1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-02 10:24:11 +01:00

Merge branch 'next' into fw_wiz

This commit is contained in:
Fredrik Larson 2014-08-22 05:11:33 +10:00
commit 63be4f7b0e
23 changed files with 1489 additions and 1710 deletions

View File

@ -30,10 +30,10 @@
struct path_status {
float fractional_progress;
float error;
float correction_direction[2];
float path_direction[2];
float path_vector[3];
float correction_vector[3];
};
void path_progress(float *start_point, float *end_point, float *cur_point, struct path_status *status, uint8_t mode);
void path_progress(PathDesiredData *path, float *cur_point, struct path_status *status);
#endif

View File

@ -52,4 +52,31 @@ static inline float boundf(float val, float boundary1, float boundary2)
return val;
}
static inline float squaref(float x)
{
return x * x;
}
static inline float vector_lengthf(float *vector, const uint8_t dim)
{
float length = 0.0f;
for (int t = 0; t < dim; t++) {
length += squaref(vector[t]);
}
return sqrtf(length);
}
static inline void vector_normalizef(float *vector, const uint8_t dim)
{
float length = vector_lengthf(vector, dim);
if (length <= 0.0f || isnan(length)) {
return;
}
for (int t = 0; t < dim; t++) {
vector[t] /= length;
}
}
#endif /* MATHMISC_H */

View File

@ -26,49 +26,53 @@
#include <pios.h>
#include <pios_math.h>
#include "paths.h"
#include <mathmisc.h>
#include "uavobjectmanager.h" // <--.
#include "pathdesired.h" // <-- needed only for correct ENUM macro usage with path modes (PATHDESIRED_MODE_xxx,
#include "paths.h"
// no direct UAVObject usage allowed in this file
// private functions
static void path_endpoint(float *start_point, float *end_point, float *cur_point, struct path_status *status);
static void path_vector(float *start_point, float *end_point, float *cur_point, struct path_status *status);
static void path_circle(float *start_point, float *end_point, float *cur_point, struct path_status *status, bool clockwise);
static void path_endpoint(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode);
static void path_vector(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode);
static void path_circle(PathDesiredData *path, float *cur_point, struct path_status *status, bool clockwise);
/**
* @brief Compute progress along path and deviation from it
* @param[in] start_point Starting point
* @param[in] end_point Ending point
* @param[in] path PathDesired structure
* @param[in] cur_point Current location
* @param[in] mode Path following mode
* @param[out] status Structure containing progress along path and deviation
*/
void path_progress(float *start_point, float *end_point, float *cur_point, struct path_status *status, uint8_t mode)
void path_progress(PathDesiredData *path, float *cur_point, struct path_status *status)
{
switch (mode) {
switch (path->Mode) {
case PATHDESIRED_MODE_FLYVECTOR:
return path_vector(path, cur_point, status, true);
break;
case PATHDESIRED_MODE_DRIVEVECTOR:
return path_vector(start_point, end_point, cur_point, status);
return path_vector(path, cur_point, status, false);
break;
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
case PATHDESIRED_MODE_DRIVECIRCLERIGHT:
return path_circle(start_point, end_point, cur_point, status, 1);
return path_circle(path, cur_point, status, 1);
break;
case PATHDESIRED_MODE_FLYCIRCLELEFT:
case PATHDESIRED_MODE_DRIVECIRCLELEFT:
return path_circle(start_point, end_point, cur_point, status, 0);
return path_circle(path, cur_point, status, 0);
break;
case PATHDESIRED_MODE_FLYENDPOINT:
return path_endpoint(path, cur_point, status, true);
break;
case PATHDESIRED_MODE_DRIVEENDPOINT:
default:
// use the endpoint as default failsafe if called in unknown modes
return path_endpoint(start_point, end_point, cur_point, status);
return path_endpoint(path, cur_point, status, false);
break;
}
@ -76,135 +80,153 @@ void path_progress(float *start_point, float *end_point, float *cur_point, struc
/**
* @brief Compute progress towards endpoint. Deviation equals distance
* @param[in] start_point Starting point
* @param[in] end_point Ending point
* @param[in] path PathDesired
* @param[in] cur_point Current location
* @param[out] status Structure containing progress along path and deviation
* @param[in] mode3D set true to include altitude in distance and progress calculation
*/
static void path_endpoint(float *start_point, float *end_point, float *cur_point, struct path_status *status)
static void path_endpoint(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode3D)
{
float path_north, path_east, diff_north, diff_east;
float diff[3];
float dist_path, dist_diff;
// we do not correct in this mode
status->correction_direction[0] = status->correction_direction[1] = 0;
// Distance to go
path_north = end_point[0] - start_point[0];
path_east = end_point[1] - start_point[1];
status->path_vector[0] = path->End.North - path->Start.North;
status->path_vector[1] = path->End.East - path->Start.East;
status->path_vector[2] = mode3D ? path->End.Down - path->Start.Down : 0.0f;
// Current progress location relative to end
diff_north = end_point[0] - cur_point[0];
diff_east = end_point[1] - cur_point[1];
diff[0] = path->End.North - cur_point[0];
diff[1] = path->End.East - cur_point[1];
diff[2] = mode3D ? path->End.Down - cur_point[2] : 0.0f;
dist_diff = sqrtf(diff_north * diff_north + diff_east * diff_east);
dist_path = sqrtf(path_north * path_north + path_east * path_east);
dist_diff = vector_lengthf(diff, 3);
dist_path = vector_lengthf(status->path_vector, 3);
if (dist_diff < 1e-6f) {
status->fractional_progress = 1;
status->error = 0;
status->path_direction[0] = status->path_direction[1] = 0;
status->error = 0.0f;
status->correction_vector[0] = status->correction_vector[1] = status->correction_vector[2] = 0.0f;
// we have no base movement direction in this mode
status->path_vector[0] = status->path_vector[1] = status->path_vector[2] = 0.0f;
return;
}
status->fractional_progress = 1 - dist_diff / (1 + dist_path);
if (fmaxf(dist_path, 1.0f) > dist_diff) {
status->fractional_progress = 1 - dist_diff / fmaxf(dist_path, 1.0f);
} else {
status->fractional_progress = 0; // we don't want fractional_progress to become negative
}
status->error = dist_diff;
// Compute direction to travel
status->path_direction[0] = diff_north / dist_diff;
status->path_direction[1] = diff_east / dist_diff;
// Compute correction vector
status->correction_vector[0] = diff[0];
status->correction_vector[1] = diff[1];
status->correction_vector[2] = diff[2];
// base movement direction in this mode is a constant velocity offset on top of correction in the same direction
status->path_vector[0] = path->EndingVelocity * status->correction_vector[0] / dist_diff;
status->path_vector[1] = path->EndingVelocity * status->correction_vector[1] / dist_diff;
status->path_vector[2] = path->EndingVelocity * status->correction_vector[2] / dist_diff;
}
/**
* @brief Compute progress along path and deviation from it
* @param[in] start_point Starting point
* @param[in] end_point Ending point
* @param[in] path PathDesired
* @param[in] cur_point Current location
* @param[out] status Structure containing progress along path and deviation
* @param[in] mode3D set true to include altitude in distance and progress calculation
*/
static void path_vector(float *start_point, float *end_point, float *cur_point, struct path_status *status)
static void path_vector(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode3D)
{
float path_north, path_east, diff_north, diff_east;
float diff[3];
float dist_path;
float dot;
float normal[2];
float velocity;
float track_point[3];
// Distance to go
path_north = end_point[0] - start_point[0];
path_east = end_point[1] - start_point[1];
status->path_vector[0] = path->End.North - path->Start.North;
status->path_vector[1] = path->End.East - path->Start.East;
status->path_vector[2] = mode3D ? path->End.Down - path->Start.Down : 0.0f;
// Current progress location relative to start
diff_north = cur_point[0] - start_point[0];
diff_east = cur_point[1] - start_point[1];
diff[0] = cur_point[0] - path->Start.North;
diff[1] = cur_point[1] - path->Start.East;
diff[2] = mode3D ? cur_point[2] - path->Start.Down : 0.0f;
dot = path_north * diff_north + path_east * diff_east;
dist_path = sqrtf(path_north * path_north + path_east * path_east);
dot = status->path_vector[0] * diff[0] + status->path_vector[1] * diff[1] + status->path_vector[2] * diff[2];
dist_path = vector_lengthf(status->path_vector, 3);
if (dist_path < 1e-6f) {
// if the path is too short, we cannot determine vector direction.
if (dist_path > 1e-6f) {
// Compute direction to travel & progress
status->fractional_progress = dot / (dist_path * dist_path);
} else {
// Fly towards the endpoint to prevent flying away,
// but assume progress=1 either way.
path_endpoint(start_point, end_point, cur_point, status);
path_endpoint(path, cur_point, status, mode3D);
status->fractional_progress = 1;
return;
}
// Compute point on track that is closest to our current position.
track_point[0] = status->fractional_progress * status->path_vector[0] + path->Start.North;
track_point[1] = status->fractional_progress * status->path_vector[1] + path->Start.East;
track_point[2] = status->fractional_progress * status->path_vector[2] + path->Start.Down;
// Compute the normal to the path
normal[0] = -path_east / dist_path;
normal[1] = path_north / dist_path;
status->correction_vector[0] = track_point[0] - cur_point[0];
status->correction_vector[1] = track_point[1] - cur_point[1];
status->correction_vector[2] = track_point[2] - cur_point[2];
status->fractional_progress = dot / (dist_path * dist_path);
status->error = normal[0] * diff_north + normal[1] * diff_east;
status->error = vector_lengthf(status->correction_vector, 3);
// Compute direction to correct error
status->correction_direction[0] = (status->error > 0) ? -normal[0] : normal[0];
status->correction_direction[1] = (status->error > 0) ? -normal[1] : normal[1];
// Now just want magnitude of error
status->error = fabs(status->error);
// Compute direction to travel
status->path_direction[0] = path_north / dist_path;
status->path_direction[1] = path_east / dist_path;
// correct movement vector to current velocity
velocity = path->StartingVelocity + boundf(status->fractional_progress, 0.0f, 1.0f) * (path->EndingVelocity - path->StartingVelocity);
status->path_vector[0] = velocity * status->path_vector[0] / dist_path;
status->path_vector[1] = velocity * status->path_vector[1] / dist_path;
status->path_vector[2] = velocity * status->path_vector[2] / dist_path;
}
/**
* @brief Compute progress along circular path and deviation from it
* @param[in] start_point Starting point
* @param[in] end_point Center point
* @param[in] path PathDesired
* @param[in] cur_point Current location
* @param[out] status Structure containing progress along path and deviation
*/
static void path_circle(float *start_point, float *end_point, float *cur_point, struct path_status *status, bool clockwise)
static void path_circle(PathDesiredData *path, float *cur_point, struct path_status *status, bool clockwise)
{
float radius_north, radius_east, diff_north, diff_east;
float radius_north, radius_east, diff_north, diff_east, diff_down;
float radius, cradius;
float normal[2];
float progress;
float a_diff, a_radius;
// Radius
radius_north = end_point[0] - start_point[0];
radius_east = end_point[1] - start_point[1];
radius_north = path->End.North - path->Start.North;
radius_east = path->End.East - path->Start.East;
// Current location relative to center
diff_north = cur_point[0] - end_point[0];
diff_east = cur_point[1] - end_point[1];
diff_north = cur_point[0] - path->End.North;
diff_east = cur_point[1] - path->End.East;
diff_down = cur_point[2] - path->End.Down;
radius = sqrtf(powf(radius_north, 2) + powf(radius_east, 2));
cradius = sqrtf(powf(diff_north, 2) + powf(diff_east, 2));
radius = sqrtf(squaref(radius_north) + squaref(radius_east));
cradius = sqrtf(squaref(diff_north) + squaref(diff_east));
// circles are always horizontal (for now - TODO: allow 3d circles - problem: clockwise/counterclockwise does no longer apply)
status->path_vector[2] = 0.0f;
// error is current radius minus wanted radius - positive if too close
status->error = radius - cradius;
if (cradius < 1e-6f) {
// cradius is zero, just fly somewhere and make sure correction is still a normal
// cradius is zero, just fly somewhere
status->fractional_progress = 1;
status->error = radius;
status->correction_direction[0] = 0;
status->correction_direction[1] = 1;
status->path_direction[0] = 1;
status->path_direction[1] = 0;
return;
}
status->correction_vector[0] = 0;
status->correction_vector[1] = 0;
status->path_vector[0] = path->EndingVelocity;
status->path_vector[1] = 0;
} else {
if (clockwise) {
// Compute the normal to the radius clockwise
normal[0] = -diff_east / cradius;
@ -228,28 +250,28 @@ static void path_circle(float *start_point, float *end_point, float *cur_point,
progress = (a_diff - a_radius + M_PI_F) / (2.0f * M_PI_F);
if (progress < 0) {
if (progress < 0.0f) {
progress += 1.0f;
} else if (progress >= 1.0f) {
progress -= 1.0f;
}
if (clockwise) {
progress = 1 - progress;
progress = 1.0f - progress;
}
status->fractional_progress = progress;
// error is current radius minus wanted radius - positive if too close
status->error = radius - cradius;
// Compute direction to travel
status->path_vector[0] = normal[0] * path->EndingVelocity;
status->path_vector[1] = normal[1] * path->EndingVelocity;
// Compute direction to correct error
status->correction_direction[0] = (status->error > 0 ? 1 : -1) * diff_north / cradius;
status->correction_direction[1] = (status->error > 0 ? 1 : -1) * diff_east / cradius;
status->correction_vector[0] = status->error * diff_north / cradius;
status->correction_vector[1] = status->error * diff_east / cradius;
}
// Compute direction to travel
status->path_direction[0] = normal[0];
status->path_direction[1] = normal[1];
status->correction_vector[2] = -diff_down;
status->error = fabs(status->error);
}

View File

@ -70,8 +70,6 @@ void plan_setup_positionHold()
FlightModeSettingsPositionHoldOffsetData offset;
FlightModeSettingsPositionHoldOffsetGet(&offset);
float startingVelocity;
FlightModeSettingsPositionHoldStartingVelocityGet(&startingVelocity);
pathDesired.End.North = positionState.North;
pathDesired.End.East = positionState.East;
@ -79,7 +77,7 @@ void plan_setup_positionHold()
pathDesired.Start.North = positionState.North + offset.Horizontal; // in FlyEndPoint the direction of this vector does not matter
pathDesired.Start.East = positionState.East;
pathDesired.Start.Down = positionState.Down;
pathDesired.StartingVelocity = startingVelocity;
pathDesired.StartingVelocity = 0.0f;
pathDesired.EndingVelocity = 0.0f;
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
@ -110,8 +108,6 @@ void plan_setup_returnToBase()
destDown = MIN(positionStateDown, takeoffLocation.Down) - destDown;
FlightModeSettingsPositionHoldOffsetData offset;
FlightModeSettingsPositionHoldOffsetGet(&offset);
float startingVelocity;
FlightModeSettingsPositionHoldStartingVelocityGet(&startingVelocity);
pathDesired.End.North = takeoffLocation.North;
pathDesired.End.East = takeoffLocation.East;
@ -121,16 +117,27 @@ void plan_setup_returnToBase()
pathDesired.Start.East = takeoffLocation.East;
pathDesired.Start.Down = destDown;
pathDesired.StartingVelocity = startingVelocity;
pathDesired.StartingVelocity = 0.0f;
pathDesired.EndingVelocity = 0.0f;
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
PathDesiredSet(&pathDesired);
}
static PiOSDeltatimeConfig landdT;
void plan_setup_land()
{
float descendspeed;
plan_setup_positionHold();
FlightModeSettingsLandingVelocityGet(&descendspeed);
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
pathDesired.StartingVelocity = descendspeed;
pathDesired.EndingVelocity = descendspeed;
PathDesiredSet(&pathDesired);
PIOS_DELTATIME_Init(&landdT, UPDATE_EXPECTED, UPDATE_MIN, UPDATE_MAX, UPDATE_ALPHA);
}
/**
@ -138,12 +145,18 @@ void plan_setup_land()
*/
void plan_run_land()
{
float downPos, descendspeed;
PathDesiredEndData pathDesiredEnd;
PathDesiredEndGet(&pathDesiredEnd);
PositionStateDownGet(&downPos); // current down position
PathDesiredEndGet(&pathDesiredEnd); // desired position
PathDesiredEndingVelocityGet(&descendspeed);
PositionStateDownGet(&pathDesiredEnd.Down);
pathDesiredEnd.Down += 5;
// desired position is updated to match the desired descend speed but don't run ahead
// too far if the current position can't keep up. This normaly means we have landed.
if (pathDesiredEnd.Down - downPos < 10) {
pathDesiredEnd.Down += descendspeed * PIOS_DELTATIME_GetAverageSeconds(&landdT);
}
PathDesiredEndSet(&pathDesiredEnd);
}
@ -366,8 +379,6 @@ void plan_setup_AutoCruise()
FlightModeSettingsPositionHoldOffsetData offset;
FlightModeSettingsPositionHoldOffsetGet(&offset);
float startingVelocity;
FlightModeSettingsPositionHoldStartingVelocityGet(&startingVelocity);
// initialization is flight in direction of the nose.
// the velocity is not relevant, as it will be reset by the run function even during first call
@ -387,7 +398,7 @@ void plan_setup_AutoCruise()
pathDesired.Start.North = pathDesired.End.North + offset.Horizontal; // in FlyEndPoint the direction of this vector does not matter
pathDesired.Start.East = pathDesired.End.East;
pathDesired.Start.Down = pathDesired.End.Down;
pathDesired.StartingVelocity = startingVelocity;
pathDesired.StartingVelocity = 0.0f;
pathDesired.EndingVelocity = 0.0f;
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;

