||||
// calculating angles < 90 degrees through dot products
|
||||
(vector_lengthf(progress.path_vector, 2) > 1e-6f) &&
|
||||
((progress.path_vector[0] * velocityState.North + progress.path_vector[1] * velocityState.East) < 0.0f) &&
|
||||
((progress.correction_vector[0] * velocityState.North + progress.correction_vector[1] * velocityState.East) < 0.0f)) {
|
||||
;
|
||||
} else {
|
||||
// calculate correction
|
||||
velocityDesired.North += pid_apply(&global.PIDposH[0], progress.correction_vector[0], dT);
|
||||
velocityDesired.East += pid_apply(&global.PIDposH[1], progress.correction_vector[1], dT);
|
||||
}
|
||||
velocityDesired.Down += pid_apply(&global.PIDposV, progress.correction_vector[2], dT);
|
||||
|
||||
// update pathstatus
|
||||
pathStatus.error = progress.error;
|
||||
pathStatus.fractional_progress = progress.fractional_progress;
|
||||
pathStatus.path_direction_north = progress.path_vector[0];
|
||||
pathStatus.path_direction_east = progress.path_vector[1];
|
||||
pathStatus.path_direction_down = progress.path_vector[2];
|
||||
|
||||
pathStatus.correction_direction_north = progress.correction_vector[0];
|
||||
pathStatus.correction_direction_east = progress.correction_vector[1];
|
||||
pathStatus.correction_direction_down = progress.correction_vector[2];
|
||||
|
||||
VelocityDesiredSet(&velocityDesired);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Compute desired attitude from the desired velocity for fixed wing craft
|
||||
*/
|
||||
static uint8_t updateFixedDesiredAttitude()
|
||||
{
|
||||
uint8_t result = 1;
|
||||
|
||||
const float dT = updatePeriod / 1000.0f; // Convert from [ms] to [s]
|
||||
|
||||
VelocityDesiredData velocityDesired;
|
||||
VelocityStateData velocityState;
|
||||
StabilizationDesiredData stabDesired;
|
||||
AttitudeStateData attitudeState;
|
||||
FixedWingPathFollowerStatusData fixedWingPathFollowerStatus;
|
||||
AirspeedStateData airspeedState;
|
||||
SystemSettingsData systemSettings;
|
||||
|
||||
float groundspeedProjection;
|
||||
float indicatedAirspeedState;
|
||||
float indicatedAirspeedDesired;
|
||||
float airspeedError;
|
||||
|
||||
float pitchCommand;
|
||||
|
||||
float descentspeedDesired;
|
||||
float descentspeedError;
|
||||
float powerCommand;
|
||||
|
||||
float airspeedVector[2];
|
||||
float fluidMovement[2];
|
||||
float courseComponent[2];
|
||||
float courseError;
|
||||
float courseCommand;
|
||||
|
||||
FixedWingPathFollowerStatusGet(&fixedWingPathFollowerStatus);
|
||||
|
||||
VelocityStateGet(&velocityState);
|
||||
StabilizationDesiredGet(&stabDesired);
|
||||
VelocityDesiredGet(&velocityDesired);
|
||||
AttitudeStateGet(&attitudeState);
|
||||
AirspeedStateGet(&airspeedState);
|
||||
SystemSettingsGet(&systemSettings);
|
||||
|
||||
/**
|
||||
* Compute speed error and course
|
||||
*/
|
||||
// missing sensors for airspeed-direction we have to assume within
|
||||
// reasonable error that measured airspeed is actually the airspeed
|
||||
// component in forward pointing direction
|
||||
// airspeedVector is normalized
|
||||
airspeedVector[0] = cos_lookup_deg(attitudeState.Yaw);
|
||||
airspeedVector[1] = sin_lookup_deg(attitudeState.Yaw);
|
||||
|
||||
// current ground speed projected in forward direction
|
||||
groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
|
||||
|
||||
// note that airspeedStateBias is ( calibratedAirspeed - groundspeedProjection ) at the time of measurement,
|
||||
// but thanks to accelerometers, groundspeedProjection reacts faster to changes in direction
|
||||
// than airspeed and gps sensors alone
|
||||
indicatedAirspeedState = groundspeedProjection + indicatedAirspeedStateBias;
|
||||
|
||||
// fluidMovement is a vector describing the aproximate movement vector of
|
||||
// the surrounding fluid in 2d space (aka wind vector)
|
||||
fluidMovement[0] = velocityState.North - (indicatedAirspeedState * airspeedVector[0]);
|
||||
fluidMovement[1] = velocityState.East - (indicatedAirspeedState * airspeedVector[1]);
|
||||
|
||||
// calculate the movement vector we need to fly to reach velocityDesired -
|
||||
// taking fluidMovement into account
|
||||
courseComponent[0] = velocityDesired.North - fluidMovement[0];
|
||||
courseComponent[1] = velocityDesired.East - fluidMovement[1];
|
||||
|
||||
indicatedAirspeedDesired = boundf(sqrtf(courseComponent[0] * courseComponent[0] + courseComponent[1] * courseComponent[1]),
|
||||
fixedWingPathFollowerSettings.HorizontalVelMin,
|
||||
fixedWingPathFollowerSettings.HorizontalVelMax);
|
||||
|
||||
// if we could fly at arbitrary speeds, we'd just have to move towards the
|
||||
// courseComponent vector as previously calculated and we'd be fine
|
||||
// unfortunately however we are bound by min and max air speed limits, so
|
||||
// we need to recalculate the correct course to meet at least the
|
||||
// velocityDesired vector direction at our current speed
|
||||
// this overwrites courseComponent
|
||||
bool valid = correctCourse(courseComponent, (float *)&velocityDesired.North, fluidMovement, indicatedAirspeedDesired);
|
||||
|
||||
// Error condition: wind speed too high, we can't go where we want anymore
|
||||
fixedWingPathFollowerStatus.Errors.Wind = 0;
|
||||
if ((!valid) &&
|
||||
fixedWingPathFollowerSettings.Safetymargins.Wind > 0.5f) { // alarm switched on
|
||||
fixedWingPathFollowerStatus.Errors.Wind = 1;
|
||||
result = 0;
|
||||
}
|
||||
|
||||
// Airspeed error
|
||||
airspeedError = indicatedAirspeedDesired - indicatedAirspeedState;
|
||||
|
||||
// Vertical speed error
|
||||
descentspeedDesired = boundf(
|
||||
velocityDesired.Down,
|
||||
-fixedWingPathFollowerSettings.VerticalVelMax,
|
||||
fixedWingPathFollowerSettings.VerticalVelMax);
|
||||
descentspeedError = descentspeedDesired - velocityState.Down;
|
||||
|
||||
// Error condition: plane too slow or too fast
|
||||
fixedWingPathFollowerStatus.Errors.Highspeed = 0;
|
||||
fixedWingPathFollowerStatus.Errors.Lowspeed = 0;
|
||||
if (indicatedAirspeedState > systemSettings.AirSpeedMax * fixedWingPathFollowerSettings.Safetymargins.Overspeed) {
|
||||
fixedWingPathFollowerStatus.Errors.Overspeed = 1;
|
||||
result = 0;
|
||||
}
|
||||
if (indicatedAirspeedState > fixedWingPathFollowerSettings.HorizontalVelMax * fixedWingPathFollowerSettings.Safetymargins.Highspeed) {
|
||||
fixedWingPathFollowerStatus.Errors.Highspeed = 1;
|
||||
result = 0;
|
||||
}
|
||||
if (indicatedAirspeedState < fixedWingPathFollowerSettings.HorizontalVelMin * fixedWingPathFollowerSettings.Safetymargins.Lowspeed) {
|
||||
fixedWingPathFollowerStatus.Errors.Lowspeed = 1;
|
||||
result = 0;
|
||||
}
|
||||
if (indicatedAirspeedState < systemSettings.AirSpeedMin * fixedWingPathFollowerSettings.Safetymargins.Stallspeed) {
|
||||
fixedWingPathFollowerStatus.Errors.Stallspeed = 1;
|
||||
result = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute desired thrust command
|
||||
*/
|
||||
|
||||
// Compute the cross feed from vertical speed to pitch, with saturation
|
||||
float speedErrorToPowerCommandComponent = boundf(
|
||||
(airspeedError / fixedWingPathFollowerSettings.HorizontalVelMin) * fixedWingPathFollowerSettings.AirspeedToPowerCrossFeed.Kp,
|
||||
-fixedWingPathFollowerSettings.AirspeedToPowerCrossFeed.Max,
|
||||
fixedWingPathFollowerSettings.AirspeedToPowerCrossFeed.Max
|
||||
);
|
||||
|
||||
// Compute final thrust response
|
||||
powerCommand = pid_apply(&global.PIDpower, -descentspeedError, dT) +
|
||||
speedErrorToPowerCommandComponent;
|
||||
|
||||
// Output internal state to telemetry
|
||||
fixedWingPathFollowerStatus.Error.Power = descentspeedError;
|
||||
fixedWingPathFollowerStatus.ErrorInt.Power = global.PIDpower.iAccumulator;
|
||||
fixedWingPathFollowerStatus.Command.Power = powerCommand;
|
||||
|
||||
// set thrust
|
||||
stabDesired.Thrust = boundf(fixedWingPathFollowerSettings.ThrustLimit.Neutral + powerCommand,
|
||||
fixedWingPathFollowerSettings.ThrustLimit.Min,
|
||||
fixedWingPathFollowerSettings.ThrustLimit.Max);
|
||||
|
||||
// Error condition: plane cannot hold altitude at current speed.
|
||||
fixedWingPathFollowerStatus.Errors.Lowpower = 0;
|
||||
if (fixedWingPathFollowerSettings.ThrustLimit.Neutral + powerCommand >= fixedWingPathFollowerSettings.ThrustLimit.Max && // thrust at maximum
|
||||
velocityState.Down > 0.0f && // we ARE going down
|
||||
descentspeedDesired < 0.0f && // we WANT to go up
|
||||
airspeedError > 0.0f && // we are too slow already
|
||||
fixedWingPathFollowerSettings.Safetymargins.Lowpower > 0.5f) { // alarm switched on
|
||||
fixedWingPathFollowerStatus.Errors.Lowpower = 1;
|
||||
result = 0;
|
||||
}
|
||||
// Error condition: plane keeps climbing despite minimum thrust (opposite of above)
|
||||
fixedWingPathFollowerStatus.Errors.Highpower = 0;
|
||||
if (fixedWingPathFollowerSettings.ThrustLimit.Neutral + powerCommand <= fixedWingPathFollowerSettings.ThrustLimit.Min && // thrust at minimum
|
||||
velocityState.Down < 0.0f && // we ARE going up
|
||||
descentspeedDesired > 0.0f && // we WANT to go down
|
||||
airspeedError < 0.0f && // we are too fast already
|
||||
fixedWingPathFollowerSettings.Safetymargins.Highpower > 0.5f) { // alarm switched on
|
||||
fixedWingPathFollowerStatus.Errors.Highpower = 1;
|
||||
result = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute desired pitch command
|
||||
*/
|
||||
// Compute the cross feed from vertical speed to pitch, with saturation
|
||||
float verticalSpeedToPitchCommandComponent = boundf(-descentspeedError * fixedWingPathFollowerSettings.VerticalToPitchCrossFeed.Kp,
|
||||
-fixedWingPathFollowerSettings.VerticalToPitchCrossFeed.Max,
|
||||
fixedWingPathFollowerSettings.VerticalToPitchCrossFeed.Max
|
||||
);
|
||||
|
||||
// Compute the pitch command as err*Kp + errInt*Ki + X_feed.