View File

@ -149,7 +149,6 @@ int32_t configuration_check()
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_RETURNTOBASE:
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_AUTOCRUISE:
ADDSEVERITY(!coptercontrol);
ADDSEVERITY(PIOS_TASK_MONITOR_IsRunning(TASKINFO_RUNNING_PATHFOLLOWER));
ADDSEVERITY(navCapableFusion);
break;
default:

View File

@ -1,772 +0,0 @@
/**
******************************************************************************
*
* @file fixedwingpathfollower.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief This module compared @ref PositionActuatl to @ref ActiveWaypoint
* and sets @ref AttitudeDesired. It only does this when the FlightMode field
* of @ref ManualControlCommand is Auto.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input object: ActiveWaypoint
* Input object: PositionState
* Input object: ManualControlCommand
* Output object: AttitudeDesired
*
* This module will periodically update the value of the AttitudeDesired object.
*
* The module executes in its own thread in this example.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include <openpilot.h>
#include "hwsettings.h"
#include "attitudestate.h"
#include "pathdesired.h" // object that will be updated by the module
#include "positionstate.h"
#include "flightstatus.h"
#include "pathstatus.h"
#include "airspeedstate.h"
#include "fixedwingpathfollowersettings.h"
#include "fixedwingpathfollowerstatus.h"
#include "homelocation.h"
#include "stabilizationdesired.h"
#include "stabilizationsettings.h"
#include "systemsettings.h"
#include "velocitydesired.h"
#include "velocitystate.h"
#include "taskinfo.h"
#include <pios_struct_helper.h>
#include <sanitycheck.h>
#include "sin_lookup.h"
#include "paths.h"
#include "CoordinateConversions.h"
// Private constants
#define MAX_QUEUE_SIZE 4
#define STACK_SIZE_BYTES 1548
#define TASK_PRIORITY (tskIDLE_PRIORITY + 2)
// Private variables
static bool followerEnabled = false;
static xTaskHandle pathfollowerTaskHandle;
static PathDesiredData pathDesired;
static PathStatusData pathStatus;
static FixedWingPathFollowerSettingsData fixedwingpathfollowerSettings;
// Private functions
static void pathfollowerTask(void *parameters);
static void SettingsUpdatedCb(UAVObjEvent *ev);
static void updatePathVelocity();
static uint8_t updateFixedDesiredAttitude();
static void updateFixedAttitude();
static void airspeedStateUpdatedCb(UAVObjEvent *ev);
static bool correctCourse(float *C, float *V, float *F, float s);
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t FixedWingPathFollowerStart()
{
if (followerEnabled) {
// Start main task
xTaskCreate(pathfollowerTask, "PathFollower", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &pathfollowerTaskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_PATHFOLLOWER, pathfollowerTaskHandle);
}
return 0;
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t FixedWingPathFollowerInitialize()
{
HwSettingsInitialize();
HwSettingsOptionalModulesData optionalModules;
HwSettingsOptionalModulesGet(&optionalModules);
FrameType_t frameType = GetCurrentFrameType();
if ((optionalModules.FixedWingPathFollower == HWSETTINGS_OPTIONALMODULES_ENABLED) ||
(frameType == FRAME_TYPE_FIXED_WING)) {
followerEnabled = true;
FixedWingPathFollowerSettingsInitialize();
FixedWingPathFollowerStatusInitialize();
PathDesiredInitialize();
PathStatusInitialize();
VelocityDesiredInitialize();
AirspeedStateInitialize();
} else {
followerEnabled = false;
}
return 0;
}
MODULE_INITCALL(FixedWingPathFollowerInitialize, FixedWingPathFollowerStart);
static float northVelIntegral = 0.0f;
static float eastVelIntegral = 0.0f;
static float downVelIntegral = 0.0f;
static float courseIntegral = 0.0f;
static float speedIntegral = 0.0f;
static float powerIntegral = 0.0f;
static float airspeedErrorInt = 0.0f;
// correct speed by measured airspeed
static float indicatedAirspeedStateBias = 0.0f;
/**
* Module thread, should not return.
*/
static void pathfollowerTask(__attribute__((unused)) void *parameters)
{
SystemSettingsData systemSettings;
FlightStatusData flightStatus;
portTickType lastUpdateTime;
AirspeedStateConnectCallback(airspeedStateUpdatedCb);
FixedWingPathFollowerSettingsConnectCallback(SettingsUpdatedCb);
PathDesiredConnectCallback(SettingsUpdatedCb);
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
PathDesiredGet(&pathDesired);
// Main task loop
lastUpdateTime = xTaskGetTickCount();
while (1) {
// Conditions when this runs:
// 1. Must have FixedWing type airframe
// 2. Flight mode is PositionHold and PathDesired.Mode is Endpoint OR
// FlightMode is PathPlanner and PathDesired.Mode is Endpoint or Path
SystemSettingsGet(&systemSettings);
if ((systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWING) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGELEVON) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGVTAIL)) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
vTaskDelay(1000);
continue;
}
// Continue collecting data if not enough time
vTaskDelayUntil(&lastUpdateTime, fixedwingpathfollowerSettings.UpdatePeriod / portTICK_RATE_MS);
FlightStatusGet(&flightStatus);
PathStatusGet(&pathStatus);
uint8_t result;
// Check the combinations of flightmode and pathdesired mode
if (flightStatus.ControlChain.PathFollower == FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
if (flightStatus.ControlChain.PathPlanner == FLIGHTSTATUS_CONTROLCHAIN_FALSE) {
if (pathDesired.Mode == PATHDESIRED_MODE_FLYENDPOINT) {
updatePathVelocity();
result = updateFixedDesiredAttitude();
if (result) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
} else {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
}
} else {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
}
} else {
pathStatus.UID = pathDesired.UID;
pathStatus.Status = PATHSTATUS_STATUS_INPROGRESS;
switch (pathDesired.Mode) {
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_FLYVECTOR:
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
case PATHDESIRED_MODE_FLYCIRCLELEFT:
updatePathVelocity();
result = updateFixedDesiredAttitude();
if (result) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
} else {
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
}
break;
case PATHDESIRED_MODE_FIXEDATTITUDE:
updateFixedAttitude(pathDesired.ModeParameters);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
break;
case PATHDESIRED_MODE_DISARMALARM:
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
break;
default:
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
break;
}
}
} else {
// Be cleaner and get rid of global variables
northVelIntegral = 0.0f;
eastVelIntegral = 0.0f;
downVelIntegral = 0.0f;
courseIntegral = 0.0f;
speedIntegral = 0.0f;
powerIntegral = 0.0f;
}
PathStatusSet(&pathStatus);
}
}
/**
* Compute desired velocity from the current position and path
*
* Takes in @ref PositionState and compares it to @ref PathDesired
* and computes @ref VelocityDesired
*/
static void updatePathVelocity()
{
PositionStateData positionState;
PositionStateGet(&positionState);
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
// look ahead fixedwingpathfollowerSettings.CourseFeedForward seconds
float cur[3] = { positionState.North + (velocityState.North * fixedwingpathfollowerSettings.CourseFeedForward),
positionState.East + (velocityState.East * fixedwingpathfollowerSettings.CourseFeedForward),
positionState.Down + (velocityState.Down * fixedwingpathfollowerSettings.CourseFeedForward) };
struct path_status progress;
path_progress(cast_struct_to_array(pathDesired.Start, pathDesired.Start.North),
cast_struct_to_array(pathDesired.End, pathDesired.End.North),
cur, &progress, pathDesired.Mode);
float groundspeed;
float altitudeSetpoint;
switch (pathDesired.Mode) {
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
case PATHDESIRED_MODE_DRIVECIRCLERIGHT:
case PATHDESIRED_MODE_FLYCIRCLELEFT:
case PATHDESIRED_MODE_DRIVECIRCLELEFT:
groundspeed = pathDesired.EndingVelocity;
altitudeSetpoint = pathDesired.End.Down;
break;
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_DRIVEENDPOINT:
case PATHDESIRED_MODE_FLYVECTOR:
case PATHDESIRED_MODE_DRIVEVECTOR:
default:
groundspeed = pathDesired.StartingVelocity + (pathDesired.EndingVelocity - pathDesired.StartingVelocity) *
boundf(progress.fractional_progress, 0.0f, 1.0f);
altitudeSetpoint = pathDesired.Start.Down + (pathDesired.End.Down - pathDesired.Start.Down) *
boundf(progress.fractional_progress, 0.0f, 1.0f);
break;
}
// make sure groundspeed is not zero
if (groundspeed < 1e-6f) {
groundspeed = 1e-6f;
}
// calculate velocity - can be zero if waypoints are too close
VelocityDesiredData velocityDesired;
velocityDesired.North = progress.path_direction[0];
velocityDesired.East = progress.path_direction[1];
float error_speed = progress.error * fixedwingpathfollowerSettings.HorizontalPosP;
// if a plane is crossing its desired flightpath facing the wrong way (away from flight direction)
// it would turn towards the flightpath to get on its desired course. This however would reverse the correction vector
// once it crosses the flightpath again, which would make it again turn towards the flightpath (but away from its desired heading)
// leading to an S-shape snake course the wrong way
// this only happens especially if HorizontalPosP is too high, as otherwise the angle between velocity desired and path_direction won't
// turn steep unless there is enough space complete the turn before crossing the flightpath
// in this case the plane effectively needs to be turned around
// indicators:
// difference between correction_direction and velocitystate >90 degrees and
// difference between path_direction and velocitystate >90 degrees ( 4th sector, facing away from everything )
// fix: ignore correction, steer in path direction until the situation has become better (condition doesn't apply anymore)
if ( // calculating angles < 90 degrees through dot products
((progress.path_direction[0] * velocityState.North + progress.path_direction[1] * velocityState.East) < 0.0f) &&
((progress.correction_direction[0] * velocityState.North + progress.correction_direction[1] * velocityState.East) < 0.0f)) {
error_speed = 0.0f;
}
// calculate correction - can also be zero if correction vector is 0 or no error present
velocityDesired.North += progress.correction_direction[0] * error_speed;
velocityDesired.East += progress.correction_direction[1] * error_speed;
// scale to correct length
float l = sqrtf(velocityDesired.North * velocityDesired.North + velocityDesired.East * velocityDesired.East);
if (l > 1e-9f) {
velocityDesired.North *= groundspeed / l;
velocityDesired.East *= groundspeed / l;
}
float downError = altitudeSetpoint - positionState.Down;
velocityDesired.Down = downError * fixedwingpathfollowerSettings.VerticalPosP;
// update pathstatus
pathStatus.error = progress.error;
pathStatus.fractional_progress = progress.fractional_progress;
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired attitude from a fixed preset
*
*/
static void updateFixedAttitude(float *attitude)
{
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
stabDesired.Roll = attitude[0];
stabDesired.Pitch = attitude[1];
stabDesired.Yaw = attitude[2];
stabDesired.Thrust = attitude[3];
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
}
/**
* Compute desired attitude from the desired velocity
*
* Takes in @ref NedState which has the acceleration in the
* NED frame as the feedback term and then compares the
* @ref VelocityState against the @ref VelocityDesired
*/
static uint8_t updateFixedDesiredAttitude()
{
uint8_t result = 1;
float dT = fixedwingpathfollowerSettings.UpdatePeriod / 1000.0f; // Convert from [ms] to [s]
VelocityDesiredData velocityDesired;
VelocityStateData velocityState;
StabilizationDesiredData stabDesired;
AttitudeStateData attitudeState;
StabilizationSettingsData stabSettings;
FixedWingPathFollowerStatusData fixedwingpathfollowerStatus;
AirspeedStateData airspeedState;
SystemSettingsData systemSettings;
float groundspeedProjection;
float indicatedAirspeedState;
float indicatedAirspeedDesired;
float airspeedError;
float pitchCommand;
float descentspeedDesired;
float descentspeedError;
float powerCommand;
float airspeedVector[2];
float fluidMovement[2];
float courseComponent[2];
float courseError;
float courseCommand;
FixedWingPathFollowerStatusGet(&fixedwingpathfollowerStatus);
VelocityStateGet(&velocityState);
StabilizationDesiredGet(&stabDesired);
VelocityDesiredGet(&velocityDesired);
AttitudeStateGet(&attitudeState);
StabilizationSettingsGet(&stabSettings);
AirspeedStateGet(&airspeedState);
SystemSettingsGet(&systemSettings);
/**
* Compute speed error and course
*/
// missing sensors for airspeed-direction we have to assume within
// reasonable error that measured airspeed is actually the airspeed
// component in forward pointing direction
// airspeedVector is normalized
airspeedVector[0] = cos_lookup_deg(attitudeState.Yaw);
airspeedVector[1] = sin_lookup_deg(attitudeState.Yaw);
// current ground speed projected in forward direction
groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
// note that airspeedStateBias is ( calibratedAirspeed - groundspeedProjection ) at the time of measurement,
// but thanks to accelerometers, groundspeedProjection reacts faster to changes in direction
// than airspeed and gps sensors alone
indicatedAirspeedState = groundspeedProjection + indicatedAirspeedStateBias;
// fluidMovement is a vector describing the aproximate movement vector of
// the surrounding fluid in 2d space (aka wind vector)
fluidMovement[0] = velocityState.North - (indicatedAirspeedState * airspeedVector[0]);
fluidMovement[1] = velocityState.East - (indicatedAirspeedState * airspeedVector[1]);
// calculate the movement vector we need to fly to reach velocityDesired -
// taking fluidMovement into account
courseComponent[0] = velocityDesired.North - fluidMovement[0];
courseComponent[1] = velocityDesired.East - fluidMovement[1];
indicatedAirspeedDesired = boundf(sqrtf(courseComponent[0] * courseComponent[0] + courseComponent[1] * courseComponent[1]),
fixedwingpathfollowerSettings.HorizontalVelMin,
fixedwingpathfollowerSettings.HorizontalVelMax);
// if we could fly at arbitrary speeds, we'd just have to move towards the
// courseComponent vector as previously calculated and we'd be fine
// unfortunately however we are bound by min and max air speed limits, so
// we need to recalculate the correct course to meet at least the
// velocityDesired vector direction at our current speed
// this overwrites courseComponent
bool valid = correctCourse(courseComponent, (float *)&velocityDesired.North, fluidMovement, indicatedAirspeedDesired);
// Error condition: wind speed too high, we can't go where we want anymore
fixedwingpathfollowerStatus.Errors.Wind = 0;
if ((!valid) &&
fixedwingpathfollowerSettings.Safetymargins.Wind > 0.5f) { // alarm switched on
fixedwingpathfollowerStatus.Errors.Wind = 1;
result = 0;
}
// Airspeed error
airspeedError = indicatedAirspeedDesired - indicatedAirspeedState;
// Vertical speed error
descentspeedDesired = boundf(
velocityDesired.Down,
-fixedwingpathfollowerSettings.VerticalVelMax,
fixedwingpathfollowerSettings.VerticalVelMax);
descentspeedError = descentspeedDesired - velocityState.Down;
// Error condition: plane too slow or too fast
fixedwingpathfollowerStatus.Errors.Highspeed = 0;
fixedwingpathfollowerStatus.Errors.Lowspeed = 0;
if (indicatedAirspeedState > systemSettings.AirSpeedMax * fixedwingpathfollowerSettings.Safetymargins.Overspeed) {
fixedwingpathfollowerStatus.Errors.Overspeed = 1;
result = 0;
}
if (indicatedAirspeedState > fixedwingpathfollowerSettings.HorizontalVelMax * fixedwingpathfollowerSettings.Safetymargins.Highspeed) {
fixedwingpathfollowerStatus.Errors.Highspeed = 1;
result = 0;
}
if (indicatedAirspeedState < fixedwingpathfollowerSettings.HorizontalVelMin * fixedwingpathfollowerSettings.Safetymargins.Lowspeed) {
fixedwingpathfollowerStatus.Errors.Lowspeed = 1;
result = 0;
}
if (indicatedAirspeedState < systemSettings.AirSpeedMin * fixedwingpathfollowerSettings.Safetymargins.Stallspeed) {
fixedwingpathfollowerStatus.Errors.Stallspeed = 1;
result = 0;
}
/**
* Compute desired thrust command
*/
// compute saturated integral error thrust response. Make integral leaky for better performance. Approximately 30s time constant.
if (fixedwingpathfollowerSettings.PowerPI.Ki > 0.0f) {
powerIntegral = boundf(powerIntegral + -descentspeedError * dT,
-fixedwingpathfollowerSettings.PowerPI.ILimit / fixedwingpathfollowerSettings.PowerPI.Ki,
fixedwingpathfollowerSettings.PowerPI.ILimit / fixedwingpathfollowerSettings.PowerPI.Ki
) * (1.0f - 1.0f / (1.0f + 30.0f / dT));
} else {
powerIntegral = 0.0f;
}
// Compute the cross feed from vertical speed to pitch, with saturation
float speedErrorToPowerCommandComponent = boundf(
(airspeedError / fixedwingpathfollowerSettings.HorizontalVelMin) * fixedwingpathfollowerSettings.AirspeedToPowerCrossFeed.Kp,
-fixedwingpathfollowerSettings.AirspeedToPowerCrossFeed.Max,
fixedwingpathfollowerSettings.AirspeedToPowerCrossFeed.Max
);
// Compute final thrust response
powerCommand = -descentspeedError * fixedwingpathfollowerSettings.PowerPI.Kp +
powerIntegral * fixedwingpathfollowerSettings.PowerPI.Ki +
speedErrorToPowerCommandComponent;
// Output internal state to telemetry
fixedwingpathfollowerStatus.Error.Power = descentspeedError;
fixedwingpathfollowerStatus.ErrorInt.Power = powerIntegral;
fixedwingpathfollowerStatus.Command.Power = powerCommand;
// set thrust
stabDesired.Thrust = boundf(fixedwingpathfollowerSettings.ThrustLimit.Neutral + powerCommand,
fixedwingpathfollowerSettings.ThrustLimit.Min,
fixedwingpathfollowerSettings.ThrustLimit.Max);
// Error condition: plane cannot hold altitude at current speed.
fixedwingpathfollowerStatus.Errors.Lowpower = 0;
if (fixedwingpathfollowerSettings.ThrustLimit.Neutral + powerCommand >= fixedwingpathfollowerSettings.ThrustLimit.Max && // thrust at maximum
velocityState.Down > 0.0f && // we ARE going down
descentspeedDesired < 0.0f && // we WANT to go up
airspeedError > 0.0f && // we are too slow already
fixedwingpathfollowerSettings.Safetymargins.Lowpower > 0.5f) { // alarm switched on
fixedwingpathfollowerStatus.Errors.Lowpower = 1;
result = 0;
}
// Error condition: plane keeps climbing despite minimum thrust (opposite of above)
fixedwingpathfollowerStatus.Errors.Highpower = 0;
if (fixedwingpathfollowerSettings.ThrustLimit.Neutral + powerCommand <= fixedwingpathfollowerSettings.ThrustLimit.Min && // thrust at minimum
velocityState.Down < 0.0f && // we ARE going up
descentspeedDesired > 0.0f && // we WANT to go down
airspeedError < 0.0f && // we are too fast already
fixedwingpathfollowerSettings.Safetymargins.Highpower > 0.5f) { // alarm switched on
fixedwingpathfollowerStatus.Errors.Highpower = 1;
result = 0;
}
/**
* Compute desired pitch command
*/
if (fixedwingpathfollowerSettings.SpeedPI.Ki > 0) {
// Integrate with saturation
airspeedErrorInt = boundf(airspeedErrorInt + airspeedError * dT,
-fixedwingpathfollowerSettings.SpeedPI.ILimit / fixedwingpathfollowerSettings.SpeedPI.Ki,
fixedwingpathfollowerSettings.SpeedPI.ILimit / fixedwingpathfollowerSettings.SpeedPI.Ki);
}
// Compute the cross feed from vertical speed to pitch, with saturation
float verticalSpeedToPitchCommandComponent = boundf(-descentspeedError * fixedwingpathfollowerSettings.VerticalToPitchCrossFeed.Kp,
-fixedwingpathfollowerSettings.VerticalToPitchCrossFeed.Max,
fixedwingpathfollowerSettings.VerticalToPitchCrossFeed.Max
);
// Compute the pitch command as err*Kp + errInt*Ki + X_feed.
pitchCommand = -(airspeedError * fixedwingpathfollowerSettings.SpeedPI.Kp
+ airspeedErrorInt * fixedwingpathfollowerSettings.SpeedPI.Ki
) + verticalSpeedToPitchCommandComponent;
fixedwingpathfollowerStatus.Error.Speed = airspeedError;
fixedwingpathfollowerStatus.ErrorInt.Speed = airspeedErrorInt;
fixedwingpathfollowerStatus.Command.Speed = pitchCommand;
stabDesired.Pitch = boundf(fixedwingpathfollowerSettings.PitchLimit.Neutral + pitchCommand,
fixedwingpathfollowerSettings.PitchLimit.Min,
fixedwingpathfollowerSettings.PitchLimit.Max);
// Error condition: high speed dive
fixedwingpathfollowerStatus.Errors.Pitchcontrol = 0;
if (fixedwingpathfollowerSettings.PitchLimit.Neutral + pitchCommand >= fixedwingpathfollowerSettings.PitchLimit.Max && // pitch demand is full up
velocityState.Down > 0.0f && // we ARE going down
descentspeedDesired < 0.0f && // we WANT to go up
airspeedError < 0.0f && // we are too fast already
fixedwingpathfollowerSettings.Safetymargins.Pitchcontrol > 0.5f) { // alarm switched on
fixedwingpathfollowerStatus.Errors.Pitchcontrol = 1;
result = 0;
}
/**
* Compute desired roll command
*/
courseError = RAD2DEG(atan2f(courseComponent[1], courseComponent[0])) - attitudeState.Yaw;
if (courseError < -180.0f) {
courseError += 360.0f;
}
if (courseError > 180.0f) {
courseError -= 360.0f;
}
// overlap calculation. Theres a dead zone behind the craft where the
// counter-yawing of some craft while rolling could render a desired right
// turn into a desired left turn. Making the turn direction based on
// current roll angle keeps the plane committed to a direction once chosen
if (courseError < -180.0f + (fixedwingpathfollowerSettings.ReverseCourseOverlap * 0.5f)
&& attitudeState.Roll > 0.0f) {
courseError += 360.0f;
}
if (courseError > 180.0f - (fixedwingpathfollowerSettings.ReverseCourseOverlap * 0.5f)
&& attitudeState.Roll < 0.0f) {
courseError -= 360.0f;
}
courseIntegral = boundf(courseIntegral + courseError * dT * fixedwingpathfollowerSettings.CoursePI.Ki,
-fixedwingpathfollowerSettings.CoursePI.ILimit,
fixedwingpathfollowerSettings.CoursePI.ILimit);
courseCommand = (courseError * fixedwingpathfollowerSettings.CoursePI.Kp +
courseIntegral);
fixedwingpathfollowerStatus.Error.Course = courseError;
fixedwingpathfollowerStatus.ErrorInt.Course = courseIntegral;
fixedwingpathfollowerStatus.Command.Course = courseCommand;
stabDesired.Roll = boundf(fixedwingpathfollowerSettings.RollLimit.Neutral +
courseCommand,
fixedwingpathfollowerSettings.RollLimit.Min,
fixedwingpathfollowerSettings.RollLimit.Max);
// TODO: find a check to determine loss of directional control. Likely needs some check of derivative
/**
* Compute desired yaw command
*/
// TODO implement raw control mode for yaw and base on Accels.Y
stabDesired.Yaw = 0.0f;
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
FixedWingPathFollowerStatusSet(&fixedwingpathfollowerStatus);
return result;
}
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
PathDesiredGet(&pathDesired);
}
static void airspeedStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
AirspeedStateData airspeedState;
VelocityStateData velocityState;
AirspeedStateGet(&airspeedState);
VelocityStateGet(&velocityState);
float airspeedVector[2];
float yaw;
AttitudeStateYawGet(&yaw);
airspeedVector[0] = cos_lookup_deg(yaw);
airspeedVector[1] = sin_lookup_deg(yaw);
// vector projection of groundspeed on airspeed vector to handle both forward and backwards movement
float groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
indicatedAirspeedStateBias = airspeedState.CalibratedAirspeed - groundspeedProjection;
// note - we do fly by Indicated Airspeed (== calibrated airspeed) however
// since airspeed is updated less often than groundspeed, we use sudden
// changes to groundspeed to offset the airspeed by the same measurement.
// This has a side effect that in the absence of any airspeed updates, the
// pathfollower will fly using groundspeed.
}
/**
* Function to calculate course vector C based on airspeed s, fluid movement F
* and desired movement vector V
* parameters in: V,F,s
* parameters out: C
* returns true if a valid solution could be found for V,F,s, false if not
* C will be set to a best effort attempt either way
*/
static bool correctCourse(float *C, float *V, float *F, float s)
{
// Approach:
// Let Sc be a circle around origin marking possible movement vectors
// of the craft with airspeed s (all possible options for C)
// Let Vl be a line through the origin along movement vector V where fr any
// point v on line Vl v = k * (V / |V|) = k' * V
// Let Wl be a line parallel to Vl where for any point v on line Vl exists
// a point w on WL with w = v - F
// Then any intersection between circle Sc and line Wl represents course
// vector which would result in a movement vector
// V' = k * ( V / |V|) = k' * V
// If there is no intersection point, S is insufficient to compensate
// for F and we can only try to fly in direction of V (thus having wind drift
// but at least making progress orthogonal to wind)
s = fabsf(s);
float f = sqrtf(F[0] * F[0] + F[1] * F[1]);
// normalize Cn=V/|V|, |V| must be >0
float v = sqrtf(V[0] * V[0] + V[1] * V[1]);
if (v < 1e-6f) {
// if |V|=0, we aren't supposed to move, turn into the wind
// (this allows hovering)
C[0] = -F[0];
C[1] = -F[1];
// if desired airspeed matches fluidmovement a hover is actually
// intended so return true
return fabsf(f - s) < 1e-3f;
}
float Vn[2] = { V[0] / v, V[1] / v };
// project F on V
float fp = F[0] * Vn[0] + F[1] * Vn[1];
// find component Fo of F that is orthogonal to V
// (which is exactly the distance between Vl and Wl)
float Fo[2] = { F[0] - (fp * Vn[0]), F[1] - (fp * Vn[1]) };
float fo2 = Fo[0] * Fo[0] + Fo[1] * Fo[1];
// find k where k * Vn = C - Fo
// |C|=s is the hypothenuse in any rectangular triangle formed by k * Vn and Fo
// so k^2 + fo^2 = s^2 (since |Vn|=1)
float k2 = s * s - fo2;
if (k2 <= -1e-3f) {
// there is no solution, we will be drifted off either way
// fallback: fly stupidly in direction of V and hope for the best
C[0] = V[0];
C[1] = V[1];
return false;
} else if (k2 <= 1e-3f) {
// there is exactly one solution: -Fo
C[0] = -Fo[0];
C[1] = -Fo[1];
return true;
}
// we have two possible solutions k positive and k negative as there are
// two intersection points between Wl and Sc
// which one is better? two criteria:
// 1. we MUST move in the right direction, if any k leads to -v its invalid
// 2. we should minimize the speed error
float k = sqrt(k2);
float C1[2] = { -k * Vn[0] - Fo[0], -k * Vn[1] - Fo[1] };
float C2[2] = { k *Vn[0] - Fo[0], k * Vn[1] - Fo[1] };
// project C+F on Vn to find signed resulting movement vector length
float vp1 = (C1[0] + F[0]) * Vn[0] + (C1[1] + F[1]) * Vn[1];
float vp2 = (C2[0] + F[0]) * Vn[0] + (C2[1] + F[1]) * Vn[1];
if (vp1 >= 0.0f && fabsf(v - vp1) < fabsf(v - vp2)) {
// in this case the angle between course and resulting movement vector
// is greater than 90 degrees - so we actually fly backwards
C[0] = C1[0];
C[1] = C1[1];
return true;
}
C[0] = C2[0];
C[1] = C2[1];
if (vp2 >= 0.0f) {
// in this case the angle between course and movement vector is less than
// 90 degrees, but we do move in the right direction
return true;
} else {
// in this case we actually get driven in the opposite direction of V
// with both solutions for C
// this might be reached in headwind stronger than maximum allowed
// airspeed.
return false;
}
}