|
||||
pitchCommand = -pid_apply(&global.PIDspeed, airspeedError, dT) + verticalSpeedToPitchCommandComponent;
|
||||
|
||||
fixedWingPathFollowerStatus.Error.Speed = airspeedError;
|
||||
fixedWingPathFollowerStatus.ErrorInt.Speed = global.PIDspeed.iAccumulator;
|
||||
fixedWingPathFollowerStatus.Command.Speed = pitchCommand;
|
||||
|
||||
stabDesired.Pitch = boundf(fixedWingPathFollowerSettings.PitchLimit.Neutral + pitchCommand,
|
||||
fixedWingPathFollowerSettings.PitchLimit.Min,
|
||||
fixedWingPathFollowerSettings.PitchLimit.Max);
|
||||
|
||||
// Error condition: high speed dive
|
||||
fixedWingPathFollowerStatus.Errors.Pitchcontrol = 0;
|
||||
if (fixedWingPathFollowerSettings.PitchLimit.Neutral + pitchCommand >= fixedWingPathFollowerSettings.PitchLimit.Max && // pitch demand is full up
|
||||
velocityState.Down > 0.0f && // we ARE going down
|
||||
descentspeedDesired < 0.0f && // we WANT to go up
|
||||
airspeedError < 0.0f && // we are too fast already
|
||||
fixedWingPathFollowerSettings.Safetymargins.Pitchcontrol > 0.5f) { // alarm switched on
|
||||
fixedWingPathFollowerStatus.Errors.Pitchcontrol = 1;
|
||||
result = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute desired roll command
|
||||
*/
|
||||
courseError = RAD2DEG(atan2f(courseComponent[1], courseComponent[0])) - attitudeState.Yaw;
|
||||
|
||||
if (courseError < -180.0f) {
|
||||
courseError += 360.0f;
|
||||
}
|
||||
if (courseError > 180.0f) {
|
||||
courseError -= 360.0f;
|
||||
}
|
||||
|
||||
// overlap calculation. Theres a dead zone behind the craft where the
|
||||
// counter-yawing of some craft while rolling could render a desired right
|
||||
// turn into a desired left turn. Making the turn direction based on
|
||||
// current roll angle keeps the plane committed to a direction once chosen
|
||||
if (courseError < -180.0f + (fixedWingPathFollowerSettings.ReverseCourseOverlap * 0.5f)
|
||||
&& attitudeState.Roll > 0.0f) {
|
||||
courseError += 360.0f;
|
||||
}
|
||||
if (courseError > 180.0f - (fixedWingPathFollowerSettings.ReverseCourseOverlap * 0.5f)
|
||||
&& attitudeState.Roll < 0.0f) {
|
||||
courseError -= 360.0f;
|
||||
}
|
||||
|
||||
courseCommand = pid_apply(&global.PIDcourse, courseError, dT);
|
||||
|
||||
fixedWingPathFollowerStatus.Error.Course = courseError;
|
||||
fixedWingPathFollowerStatus.ErrorInt.Course = global.PIDcourse.iAccumulator;
|
||||
fixedWingPathFollowerStatus.Command.Course = courseCommand;
|
||||
|
||||
stabDesired.Roll = boundf(fixedWingPathFollowerSettings.RollLimit.Neutral +
|
||||
courseCommand,
|
||||
fixedWingPathFollowerSettings.RollLimit.Min,
|
||||
fixedWingPathFollowerSettings.RollLimit.Max);
|
||||
|
||||
// TODO: find a check to determine loss of directional control. Likely needs some check of derivative
|
||||
|
||||
|
||||
/**
|
||||
* Compute desired yaw command
|
||||
*/
|
||||
// TODO implement raw control mode for yaw and base on Accels.Y
|
||||
stabDesired.Yaw = 0.0f;
|
||||
|
||||
|
||||
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
||||
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
||||
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
|
||||
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
|
||||
|
||||
StabilizationDesiredSet(&stabDesired);
|
||||
|
||||
FixedWingPathFollowerStatusSet(&fixedWingPathFollowerStatus);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Function to calculate course vector C based on airspeed s, fluid movement F
|
||||
* and desired movement vector V
|
||||
* parameters in: V,F,s
|
||||
* parameters out: C
|
||||
* returns true if a valid solution could be found for V,F,s, false if not
|
||||
* C will be set to a best effort attempt either way
|
||||
*/
|
||||
static bool correctCourse(float *C, float *V, float *F, float s)
|
||||
{
|
||||
// Approach:
|
||||
// Let Sc be a circle around origin marking possible movement vectors
|
||||
// of the craft with airspeed s (all possible options for C)
|
||||
// Let Vl be a line through the origin along movement vector V where fr any
|
||||
// point v on line Vl v = k * (V / |V|) = k' * V
|
||||
// Let Wl be a line parallel to Vl where for any point v on line Vl exists
|
||||
// a point w on WL with w = v - F
|
||||
// Then any intersection between circle Sc and line Wl represents course
|
||||
// vector which would result in a movement vector
|
||||
// V' = k * ( V / |V|) = k' * V
|
||||
// If there is no intersection point, S is insufficient to compensate
|
||||
// for F and we can only try to fly in direction of V (thus having wind drift
|
||||
// but at least making progress orthogonal to wind)
|
||||
|
||||
s = fabsf(s);
|
||||
float f = vector_lengthf(F, 2);
|
||||
|
||||
// normalize Cn=V/|V|, |V| must be >0
|
||||
float v = vector_lengthf(V, 2);
|
||||
if (v < 1e-6f) {
|
||||
// if |V|=0, we aren't supposed to move, turn into the wind
|
||||
// (this allows hovering)
|
||||
C[0] = -F[0];
|
||||
C[1] = -F[1];
|
||||
// if desired airspeed matches fluidmovement a hover is actually
|
||||
// intended so return true
|
||||
return fabsf(f - s) < 1e-3f;
|
||||
}
|
||||
float Vn[2] = { V[0] / v, V[1] / v };
|
||||
|
||||
// project F on V
|
||||
float fp = F[0] * Vn[0] + F[1] * Vn[1];
|
||||
|
||||
// find component Fo of F that is orthogonal to V
|
||||
// (which is exactly the distance between Vl and Wl)
|
||||
float Fo[2] = { F[0] - (fp * Vn[0]), F[1] - (fp * Vn[1]) };
|
||||
float fo2 = Fo[0] * Fo[0] + Fo[1] * Fo[1];
|
||||
|
||||
// find k where k * Vn = C - Fo
|
||||
// |C|=s is the hypothenuse in any rectangular triangle formed by k * Vn and Fo
|
||||
// so k^2 + fo^2 = s^2 (since |Vn|=1)
|
||||
float k2 = s * s - fo2;
|
||||
if (k2 <= -1e-3f) {
|
||||
// there is no solution, we will be drifted off either way
|
||||
// fallback: fly stupidly in direction of V and hope for the best
|
||||
C[0] = V[0];
|
||||
C[1] = V[1];
|
||||
return false;
|
||||
} else if (k2 <= 1e-3f) {
|
||||
// there is exactly one solution: -Fo
|
||||
C[0] = -Fo[0];
|
||||
C[1] = -Fo[1];
|
||||
return true;
|
||||
}
|
||||
// we have two possible solutions k positive and k negative as there are
|
||||
// two intersection points between Wl and Sc
|
||||
// which one is better? two criteria:
|
||||
// 1. we MUST move in the right direction, if any k leads to -v its invalid
|
||||
// 2. we should minimize the speed error
|
||||
float k = sqrt(k2);
|
||||
float C1[2] = { -k * Vn[0] - Fo[0], -k * Vn[1] - Fo[1] };
|
||||
float C2[2] = { k *Vn[0] - Fo[0], k * Vn[1] - Fo[1] };
|
||||
// project C+F on Vn to find signed resulting movement vector length
|
||||
float vp1 = (C1[0] + F[0]) * Vn[0] + (C1[1] + F[1]) * Vn[1];
|
||||
float vp2 = (C2[0] + F[0]) * Vn[0] + (C2[1] + F[1]) * Vn[1];
|
||||
if (vp1 >= 0.0f && fabsf(v - vp1) < fabsf(v - vp2)) {
|
||||
// in this case the angle between course and resulting movement vector
|
||||
// is greater than 90 degrees - so we actually fly backwards
|
||||
C[0] = C1[0];
|
||||
C[1] = C1[1];
|
||||
return true;
|
||||
}
|
||||
C[0] = C2[0];
|
||||
C[1] = C2[1];
|
||||
if (vp2 >= 0.0f) {
|
||||
// in this case the angle between course and movement vector is less than
|
||||
// 90 degrees, but we do move in the right direction
|
||||
return true;
|
||||
} else {
|
||||
// in this case we actually get driven in the opposite direction of V
|
||||
// with both solutions for C
|
||||
// this might be reached in headwind stronger than maximum allowed
|
||||
// airspeed.