View File

@ -0,0 +1,1239 @@
/**
******************************************************************************
*
* @file pathfollower.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief This module compared @ref PositionActuatl to @ref ActiveWaypoint
* and sets @ref AttitudeDesired. It only does this when the FlightMode field
* of @ref ManualControlCommand is Auto.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input object: PathDesired
* Input object: PositionState
* Input object: ManualControlCommand
* Output object: StabilizationDesired
*
* This module acts as "autopilot" - it controls the setpoints of stabilization
* based on current flight situation and desired flight path (PathDesired) as
* directed by flightmode selection or pathplanner
* This is a periodic delayed callback module
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include <openpilot.h>
#include <callbackinfo.h>
#include <math.h>
#include <pid.h>
#include <CoordinateConversions.h>
#include <pios_struct_helper.h>
#include <sin_lookup.h>
#include <pathdesired.h>
#include <paths.h>
#include <sanitycheck.h>
#include <fixedwingpathfollowersettings.h>
#include <fixedwingpathfollowerstatus.h>
#include <vtolpathfollowersettings.h>
#include <flightstatus.h>
#include <pathstatus.h>
#include <positionstate.h>
#include <velocitystate.h>
#include <velocitydesired.h>
#include <stabilizationdesired.h>
#include <airspeedstate.h>
#include <attitudestate.h>
#include <takeofflocation.h>
#include <poilocation.h>
#include <manualcontrolcommand.h>
#include <systemsettings.h>
#include <stabilizationbank.h>
// Private constants
#define CALLBACK_PRIORITY CALLBACK_PRIORITY_LOW
#define CBTASK_PRIORITY CALLBACK_TASK_FLIGHTCONTROL
#define PF_IDLE_UPDATE_RATE_MS 100
#define STACK_SIZE_BYTES 2048
#define DEADBAND_HIGH 0.10f
#define DEADBAND_LOW -0.10f
// Private types
struct Globals {
struct pid PIDposH[2];
struct pid PIDposV;
struct pid PIDvel[3];
struct pid PIDcourse;
struct pid PIDspeed;
struct pid PIDpower;
float poiRadius;
float vtolEmergencyFallback;
bool vtolEmergencyFallbackSwitch;
};
// Private variables
static DelayedCallbackInfo *pathFollowerCBInfo;
static uint32_t updatePeriod = PF_IDLE_UPDATE_RATE_MS;
static struct Globals global;
static PathStatusData pathStatus;
static PathDesiredData pathDesired;
static FixedWingPathFollowerSettingsData fixedWingPathFollowerSettings;
static VtolPathFollowerSettingsData vtolPathFollowerSettings;
// correct speed by measured airspeed
static float indicatedAirspeedStateBias = 0.0f;
// Private functions
static void pathFollowerTask(void);
static void resetGlobals();
static void SettingsUpdatedCb(UAVObjEvent *ev);
static uint8_t updateAutoPilotByFrameType();
static uint8_t updateAutoPilotFixedWing();
static uint8_t updateAutoPilotVtol();
static float updateTailInBearing();
static float updateCourseBearing();
static float updatePathBearing();
static float updatePOIBearing();
static void processPOI();
static void updatePathVelocity(float kFF, bool limited);
static uint8_t updateFixedDesiredAttitude();
static int8_t updateVtolDesiredAttitude(bool yaw_attitude, float yaw_direction);
static void updateFixedAttitude();
static void updateVtolDesiredAttitudeEmergencyFallback();
static void airspeedStateUpdatedCb(UAVObjEvent *ev);
static bool correctCourse(float *C, float *V, float *F, float s);
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t PathFollowerStart()
{
// Start main task
PathStatusGet(&pathStatus);
SettingsUpdatedCb(NULL);
PIOS_CALLBACKSCHEDULER_Dispatch(pathFollowerCBInfo);
return 0;
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t PathFollowerInitialize()
{
// initialize objects
FixedWingPathFollowerSettingsInitialize();
FixedWingPathFollowerStatusInitialize();
VtolPathFollowerSettingsInitialize();
FlightStatusInitialize();
PathStatusInitialize();
PathDesiredInitialize();
PositionStateInitialize();
VelocityStateInitialize();
VelocityDesiredInitialize();
StabilizationDesiredInitialize();
AirspeedStateInitialize();
AttitudeStateInitialize();
TakeOffLocationInitialize();
PoiLocationInitialize();
ManualControlCommandInitialize();
SystemSettingsInitialize();
StabilizationBankInitialize();
// reset integrals
resetGlobals();
// Create object queue
pathFollowerCBInfo = PIOS_CALLBACKSCHEDULER_Create(&pathFollowerTask, CALLBACK_PRIORITY, CBTASK_PRIORITY, CALLBACKINFO_RUNNING_PATHFOLLOWER, STACK_SIZE_BYTES);
FixedWingPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
VtolPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
PathDesiredConnectCallback(SettingsUpdatedCb);
AirspeedStateConnectCallback(airspeedStateUpdatedCb);
return 0;
}
MODULE_INITCALL(PathFollowerInitialize, PathFollowerStart);
/**
* Module thread, should not return.
*/
static void pathFollowerTask(void)
{
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
if (flightStatus.ControlChain.PathFollower != FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
resetGlobals();
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_UNINITIALISED);
PIOS_CALLBACKSCHEDULER_Schedule(pathFollowerCBInfo, PF_IDLE_UPDATE_RATE_MS, CALLBACK_UPDATEMODE_SOONER);
return;
}
if (flightStatus.FlightMode == FLIGHTSTATUS_FLIGHTMODE_POI) { // TODO Hack from vtolpathfollower, move into manualcontrol!
processPOI();
}
pathStatus.UID = pathDesired.UID;
pathStatus.Status = PATHSTATUS_STATUS_INPROGRESS;
switch (pathDesired.Mode) {
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_FLYVECTOR:
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
case PATHDESIRED_MODE_FLYCIRCLELEFT:
{
uint8_t result = updateAutoPilotByFrameType();
if (result) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
} else {
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
}
}
break;
case PATHDESIRED_MODE_FIXEDATTITUDE:
updateFixedAttitude(pathDesired.ModeParameters);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
break;
case PATHDESIRED_MODE_DISARMALARM:
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
break;
default:
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_ERROR);
break;
}
PathStatusSet(&pathStatus);
PIOS_CALLBACKSCHEDULER_Schedule(pathFollowerCBInfo, updatePeriod, CALLBACK_UPDATEMODE_SOONER);
}
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
FixedWingPathFollowerSettingsGet(&fixedWingPathFollowerSettings);
pid_configure(&global.PIDcourse, fixedWingPathFollowerSettings.CoursePI.Kp, fixedWingPathFollowerSettings.CoursePI.Ki, 0.0f, fixedWingPathFollowerSettings.CoursePI.ILimit);
pid_configure(&global.PIDspeed, fixedWingPathFollowerSettings.SpeedPI.Kp, fixedWingPathFollowerSettings.SpeedPI.Ki, 0.0f, fixedWingPathFollowerSettings.SpeedPI.ILimit);
pid_configure(&global.PIDpower, fixedWingPathFollowerSettings.PowerPI.Kp, fixedWingPathFollowerSettings.PowerPI.Ki, 0.0f, fixedWingPathFollowerSettings.PowerPI.ILimit);
VtolPathFollowerSettingsGet(&vtolPathFollowerSettings);
pid_configure(&global.PIDvel[0], vtolPathFollowerSettings.HorizontalVelPID.Kp, vtolPathFollowerSettings.HorizontalVelPID.Ki, vtolPathFollowerSettings.HorizontalVelPID.Kd, vtolPathFollowerSettings.HorizontalVelPID.ILimit);
pid_configure(&global.PIDvel[1], vtolPathFollowerSettings.HorizontalVelPID.Kp, vtolPathFollowerSettings.HorizontalVelPID.Ki, vtolPathFollowerSettings.HorizontalVelPID.Kd, vtolPathFollowerSettings.HorizontalVelPID.ILimit);
pid_configure(&global.PIDvel[2], vtolPathFollowerSettings.VerticalVelPID.Kp, vtolPathFollowerSettings.VerticalVelPID.Ki, vtolPathFollowerSettings.VerticalVelPID.Kd, vtolPathFollowerSettings.VerticalVelPID.ILimit);
PathDesiredGet(&pathDesired);
}
static void airspeedStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
AirspeedStateData airspeedState;
VelocityStateData velocityState;
AirspeedStateGet(&airspeedState);
VelocityStateGet(&velocityState);
float airspeedVector[2];
float yaw;
AttitudeStateYawGet(&yaw);
airspeedVector[0] = cos_lookup_deg(yaw);
airspeedVector[1] = sin_lookup_deg(yaw);
// vector projection of groundspeed on airspeed vector to handle both forward and backwards movement
float groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
indicatedAirspeedStateBias = airspeedState.CalibratedAirspeed - groundspeedProjection;
// note - we do fly by Indicated Airspeed (== calibrated airspeed) however
// since airspeed is updated less often than groundspeed, we use sudden
// changes to groundspeed to offset the airspeed by the same measurement.
// This has a side effect that in the absence of any airspeed updates, the
// pathfollower will fly using groundspeed.
}
/**
* reset integrals
*/
static void resetGlobals()
{
pid_zero(&global.PIDposH[0]);
pid_zero(&global.PIDposH[1]);
pid_zero(&global.PIDposV);
pid_zero(&global.PIDvel[0]);
pid_zero(&global.PIDvel[1]);
pid_zero(&global.PIDvel[2]);
pid_zero(&global.PIDcourse);
pid_zero(&global.PIDspeed);
pid_zero(&global.PIDpower);
global.poiRadius = 0.0f;
global.vtolEmergencyFallback = 0;
global.vtolEmergencyFallbackSwitch = false;
}
static uint8_t updateAutoPilotByFrameType()
{
FrameType_t frameType = GetCurrentFrameType();
if (frameType == FRAME_TYPE_CUSTOM || frameType == FRAME_TYPE_GROUND) {
switch (vtolPathFollowerSettings.TreatCustomCraftAs) {
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_FIXEDWING:
frameType = FRAME_TYPE_FIXED_WING;
break;
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_VTOL:
frameType = FRAME_TYPE_MULTIROTOR;
break;
}
}
switch (frameType) {
case FRAME_TYPE_MULTIROTOR:
case FRAME_TYPE_HELI:
updatePeriod = vtolPathFollowerSettings.UpdatePeriod;
return updateAutoPilotVtol();
break;
case FRAME_TYPE_FIXED_WING:
default:
updatePeriod = fixedWingPathFollowerSettings.UpdatePeriod;
return updateAutoPilotFixedWing();
break;
}
}
/**
* fixed wing autopilot:
* straight forward:
* 1. update path velocity for limited motion crafts
* 2. update attitude according to default fixed wing pathfollower algorithm
*/
static uint8_t updateAutoPilotFixedWing()
{
pid_configure(&global.PIDposH[0], fixedWingPathFollowerSettings.HorizontalPosP, 0.0f, 0.0f, 0.0f);
pid_configure(&global.PIDposH[1], fixedWingPathFollowerSettings.HorizontalPosP, 0.0f, 0.0f, 0.0f);
pid_configure(&global.PIDposV, fixedWingPathFollowerSettings.VerticalPosP, 0.0f, 0.0f, 0.0f);
updatePathVelocity(fixedWingPathFollowerSettings.CourseFeedForward, true);
return updateFixedDesiredAttitude();
}
/**
* vtol autopilot
* use hover capable algorithm with unlimeted movement calculation. if that fails (flyaway situation due to compass failure)
* fall back to emergency fallback autopilot to keep minimum amount of flight control
*/
static uint8_t updateAutoPilotVtol()
{
enum { RETURN_0 = 0, RETURN_1 = 1, RETURN_RESULT } returnmode;
enum { FOLLOWER_REGULAR, FOLLOWER_FALLBACK } followermode;
uint8_t result = 0;
// decide on behaviour based on settings and system state
if (global.vtolEmergencyFallbackSwitch) {
returnmode = RETURN_0;
followermode = FOLLOWER_FALLBACK;
} else {
if (vtolPathFollowerSettings.FlyawayEmergencyFallback == VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_ALWAYS) {
returnmode = RETURN_1;
followermode = FOLLOWER_FALLBACK;
} else {
returnmode = RETURN_RESULT;
followermode = FOLLOWER_REGULAR;
}
}
// vertical positon control PID loops works the same in both regular and fallback modes, setup according to settings
pid_configure(&global.PIDposV, vtolPathFollowerSettings.VerticalPosPI.Kp, vtolPathFollowerSettings.HorizontalPosPI.Ki, 0.0f, vtolPathFollowerSettings.HorizontalPosPI.ILimit);
switch (followermode) {
case FOLLOWER_REGULAR:
{
// horizontal position control PID loop works according to settings in regular mode, allowing integral terms
pid_configure(&global.PIDposH[0], vtolPathFollowerSettings.HorizontalPosPI.Kp, vtolPathFollowerSettings.HorizontalPosPI.Ki, 0.0f, vtolPathFollowerSettings.HorizontalPosPI.ILimit);
pid_configure(&global.PIDposH[1], vtolPathFollowerSettings.HorizontalPosPI.Kp, vtolPathFollowerSettings.HorizontalPosPI.Ki, 0.0f, vtolPathFollowerSettings.HorizontalPosPI.ILimit);
updatePathVelocity(vtolPathFollowerSettings.CourseFeedForward, false);
// yaw behaviour is configurable in vtolpathfollower, select yaw control algorithm
bool yaw_attitude = true;
float yaw = 0.0f;
switch (vtolPathFollowerSettings.YawControl) {
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_MANUAL:
yaw_attitude = false;
break;
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_TAILIN:
yaw = updateTailInBearing();
break;
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_MOVEMENTDIRECTION:
yaw = updateCourseBearing();
break;
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_PATHDIRECTION:
yaw = updatePathBearing();
break;
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_POI:
yaw = updatePOIBearing();
break;
}
result = updateVtolDesiredAttitude(yaw_attitude, yaw);
// switch to emergency follower if follower indicates problems
if (!result && (vtolPathFollowerSettings.FlyawayEmergencyFallback != VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_DISABLED)) {
global.vtolEmergencyFallbackSwitch = true;
}
}
break;
case FOLLOWER_FALLBACK:
{
// fallback loop only cares about intended horizontal flight direction, simplify control behaviour accordingly
pid_configure(&global.PIDposH[0], 1.0f, 0.0f, 0.0f, 0.0f);
pid_configure(&global.PIDposH[1], 1.0f, 0.0f, 0.0f, 0.0f);
updatePathVelocity(vtolPathFollowerSettings.CourseFeedForward, true);
// emergency follower has no return value
updateVtolDesiredAttitudeEmergencyFallback();
}
break;
}
switch (returnmode) {
case RETURN_RESULT:
return result;
default:
// returns either 0 or 1 according to enum definition above
return returnmode;
}
}
/**
* Compute bearing of current takeoff location
*/
static float updateTailInBearing()
{
PositionStateData p;
PositionStateGet(&p);
TakeOffLocationData t;
TakeOffLocationGet(&t);
// atan2f always returns in between + and - 180 degrees
return RAD2DEG(atan2f(p.East - t.East, p.North - t.North));
}
/**
* Compute bearing of current movement direction