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute desired attitude from the desired velocity
|
||||
*
|
||||
* Takes in @ref NedState which has the acceleration in the
|
||||
* NED frame as the feedback term and then compares the
|
||||
* @ref VelocityState against the @ref VelocityDesired
|
||||
*/
|
||||
static int8_t updateVtolDesiredAttitude(bool yaw_attitude, float yaw_direction)
|
||||
{
|
||||
const float dT = updatePeriod / 1000.0f;
|
||||
uint8_t result = 1;
|
||||
|
||||
VelocityDesiredData velocityDesired;
|
||||
VelocityStateData velocityState;
|
||||
StabilizationDesiredData stabDesired;
|
||||
AttitudeStateData attitudeState;
|
||||
StabilizationBankData stabSettings;
|
||||
SystemSettingsData systemSettings;
|
||||
|
||||
float northError;
|
||||
float northCommand;
|
||||
|
||||
float eastError;
|
||||
float eastCommand;
|
||||
|
||||
float downError;
|
||||
float downCommand;
|
||||
|
||||
SystemSettingsGet(&systemSettings);
|
||||
VelocityStateGet(&velocityState);
|
||||
VelocityDesiredGet(&velocityDesired);
|
||||
StabilizationDesiredGet(&stabDesired);
|
||||
VelocityDesiredGet(&velocityDesired);
|
||||
AttitudeStateGet(&attitudeState);
|
||||
StabilizationBankGet(&stabSettings);
|
||||
|
||||
// Testing code - refactor into manual control command
|
||||
ManualControlCommandData manualControlData;
|
||||
ManualControlCommandGet(&manualControlData);
|
||||
|
||||
// scale velocity if it is above configured maximum
|
||||
float velH = sqrtf(velocityDesired.North * velocityDesired.North + velocityDesired.East * velocityDesired.East);
|
||||
if (velH > vtolPathFollowerSettings.HorizontalVelMax) {
|
||||
velocityDesired.North *= vtolPathFollowerSettings.HorizontalVelMax / velH;
|
||||
velocityDesired.East *= vtolPathFollowerSettings.HorizontalVelMax / velH;
|
||||
}
|
||||
if (fabsf(velocityDesired.Down) > vtolPathFollowerSettings.VerticalVelMax) {
|
||||
velocityDesired.Down *= vtolPathFollowerSettings.VerticalVelMax / fabsf(velocityDesired.Down);
|
||||
}
|
||||
|
||||
// Compute desired north command
|
||||
northError = velocityDesired.North - velocityState.North;
|
||||
northCommand = pid_apply(&global.PIDvel[0], northError, dT) + velocityDesired.North * vtolPathFollowerSettings.VelocityFeedforward;
|
||||
|
||||
// Compute desired east command
|
||||
eastError = velocityDesired.East - velocityState.East;
|
||||
eastCommand = pid_apply(&global.PIDvel[1], eastError, dT) + velocityDesired.East * vtolPathFollowerSettings.VelocityFeedforward;
|
||||
|
||||
// Compute desired down command
|
||||
downError = velocityDesired.Down - velocityState.Down;
|
||||
// Must flip this sign
|
||||
downError = -downError;
|
||||
downCommand = pid_apply(&global.PIDvel[2], downError, dT);
|
||||
|
||||
stabDesired.Thrust = boundf(downCommand + vtolPathFollowerSettings.ThrustLimits.Neutral, vtolPathFollowerSettings.ThrustLimits.Min, vtolPathFollowerSettings.ThrustLimits.Max);
|
||||
|
||||
|
||||
// DEBUG HACK: allow user to skew compass on purpose to see if emergency failsafe kicks in
|
||||
if (vtolPathFollowerSettings.FlyawayEmergencyFallback == VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_DEBUGTEST) {
|
||||
attitudeState.Yaw += 120.0f;
|
||||
if (attitudeState.Yaw > 180.0f) {
|
||||
attitudeState.Yaw -= 360.0f;
|
||||
}
|
||||
}
|
||||
|
||||
if ( // emergency flyaway detection
|
||||
( // integral already at its limit
|
||||
vtolPathFollowerSettings.HorizontalVelPID.ILimit - fabsf(global.PIDvel[0].iAccumulator) < 1e-6f ||
|
||||
vtolPathFollowerSettings.HorizontalVelPID.ILimit - fabsf(global.PIDvel[1].iAccumulator) < 1e-6f
|
||||
) &&
|
||||
// angle between desired and actual velocity >90 degrees (by dot product)
|
||||
(velocityDesired.North * velocityState.North + velocityDesired.East * velocityState.East < 0.0f) &&
|
||||
// quad is moving at significant speed (during flyaway it would keep speeding up)
|
||||
squaref(velocityState.North) + squaref(velocityState.East) > 1.0f
|
||||
) {
|
||||
global.vtolEmergencyFallback += dT;
|
||||
if (global.vtolEmergencyFallback >= vtolPathFollowerSettings.FlyawayEmergencyFallbackTriggerTime) {
|
||||
// after emergency timeout, trigger alarm - everything else is handled by callers
|
||||
// (switch to emergency algorithm, switch to emergency waypoint in pathplanner, alarms, ...)
|
||||
result = 0;
|
||||
}
|
||||
} else {
|
||||
global.vtolEmergencyFallback = 0.0f;
|
||||
}
|
||||
|
||||
// Project the north and east command signals into the pitch and roll based on yaw. For this to behave well the
|
||||
// craft should move similarly for 5 deg roll versus 5 deg pitch
|
||||
stabDesired.Pitch = boundf(-northCommand * cosf(DEG2RAD(attitudeState.Yaw)) +
|
||||
-eastCommand * sinf(DEG2RAD(attitudeState.Yaw)),
|
||||
-vtolPathFollowerSettings.MaxRollPitch, vtolPathFollowerSettings.MaxRollPitch);
|
||||
stabDesired.Roll = boundf(-northCommand * sinf(DEG2RAD(attitudeState.Yaw)) +
|
||||
eastCommand * cosf(DEG2RAD(attitudeState.Yaw)),
|
||||
-vtolPathFollowerSettings.MaxRollPitch, vtolPathFollowerSettings.MaxRollPitch);
|
||||
|
||||
if (vtolPathFollowerSettings.ThrustControl == VTOLPATHFOLLOWERSETTINGS_THRUSTCONTROL_MANUAL) {
|
||||
// For now override thrust with manual control. Disable at your risk, quad goes to China.
|
||||
ManualControlCommandData manualControl;
|
||||
ManualControlCommandGet(&manualControl);
|
||||
stabDesired.Thrust = manualControl.Thrust;
|
||||
}
|
||||
|
||||
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
||||
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
||||
if (yaw_attitude) {
|
||||
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
||||
stabDesired.Yaw = yaw_direction;
|
||||
} else {
|
||||
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
|
||||
stabDesired.Yaw = stabSettings.MaximumRate.Yaw * manualControlData.Yaw;
|
||||
}
|
||||
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_CRUISECONTROL;
|
||||
StabilizationDesiredSet(&stabDesired);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute desired attitude for vtols - emergency fallback
|
||||
*/
|
||||
static void updateVtolDesiredAttitudeEmergencyFallback()
|
||||
{
|
||||
const float dT = updatePeriod / 1000.0f;
|
||||
|
||||
VelocityDesiredData velocityDesired;
|
||||
VelocityStateData velocityState;
|
||||
StabilizationDesiredData stabDesired;
|
||||
|
||||
float courseError;
|
||||
float courseCommand;
|
||||
|
||||
float downError;
|
||||
float downCommand;
|
||||
|
||||
VelocityStateGet(&velocityState);
|
||||
VelocityDesiredGet(&velocityDesired);
|
||||
|
||||
ManualControlCommandData manualControlData;
|
||||
ManualControlCommandGet(&manualControlData);
|
||||
|
||||
courseError = RAD2DEG(atan2f(velocityDesired.East, velocityDesired.North) - atan2f(velocityState.East, velocityState.North));
|
||||
|
||||
if (courseError < -180.0f) {
|
||||
courseError += 360.0f;
|
||||
}
|
||||
if (courseError > 180.0f) {
|
||||
courseError -= 360.0f;
|
||||
}
|
||||
|
||||
|
||||
courseCommand = (courseError * vtolPathFollowerSettings.EmergencyFallbackYawRate.kP);
|
||||
|
||||
stabDesired.Yaw = boundf(courseCommand, -vtolPathFollowerSettings.EmergencyFallbackYawRate.Max, vtolPathFollowerSettings.EmergencyFallbackYawRate.Max);
|
||||
|
||||
// Compute desired down command
|
||||
downError = velocityDesired.Down - velocityState.Down;
|
||||
// Must flip this sign
|
||||
downError = -downError;
|
||||
downCommand = pid_apply(&global.PIDvel[2], downError, dT);
|
||||
|
||||
stabDesired.Thrust = boundf(downCommand + vtolPathFollowerSettings.ThrustLimits.Neutral, vtolPathFollowerSettings.ThrustLimits.Min, vtolPathFollowerSettings.ThrustLimits.Max);
|
||||
|
||||
|
||||
stabDesired.Roll = vtolPathFollowerSettings.EmergencyFallbackAttitude.Roll;
|
||||
stabDesired.Pitch = vtolPathFollowerSettings.EmergencyFallbackAttitude.Pitch;
|
||||
|
||||
if (vtolPathFollowerSettings.ThrustControl == VTOLPATHFOLLOWERSETTINGS_THRUSTCONTROL_MANUAL) {
|
||||
// For now override thrust with manual control. Disable at your risk, quad goes to China.
|
||||
ManualControlCommandData manualControl;
|
||||
ManualControlCommandGet(&manualControl);
|
||||
stabDesired.Thrust = manualControl.Thrust;
|
||||
}
|
||||
|
||||
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
||||
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
||||
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
|
||||
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_CRUISECONTROL;
|
||||
StabilizationDesiredSet(&stabDesired);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Compute desired attitude from a fixed preset
|
||||
*
|
||||
*/
|
||||
static void updateFixedAttitude(float *attitude)
|
||||
{
|
||||
StabilizationDesiredData stabDesired;
|
||||
|
||||
StabilizationDesiredGet(&stabDesired);
|
||||
stabDesired.Roll = attitude[0];
|
||||
stabDesired.Pitch = attitude[1];
|
||||
stabDesired.Yaw = attitude[2];
|
||||
stabDesired.Thrust = attitude[3];
|
||||
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
||||
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
||||
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
|
||||
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
|
||||
StabilizationDesiredSet(&stabDesired);
|
||||
}
|
@ -525,9 +525,8 @@ static uint8_t conditionLegRemaining()
|
||||
float cur[3] = { positionState.North, positionState.East, positionState.Down };
|
||||
struct path_status progress;
|
||||
|
||||
path_progress(cast_struct_to_array(pathDesired.Start, pathDesired.Start.North),
|
||||
cast_struct_to_array(pathDesired.End, pathDesired.End.North),
|
||||
cur, &progress, pathDesired.Mode);
|
||||
path_progress(&pathDesired,
|
||||
cur, &progress);
|
||||
if (progress.fractional_progress >= 1.0f - pathAction.ConditionParameters[0]) {
|
||||
return true;
|
||||
}
|
||||
@ -550,9 +549,8 @@ static uint8_t conditionBelowError()
|
||||
float cur[3] = { positionState.North, positionState.East, positionState.Down };
|
||||
struct path_status progress;
|
||||
|
||||
path_progress(cast_struct_to_array(pathDesired.Start, pathDesired.Start.North),
|
||||
cast_struct_to_array(pathDesired.End, pathDesired.End.North),
|
||||
cur, &progress, pathDesired.Mode);
|
||||
path_progress(&pathDesired,
|
||||
cur, &progress);
|
||||
if (progress.error <= pathAction.ConditionParameters[0]) {
|
||||
return true;
|
||||
}
|
||||
|
@ -1,31 +0,0 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
*
|
||||
* @file vtolpathfollower.h
|
||||
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
|
||||
* @brief Module to perform path following for VTOL.
|
||||
*
|
||||
* @see The GNU Public License (GPL) Version 3
|
||||
*
|
||||
*****************************************************************************/
|
||||
/*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License along
|
||||
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
#ifndef VTOLPATHFOLLOWER_H
|
||||
#define VTOLPATHFOLLOWER_H
|
||||
|
||||
int32_t VtolPathFollowerInitialize(void);
|
||||
|
||||
#endif // VTOLPATHFOLLOWER_H
|
@ -1,729 +0,0 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
*
|
||||
* @file vtolpathfollower.c
|
||||
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
|
||||
* @brief This module compared @ref PositionState to @ref PathDesired
|
||||
* and sets @ref Stabilization. It only does this when the FlightMode field
|
||||
* of @ref FlightStatus is PathPlanner or RTH.
|
||||
*
|
||||
* @see The GNU Public License (GPL) Version 3
|
||||
*
|
||||
*****************************************************************************/
|
||||
/*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License along
|
||||
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
/**
|
||||
* Input object: FlightStatus
|
||||
* Input object: PathDesired
|
||||
* Input object: PositionState
|
||||
* Output object: StabilizationDesired
|
||||
*
|
||||
* This module will periodically update the value of the @ref StabilizationDesired object based on
|
||||
* @ref PathDesired and @PositionState when the Flight Mode selected in @FlightStatus is supported
|
||||
* by this module. Otherwise another module (e.g. @ref ManualControlCommand) is expected to be
|
||||
* writing to @ref StabilizationDesired.
|
||||
*
|
||||
* The module executes in its own thread in this example.
|
||||
*
|
||||
* Modules have no API, all communication to other modules is done through UAVObjects.
|
||||
* However modules may use the API exposed by shared libraries.
|
||||
* See the OpenPilot wiki for more details.
|
||||
* http://www.openpilot.org/OpenPilot_Application_Architecture
|
||||
*
|
||||
*/
|
||||
|
||||
#include <openpilot.h>
|
||||
#include <pios_struct_helper.h>
|
||||
#include "vtolpathfollower.h"
|
||||
|
||||
#include "accelstate.h"
|
||||
#include "attitudestate.h"
|
||||
#include "hwsettings.h"
|
||||
#include "pathdesired.h" // object that will be updated by the module
|
||||
#include "positionstate.h"
|
||||
#include "manualcontrolcommand.h"
|
||||
#include "flightstatus.h"
|
||||
#include "pathstatus.h"
|
||||
#include "gpsvelocitysensor.h"
|
||||
#include "gpspositionsensor.h"
|
||||
#include "homelocation.h"
|
||||
#include "vtolpathfollowersettings.h"
|
||||
#include "nedaccel.h"
|
||||
#include "stabilizationdesired.h"
|
||||
#include "stabilizationsettings.h"
|
||||
#include "stabilizationbank.h"
|
||||
#include "systemsettings.h"
|
||||
#include "velocitydesired.h"
|
||||
#include "velocitystate.h"
|
||||
#include "taskinfo.h"
|
||||
|
||||
#include "paths.h"
|
||||
#include "CoordinateConversions.h"
|
||||
#include <sanitycheck.h>
|
||||
|
||||
#include "cameradesired.h"
|
||||
#include "poilearnsettings.h"
|
||||
#include "poilocation.h"
|
||||
#include "accessorydesired.h"
|
||||
|
||||
// Private constants
|
||||
#define MAX_QUEUE_SIZE 4
|
||||
#define STACK_SIZE_BYTES 1548
|
||||
#define TASK_PRIORITY (tskIDLE_PRIORITY + 2)
|
||||
|
||||
// Private types
|
||||
|
||||
// Private variables
|
||||
static xTaskHandle pathfollowerTaskHandle;
|
||||
static PathStatusData pathStatus;
|
||||
static VtolPathFollowerSettingsData vtolpathfollowerSettings;
|
||||
static float poiRadius;
|
||||
|
||||
// Private functions
|
||||
static void vtolPathFollowerTask(void *parameters);
|
||||
static void SettingsUpdatedCb(UAVObjEvent *ev);
|
||||
static void updateNedAccel();
|
||||
static void updatePOIBearing();
|
||||
static void updatePathVelocity();
|
||||
static void updateEndpointVelocity();
|
||||
static void updateFixedAttitude(float *attitude);
|
||||
static void updateVtolDesiredAttitude(bool yaw_attitude);
|
||||
static bool vtolpathfollower_enabled;
|
||||
static void accessoryUpdated(UAVObjEvent *ev);
|
||||
|
||||
/**
|
||||
* Initialise the module, called on startup
|
||||
* \returns 0 on success or -1 if initialisation failed
|
||||
*/
|
||||
int32_t VtolPathFollowerStart()
|
||||
{
|
||||
if (vtolpathfollower_enabled) {
|
||||
// Start main task
|
||||
xTaskCreate(vtolPathFollowerTask, "VtolPathFollower", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &pathfollowerTaskHandle);
|
||||
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_PATHFOLLOWER, pathfollowerTaskHandle);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Initialise the module, called on startup
|
||||
* \returns 0 on success or -1 if initialisation failed
|
||||
*/
|
||||
int32_t VtolPathFollowerInitialize()
|
||||
{
|
||||
HwSettingsOptionalModulesData optionalModules;
|
||||
|
||||
HwSettingsOptionalModulesGet(&optionalModules);
|
||||
FrameType_t frameType = GetCurrentFrameType();
|
||||
|
||||
if ((optionalModules.VtolPathFollower == HWSETTINGS_OPTIONALMODULES_ENABLED) ||
|
||||
(frameType == FRAME_TYPE_MULTIROTOR)) {
|
||||
VtolPathFollowerSettingsInitialize();
|
||||
NedAccelInitialize();
|
||||
PathDesiredInitialize();
|
||||
PathStatusInitialize();
|
||||
VelocityDesiredInitialize();
|
||||
CameraDesiredInitialize();
|
||||
AccessoryDesiredInitialize();
|
||||
PoiLearnSettingsInitialize();
|
||||
PoiLocationInitialize();
|
||||
vtolpathfollower_enabled = true;
|
||||
} else {
|
||||
vtolpathfollower_enabled = false;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
MODULE_INITCALL(VtolPathFollowerInitialize, VtolPathFollowerStart);
|
||||
|
||||
static float northVelIntegral = 0;
|
||||
static float eastVelIntegral = 0;
|
||||
static float downVelIntegral = 0;
|
||||
|
||||
static float northPosIntegral = 0;
|
||||
static float eastPosIntegral = 0;
|
||||
static float downPosIntegral = 0;
|
||||
|
||||
static float thrustOffset = 0;
|
||||
/**
|
||||
* Module thread, should not return.
|
||||
*/
|
||||
static void vtolPathFollowerTask(__attribute__((unused)) void *parameters)
|
||||
{
|
||||
SystemSettingsData systemSettings;
|
||||
FlightStatusData flightStatus;
|
||||
|
||||
portTickType lastUpdateTime;
|
||||
|
||||
VtolPathFollowerSettingsConnectCallback(SettingsUpdatedCb);
|
||||
AccessoryDesiredConnectCallback(accessoryUpdated);
|
||||
|
||||
VtolPathFollowerSettingsGet(&vtolpathfollowerSettings);
|
||||
|
||||
// Main task loop
|
||||
lastUpdateTime = xTaskGetTickCount();
|
||||
while (1) {
|
||||
// Conditions when this runs:
|
||||
// 1. Must have VTOL type airframe
|
||||
// 2. Flight mode is PositionHold and PathDesired.Mode is Endpoint OR
|
||||
// FlightMode is PathPlanner and PathDesired.Mode is Endpoint or Path
|
||||
|
||||
SystemSettingsGet(&systemSettings);
|
||||
if ((systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_VTOL) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_QUADP)
|
||||
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTOCOAXX) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_QUADX)
|
||||
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXA) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXAX)
|
||||
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXACOAX) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTO)
|
||||
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTOV) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTOCOAXP)
|
||||
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_TRI) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXAH)
|
||||
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTOX)) {
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
|
||||
vTaskDelay(1000);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Continue collecting data if not enough time
|
||||
vTaskDelayUntil(&lastUpdateTime, vtolpathfollowerSettings.UpdatePeriod / portTICK_RATE_MS);
|
||||
|
||||
// Convert the accels into the NED frame
|
||||
updateNedAccel();
|
||||
|
||||
FlightStatusGet(&flightStatus);
|
||||
PathStatusGet(&pathStatus);
|
||||
PathDesiredData pathDesired;
|
||||
PathDesiredGet(&pathDesired);
|
||||
|
||||
// Check the combinations of flightmode and pathdesired mode
|
||||
if (flightStatus.ControlChain.PathFollower == FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
|
||||
if (flightStatus.ControlChain.PathPlanner == FLIGHTSTATUS_CONTROLCHAIN_FALSE) {
|
||||
if (flightStatus.FlightMode == FLIGHTSTATUS_FLIGHTMODE_POI) {
|
||||
if (pathDesired.Mode == PATHDESIRED_MODE_FLYENDPOINT) {
|
||||
updateEndpointVelocity();
|
||||
updateVtolDesiredAttitude(true);
|
||||
updatePOIBearing();