*/
static float updateCourseBearing()
{
VelocityStateData v;
VelocityStateGet(&v);
// atan2f always returns in between + and - 180 degrees
return RAD2DEG(atan2f(v.East, v.North));
}
/**
* Compute bearing of current path direction
*/
static float updatePathBearing()
{
PositionStateData positionState;
PositionStateGet(&positionState);
float cur[3] = { positionState.North,
positionState.East,
positionState.Down };
struct path_status progress;
path_progress(&pathDesired, cur, &progress);
// atan2f always returns in between + and - 180 degrees
return RAD2DEG(atan2f(progress.path_vector[1], progress.path_vector[0]));
}
/**
* Compute bearing between current position and POI
*/
static float updatePOIBearing()
{
PoiLocationData poi;
PoiLocationGet(&poi);
PositionStateData positionState;
PositionStateGet(&positionState);
const float dT = updatePeriod / 1000.0f;
float dLoc[3];
float yaw = 0;
/*float elevation = 0;*/
dLoc[0] = positionState.North - poi.North;
dLoc[1] = positionState.East - poi.East;
dLoc[2] = positionState.Down - poi.Down;
if (dLoc[1] < 0) {
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) + 180.0f;
} else {
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) - 180.0f;
}
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
float pathAngle = 0;
if (manualControlData.Roll > DEADBAND_HIGH) {
pathAngle = -(manualControlData.Roll - DEADBAND_HIGH) * dT * 300.0f;
} else if (manualControlData.Roll < DEADBAND_LOW) {
pathAngle = -(manualControlData.Roll - DEADBAND_LOW) * dT * 300.0f;
}
return yaw + (pathAngle / 2.0f);
}
/**
* process POI control logic TODO: this should most likely go into manualcontrol!!!!
* TODO: the whole process of POI handling likely needs cleanup and rethinking, might be broken since manualcontrol was refactored currently
**/
static void processPOI()
{
const float dT = updatePeriod / 1000.0f;
PositionStateData positionState;
PositionStateGet(&positionState);
// TODO put commented out camera feature code back in place either
// permanently or optionally or remove it
// CameraDesiredData cameraDesired;
// CameraDesiredGet(&cameraDesired);
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
PoiLocationData poi;
PoiLocationGet(&poi);
float dLoc[3];
float yaw = 0;
// TODO camera feature
/*float elevation = 0;*/
dLoc[0] = positionState.North - poi.North;
dLoc[1] = positionState.East - poi.East;
dLoc[2] = positionState.Down - poi.Down;
if (dLoc[1] < 0) {
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) + 180.0f;
} else {
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) - 180.0f;
}
// distance
float distance = sqrtf(powf(dLoc[0], 2.0f) + powf(dLoc[1], 2.0f));
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
float changeRadius = 0;
// Move closer or further, radially
if (manualControlData.Pitch > DEADBAND_HIGH) {
changeRadius = (manualControlData.Pitch - DEADBAND_HIGH) * dT * 100.0f;
} else if (manualControlData.Pitch < DEADBAND_LOW) {
changeRadius = (manualControlData.Pitch - DEADBAND_LOW) * dT * 100.0f;
}
// move along circular path
float pathAngle = 0;
if (manualControlData.Roll > DEADBAND_HIGH) {
pathAngle = -(manualControlData.Roll - DEADBAND_HIGH) * dT * 300.0f;
} else if (manualControlData.Roll < DEADBAND_LOW) {
pathAngle = -(manualControlData.Roll - DEADBAND_LOW) * dT * 300.0f;
} else if (manualControlData.Roll >= DEADBAND_LOW && manualControlData.Roll <= DEADBAND_HIGH) {
// change radius only when not circling
global.poiRadius = distance + changeRadius;
}
// don't try to move any closer
if (global.poiRadius >= 3.0f || changeRadius > 0) {
if (fabsf(pathAngle) > 0.0f || fabsf(changeRadius) > 0.0f) {
pathDesired.End.North = poi.North + (global.poiRadius * cosf(DEG2RAD(pathAngle + yaw - 180.0f)));
pathDesired.End.East = poi.East + (global.poiRadius * sinf(DEG2RAD(pathAngle + yaw - 180.0f)));
pathDesired.StartingVelocity = 1.0f;
pathDesired.EndingVelocity = 0.0f;
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
PathDesiredSet(&pathDesired);
}
}
// not above
if (distance >= 3.0f) {
// TODO camera feature
// You can feed this into camerastabilization
/*elevation = RAD2DEG(atan2f(dLoc[2],distance));*/
// cameraDesired.Yaw=yaw;
// cameraDesired.PitchOrServo2=elevation;
// CameraDesiredSet(&cameraDesired);
}
}
/**
* Compute desired velocity from the current position and path
*/
static void updatePathVelocity(float kFF, bool limited)
{
PositionStateData positionState;
PositionStateGet(&positionState);
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
const float dT = updatePeriod / 1000.0f;
// look ahead kFF seconds
float cur[3] = { positionState.North + (velocityState.North * kFF),
positionState.East + (velocityState.East * kFF),
positionState.Down + (velocityState.Down * kFF) };
struct path_status progress;
path_progress(&pathDesired, cur, &progress);
// calculate velocity - can be zero if waypoints are too close
VelocityDesiredData velocityDesired;
velocityDesired.North = progress.path_vector[0];
velocityDesired.East = progress.path_vector[1];
velocityDesired.Down = progress.path_vector[2];
if (limited &&
// if a plane is crossing its desired flightpath facing the wrong way (away from flight direction)
// it would turn towards the flightpath to get on its desired course. This however would reverse the correction vector
// once it crosses the flightpath again, which would make it again turn towards the flightpath (but away from its desired heading)
// leading to an S-shape snake course the wrong way
// this only happens especially if HorizontalPosP is too high, as otherwise the angle between velocity desired and path_direction won't
// turn steep unless there is enough space complete the turn before crossing the flightpath
// in this case the plane effectively needs to be turned around
// indicators:
// difference between correction_direction and velocitystate >90 degrees and
// difference between path_direction and velocitystate >90 degrees ( 4th sector, facing away from everything )
// fix: ignore correction, steer in path direction until the situation has become better (condition doesn't apply anymore)
// calculating angles < 90 degrees through dot products
(vector_lengthf(progress.path_vector, 2) > 1e-6f) &&
((progress.path_vector[0] * velocityState.North + progress.path_vector[1] * velocityState.East) < 0.0f) &&
((progress.correction_vector[0] * velocityState.North + progress.correction_vector[1] * velocityState.East) < 0.0f)) {
;
} else {
// calculate correction
velocityDesired.North += pid_apply(&global.PIDposH[0], progress.correction_vector[0], dT);
velocityDesired.East += pid_apply(&global.PIDposH[1], progress.correction_vector[1], dT);
}
velocityDesired.Down += pid_apply(&global.PIDposV, progress.correction_vector[2], dT);
// update pathstatus
pathStatus.error = progress.error;
pathStatus.fractional_progress = progress.fractional_progress;
pathStatus.path_direction_north = progress.path_vector[0];
pathStatus.path_direction_east = progress.path_vector[1];
pathStatus.path_direction_down = progress.path_vector[2];
pathStatus.correction_direction_north = progress.correction_vector[0];
pathStatus.correction_direction_east = progress.correction_vector[1];
pathStatus.correction_direction_down = progress.correction_vector[2];
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired attitude from the desired velocity for fixed wing craft
*/
static uint8_t updateFixedDesiredAttitude()
{
uint8_t result = 1;
const float dT = updatePeriod / 1000.0f; // Convert from [ms] to [s]
VelocityDesiredData velocityDesired;
VelocityStateData velocityState;
StabilizationDesiredData stabDesired;
AttitudeStateData attitudeState;
FixedWingPathFollowerStatusData fixedWingPathFollowerStatus;
AirspeedStateData airspeedState;
SystemSettingsData systemSettings;
float groundspeedProjection;
float indicatedAirspeedState;
float indicatedAirspeedDesired;
float airspeedError;
float pitchCommand;
float descentspeedDesired;
float descentspeedError;
float powerCommand;
float airspeedVector[2];
float fluidMovement[2];
float courseComponent[2];
float courseError;
float courseCommand;
FixedWingPathFollowerStatusGet(&fixedWingPathFollowerStatus);
VelocityStateGet(&velocityState);
StabilizationDesiredGet(&stabDesired);
VelocityDesiredGet(&velocityDesired);
AttitudeStateGet(&attitudeState);
AirspeedStateGet(&airspeedState);
SystemSettingsGet(&systemSettings);
/**
* Compute speed error and course
*/
// missing sensors for airspeed-direction we have to assume within
// reasonable error that measured airspeed is actually the airspeed
// component in forward pointing direction
// airspeedVector is normalized
airspeedVector[0] = cos_lookup_deg(attitudeState.Yaw);
airspeedVector[1] = sin_lookup_deg(attitudeState.Yaw);
// current ground speed projected in forward direction
groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
// note that airspeedStateBias is ( calibratedAirspeed - groundspeedProjection ) at the time of measurement,
// but thanks to accelerometers, groundspeedProjection reacts faster to changes in direction
// than airspeed and gps sensors alone
indicatedAirspeedState = groundspeedProjection + indicatedAirspeedStateBias;
// fluidMovement is a vector describing the aproximate movement vector of
// the surrounding fluid in 2d space (aka wind vector)
fluidMovement[0] = velocityState.North - (indicatedAirspeedState * airspeedVector[0]);
fluidMovement[1] = velocityState.East - (indicatedAirspeedState * airspeedVector[1]);
// calculate the movement vector we need to fly to reach velocityDesired -
// taking fluidMovement into account
courseComponent[0] = velocityDesired.North - fluidMovement[0];
courseComponent[1] = velocityDesired.East - fluidMovement[1];
indicatedAirspeedDesired = boundf(sqrtf(courseComponent[0] * courseComponent[0] + courseComponent[1] * courseComponent[1]),
fixedWingPathFollowerSettings.HorizontalVelMin,
fixedWingPathFollowerSettings.HorizontalVelMax);
// if we could fly at arbitrary speeds, we'd just have to move towards the
// courseComponent vector as previously calculated and we'd be fine
// unfortunately however we are bound by min and max air speed limits, so
// we need to recalculate the correct course to meet at least the
// velocityDesired vector direction at our current speed
// this overwrites courseComponent
bool valid = correctCourse(courseComponent, (float *)&velocityDesired.North, fluidMovement, indicatedAirspeedDesired);
// Error condition: wind speed too high, we can't go where we want anymore
fixedWingPathFollowerStatus.Errors.Wind = 0;
if ((!valid) &&
fixedWingPathFollowerSettings.Safetymargins.Wind > 0.5f) { // alarm switched on
fixedWingPathFollowerStatus.Errors.Wind = 1;
result = 0;
}
// Airspeed error
airspeedError = indicatedAirspeedDesired - indicatedAirspeedState;
// Vertical speed error
descentspeedDesired = boundf(
velocityDesired.Down,
-fixedWingPathFollowerSettings.VerticalVelMax,
fixedWingPathFollowerSettings.VerticalVelMax);
descentspeedError = descentspeedDesired - velocityState.Down;
// Error condition: plane too slow or too fast
fixedWingPathFollowerStatus.Errors.Highspeed = 0;
fixedWingPathFollowerStatus.Errors.Lowspeed = 0;
if (indicatedAirspeedState > systemSettings.AirSpeedMax * fixedWingPathFollowerSettings.Safetymargins.Overspeed) {
fixedWingPathFollowerStatus.Errors.Overspeed = 1;
result = 0;
}
if (indicatedAirspeedState > fixedWingPathFollowerSettings.HorizontalVelMax * fixedWingPathFollowerSettings.Safetymargins.Highspeed) {
fixedWingPathFollowerStatus.Errors.Highspeed = 1;
result = 0;
}
if (indicatedAirspeedState < fixedWingPathFollowerSettings.HorizontalVelMin * fixedWingPathFollowerSettings.Safetymargins.Lowspeed) {
fixedWingPathFollowerStatus.Errors.Lowspeed = 1;
result = 0;
}
if (indicatedAirspeedState < systemSettings.AirSpeedMin * fixedWingPathFollowerSettings.Safetymargins.Stallspeed) {
fixedWingPathFollowerStatus.Errors.Stallspeed = 1;
result = 0;
}
/**
* Compute desired thrust command
*/
// Compute the cross feed from vertical speed to pitch, with saturation
float speedErrorToPowerCommandComponent = boundf(
(airspeedError / fixedWingPathFollowerSettings.HorizontalVelMin) * fixedWingPathFollowerSettings.AirspeedToPowerCrossFeed.Kp,
-fixedWingPathFollowerSettings.AirspeedToPowerCrossFeed.Max,
fixedWingPathFollowerSettings.AirspeedToPowerCrossFeed.Max
);
// Compute final thrust response
powerCommand = pid_apply(&global.PIDpower, -descentspeedError, dT) +
speedErrorToPowerCommandComponent;
// Output internal state to telemetry
fixedWingPathFollowerStatus.Error.Power = descentspeedError;
fixedWingPathFollowerStatus.ErrorInt.Power = global.PIDpower.iAccumulator;
fixedWingPathFollowerStatus.Command.Power = powerCommand;
// set thrust
stabDesired.Thrust = boundf(fixedWingPathFollowerSettings.ThrustLimit.Neutral + powerCommand,
fixedWingPathFollowerSettings.ThrustLimit.Min,
fixedWingPathFollowerSettings.ThrustLimit.Max);
// Error condition: plane cannot hold altitude at current speed.
fixedWingPathFollowerStatus.Errors.Lowpower = 0;
if (fixedWingPathFollowerSettings.ThrustLimit.Neutral + powerCommand >= fixedWingPathFollowerSettings.ThrustLimit.Max && // thrust at maximum
velocityState.Down > 0.0f && // we ARE going down
descentspeedDesired < 0.0f && // we WANT to go up
airspeedError > 0.0f && // we are too slow already
fixedWingPathFollowerSettings.Safetymargins.Lowpower > 0.5f) { // alarm switched on
fixedWingPathFollowerStatus.Errors.Lowpower = 1;
result = 0;
}
// Error condition: plane keeps climbing despite minimum thrust (opposite of above)
fixedWingPathFollowerStatus.Errors.Highpower = 0;
if (fixedWingPathFollowerSettings.ThrustLimit.Neutral + powerCommand <= fixedWingPathFollowerSettings.ThrustLimit.Min && // thrust at minimum
velocityState.Down < 0.0f && // we ARE going up
descentspeedDesired > 0.0f && // we WANT to go down
airspeedError < 0.0f && // we are too fast already
fixedWingPathFollowerSettings.Safetymargins.Highpower > 0.5f) { // alarm switched on
fixedWingPathFollowerStatus.Errors.Highpower = 1;
result = 0;
}
/**
* Compute desired pitch command
*/
// Compute the cross feed from vertical speed to pitch, with saturation
float verticalSpeedToPitchCommandComponent = boundf(-descentspeedError * fixedWingPathFollowerSettings.VerticalToPitchCrossFeed.Kp,
-fixedWingPathFollowerSettings.VerticalToPitchCrossFeed.Max,
fixedWingPathFollowerSettings.VerticalToPitchCrossFeed.Max
);
// Compute the pitch command as err*Kp + errInt*Ki + X_feed.
pitchCommand = -pid_apply(&global.PIDspeed, airspeedError, dT) + verticalSpeedToPitchCommandComponent;
fixedWingPathFollowerStatus.Error.Speed = airspeedError;
fixedWingPathFollowerStatus.ErrorInt.Speed = global.PIDspeed.iAccumulator;
fixedWingPathFollowerStatus.Command.Speed = pitchCommand;
stabDesired.Pitch = boundf(fixedWingPathFollowerSettings.PitchLimit.Neutral + pitchCommand,
fixedWingPathFollowerSettings.PitchLimit.Min,
fixedWingPathFollowerSettings.PitchLimit.Max);
// Error condition: high speed dive
fixedWingPathFollowerStatus.Errors.Pitchcontrol = 0;
if (fixedWingPathFollowerSettings.PitchLimit.Neutral + pitchCommand >= fixedWingPathFollowerSettings.PitchLimit.Max && // pitch demand is full up
velocityState.Down > 0.0f && // we ARE going down
descentspeedDesired < 0.0f && // we WANT to go up
airspeedError < 0.0f && // we are too fast already
fixedWingPathFollowerSettings.Safetymargins.Pitchcontrol > 0.5f) { // alarm switched on
fixedWingPathFollowerStatus.Errors.Pitchcontrol = 1;
result = 0;
}
/**
* Compute desired roll command
*/
courseError = RAD2DEG(atan2f(courseComponent[1], courseComponent[0])) - attitudeState.Yaw;
if (courseError < -180.0f) {
courseError += 360.0f;
}
if (courseError > 180.0f) {
courseError -= 360.0f;
}
// overlap calculation. Theres a dead zone behind the craft where the
// counter-yawing of some craft while rolling could render a desired right
// turn into a desired left turn. Making the turn direction based on
// current roll angle keeps the plane committed to a direction once chosen
if (courseError < -180.0f + (fixedWingPathFollowerSettings.ReverseCourseOverlap * 0.5f)
&& attitudeState.Roll > 0.0f) {
courseError += 360.0f;
}
if (courseError > 180.0f - (fixedWingPathFollowerSettings.ReverseCourseOverlap * 0.5f)
&& attitudeState.Roll < 0.0f) {
courseError -= 360.0f;
}
courseCommand = pid_apply(&global.PIDcourse, courseError, dT);
fixedWingPathFollowerStatus.Error.Course = courseError;
fixedWingPathFollowerStatus.ErrorInt.Course = global.PIDcourse.iAccumulator;
fixedWingPathFollowerStatus.Command.Course = courseCommand;
stabDesired.Roll = boundf(fixedWingPathFollowerSettings.RollLimit.Neutral +
courseCommand,
fixedWingPathFollowerSettings.RollLimit.Min,
fixedWingPathFollowerSettings.RollLimit.Max);
// TODO: find a check to determine loss of directional control. Likely needs some check of derivative
/**
* Compute desired yaw command
*/
// TODO implement raw control mode for yaw and base on Accels.Y
stabDesired.Yaw = 0.0f;
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
FixedWingPathFollowerStatusSet(&fixedWingPathFollowerStatus);
return result;
}
/**
* Function to calculate course vector C based on airspeed s, fluid movement F
* and desired movement vector V
* parameters in: V,F,s
* parameters out: C
* returns true if a valid solution could be found for V,F,s, false if not
* C will be set to a best effort attempt either way
*/
static bool correctCourse(float *C, float *V, float *F, float s)
{
// Approach:
// Let Sc be a circle around origin marking possible movement vectors
// of the craft with airspeed s (all possible options for C)
// Let Vl be a line through the origin along movement vector V where fr any
// point v on line Vl v = k * (V / |V|) = k' * V
// Let Wl be a line parallel to Vl where for any point v on line Vl exists
// a point w on WL with w = v - F
// Then any intersection between circle Sc and line Wl represents course
// vector which would result in a movement vector
// V' = k * ( V / |V|) = k' * V
// If there is no intersection point, S is insufficient to compensate
// for F and we can only try to fly in direction of V (thus having wind drift
// but at least making progress orthogonal to wind)
s = fabsf(s);
float f = vector_lengthf(F, 2);
// normalize Cn=V/|V|, |V| must be >0
float v = vector_lengthf(V, 2);
if (v < 1e-6f) {
// if |V|=0, we aren't supposed to move, turn into the wind
// (this allows hovering)
C[0] = -F[0];
C[1] = -F[1];
// if desired airspeed matches fluidmovement a hover is actually
// intended so return true
return fabsf(f - s) < 1e-3f;
}
float Vn[2] = { V[0] / v, V[1] / v };
// project F on V
float fp = F[0] * Vn[0] + F[1] * Vn[1];
// find component Fo of F that is orthogonal to V
// (which is exactly the distance between Vl and Wl)
float Fo[2] = { F[0] - (fp * Vn[0]), F[1] - (fp * Vn[1]) };
float fo2 = Fo[0] * Fo[0] + Fo[1] * Fo[1];
// find k where k * Vn = C - Fo
// |C|=s is the hypothenuse in any rectangular triangle formed by k * Vn and Fo
// so k^2 + fo^2 = s^2 (since |Vn|=1)
float k2 = s * s - fo2;
if (k2 <= -1e-3f) {
// there is no solution, we will be drifted off either way
// fallback: fly stupidly in direction of V and hope for the best
C[0] = V[0];
C[1] = V[1];
return false;
} else if (k2 <= 1e-3f) {
// there is exactly one solution: -Fo
C[0] = -Fo[0];
C[1] = -Fo[1];
return true;
}
// we have two possible solutions k positive and k negative as there are
// two intersection points between Wl and Sc
// which one is better? two criteria:
// 1. we MUST move in the right direction, if any k leads to -v its invalid
// 2. we should minimize the speed error
float k = sqrt(k2);
float C1[2] = { -k * Vn[0] - Fo[0], -k * Vn[1] - Fo[1] };
float C2[2] = { k *Vn[0] - Fo[0], k * Vn[1] - Fo[1] };
// project C+F on Vn to find signed resulting movement vector length
float vp1 = (C1[0] + F[0]) * Vn[0] + (C1[1] + F[1]) * Vn[1];
float vp2 = (C2[0] + F[0]) * Vn[0] + (C2[1] + F[1]) * Vn[1];
if (vp1 >= 0.0f && fabsf(v - vp1) < fabsf(v - vp2)) {
// in this case the angle between course and resulting movement vector
// is greater than 90 degrees - so we actually fly backwards
C[0] = C1[0];
C[1] = C1[1];
return true;
}
C[0] = C2[0];
C[1] = C2[1];
if (vp2 >= 0.0f) {
// in this case the angle between course and movement vector is less than
// 90 degrees, but we do move in the right direction
return true;
} else {
// in this case we actually get driven in the opposite direction of V
// with both solutions for C
// this might be reached in headwind stronger than maximum allowed
// airspeed.
return false;
}
}
/**
* Compute desired attitude from the desired velocity
*
* Takes in @ref NedState which has the acceleration in the
* NED frame as the feedback term and then compares the
* @ref VelocityState against the @ref VelocityDesired
*/
static int8_t updateVtolDesiredAttitude(bool yaw_attitude, float yaw_direction)
{
const float dT = updatePeriod / 1000.0f;
uint8_t result = 1;
VelocityDesiredData velocityDesired;
VelocityStateData velocityState;
StabilizationDesiredData stabDesired;
AttitudeStateData attitudeState;
StabilizationBankData stabSettings;
SystemSettingsData systemSettings;
float northError;
float northCommand;
float eastError;
float eastCommand;
float downError;
float downCommand;
SystemSettingsGet(&systemSettings);
VelocityStateGet(&velocityState);
VelocityDesiredGet(&velocityDesired);
StabilizationDesiredGet(&stabDesired);
VelocityDesiredGet(&velocityDesired);
AttitudeStateGet(&attitudeState);
StabilizationBankGet(&stabSettings);
// Testing code - refactor into manual control command
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
// scale velocity if it is above configured maximum
float velH = sqrtf(velocityDesired.North * velocityDesired.North + velocityDesired.East * velocityDesired.East);
if (velH > vtolPathFollowerSettings.HorizontalVelMax) {
velocityDesired.North *= vtolPathFollowerSettings.HorizontalVelMax / velH;
velocityDesired.East *= vtolPathFollowerSettings.HorizontalVelMax / velH;
}
if (fabsf(velocityDesired.Down) > vtolPathFollowerSettings.VerticalVelMax) {
velocityDesired.Down *= vtolPathFollowerSettings.VerticalVelMax / fabsf(velocityDesired.Down);
}
// Compute desired north command
northError = velocityDesired.North - velocityState.North;
northCommand = pid_apply(&global.PIDvel[0], northError, dT) + velocityDesired.North * vtolPathFollowerSettings.VelocityFeedforward;
// Compute desired east command
eastError = velocityDesired.East - velocityState.East;
eastCommand = pid_apply(&global.PIDvel[1], eastError, dT) + velocityDesired.East * vtolPathFollowerSettings.VelocityFeedforward;
// Compute desired down command
downError = velocityDesired.Down - velocityState.Down;
// Must flip this sign
downError = -downError;
downCommand = pid_apply(&global.PIDvel[2], downError, dT);
stabDesired.Thrust = boundf(downCommand + vtolPathFollowerSettings.ThrustLimits.Neutral, vtolPathFollowerSettings.ThrustLimits.Min, vtolPathFollowerSettings.ThrustLimits.Max);
// DEBUG HACK: allow user to skew compass on purpose to see if emergency failsafe kicks in
if (vtolPathFollowerSettings.FlyawayEmergencyFallback == VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_DEBUGTEST) {
attitudeState.Yaw += 120.0f;
if (attitudeState.Yaw > 180.0f) {
attitudeState.Yaw -= 360.0f;
}
}
if ( // emergency flyaway detection
( // integral already at its limit
vtolPathFollowerSettings.HorizontalVelPID.ILimit - fabsf(global.PIDvel[0].iAccumulator) < 1e-6f ||
vtolPathFollowerSettings.HorizontalVelPID.ILimit - fabsf(global.PIDvel[1].iAccumulator) < 1e-6f
) &&
// angle between desired and actual velocity >90 degrees (by dot product)
(velocityDesired.North * velocityState.North + velocityDesired.East * velocityState.East < 0.0f) &&
// quad is moving at significant speed (during flyaway it would keep speeding up)
squaref(velocityState.North) + squaref(velocityState.East) > 1.0f
) {
global.vtolEmergencyFallback += dT;
if (global.vtolEmergencyFallback >= vtolPathFollowerSettings.FlyawayEmergencyFallbackTriggerTime) {
// after emergency timeout, trigger alarm - everything else is handled by callers
// (switch to emergency algorithm, switch to emergency waypoint in pathplanner, alarms, ...)
result = 0;
}
} else {
global.vtolEmergencyFallback = 0.0f;
}
// Project the north and east command signals into the pitch and roll based on yaw. For this to behave well the
// craft should move similarly for 5 deg roll versus 5 deg pitch
stabDesired.Pitch = boundf(-northCommand * cosf(DEG2RAD(attitudeState.Yaw)) +
-eastCommand * sinf(DEG2RAD(attitudeState.Yaw)),
-vtolPathFollowerSettings.MaxRollPitch, vtolPathFollowerSettings.MaxRollPitch);
stabDesired.Roll = boundf(-northCommand * sinf(DEG2RAD(attitudeState.Yaw)) +
eastCommand * cosf(DEG2RAD(attitudeState.Yaw)),
-vtolPathFollowerSettings.MaxRollPitch, vtolPathFollowerSettings.MaxRollPitch);
if (vtolPathFollowerSettings.ThrustControl == VTOLPATHFOLLOWERSETTINGS_THRUSTCONTROL_MANUAL) {
// For now override thrust with manual control. Disable at your risk, quad goes to China.
ManualControlCommandData manualControl;
ManualControlCommandGet(&manualControl);
stabDesired.Thrust = manualControl.Thrust;
}
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
if (yaw_attitude) {
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.Yaw = yaw_direction;
} else {
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
stabDesired.Yaw = stabSettings.MaximumRate.Yaw * manualControlData.Yaw;
}
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_CRUISECONTROL;
StabilizationDesiredSet(&stabDesired);
return result;
}
/**
* Compute desired attitude for vtols - emergency fallback
*/
static void updateVtolDesiredAttitudeEmergencyFallback()
{
const float dT = updatePeriod / 1000.0f;
VelocityDesiredData velocityDesired;
VelocityStateData velocityState;
StabilizationDesiredData stabDesired;
float courseError;
float courseCommand;
float downError;
float downCommand;
VelocityStateGet(&velocityState);
VelocityDesiredGet(&velocityDesired);
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
courseError = RAD2DEG(atan2f(velocityDesired.East, velocityDesired.North) - atan2f(velocityState.East, velocityState.North));
if (courseError < -180.0f) {
courseError += 360.0f;
}
if (courseError > 180.0f) {
courseError -= 360.0f;
}
courseCommand = (courseError * vtolPathFollowerSettings.EmergencyFallbackYawRate.kP);
stabDesired.Yaw = boundf(courseCommand, -vtolPathFollowerSettings.EmergencyFallbackYawRate.Max, vtolPathFollowerSettings.EmergencyFallbackYawRate.Max);
// Compute desired down command
downError = velocityDesired.Down - velocityState.Down;
// Must flip this sign
downError = -downError;
downCommand = pid_apply(&global.PIDvel[2], downError, dT);
stabDesired.Thrust = boundf(downCommand + vtolPathFollowerSettings.ThrustLimits.Neutral, vtolPathFollowerSettings.ThrustLimits.Min, vtolPathFollowerSettings.ThrustLimits.Max);
stabDesired.Roll = vtolPathFollowerSettings.EmergencyFallbackAttitude.Roll;
stabDesired.Pitch = vtolPathFollowerSettings.EmergencyFallbackAttitude.Pitch;
if (vtolPathFollowerSettings.ThrustControl == VTOLPATHFOLLOWERSETTINGS_THRUSTCONTROL_MANUAL) {
// For now override thrust with manual control. Disable at your risk, quad goes to China.
ManualControlCommandData manualControl;
ManualControlCommandGet(&manualControl);
stabDesired.Thrust = manualControl.Thrust;
}
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_CRUISECONTROL;
StabilizationDesiredSet(&stabDesired);
}
/**
* Compute desired attitude from a fixed preset
*
*/
static void updateFixedAttitude(float *attitude)
{
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
stabDesired.Roll = attitude[0];
stabDesired.Pitch = attitude[1];
stabDesired.Yaw = attitude[2];
stabDesired.Thrust = attitude[3];
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
}