|
||||
} else {
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
|
||||
}
|
||||
} else {
|
||||
if (pathDesired.Mode == PATHDESIRED_MODE_FLYENDPOINT) {
|
||||
updateEndpointVelocity();
|
||||
updateVtolDesiredAttitude(false);
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
|
||||
} else {
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
pathStatus.UID = pathDesired.UID;
|
||||
pathStatus.Status = PATHSTATUS_STATUS_INPROGRESS;
|
||||
switch (pathDesired.Mode) {
|
||||
// TODO: Make updateVtolDesiredAttitude and velocity report success and update PATHSTATUS_STATUS accordingly
|
||||
case PATHDESIRED_MODE_FLYENDPOINT:
|
||||
case PATHDESIRED_MODE_FLYVECTOR:
|
||||
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
|
||||
case PATHDESIRED_MODE_FLYCIRCLELEFT:
|
||||
updatePathVelocity();
|
||||
updateVtolDesiredAttitude(false);
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
|
||||
break;
|
||||
case PATHDESIRED_MODE_FIXEDATTITUDE:
|
||||
updateFixedAttitude(pathDesired.ModeParameters);
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
|
||||
break;
|
||||
case PATHDESIRED_MODE_DISARMALARM:
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
|
||||
break;
|
||||
default:
|
||||
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
|
||||
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
|
||||
break;
|
||||
}
|
||||
PathStatusSet(&pathStatus);
|
||||
}
|
||||
} else {
|
||||
// Be cleaner and get rid of global variables
|
||||
northVelIntegral = 0;
|
||||
eastVelIntegral = 0;
|
||||
downVelIntegral = 0;
|
||||
northPosIntegral = 0;
|
||||
eastPosIntegral = 0;
|
||||
downPosIntegral = 0;
|
||||
|
||||
// Track thrust before engaging this mode. Cheap system ident
|
||||
StabilizationDesiredData stabDesired;
|
||||
StabilizationDesiredGet(&stabDesired);
|
||||
thrustOffset = stabDesired.Thrust;
|
||||
}
|
||||
|
||||
AlarmsClear(SYSTEMALARMS_ALARM_GUIDANCE);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute bearing and elevation between current position and POI
|
||||
*/
|
||||
static void updatePOIBearing()
|
||||
{
|
||||
const float DEADBAND_HIGH = 0.10f;
|
||||
const float DEADBAND_LOW = -0.10f;
|
||||
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
|
||||
|
||||
PathDesiredData pathDesired;
|
||||
|
||||
PathDesiredGet(&pathDesired);
|
||||
PositionStateData positionState;
|
||||
PositionStateGet(&positionState);
|
||||
CameraDesiredData cameraDesired;
|
||||
CameraDesiredGet(&cameraDesired);
|
||||
StabilizationDesiredData stabDesired;
|
||||
StabilizationDesiredGet(&stabDesired);
|
||||
PoiLocationData poi;
|
||||
PoiLocationGet(&poi);
|
||||
|
||||
float dLoc[3];
|
||||
float yaw = 0;
|
||||
/*float elevation = 0;*/
|
||||
|
||||
dLoc[0] = positionState.North - poi.North;
|
||||
dLoc[1] = positionState.East - poi.East;
|
||||
dLoc[2] = positionState.Down - poi.Down;
|
||||
|
||||
if (dLoc[1] < 0) {
|
||||
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) + 180.0f;
|
||||
} else {
|
||||
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) - 180.0f;
|
||||
}
|
||||
|
||||
// distance
|
||||
float distance = sqrtf(powf(dLoc[0], 2.0f) + powf(dLoc[1], 2.0f));
|
||||
|
||||
ManualControlCommandData manualControlData;
|
||||
ManualControlCommandGet(&manualControlData);
|
||||
|
||||
float changeRadius = 0;
|
||||
// Move closer or further, radially
|
||||
if (manualControlData.Pitch > DEADBAND_HIGH) {
|
||||
changeRadius = (manualControlData.Pitch - DEADBAND_HIGH) * dT * 100.0f;
|
||||
} else if (manualControlData.Pitch < DEADBAND_LOW) {
|
||||
changeRadius = (manualControlData.Pitch - DEADBAND_LOW) * dT * 100.0f;
|
||||
}
|
||||
|
||||
// move along circular path
|
||||
float pathAngle = 0;
|
||||
if (manualControlData.Roll > DEADBAND_HIGH) {
|
||||
pathAngle = -(manualControlData.Roll - DEADBAND_HIGH) * dT * 300.0f;
|
||||
} else if (manualControlData.Roll < DEADBAND_LOW) {
|
||||
pathAngle = -(manualControlData.Roll - DEADBAND_LOW) * dT * 300.0f;
|
||||
} else if (manualControlData.Roll >= DEADBAND_LOW && manualControlData.Roll <= DEADBAND_HIGH) {
|
||||
// change radius only when not circling
|
||||
poiRadius = distance + changeRadius;
|
||||
}
|
||||
|
||||
// don't try to move any closer
|
||||
if (poiRadius >= 3.0f || changeRadius > 0) {
|
||||
if (fabsf(pathAngle) > 0.0f || fabsf(changeRadius) > 0.0f) {
|
||||
pathDesired.End.North = poi.North + (poiRadius * cosf(DEG2RAD(pathAngle + yaw - 180.0f)));
|
||||
pathDesired.End.East = poi.East + (poiRadius * sinf(DEG2RAD(pathAngle + yaw - 180.0f)));
|
||||
pathDesired.StartingVelocity = 1.0f;
|
||||
pathDesired.EndingVelocity = 0.0f;
|
||||
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
|
||||
PathDesiredSet(&pathDesired);
|
||||
}
|
||||
}
|
||||
// not above
|
||||
if (distance >= 3.0f) {
|
||||
// You can feed this into camerastabilization
|
||||
/*elevation = RAD2DEG(atan2f(dLoc[2],distance));*/
|
||||
|
||||
stabDesired.Yaw = yaw + (pathAngle / 2.0f);
|
||||
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
||||
|
||||
// cameraDesired.Yaw=yaw;
|
||||
// cameraDesired.PitchOrServo2=elevation;
|
||||
|
||||
CameraDesiredSet(&cameraDesired);
|
||||
StabilizationDesiredSet(&stabDesired);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute desired velocity from the current position and path
|
||||
*
|
||||
* Takes in @ref PositionState and compares it to @ref PathDesired
|
||||
* and computes @ref VelocityDesired
|
||||
*/
|
||||
static void updatePathVelocity()
|
||||
{
|
||||
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
|
||||
float downCommand;
|
||||
|
||||
PathDesiredData pathDesired;
|
||||
|
||||
PathDesiredGet(&pathDesired);
|
||||
PositionStateData positionState;
|
||||
PositionStateGet(&positionState);
|
||||
|
||||
float cur[3] =
|
||||
{ positionState.North, positionState.East, positionState.Down };
|
||||
struct path_status progress;
|
||||
|
||||
path_progress(
|
||||
cast_struct_to_array(pathDesired.Start, pathDesired.Start.North),
|
||||
cast_struct_to_array(pathDesired.End, pathDesired.End.North),
|
||||
cur, &progress, pathDesired.Mode);
|
||||
|
||||
float groundspeed;
|
||||
switch (pathDesired.Mode) {
|
||||
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
|
||||
case PATHDESIRED_MODE_DRIVECIRCLERIGHT:
|
||||
case PATHDESIRED_MODE_FLYCIRCLELEFT:
|
||||
case PATHDESIRED_MODE_DRIVECIRCLELEFT:
|
||||
groundspeed = pathDesired.EndingVelocity;
|
||||
break;
|
||||
case PATHDESIRED_MODE_FLYENDPOINT:
|
||||
case PATHDESIRED_MODE_DRIVEENDPOINT:
|
||||
groundspeed = pathDesired.EndingVelocity - pathDesired.EndingVelocity * boundf(progress.fractional_progress, 0, 1);
|
||||
if (progress.fractional_progress > 1) {
|
||||
groundspeed = 0;
|
||||
}
|
||||
break;
|
||||
case PATHDESIRED_MODE_FLYVECTOR:
|
||||
case PATHDESIRED_MODE_DRIVEVECTOR:
|
||||
default:
|
||||
groundspeed = pathDesired.StartingVelocity
|
||||
+ (pathDesired.EndingVelocity - pathDesired.StartingVelocity) * boundf(progress.fractional_progress, 0, 1);
|
||||
if (progress.fractional_progress > 1) {
|
||||
groundspeed = 0;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
VelocityDesiredData velocityDesired;
|
||||
velocityDesired.North = progress.path_direction[0] * groundspeed;
|
||||
velocityDesired.East = progress.path_direction[1] * groundspeed;
|
||||
|
||||
float error_speed = progress.error * vtolpathfollowerSettings.HorizontalPosPI.Kp;
|
||||
float correction_velocity[2] =
|
||||
{ progress.correction_direction[0] * error_speed, progress.correction_direction[1] * error_speed };
|
||||
|
||||
float total_vel = sqrtf(powf(correction_velocity[0], 2) + powf(correction_velocity[1], 2));
|
||||
float scale = 1;
|
||||
if (total_vel > vtolpathfollowerSettings.HorizontalVelMax) {
|
||||
scale = vtolpathfollowerSettings.HorizontalVelMax / total_vel;
|
||||
}
|
||||
|
||||
velocityDesired.North += progress.correction_direction[0] * error_speed * scale;
|
||||
velocityDesired.East += progress.correction_direction[1] * error_speed * scale;
|
||||
|
||||
float altitudeSetpoint = pathDesired.Start.Down + (pathDesired.End.Down - pathDesired.Start.Down) * boundf(progress.fractional_progress, 0, 1);
|
||||
|
||||
float downError = altitudeSetpoint - positionState.Down;
|
||||
downPosIntegral = boundf(downPosIntegral + downError * dT * vtolpathfollowerSettings.VerticalPosPI.Ki,
|
||||
-vtolpathfollowerSettings.VerticalPosPI.ILimit,
|
||||
vtolpathfollowerSettings.VerticalPosPI.ILimit);
|
||||
downCommand = (downError * vtolpathfollowerSettings.VerticalPosPI.Kp + downPosIntegral);
|
||||
velocityDesired.Down = boundf(downCommand, -vtolpathfollowerSettings.VerticalVelMax, vtolpathfollowerSettings.VerticalVelMax);