View File

@ -525,9 +525,8 @@ static uint8_t conditionLegRemaining()
float cur[3] = { positionState.North, positionState.East, positionState.Down };
struct path_status progress;
path_progress(cast_struct_to_array(pathDesired.Start, pathDesired.Start.North),
cast_struct_to_array(pathDesired.End, pathDesired.End.North),
cur, &progress, pathDesired.Mode);
path_progress(&pathDesired,
cur, &progress);
if (progress.fractional_progress >= 1.0f - pathAction.ConditionParameters[0]) {
return true;
}
@ -550,9 +549,8 @@ static uint8_t conditionBelowError()
float cur[3] = { positionState.North, positionState.East, positionState.Down };
struct path_status progress;
path_progress(cast_struct_to_array(pathDesired.Start, pathDesired.Start.North),
cast_struct_to_array(pathDesired.End, pathDesired.End.North),
cur, &progress, pathDesired.Mode);
path_progress(&pathDesired,
cur, &progress);
if (progress.error <= pathAction.ConditionParameters[0]) {
return true;
}

View File

@ -1,31 +0,0 @@
/**
******************************************************************************
*
* @file vtolpathfollower.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief Module to perform path following for VTOL.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef VTOLPATHFOLLOWER_H
#define VTOLPATHFOLLOWER_H
int32_t VtolPathFollowerInitialize(void);
#endif // VTOLPATHFOLLOWER_H

View File

@ -1,729 +0,0 @@
/**
******************************************************************************
*
* @file vtolpathfollower.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief This module compared @ref PositionState to @ref PathDesired
* and sets @ref Stabilization. It only does this when the FlightMode field
* of @ref FlightStatus is PathPlanner or RTH.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input object: FlightStatus
* Input object: PathDesired
* Input object: PositionState
* Output object: StabilizationDesired
*
* This module will periodically update the value of the @ref StabilizationDesired object based on
* @ref PathDesired and @PositionState when the Flight Mode selected in @FlightStatus is supported
* by this module. Otherwise another module (e.g. @ref ManualControlCommand) is expected to be
* writing to @ref StabilizationDesired.
*
* The module executes in its own thread in this example.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include <openpilot.h>
#include <pios_struct_helper.h>
#include "vtolpathfollower.h"
#include "accelstate.h"
#include "attitudestate.h"
#include "hwsettings.h"
#include "pathdesired.h" // object that will be updated by the module
#include "positionstate.h"
#include "manualcontrolcommand.h"
#include "flightstatus.h"
#include "pathstatus.h"
#include "gpsvelocitysensor.h"
#include "gpspositionsensor.h"
#include "homelocation.h"
#include "vtolpathfollowersettings.h"
#include "nedaccel.h"
#include "stabilizationdesired.h"
#include "stabilizationsettings.h"
#include "stabilizationbank.h"
#include "systemsettings.h"
#include "velocitydesired.h"
#include "velocitystate.h"
#include "taskinfo.h"
#include "paths.h"
#include "CoordinateConversions.h"
#include <sanitycheck.h>
#include "cameradesired.h"
#include "poilearnsettings.h"
#include "poilocation.h"
#include "accessorydesired.h"
// Private constants
#define MAX_QUEUE_SIZE 4
#define STACK_SIZE_BYTES 1548
#define TASK_PRIORITY (tskIDLE_PRIORITY + 2)
// Private types
// Private variables
static xTaskHandle pathfollowerTaskHandle;
static PathStatusData pathStatus;
static VtolPathFollowerSettingsData vtolpathfollowerSettings;
static float poiRadius;
// Private functions
static void vtolPathFollowerTask(void *parameters);
static void SettingsUpdatedCb(UAVObjEvent *ev);
static void updateNedAccel();
static void updatePOIBearing();
static void updatePathVelocity();
static void updateEndpointVelocity();
static void updateFixedAttitude(float *attitude);
static void updateVtolDesiredAttitude(bool yaw_attitude);
static bool vtolpathfollower_enabled;
static void accessoryUpdated(UAVObjEvent *ev);
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t VtolPathFollowerStart()
{
if (vtolpathfollower_enabled) {
// Start main task
xTaskCreate(vtolPathFollowerTask, "VtolPathFollower", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &pathfollowerTaskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_PATHFOLLOWER, pathfollowerTaskHandle);
}
return 0;
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t VtolPathFollowerInitialize()
{
HwSettingsOptionalModulesData optionalModules;
HwSettingsOptionalModulesGet(&optionalModules);
FrameType_t frameType = GetCurrentFrameType();
if ((optionalModules.VtolPathFollower == HWSETTINGS_OPTIONALMODULES_ENABLED) ||
(frameType == FRAME_TYPE_MULTIROTOR)) {
VtolPathFollowerSettingsInitialize();
NedAccelInitialize();
PathDesiredInitialize();
PathStatusInitialize();
VelocityDesiredInitialize();
CameraDesiredInitialize();
AccessoryDesiredInitialize();
PoiLearnSettingsInitialize();
PoiLocationInitialize();
vtolpathfollower_enabled = true;
} else {
vtolpathfollower_enabled = false;
}
return 0;
}
MODULE_INITCALL(VtolPathFollowerInitialize, VtolPathFollowerStart);
static float northVelIntegral = 0;
static float eastVelIntegral = 0;
static float downVelIntegral = 0;
static float northPosIntegral = 0;
static float eastPosIntegral = 0;
static float downPosIntegral = 0;
static float thrustOffset = 0;
/**
* Module thread, should not return.
*/
static void vtolPathFollowerTask(__attribute__((unused)) void *parameters)
{
SystemSettingsData systemSettings;
FlightStatusData flightStatus;
portTickType lastUpdateTime;
VtolPathFollowerSettingsConnectCallback(SettingsUpdatedCb);
AccessoryDesiredConnectCallback(accessoryUpdated);
VtolPathFollowerSettingsGet(&vtolpathfollowerSettings);
// Main task loop
lastUpdateTime = xTaskGetTickCount();
while (1) {
// Conditions when this runs:
// 1. Must have VTOL type airframe
// 2. Flight mode is PositionHold and PathDesired.Mode is Endpoint OR
// FlightMode is PathPlanner and PathDesired.Mode is Endpoint or Path
SystemSettingsGet(&systemSettings);
if ((systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_VTOL) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_QUADP)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTOCOAXX) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_QUADX)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXA) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXAX)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXACOAX) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTO)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTOV) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTOCOAXP)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_TRI) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXAH)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTOX)) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
vTaskDelay(1000);
continue;
}
// Continue collecting data if not enough time
vTaskDelayUntil(&lastUpdateTime, vtolpathfollowerSettings.UpdatePeriod / portTICK_RATE_MS);
// Convert the accels into the NED frame
updateNedAccel();
FlightStatusGet(&flightStatus);
PathStatusGet(&pathStatus);
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
// Check the combinations of flightmode and pathdesired mode
if (flightStatus.ControlChain.PathFollower == FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
if (flightStatus.ControlChain.PathPlanner == FLIGHTSTATUS_CONTROLCHAIN_FALSE) {
if (flightStatus.FlightMode == FLIGHTSTATUS_FLIGHTMODE_POI) {
if (pathDesired.Mode == PATHDESIRED_MODE_FLYENDPOINT) {
updateEndpointVelocity();
updateVtolDesiredAttitude(true);
updatePOIBearing();
} else {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
}
} else {
if (pathDesired.Mode == PATHDESIRED_MODE_FLYENDPOINT) {
updateEndpointVelocity();
updateVtolDesiredAttitude(false);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
} else {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
}
}
} else {
pathStatus.UID = pathDesired.UID;
pathStatus.Status = PATHSTATUS_STATUS_INPROGRESS;
switch (pathDesired.Mode) {
// TODO: Make updateVtolDesiredAttitude and velocity report success and update PATHSTATUS_STATUS accordingly
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_FLYVECTOR:
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
case PATHDESIRED_MODE_FLYCIRCLELEFT:
updatePathVelocity();
updateVtolDesiredAttitude(false);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
break;
case PATHDESIRED_MODE_FIXEDATTITUDE:
updateFixedAttitude(pathDesired.ModeParameters);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
break;
case PATHDESIRED_MODE_DISARMALARM:
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
break;
default:
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
break;
}
PathStatusSet(&pathStatus);
}
} else {
// Be cleaner and get rid of global variables
northVelIntegral = 0;
eastVelIntegral = 0;
downVelIntegral = 0;
northPosIntegral = 0;
eastPosIntegral = 0;
downPosIntegral = 0;
// Track thrust before engaging this mode. Cheap system ident
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
thrustOffset = stabDesired.Thrust;
}
AlarmsClear(SYSTEMALARMS_ALARM_GUIDANCE);
}
}
/**
* Compute bearing and elevation between current position and POI
*/
static void updatePOIBearing()
{
const float DEADBAND_HIGH = 0.10f;
const float DEADBAND_LOW = -0.10f;
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
PositionStateData positionState;
PositionStateGet(&positionState);
CameraDesiredData cameraDesired;
CameraDesiredGet(&cameraDesired);
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
PoiLocationData poi;
PoiLocationGet(&poi);
float dLoc[3];
float yaw = 0;
/*float elevation = 0;*/
dLoc[0] = positionState.North - poi.North;
dLoc[1] = positionState.East - poi.East;
dLoc[2] = positionState.Down - poi.Down;
if (dLoc[1] < 0) {
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) + 180.0f;
} else {
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) - 180.0f;
}
// distance
float distance = sqrtf(powf(dLoc[0], 2.0f) + powf(dLoc[1], 2.0f));
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
float changeRadius = 0;
// Move closer or further, radially
if (manualControlData.Pitch > DEADBAND_HIGH) {
changeRadius = (manualControlData.Pitch - DEADBAND_HIGH) * dT * 100.0f;
} else if (manualControlData.Pitch < DEADBAND_LOW) {
changeRadius = (manualControlData.Pitch - DEADBAND_LOW) * dT * 100.0f;
}
// move along circular path
float pathAngle = 0;
if (manualControlData.Roll > DEADBAND_HIGH) {
pathAngle = -(manualControlData.Roll - DEADBAND_HIGH) * dT * 300.0f;
} else if (manualControlData.Roll < DEADBAND_LOW) {
pathAngle = -(manualControlData.Roll - DEADBAND_LOW) * dT * 300.0f;
} else if (manualControlData.Roll >= DEADBAND_LOW && manualControlData.Roll <= DEADBAND_HIGH) {
// change radius only when not circling
poiRadius = distance + changeRadius;
}
// don't try to move any closer
if (poiRadius >= 3.0f || changeRadius > 0) {
if (fabsf(pathAngle) > 0.0f || fabsf(changeRadius) > 0.0f) {
pathDesired.End.North = poi.North + (poiRadius * cosf(DEG2RAD(pathAngle + yaw - 180.0f)));
pathDesired.End.East = poi.East + (poiRadius * sinf(DEG2RAD(pathAngle + yaw - 180.0f)));
pathDesired.StartingVelocity = 1.0f;
pathDesired.EndingVelocity = 0.0f;
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
PathDesiredSet(&pathDesired);
}
}
// not above
if (distance >= 3.0f) {
// You can feed this into camerastabilization
/*elevation = RAD2DEG(atan2f(dLoc[2],distance));*/
stabDesired.Yaw = yaw + (pathAngle / 2.0f);
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
// cameraDesired.Yaw=yaw;
// cameraDesired.PitchOrServo2=elevation;
CameraDesiredSet(&cameraDesired);
StabilizationDesiredSet(&stabDesired);
}
}
/**
* Compute desired velocity from the current position and path
*
* Takes in @ref PositionState and compares it to @ref PathDesired
* and computes @ref VelocityDesired
*/
static void updatePathVelocity()
{
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
float downCommand;
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
PositionStateData positionState;
PositionStateGet(&positionState);
float cur[3] =
{ positionState.North, positionState.East, positionState.Down };
struct path_status progress;
path_progress(
cast_struct_to_array(pathDesired.Start, pathDesired.Start.North),
cast_struct_to_array(pathDesired.End, pathDesired.End.North),
cur, &progress, pathDesired.Mode);
float groundspeed;
switch (pathDesired.Mode) {
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
case PATHDESIRED_MODE_DRIVECIRCLERIGHT:
case PATHDESIRED_MODE_FLYCIRCLELEFT:
case PATHDESIRED_MODE_DRIVECIRCLELEFT:
groundspeed = pathDesired.EndingVelocity;
break;
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_DRIVEENDPOINT:
groundspeed = pathDesired.EndingVelocity - pathDesired.EndingVelocity * boundf(progress.fractional_progress, 0, 1);
if (progress.fractional_progress > 1) {
groundspeed = 0;
}
break;
case PATHDESIRED_MODE_FLYVECTOR:
case PATHDESIRED_MODE_DRIVEVECTOR:
default:
groundspeed = pathDesired.StartingVelocity
+ (pathDesired.EndingVelocity - pathDesired.StartingVelocity) * boundf(progress.fractional_progress, 0, 1);
if (progress.fractional_progress > 1) {
groundspeed = 0;
}
break;
}
VelocityDesiredData velocityDesired;
velocityDesired.North = progress.path_direction[0] * groundspeed;
velocityDesired.East = progress.path_direction[1] * groundspeed;
float error_speed = progress.error * vtolpathfollowerSettings.HorizontalPosPI.Kp;
float correction_velocity[2] =
{ progress.correction_direction[0] * error_speed, progress.correction_direction[1] * error_speed };
float total_vel = sqrtf(powf(correction_velocity[0], 2) + powf(correction_velocity[1], 2));
float scale = 1;
if (total_vel > vtolpathfollowerSettings.HorizontalVelMax) {
scale = vtolpathfollowerSettings.HorizontalVelMax / total_vel;
}
velocityDesired.North += progress.correction_direction[0] * error_speed * scale;
velocityDesired.East += progress.correction_direction[1] * error_speed * scale;
float altitudeSetpoint = pathDesired.Start.Down + (pathDesired.End.Down - pathDesired.Start.Down) * boundf(progress.fractional_progress, 0, 1);
float downError = altitudeSetpoint - positionState.Down;
downPosIntegral = boundf(downPosIntegral + downError * dT * vtolpathfollowerSettings.VerticalPosPI.Ki,
-vtolpathfollowerSettings.VerticalPosPI.ILimit,
vtolpathfollowerSettings.VerticalPosPI.ILimit);
downCommand = (downError * vtolpathfollowerSettings.VerticalPosPI.Kp + downPosIntegral);
velocityDesired.Down = boundf(downCommand, -vtolpathfollowerSettings.VerticalVelMax, vtolpathfollowerSettings.VerticalVelMax);
// update pathstatus
pathStatus.error = progress.error;
pathStatus.fractional_progress = progress.fractional_progress;
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired velocity from the current position
*
* Takes in @ref PositionState and compares it to @ref PositionDesired
* and computes @ref VelocityDesired
*/
void updateEndpointVelocity()
{
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
PositionStateData positionState;
VelocityDesiredData velocityDesired;
PositionStateGet(&positionState);
VelocityDesiredGet(&velocityDesired);
float northError;
float eastError;
float downError;
float northCommand;
float eastCommand;
float downCommand;
// Compute desired north command
northError = pathDesired.End.North - positionState.North;
northPosIntegral = boundf(northPosIntegral + northError * dT * vtolpathfollowerSettings.HorizontalPosPI.Ki,
-vtolpathfollowerSettings.HorizontalPosPI.ILimit,
vtolpathfollowerSettings.HorizontalPosPI.ILimit);
northCommand = (northError * vtolpathfollowerSettings.HorizontalPosPI.Kp + northPosIntegral);
eastError = pathDesired.End.East - positionState.East;
eastPosIntegral = boundf(eastPosIntegral + eastError * dT * vtolpathfollowerSettings.HorizontalPosPI.Ki,
-vtolpathfollowerSettings.HorizontalPosPI.ILimit,
vtolpathfollowerSettings.HorizontalPosPI.ILimit);
eastCommand = (eastError * vtolpathfollowerSettings.HorizontalPosPI.Kp + eastPosIntegral);
// Limit the maximum velocity
float total_vel = sqrtf(powf(northCommand, 2) + powf(eastCommand, 2));
float scale = 1;
if (total_vel > vtolpathfollowerSettings.HorizontalVelMax) {
scale = vtolpathfollowerSettings.HorizontalVelMax / total_vel;
}
velocityDesired.North = northCommand * scale;
velocityDesired.East = eastCommand * scale;
downError = pathDesired.End.Down - positionState.Down;
downPosIntegral = boundf(downPosIntegral + downError * dT * vtolpathfollowerSettings.VerticalPosPI.Ki,
-vtolpathfollowerSettings.VerticalPosPI.ILimit,
vtolpathfollowerSettings.VerticalPosPI.ILimit);
downCommand = (downError * vtolpathfollowerSettings.VerticalPosPI.Kp + downPosIntegral);
velocityDesired.Down = boundf(downCommand, -vtolpathfollowerSettings.VerticalVelMax, vtolpathfollowerSettings.VerticalVelMax);
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired attitude from a fixed preset
*
*/
static void updateFixedAttitude(float *attitude)
{
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
stabDesired.Roll = attitude[0];
stabDesired.Pitch = attitude[1];
stabDesired.Yaw = attitude[2];
stabDesired.Thrust = attitude[3];
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
}
/**
* Compute desired attitude from the desired velocity
*
* Takes in @ref NedState which has the acceleration in the
* NED frame as the feedback term and then compares the
* @ref VelocityState against the @ref VelocityDesired
*/
static void updateVtolDesiredAttitude(bool yaw_attitude)
{
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
VelocityDesiredData velocityDesired;
VelocityStateData velocityState;
StabilizationDesiredData stabDesired;
AttitudeStateData attitudeState;
NedAccelData nedAccel;
StabilizationBankData stabSettings;
SystemSettingsData systemSettings;
float northError;
float northCommand;
float eastError;
float eastCommand;
float downError;
float downCommand;
SystemSettingsGet(&systemSettings);
VelocityStateGet(&velocityState);
VelocityDesiredGet(&velocityDesired);
StabilizationDesiredGet(&stabDesired);
VelocityDesiredGet(&velocityDesired);
AttitudeStateGet(&attitudeState);
StabilizationBankGet(&stabSettings);
NedAccelGet(&nedAccel);
float northVel = 0, eastVel = 0, downVel = 0;
switch (vtolpathfollowerSettings.VelocitySource) {
case VTOLPATHFOLLOWERSETTINGS_VELOCITYSOURCE_STATE_ESTIMATION:
northVel = velocityState.North;
eastVel = velocityState.East;
downVel = velocityState.Down;
break;
case VTOLPATHFOLLOWERSETTINGS_VELOCITYSOURCE_GPS_VELNED:
{
GPSVelocitySensorData gpsVelocity;
GPSVelocitySensorGet(&gpsVelocity);
northVel = gpsVelocity.North;
eastVel = gpsVelocity.East;
downVel = gpsVelocity.Down;
}
break;
case VTOLPATHFOLLOWERSETTINGS_VELOCITYSOURCE_GPS_GROUNDSPEED:
{
GPSPositionSensorData gpsPosition;
GPSPositionSensorGet(&gpsPosition);
northVel = gpsPosition.Groundspeed * cosf(DEG2RAD(gpsPosition.Heading));
eastVel = gpsPosition.Groundspeed * sinf(DEG2RAD(gpsPosition.Heading));
downVel = velocityState.Down;
}
break;
default:
PIOS_Assert(0);
break;
}
// Testing code - refactor into manual control command
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
// Compute desired north command
northError = velocityDesired.North - northVel;
northVelIntegral = boundf(northVelIntegral + northError * dT * vtolpathfollowerSettings.HorizontalVelPID.Ki,
-vtolpathfollowerSettings.HorizontalVelPID.ILimit,
vtolpathfollowerSettings.HorizontalVelPID.ILimit);
northCommand = (northError * vtolpathfollowerSettings.HorizontalVelPID.Kp + northVelIntegral
- nedAccel.North * vtolpathfollowerSettings.HorizontalVelPID.Kd
+ velocityDesired.North * vtolpathfollowerSettings.VelocityFeedforward);
// Compute desired east command
eastError = velocityDesired.East - eastVel;
eastVelIntegral = boundf(eastVelIntegral + eastError * dT * vtolpathfollowerSettings.HorizontalVelPID.Ki,
-vtolpathfollowerSettings.HorizontalVelPID.ILimit,
vtolpathfollowerSettings.HorizontalVelPID.ILimit);
eastCommand = (eastError * vtolpathfollowerSettings.HorizontalVelPID.Kp + eastVelIntegral
- nedAccel.East * vtolpathfollowerSettings.HorizontalVelPID.Kd
+ velocityDesired.East * vtolpathfollowerSettings.VelocityFeedforward);
// Compute desired down command
downError = velocityDesired.Down - downVel;
// Must flip this sign
downError = -downError;
downVelIntegral = boundf(downVelIntegral + downError * dT * vtolpathfollowerSettings.VerticalVelPID.Ki,
-vtolpathfollowerSettings.VerticalVelPID.ILimit,
vtolpathfollowerSettings.VerticalVelPID.ILimit);
downCommand = (downError * vtolpathfollowerSettings.VerticalVelPID.Kp + downVelIntegral
- nedAccel.Down * vtolpathfollowerSettings.VerticalVelPID.Kd);
stabDesired.Thrust = boundf(downCommand + thrustOffset, 0, 1);
// Project the north and east command signals into the pitch and roll based on yaw. For this to behave well the
// craft should move similarly for 5 deg roll versus 5 deg pitch
stabDesired.Pitch = boundf(-northCommand * cosf(DEG2RAD(attitudeState.Yaw)) +
-eastCommand * sinf(DEG2RAD(attitudeState.Yaw)),
-vtolpathfollowerSettings.MaxRollPitch, vtolpathfollowerSettings.MaxRollPitch);
stabDesired.Roll = boundf(-northCommand * sinf(DEG2RAD(attitudeState.Yaw)) +
eastCommand * cosf(DEG2RAD(attitudeState.Yaw)),
-vtolpathfollowerSettings.MaxRollPitch, vtolpathfollowerSettings.MaxRollPitch);
if (vtolpathfollowerSettings.ThrustControl == VTOLPATHFOLLOWERSETTINGS_THRUSTCONTROL_FALSE) {
// For now override thrust with manual control. Disable at your risk, quad goes to China.
ManualControlCommandData manualControl;
ManualControlCommandGet(&manualControl);
stabDesired.Thrust = manualControl.Thrust;
}
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
if (yaw_attitude) {
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
} else {
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
stabDesired.Yaw = stabSettings.MaximumRate.Yaw * manualControlData.Yaw;
}
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
}
/**
* Keep a running filtered version of the acceleration in the NED frame
*/
static void updateNedAccel()
{
float accel[3];
float q[4];
float Rbe[3][3];
float accel_ned[3];
// Collect downsampled attitude data
AccelStateData accelState;
AccelStateGet(&accelState);
accel[0] = accelState.x;
accel[1] = accelState.y;
accel[2] = accelState.z;
// rotate avg accels into earth frame and store it
AttitudeStateData attitudeState;
AttitudeStateGet(&attitudeState);
q[0] = attitudeState.q1;
q[1] = attitudeState.q2;
q[2] = attitudeState.q3;
q[3] = attitudeState.q4;
Quaternion2R(q, Rbe);
for (uint8_t i = 0; i < 3; i++) {
accel_ned[i] = 0;
for (uint8_t j = 0; j < 3; j++) {
accel_ned[i] += Rbe[j][i] * accel[j];
}
}
accel_ned[2] += 9.81f;
NedAccelData accelData;
NedAccelGet(&accelData);
accelData.North = accel_ned[0];
accelData.East = accel_ned[1];
accelData.Down = accel_ned[2];
NedAccelSet(&accelData);
}
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
VtolPathFollowerSettingsGet(&vtolpathfollowerSettings);
}
static void accessoryUpdated(UAVObjEvent *ev)
{
if (ev->obj != AccessoryDesiredHandle()) {
return;
}
AccessoryDesiredData accessory;
PoiLearnSettingsData poiLearn;
PoiLearnSettingsGet(&poiLearn);
if (poiLearn.Input != POILEARNSETTINGS_INPUT_NONE) {
if (AccessoryDesiredInstGet(poiLearn.Input - POILEARNSETTINGS_INPUT_ACCESSORY0, &accessory) == 0) {
if (accessory.AccessoryVal < -0.5f) {
PositionStateData positionState;
PositionStateGet(&positionState);
PoiLocationData poi;
PoiLocationGet(&poi);
poi.North = positionState.North;
poi.East = positionState.East;
poi.Down = positionState.Down;
PoiLocationSet(&poi);
}
}
}
}