|
||||
|
||||
// update pathstatus
|
||||
pathStatus.error = progress.error;
|
||||
pathStatus.fractional_progress = progress.fractional_progress;
|
||||
|
||||
VelocityDesiredSet(&velocityDesired);
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute desired velocity from the current position
|
||||
*
|
||||
* Takes in @ref PositionState and compares it to @ref PositionDesired
|
||||
* and computes @ref VelocityDesired
|
||||
*/
|
||||
void updateEndpointVelocity()
|
||||
{
|
||||
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
|
||||
|
||||
PathDesiredData pathDesired;
|
||||
|
||||
PathDesiredGet(&pathDesired);
|
||||
|
||||
PositionStateData positionState;
|
||||
VelocityDesiredData velocityDesired;
|
||||
|
||||
PositionStateGet(&positionState);
|
||||
VelocityDesiredGet(&velocityDesired);
|
||||
|
||||
float northError;
|
||||
float eastError;
|
||||
float downError;
|
||||
float northCommand;
|
||||
float eastCommand;
|
||||
float downCommand;
|
||||
|
||||
// Compute desired north command
|
||||
northError = pathDesired.End.North - positionState.North;
|
||||
northPosIntegral = boundf(northPosIntegral + northError * dT * vtolpathfollowerSettings.HorizontalPosPI.Ki,
|
||||
-vtolpathfollowerSettings.HorizontalPosPI.ILimit,
|
||||
vtolpathfollowerSettings.HorizontalPosPI.ILimit);
|
||||
northCommand = (northError * vtolpathfollowerSettings.HorizontalPosPI.Kp + northPosIntegral);
|
||||
|
||||
eastError = pathDesired.End.East - positionState.East;
|
||||
eastPosIntegral = boundf(eastPosIntegral + eastError * dT * vtolpathfollowerSettings.HorizontalPosPI.Ki,
|
||||
-vtolpathfollowerSettings.HorizontalPosPI.ILimit,
|
||||
vtolpathfollowerSettings.HorizontalPosPI.ILimit);
|
||||
eastCommand = (eastError * vtolpathfollowerSettings.HorizontalPosPI.Kp + eastPosIntegral);
|
||||
|
||||
// Limit the maximum velocity
|
||||
float total_vel = sqrtf(powf(northCommand, 2) + powf(eastCommand, 2));
|
||||
float scale = 1;
|
||||
if (total_vel > vtolpathfollowerSettings.HorizontalVelMax) {
|
||||
scale = vtolpathfollowerSettings.HorizontalVelMax / total_vel;
|
||||
}
|
||||
|
||||
velocityDesired.North = northCommand * scale;
|
||||
velocityDesired.East = eastCommand * scale;
|
||||
|
||||
downError = pathDesired.End.Down - positionState.Down;
|
||||
downPosIntegral = boundf(downPosIntegral + downError * dT * vtolpathfollowerSettings.VerticalPosPI.Ki,
|
||||
-vtolpathfollowerSettings.VerticalPosPI.ILimit,
|
||||
vtolpathfollowerSettings.VerticalPosPI.ILimit);
|
||||
downCommand = (downError * vtolpathfollowerSettings.VerticalPosPI.Kp + downPosIntegral);
|
||||
velocityDesired.Down = boundf(downCommand, -vtolpathfollowerSettings.VerticalVelMax, vtolpathfollowerSettings.VerticalVelMax);
|
||||
|
||||
VelocityDesiredSet(&velocityDesired);
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute desired attitude from a fixed preset
|
||||
*
|
||||
*/
|
||||
static void updateFixedAttitude(float *attitude)
|
||||
{
|
||||
StabilizationDesiredData stabDesired;
|
||||
|
||||
StabilizationDesiredGet(&stabDesired);
|
||||
stabDesired.Roll = attitude[0];
|
||||
stabDesired.Pitch = attitude[1];
|
||||
stabDesired.Yaw = attitude[2];
|
||||
stabDesired.Thrust = attitude[3];
|
||||
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
||||
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
||||
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
|
||||
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
|
||||
StabilizationDesiredSet(&stabDesired);
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute desired attitude from the desired velocity
|
||||
*
|
||||
* Takes in @ref NedState which has the acceleration in the
|
||||
* NED frame as the feedback term and then compares the
|
||||
* @ref VelocityState against the @ref VelocityDesired
|
||||
*/
|
||||
static void updateVtolDesiredAttitude(bool yaw_attitude)
|
||||
{
|
||||
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
|
||||
|
||||
VelocityDesiredData velocityDesired;
|
||||
VelocityStateData velocityState;
|
||||
StabilizationDesiredData stabDesired;
|
||||
AttitudeStateData attitudeState;
|
||||
NedAccelData nedAccel;
|
||||
StabilizationBankData stabSettings;
|
||||
SystemSettingsData systemSettings;
|
||||
|
||||
float northError;
|
||||
float northCommand;
|
||||
|
||||
float eastError;
|
||||
float eastCommand;
|
||||
|
||||
float downError;
|
||||
float downCommand;
|
||||
|
||||
SystemSettingsGet(&systemSettings);
|
||||
VelocityStateGet(&velocityState);
|
||||
VelocityDesiredGet(&velocityDesired);
|
||||
StabilizationDesiredGet(&stabDesired);
|
||||
VelocityDesiredGet(&velocityDesired);
|
||||
AttitudeStateGet(&attitudeState);
|
||||
StabilizationBankGet(&stabSettings);
|
||||
NedAccelGet(&nedAccel);
|
||||
|
||||
float northVel = 0, eastVel = 0, downVel = 0;
|
||||
switch (vtolpathfollowerSettings.VelocitySource) {
|
||||
case VTOLPATHFOLLOWERSETTINGS_VELOCITYSOURCE_STATE_ESTIMATION:
|
||||
northVel = velocityState.North;
|
||||
eastVel = velocityState.East;
|
||||
downVel = velocityState.Down;
|
||||
break;
|
||||
case VTOLPATHFOLLOWERSETTINGS_VELOCITYSOURCE_GPS_VELNED:
|
||||
{
|
||||
GPSVelocitySensorData gpsVelocity;
|
||||
GPSVelocitySensorGet(&gpsVelocity);
|
||||
northVel = gpsVelocity.North;
|
||||
eastVel = gpsVelocity.East;
|
||||
downVel = gpsVelocity.Down;
|
||||
}
|
||||
break;
|
||||
case VTOLPATHFOLLOWERSETTINGS_VELOCITYSOURCE_GPS_GROUNDSPEED:
|
||||
{
|
||||
GPSPositionSensorData gpsPosition;
|
||||
GPSPositionSensorGet(&gpsPosition);
|
||||
northVel = gpsPosition.Groundspeed * cosf(DEG2RAD(gpsPosition.Heading));
|
||||
eastVel = gpsPosition.Groundspeed * sinf(DEG2RAD(gpsPosition.Heading));
|
||||
downVel = velocityState.Down;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
PIOS_Assert(0);
|
||||
break;
|
||||
}
|
||||
|
||||
// Testing code - refactor into manual control command
|
||||
ManualControlCommandData manualControlData;
|
||||
ManualControlCommandGet(&manualControlData);
|
||||
|
||||
// Compute desired north command
|
||||
northError = velocityDesired.North - northVel;
|
||||
northVelIntegral = boundf(northVelIntegral + northError * dT * vtolpathfollowerSettings.HorizontalVelPID.Ki,
|
||||
-vtolpathfollowerSettings.HorizontalVelPID.ILimit,
|
||||
vtolpathfollowerSettings.HorizontalVelPID.ILimit);
|
||||
northCommand = (northError * vtolpathfollowerSettings.HorizontalVelPID.Kp + northVelIntegral
|
||||
- nedAccel.North * vtolpathfollowerSettings.HorizontalVelPID.Kd
|
||||
+ velocityDesired.North * vtolpathfollowerSettings.VelocityFeedforward);
|
||||
|
||||
// Compute desired east command
|
||||
eastError = velocityDesired.East - eastVel;
|
||||
eastVelIntegral = boundf(eastVelIntegral + eastError * dT * vtolpathfollowerSettings.HorizontalVelPID.Ki,
|
||||
-vtolpathfollowerSettings.HorizontalVelPID.ILimit,
|
||||
vtolpathfollowerSettings.HorizontalVelPID.ILimit);
|
||||
eastCommand = (eastError * vtolpathfollowerSettings.HorizontalVelPID.Kp + eastVelIntegral
|
||||
- nedAccel.East * vtolpathfollowerSettings.HorizontalVelPID.Kd
|
||||
+ velocityDesired.East * vtolpathfollowerSettings.VelocityFeedforward);
|
||||
|
||||
// Compute desired down command
|
||||
downError = velocityDesired.Down - downVel;
|
||||
// Must flip this sign
|
||||
downError = -downError;
|
||||
downVelIntegral = boundf(downVelIntegral + downError * dT * vtolpathfollowerSettings.VerticalVelPID.Ki,
|
||||
-vtolpathfollowerSettings.VerticalVelPID.ILimit,
|
||||
vtolpathfollowerSettings.VerticalVelPID.ILimit);
|
||||
downCommand = (downError * vtolpathfollowerSettings.VerticalVelPID.Kp + downVelIntegral
|
||||
- nedAccel.Down * vtolpathfollowerSettings.VerticalVelPID.Kd);
|
||||
|
||||
stabDesired.Thrust = boundf(downCommand + thrustOffset, 0, 1);
|
||||
|
||||
// Project the north and east command signals into the pitch and roll based on yaw. For this to behave well the
|
||||
// craft should move similarly for 5 deg roll versus 5 deg pitch
|
||||
stabDesired.Pitch = boundf(-northCommand * cosf(DEG2RAD(attitudeState.Yaw)) +
|
||||
-eastCommand * sinf(DEG2RAD(attitudeState.Yaw)),
|
||||
-vtolpathfollowerSettings.MaxRollPitch, vtolpathfollowerSettings.MaxRollPitch);
|
||||
stabDesired.Roll = boundf(-northCommand * sinf(DEG2RAD(attitudeState.Yaw)) +
|
||||
eastCommand * cosf(DEG2RAD(attitudeState.Yaw)),
|
||||
-vtolpathfollowerSettings.MaxRollPitch, vtolpathfollowerSettings.MaxRollPitch);
|
||||
|
||||
if (vtolpathfollowerSettings.ThrustControl == VTOLPATHFOLLOWERSETTINGS_THRUSTCONTROL_FALSE) {
|
||||
// For now override thrust with manual control. Disable at your risk, quad goes to China.
|
||||
ManualControlCommandData manualControl;
|
||||
ManualControlCommandGet(&manualControl);
|
||||
stabDesired.Thrust = manualControl.Thrust;
|
||||
}
|
||||
|
||||
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
||||
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
||||
if (yaw_attitude) {
|
||||
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
||||
} else {
|
||||
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
|
||||
stabDesired.Yaw = stabSettings.MaximumRate.Yaw * manualControlData.Yaw;
|
||||
}
|
||||
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
|
||||
StabilizationDesiredSet(&stabDesired);
|
||||
}
|
||||
|
||||
/**
|
||||
* Keep a running filtered version of the acceleration in the NED frame
|
||||
*/
|
||||
static void updateNedAccel()
|
||||
{
|
||||
float accel[3];
|
||||
float q[4];
|
||||
float Rbe[3][3];
|
||||
float accel_ned[3];
|
||||
|
||||
// Collect downsampled attitude data
|
||||
AccelStateData accelState;
|
||||
|
||||
AccelStateGet(&accelState);
|
||||
accel[0] = accelState.x;
|
||||
accel[1] = accelState.y;
|
||||
accel[2] = accelState.z;
|
||||
|
||||
// rotate avg accels into earth frame and store it
|
||||
AttitudeStateData attitudeState;
|
||||
AttitudeStateGet(&attitudeState);
|
||||
q[0] = attitudeState.q1;
|
||||
q[1] = attitudeState.q2;
|
||||
q[2] = attitudeState.q3;
|
||||
q[3] = attitudeState.q4;
|
||||
Quaternion2R(q, Rbe);
|
||||
for (uint8_t i = 0; i < 3; i++) {
|
||||
accel_ned[i] = 0;
|
||||
for (uint8_t j = 0; j < 3; j++) {
|
||||
accel_ned[i] += Rbe[j][i] * accel[j];
|
||||
}
|
||||
}
|
||||
accel_ned[2] += 9.81f;
|
||||
|
||||
NedAccelData accelData;
|
||||
NedAccelGet(&accelData);
|
||||
accelData.North = accel_ned[0];
|
||||
accelData.East = accel_ned[1];
|
||||
accelData.Down = accel_ned[2];
|
||||
NedAccelSet(&accelData);
|
||||
}
|
||||
|
||||
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
|
||||
{
|
||||
VtolPathFollowerSettingsGet(&vtolpathfollowerSettings);
|
||||
}
|
||||
|
||||
static void accessoryUpdated(UAVObjEvent *ev)
|
||||
{
|
||||
if (ev->obj != AccessoryDesiredHandle()) {
|
||||
return;
|
||||
}
|
||||
|
||||
AccessoryDesiredData accessory;
|
||||
PoiLearnSettingsData poiLearn;
|
||||
PoiLearnSettingsGet(&poiLearn);
|
||||
|
||||
if (poiLearn.Input != POILEARNSETTINGS_INPUT_NONE) {
|
||||
if (AccessoryDesiredInstGet(poiLearn.Input - POILEARNSETTINGS_INPUT_ACCESSORY0, &accessory) == 0) {
|
||||
if (accessory.AccessoryVal < -0.5f) {
|
||||
PositionStateData positionState;
|
||||
PositionStateGet(&positionState);
|
||||
PoiLocationData poi;
|
||||
PoiLocationGet(&poi);
|
||||
poi.North = positionState.North;
|
||||
poi.East = positionState.East;
|
||||
poi.Down = positionState.Down;
|
||||
PoiLocationSet(&poi);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -35,7 +35,6 @@ USE_DSP_LIB ?= NO
|
||||
#MODULES += Airspeed
|
||||
#MODULES += AltitudeHold
|
||||
#MODULES += Stabilization
|
||||
MODULES += VtolPathFollower
|
||||
MODULES += ManualControl
|
||||
MODULES += Actuator
|
||||
MODULES += GPS
|
||||
@ -45,7 +44,7 @@ MODULES += Battery
|
||||
MODULES += FirmwareIAP
|
||||
#MODULES += Radio
|
||||
MODULES += PathPlanner
|
||||
MODULES += FixedWingPathFollower
|
||||
MODULES += PathFollower
|
||||
MODULES += Osd/osdoutout
|
||||
MODULES += Logging
|
||||
MODULES += Telemetry
|
||||
|
@ -35,7 +35,6 @@ MODULES += Altitude/revolution
|
||||
MODULES += Airspeed
|
||||
#MODULES += AltitudeHold # now integrated in Stabilization
|
||||
MODULES += Stabilization
|
||||
MODULES += VtolPathFollower
|
||||
MODULES += ManualControl
|
||||
MODULES += Receiver
|
||||
MODULES += Actuator
|
||||
@ -46,7 +45,7 @@ MODULES += Battery
|
||||
MODULES += FirmwareIAP
|
||||
MODULES += Radio
|
||||
MODULES += PathPlanner
|
||||
MODULES += FixedWingPathFollower
|
||||
MODULES += PathFollower
|
||||
MODULES += Osd/osdoutout
|
||||
MODULES += Logging
|
||||
MODULES += Telemetry
|
||||
|
@ -35,7 +35,6 @@ MODULES += Altitude/revolution
|
||||
MODULES += Airspeed
|
||||
#MODULES += AltitudeHold # now integrated in Stabilization
|
||||
MODULES += Stabilization
|
||||
MODULES += VtolPathFollower
|
||||
MODULES += ManualControl
|
||||
MODULES += Receiver
|
||||
MODULES += Actuator
|
||||
@ -45,7 +44,7 @@ MODULES += CameraStab
|
||||
MODULES += Battery
|
||||
MODULES += FirmwareIAP
|
||||
MODULES += PathPlanner
|
||||
MODULES += FixedWingPathFollower
|
||||
MODULES += PathFollower
|
||||
MODULES += Osd/osdoutout
|
||||
MODULES += Logging
|
||||
MODULES += Telemetry
|
||||
|
@ -33,8 +33,7 @@ DEBUG ?= YES
|
||||
# List of modules to include
|
||||
MODULES = ManualControl Stabilization GPS
|
||||
MODULES += PathPlanner
|
||||
MODULES += FixedWingPathFollower
|
||||
MODULES += VtolPathFollower
|
||||
MODULES += PathFollower
|
||||
MODULES += CameraStab
|
||||
MODULES += Telemetry
|
||||
MODULES += Logging
|
||||
|
@ -3,7 +3,7 @@ include(openpilotgcs.pri)
|
||||
TEMPLATE = subdirs
|
||||
|
||||
# Copy Qt runtime libraries into the build directory (to run or package)
|
||||
equals(copydata, 1) {
|
||||
equals(copyqt, 1) {
|
||||
|
||||
GCS_LIBRARY_PATH
|
||||
|
||||
|
@ -83,16 +83,26 @@ macx {
|
||||
GCS_DATA_BASENAME = Resources
|
||||
GCS_DOC_PATH = $$GCS_DATA_PATH/doc
|
||||
copydata = 1
|
||||
copyqt = 1
|
||||
} else {
|
||||
!isEqual(GCS_SOURCE_TREE, $$GCS_BUILD_TREE):copydata = 1
|
||||
win32 {
|
||||
contains(TEMPLATE, vc.*)|contains(TEMPLATE_PREFIX, vc):vcproj = 1
|
||||
GCS_APP_TARGET = openpilotgcs
|
||||
copyqt = $$copydata
|
||||
} else {
|
||||
GCS_APP_WRAPPER = openpilotgcs
|
||||
GCS_APP_TARGET = openpilotgcs.bin
|
||||
GCS_QT_LIBRARY_PATH = $$GCS_BUILD_TREE/$$GCS_LIBRARY_BASENAME/qt5
|
||||
GCS_QT_PLUGINS_PATH = $$GCS_BUILD_TREE/$$GCS_LIBRARY_BASENAME/qt5/plugins
|
||||
GCS_QT_QML_PATH = $$GCS_BUILD_TREE/$$GCS_LIBRARY_BASENAME/qt5/qml
|
||||
lib_dir_is_in_tools = $$[QT_INSTALL_LIBS]
|
||||
lib_dir_is_in_tools ~= s,$$(TOOLS_DIR)*,TRUE
|
||||
equals(lib_dir_is_in_tools, "TRUE") {
|
||||
copyqt = 1
|
||||
} else {
|
||||
copyqt = 0
|
||||
}
|
||||
}
|
||||
GCS_LIBRARY_PATH = $$GCS_BUILD_TREE/$$GCS_LIBRARY_BASENAME/openpilotgcs
|
||||
GCS_PLUGIN_PATH = $$GCS_LIBRARY_PATH/plugins
|
||||
@ -100,7 +110,6 @@ macx {
|
||||
GCS_DATA_PATH = $$GCS_BUILD_TREE/share/openpilotgcs
|
||||
GCS_DATA_BASENAME = share/openpilotgcs
|
||||
GCS_DOC_PATH = $$GCS_BUILD_TREE/share/doc
|
||||
!isEqual(GCS_SOURCE_TREE, $$GCS_BUILD_TREE):copydata = 1
|
||||
}
|
||||
|
||||
|
||||
|
@ -8,6 +8,7 @@
|
||||
<elementname>AltitudeHold</elementname>
|
||||
<elementname>Stabilization0</elementname>
|
||||
<elementname>Stabilization1</elementname>
|
||||
<elementname>PathFollower</elementname>
|
||||
<elementname>PathPlanner0</elementname>
|
||||
<elementname>PathPlanner1</elementname>
|
||||
<elementname>ManualControl</elementname>
|
||||
@ -20,6 +21,7 @@
|
||||
<elementname>AltitudeHold</elementname>
|
||||
<elementname>Stabilization0</elementname>
|
||||
<elementname>Stabilization1</elementname>
|
||||
<elementname>PathFollower</elementname>
|
||||
<elementname>PathPlanner0</elementname>
|
||||
<elementname>PathPlanner1</elementname>
|
||||
<elementname>ManualControl</elementname>
|
||||
@ -36,6 +38,7 @@
|
||||
<elementname>AltitudeHold</elementname>
|
||||
<elementname>Stabilization0</elementname>
|
||||
<elementname>Stabilization1</elementname>
|
||||
<elementname>PathFollower</elementname>
|
||||
<elementname>PathPlanner0</elementname>
|
||||
<elementname>PathPlanner1</elementname>
|
||||
<elementname>ManualControl</elementname>
|
||||
|
@ -15,9 +15,9 @@
|
||||
<field name="ReverseCourseOverlap" units="deg" type="float" elements="1" defaultvalue="20.0"/>
|
||||
<!-- how big the overlapping area behind the plane is, where, if the desired course lies behind, the current bank angle will determine if the plane goes left or right -->
|
||||
|
||||
<field name="HorizontalPosP" units="(m/s)/m" type="float" elements="1" defaultvalue="0.05"/>
|
||||
<field name="HorizontalPosP" units="(m/s)/m" type="float" elements="1" defaultvalue="0.2"/>
|
||||
<!-- proportional coefficient for correction vector in path vector field to get back on course - reduce for fast planes to prevent course oscillations -->
|
||||
<field name="VerticalPosP" units="(m/s)/m" type="float" elements="1" defaultvalue="0.2"/>
|
||||
<field name="VerticalPosP" units="(m/s)/m" type="float" elements="1" defaultvalue="0.4"/>
|
||||
<!-- proportional coefficient for desired vertical speed in relation to altitude displacement-->
|
||||
|
||||
<!-- these coefficients control actual control outputs -->
|
||||
@ -38,7 +38,7 @@
|
||||
in relation to vertical speed error (absolute but including crossfeed) -->
|
||||
|
||||
<!-- output limits -->
|
||||
<field name="RollLimit" units="deg" type="float" elements="3" elementnames="Min,Neutral,Max" defaultvalue="-35,0,35" />
|
||||
<field name="RollLimit" units="deg" type="float" elements="3" elementnames="Min,Neutral,Max" defaultvalue="-45,0,45" />
|
||||
<!-- maximum allowed bank angles in navigates flight -->
|
||||
<field name="PitchLimit" units="deg" type="float" elements="3" elementnames="Min,Neutral,Max" defaultvalue="-10,5,20" />
|
||||
<!-- maximum allowed pitch angles and setpoint for neutral pitch -->
|
||||
@ -46,7 +46,7 @@
|
||||
<!-- minimum and maximum allowed thrust and setpoint for cruise speed -->
|
||||
<field name="Safetymargins" units="" type="float"
|
||||
elementnames="Wind, Stallspeed, Lowspeed, Highspeed, Overspeed, Lowpower, Highpower, Pitchcontrol"
|
||||
defaultvalue="90, 1.0, 0.5, 1.5, 1.0, 1, 1, 1" />
|
||||
defaultvalue="90, 1.0, 0.5, 1.5, 1.0, 1, 0, 1" />
|
||||
<!-- Wind: degrees of crabbing allowed
|
||||
Speeds: percentage (1.0=100%) of the limit to be over/onder
|
||||
Power & Control: flag to turn on/off 0.0 =off 1.0 = on -->
|
||||
|
@ -110,11 +110,10 @@
|
||||
<field name="DisarmingSequenceTime" units="ms" type="uint16" elements="1" defaultvalue="1000"/>
|
||||
<field name="DisableSanityChecks" units="" type="enum" elements="1" options="FALSE,TRUE" defaultvalue="FALSE"/>
|
||||
<field name="ReturnToBaseAltitudeOffset" units="m" type="float" elements="1" defaultvalue="10"/>
|
||||
<field name="LandingVelocity" units="m" type="float" elements="1" defaultvalue="0.4"/>
|
||||
<field name="PositionHoldOffset" units="m" type="float" elementnames="Horizontal,Vertical" defaultvalue="10,2"/>
|
||||
<!-- optimized for current vtolpathfollower,
|
||||
for fixed wing pathfollower set to Horizontal=500,Vertical=5 -->
|
||||
<field name="PositionHoldStartingVelocity" units="m/s" type="float" elements="1" defaultvalue="20"/>
|
||||
<!-- currently ignored by vtolpathfollower -->
|
||||
<access gcs="readwrite" flight="readwrite"/>
|
||||
<telemetrygcs acked="true" updatemode="onchange" period="0"/>
|
||||
<telemetryflight acked="true" updatemode="onchange" period="0"/>
|
||||
|
@ -22,7 +22,7 @@
|
||||
<field name="USB_HIDPort" units="function" type="enum" elements="1" options="USBTelemetry,RCTransmitter,Disabled" defaultvalue="USBTelemetry"/>
|
||||
<field name="USB_VCPPort" units="function" type="enum" elements="1" options="USBTelemetry,ComBridge,DebugConsole,Disabled" defaultvalue="Disabled"/>
|
||||
|
||||
<field name="OptionalModules" units="" type="enum" elementnames="CameraStab,GPS,ComUsbBridge,Fault,Altitude,Airspeed,TxPID,Autotune,VtolPathFollower,FixedWingPathFollower,Battery,Overo,MagBaro,OsdHk" options="Disabled,Enabled" defaultvalue="Disabled"/>
|
||||
<field name="OptionalModules" units="" type="enum" elementnames="CameraStab,GPS,ComUsbBridge,Fault,Altitude,Airspeed,TxPID,Autotune,Battery,Overo,MagBaro,OsdHk" options="Disabled,Enabled" defaultvalue="Disabled"/>
|
||||
<field name="ADCRouting" units="" type="enum" elementnames="adc0,adc1,adc2,adc3" options="Disabled,BatteryVoltage,BatteryCurrent,AnalogAirspeed,Generic" defaultvalue="Disabled"/>
|
||||
<field name="DSMxBind" units="" type="uint8" elements="1" defaultvalue="0"/>
|
||||
<field name="WS2811LED_Out" units="" type="enum" elements="1" options="ServoOut1,ServoOut2,ServoOut3,ServoOut4,ServoOut5,ServoOut6,FlexiPin3,FlexiPin4,Disabled" defaultvalue="Disabled" />
|
||||
|
@ -7,7 +7,12 @@
|
||||
<field name="Status" units="" type="enum" elements="1" options="InProgress,Completed,Warning,Critical"/>
|
||||
<field name="fractional_progress" units="" type="float" elements="1"/>
|
||||
<field name="error" units="m" type="float" elements="1"/>
|
||||
|
||||
<field name="path_direction_north" units="m" type="float" elements="1"/>
|
||||
<field name="path_direction_east" units="m" type="float" elements="1"/>
|
||||
<field name="path_direction_down" units="m" type="float" elements="1"/>
|
||||
<field name="correction_direction_north" units="m" type="float" elements="1"/>
|
||||
<field name="correction_direction_east" units="m" type="float" elements="1"/>
|
||||
<field name="correction_direction_down" units="m" type="float" elements="1"/>
|
||||
<access gcs="readwrite" flight="readwrite"/>
|
||||
<telemetrygcs acked="false" updatemode="manual" period="0"/>
|
||||
<telemetryflight acked="false" updatemode="periodic" period="1000"/>
|
||||
|
@ -19,7 +19,6 @@
|
||||
<elementname>Airspeed</elementname>
|
||||
<elementname>MagBaro</elementname>
|
||||
<!-- navigation -->
|
||||
<elementname>PathFollower</elementname>
|
||||
<elementname>FlightPlan</elementname>
|
||||
<!-- telemetry -->
|
||||
<elementname>TelemetryTx</elementname>
|
||||
@ -52,7 +51,6 @@
|
||||
<elementname>Airspeed</elementname>
|
||||
<elementname>MagBaro</elementname>
|
||||
<!-- navigation -->
|
||||
<elementname>PathFollower</elementname>
|
||||
<elementname>FlightPlan</elementname>
|
||||
<!-- telemetry -->
|
||||
<elementname>TelemetryTx</elementname>
|
||||
@ -89,7 +87,6 @@
|
||||
<elementname>Airspeed</elementname>
|
||||
<elementname>MagBaro</elementname>
|
||||
<!-- navigation -->
|
||||
<elementname>PathFollower</elementname>
|
||||
<elementname>FlightPlan</elementname>
|
||||
<!-- telemetry -->
|
||||
<elementname>TelemetryTx</elementname>
|
||||
|
@ -1,18 +1,24 @@
|
||||
<xml>
|
||||
<object name="VtolPathFollowerSettings" singleinstance="true" settings="true" category="Control">
|
||||
<description>Settings for the @ref VtolPathFollowerModule</description>
|
||||
<field name="GuidanceMode" units="" type="enum" elements="1" options="DUAL_LOOP,VELOCITY_CONTROL" defaultvalue="DUAL_LOOP"/>
|
||||
<field name="HorizontalVelMax" units="m/s" type="uint16" elements="1" defaultvalue="2"/>
|
||||
<field name="VerticalVelMax" units="m/s" type="uint16" elements="1" defaultvalue="1"/>
|
||||
<field name="HorizontalPosPI" units="(m/s)/m" type="float" elementnames="Kp,Ki,ILimit" defaultvalue="0.25,0.02,1"/>
|
||||
<field name="HorizontalVelPID" units="deg/(m/s)" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="8,0.5,0.002,4"/>
|
||||
<field name="VerticalPosPI" units="" type="float" elementnames="Kp,Ki,ILimit" defaultvalue="0.4,0.02,1"/>
|
||||
<field name="VerticalVelPID" units="" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="0.1,0.01,0,1"/>
|
||||
<field name="TreatCustomCraftAs" units="switch" type="enum" elements="1" options="FixedWing,VTOL" defaultvalue="FixedWing"/>
|
||||
<field name="HorizontalVelMax" units="m/s" type="float" elements="1" defaultvalue="5.0"/>
|
||||
<field name="VerticalVelMax" units="m/s" type="float" elements="1" defaultvalue="1.0"/>
|
||||
<field name="CourseFeedForward" units="s" type="float" elements="1" defaultvalue="1.0"/>
|
||||
<field name="HorizontalPosPI" units="(m/s)/m" type="float" elementnames="Kp,Ki,ILimit" defaultvalue="0.25,0.0,0.0"/>
|
||||
<field name="VerticalPosPI" units="" type="float" elements="1" elementnames="Kp,Ki,Ilimit" defaultvalue="0.4,0.0,0.0"/>
|
||||
<field name="HorizontalVelPID" units="deg/(m/s)" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="8.0, 0.5, 0.0, 15"/>
|
||||
<field name="VerticalVelPID" units="" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="0.1, 0.01, 0.0, 1.0"/>
|
||||
<field name="ThrustLimits" units="" type="float" elementnames="Min,Neutral,Max" defaultvalue="0.2, 0.5, 0.9"/>
|
||||
<field name="VelocityFeedforward" units="deg/(m/s)" type="float" elements="1" defaultvalue="2"/>
|
||||
<field name="ThrustControl" units="" type="enum" elements="1" options="FALSE,TRUE" defaultvalue="FALSE"/>
|
||||
<field name="VelocitySource" units="" type="enum" elements="1" options="STATE_ESTIMATION,GPS_VELNED,GPS_GROUNDSPEED" defaultvalue="STATE_ESTIMATION"/>
|
||||
<field name="MaxRollPitch" units="deg" type="float" elements="1" defaultvalue="20"/>
|
||||
<field name="UpdatePeriod" units="ms" type="int32" elements="1" defaultvalue="50"/>
|
||||
<field name="ThrustControl" units="" type="enum" elements="1" options="manual,auto" defaultvalue="manual"/>
|
||||
<field name="YawControl" units="" type="enum" elements="1" options="manual,tailin,movementdirection,pathdirection,poi" defaultvalue="manual"/>
|
||||
<field name="FlyawayEmergencyFallback" units="switch" type="enum" elements="1" options="disabled,enabled,always,debugtest" defaultvalue="enabled"/>
|
||||
<field name="FlyawayEmergencyFallbackTriggerTime" units="s" type="float" elements="1" defaultvalue="10.0"/>
|
||||
<field name="EmergencyFallbackAttitude" units="deg" type="float" elementnames="Roll,Pitch" defaultvalue="0,-20.0"/>
|
||||
<field name="EmergencyFallbackYawRate" units="(deg/s)/deg" type="float" elementnames="kP,Max" defaultvalue="2.0, 30.0"/>
|
||||
<field name="MaxRollPitch" units="deg" type="float" elements="1" defaultvalue="25"/>
|
||||
<field name="UpdatePeriod" units="ms" type="uint16" elements="1" defaultvalue="50"/>
|
||||
<access gcs="readwrite" flight="readwrite"/>
|
||||
<telemetrygcs acked="true" updatemode="onchange" period="0"/>
|
||||
<telemetryflight acked="true" updatemode="onchange" period="0"/>
|
||||
|
Loading…
Reference in New Issue
Block a user