View File

@ -35,7 +35,6 @@ USE_DSP_LIB ?= NO
#MODULES += Airspeed
#MODULES += AltitudeHold
#MODULES += Stabilization
MODULES += VtolPathFollower
MODULES += ManualControl
MODULES += Actuator
MODULES += GPS
@ -45,7 +44,7 @@ MODULES += Battery
MODULES += FirmwareIAP
#MODULES += Radio
MODULES += PathPlanner
MODULES += FixedWingPathFollower
MODULES += PathFollower
MODULES += Osd/osdoutout
MODULES += Logging
MODULES += Telemetry

View File

@ -35,7 +35,6 @@ MODULES += Altitude/revolution
MODULES += Airspeed
#MODULES += AltitudeHold # now integrated in Stabilization
MODULES += Stabilization
MODULES += VtolPathFollower
MODULES += ManualControl
MODULES += Receiver
MODULES += Actuator
@ -46,7 +45,7 @@ MODULES += Battery
MODULES += FirmwareIAP
MODULES += Radio
MODULES += PathPlanner
MODULES += FixedWingPathFollower
MODULES += PathFollower
MODULES += Osd/osdoutout
MODULES += Logging
MODULES += Telemetry

View File

@ -35,7 +35,6 @@ MODULES += Altitude/revolution
MODULES += Airspeed
#MODULES += AltitudeHold # now integrated in Stabilization
MODULES += Stabilization
MODULES += VtolPathFollower
MODULES += ManualControl
MODULES += Receiver
MODULES += Actuator
@ -45,7 +44,7 @@ MODULES += CameraStab
MODULES += Battery
MODULES += FirmwareIAP
MODULES += PathPlanner
MODULES += FixedWingPathFollower
MODULES += PathFollower
MODULES += Osd/osdoutout
MODULES += Logging
MODULES += Telemetry

View File

@ -33,8 +33,7 @@ DEBUG ?= YES
# List of modules to include
MODULES = ManualControl Stabilization GPS
MODULES += PathPlanner
MODULES += FixedWingPathFollower
MODULES += VtolPathFollower
MODULES += PathFollower
MODULES += CameraStab
MODULES += Telemetry
MODULES += Logging

View File

@ -3,7 +3,7 @@ include(openpilotgcs.pri)
TEMPLATE = subdirs
# Copy Qt runtime libraries into the build directory (to run or package)
equals(copydata, 1) {
equals(copyqt, 1) {
GCS_LIBRARY_PATH

View File

@ -83,16 +83,26 @@ macx {
GCS_DATA_BASENAME = Resources
GCS_DOC_PATH = $$GCS_DATA_PATH/doc
copydata = 1
copyqt = 1
} else {
!isEqual(GCS_SOURCE_TREE, $$GCS_BUILD_TREE):copydata = 1
win32 {
contains(TEMPLATE, vc.*)|contains(TEMPLATE_PREFIX, vc):vcproj = 1
GCS_APP_TARGET = openpilotgcs
copyqt = $$copydata
} else {
GCS_APP_WRAPPER = openpilotgcs
GCS_APP_TARGET = openpilotgcs.bin
GCS_QT_LIBRARY_PATH = $$GCS_BUILD_TREE/$$GCS_LIBRARY_BASENAME/qt5
GCS_QT_PLUGINS_PATH = $$GCS_BUILD_TREE/$$GCS_LIBRARY_BASENAME/qt5/plugins
GCS_QT_QML_PATH = $$GCS_BUILD_TREE/$$GCS_LIBRARY_BASENAME/qt5/qml
lib_dir_is_in_tools = $$[QT_INSTALL_LIBS]
lib_dir_is_in_tools ~= s,$$(TOOLS_DIR)*,TRUE
equals(lib_dir_is_in_tools, "TRUE") {
copyqt = 1
} else {
copyqt = 0
}
}
GCS_LIBRARY_PATH = $$GCS_BUILD_TREE/$$GCS_LIBRARY_BASENAME/openpilotgcs
GCS_PLUGIN_PATH = $$GCS_LIBRARY_PATH/plugins
@ -100,7 +110,6 @@ macx {
GCS_DATA_PATH = $$GCS_BUILD_TREE/share/openpilotgcs
GCS_DATA_BASENAME = share/openpilotgcs
GCS_DOC_PATH = $$GCS_BUILD_TREE/share/doc
!isEqual(GCS_SOURCE_TREE, $$GCS_BUILD_TREE):copydata = 1
}

View File

@ -8,6 +8,7 @@
<elementname>AltitudeHold</elementname>
<elementname>Stabilization0</elementname>
<elementname>Stabilization1</elementname>
<elementname>PathFollower</elementname>
<elementname>PathPlanner0</elementname>
<elementname>PathPlanner1</elementname>
<elementname>ManualControl</elementname>
@ -20,6 +21,7 @@
<elementname>AltitudeHold</elementname>
<elementname>Stabilization0</elementname>
<elementname>Stabilization1</elementname>
<elementname>PathFollower</elementname>
<elementname>PathPlanner0</elementname>
<elementname>PathPlanner1</elementname>
<elementname>ManualControl</elementname>
@ -36,6 +38,7 @@
<elementname>AltitudeHold</elementname>
<elementname>Stabilization0</elementname>
<elementname>Stabilization1</elementname>
<elementname>PathFollower</elementname>
<elementname>PathPlanner0</elementname>
<elementname>PathPlanner1</elementname>
<elementname>ManualControl</elementname>

View File

@ -15,9 +15,9 @@
<field name="ReverseCourseOverlap" units="deg" type="float" elements="1" defaultvalue="20.0"/>
<!-- how big the overlapping area behind the plane is, where, if the desired course lies behind, the current bank angle will determine if the plane goes left or right -->
<field name="HorizontalPosP" units="(m/s)/m" type="float" elements="1" defaultvalue="0.05"/>
<field name="HorizontalPosP" units="(m/s)/m" type="float" elements="1" defaultvalue="0.2"/>
<!-- proportional coefficient for correction vector in path vector field to get back on course - reduce for fast planes to prevent course oscillations -->
<field name="VerticalPosP" units="(m/s)/m" type="float" elements="1" defaultvalue="0.2"/>
<field name="VerticalPosP" units="(m/s)/m" type="float" elements="1" defaultvalue="0.4"/>
<!-- proportional coefficient for desired vertical speed in relation to altitude displacement-->
<!-- these coefficients control actual control outputs -->
@ -38,7 +38,7 @@
in relation to vertical speed error (absolute but including crossfeed) -->
<!-- output limits -->
<field name="RollLimit" units="deg" type="float" elements="3" elementnames="Min,Neutral,Max" defaultvalue="-35,0,35" />
<field name="RollLimit" units="deg" type="float" elements="3" elementnames="Min,Neutral,Max" defaultvalue="-45,0,45" />
<!-- maximum allowed bank angles in navigates flight -->
<field name="PitchLimit" units="deg" type="float" elements="3" elementnames="Min,Neutral,Max" defaultvalue="-10,5,20" />
<!-- maximum allowed pitch angles and setpoint for neutral pitch -->
@ -46,7 +46,7 @@
<!-- minimum and maximum allowed thrust and setpoint for cruise speed -->
<field name="Safetymargins" units="" type="float"
elementnames="Wind, Stallspeed, Lowspeed, Highspeed, Overspeed, Lowpower, Highpower, Pitchcontrol"
defaultvalue="90, 1.0, 0.5, 1.5, 1.0, 1, 1, 1" />
defaultvalue="90, 1.0, 0.5, 1.5, 1.0, 1, 0, 1" />
<!-- Wind: degrees of crabbing allowed
Speeds: percentage (1.0=100%) of the limit to be over/onder
Power & Control: flag to turn on/off 0.0 =off 1.0 = on -->

View File

@ -110,11 +110,10 @@
<field name="DisarmingSequenceTime" units="ms" type="uint16" elements="1" defaultvalue="1000"/>
<field name="DisableSanityChecks" units="" type="enum" elements="1" options="FALSE,TRUE" defaultvalue="FALSE"/>
<field name="ReturnToBaseAltitudeOffset" units="m" type="float" elements="1" defaultvalue="10"/>
<field name="LandingVelocity" units="m" type="float" elements="1" defaultvalue="0.4"/>
<field name="PositionHoldOffset" units="m" type="float" elementnames="Horizontal,Vertical" defaultvalue="10,2"/>
<!-- optimized for current vtolpathfollower,
for fixed wing pathfollower set to Horizontal=500,Vertical=5 -->
<field name="PositionHoldStartingVelocity" units="m/s" type="float" elements="1" defaultvalue="20"/>
<!-- currently ignored by vtolpathfollower -->
<access gcs="readwrite" flight="readwrite"/>
<telemetrygcs acked="true" updatemode="onchange" period="0"/>
<telemetryflight acked="true" updatemode="onchange" period="0"/>

View File

@ -22,7 +22,7 @@
<field name="USB_HIDPort" units="function" type="enum" elements="1" options="USBTelemetry,RCTransmitter,Disabled" defaultvalue="USBTelemetry"/>
<field name="USB_VCPPort" units="function" type="enum" elements="1" options="USBTelemetry,ComBridge,DebugConsole,Disabled" defaultvalue="Disabled"/>
<field name="OptionalModules" units="" type="enum" elementnames="CameraStab,GPS,ComUsbBridge,Fault,Altitude,Airspeed,TxPID,Autotune,VtolPathFollower,FixedWingPathFollower,Battery,Overo,MagBaro,OsdHk" options="Disabled,Enabled" defaultvalue="Disabled"/>
<field name="OptionalModules" units="" type="enum" elementnames="CameraStab,GPS,ComUsbBridge,Fault,Altitude,Airspeed,TxPID,Autotune,Battery,Overo,MagBaro,OsdHk" options="Disabled,Enabled" defaultvalue="Disabled"/>
<field name="ADCRouting" units="" type="enum" elementnames="adc0,adc1,adc2,adc3" options="Disabled,BatteryVoltage,BatteryCurrent,AnalogAirspeed,Generic" defaultvalue="Disabled"/>
<field name="DSMxBind" units="" type="uint8" elements="1" defaultvalue="0"/>
<field name="WS2811LED_Out" units="" type="enum" elements="1" options="ServoOut1,ServoOut2,ServoOut3,ServoOut4,ServoOut5,ServoOut6,FlexiPin3,FlexiPin4,Disabled" defaultvalue="Disabled" />

View File

@ -7,7 +7,12 @@
<field name="Status" units="" type="enum" elements="1" options="InProgress,Completed,Warning,Critical"/>
<field name="fractional_progress" units="" type="float" elements="1"/>
<field name="error" units="m" type="float" elements="1"/>
<field name="path_direction_north" units="m" type="float" elements="1"/>
<field name="path_direction_east" units="m" type="float" elements="1"/>
<field name="path_direction_down" units="m" type="float" elements="1"/>
<field name="correction_direction_north" units="m" type="float" elements="1"/>
<field name="correction_direction_east" units="m" type="float" elements="1"/>
<field name="correction_direction_down" units="m" type="float" elements="1"/>
<access gcs="readwrite" flight="readwrite"/>
<telemetrygcs acked="false" updatemode="manual" period="0"/>
<telemetryflight acked="false" updatemode="periodic" period="1000"/>

View File

@ -19,7 +19,6 @@
<elementname>Airspeed</elementname>
<elementname>MagBaro</elementname>
<!-- navigation -->
<elementname>PathFollower</elementname>
<elementname>FlightPlan</elementname>
<!-- telemetry -->
<elementname>TelemetryTx</elementname>
@ -52,7 +51,6 @@
<elementname>Airspeed</elementname>
<elementname>MagBaro</elementname>
<!-- navigation -->
<elementname>PathFollower</elementname>
<elementname>FlightPlan</elementname>
<!-- telemetry -->
<elementname>TelemetryTx</elementname>
@ -89,7 +87,6 @@
<elementname>Airspeed</elementname>
<elementname>MagBaro</elementname>
<!-- navigation -->
<elementname>PathFollower</elementname>
<elementname>FlightPlan</elementname>
<!-- telemetry -->
<elementname>TelemetryTx</elementname>

View File

@ -1,18 +1,24 @@
<xml>
<object name="VtolPathFollowerSettings" singleinstance="true" settings="true" category="Control">
<description>Settings for the @ref VtolPathFollowerModule</description>
<field name="GuidanceMode" units="" type="enum" elements="1" options="DUAL_LOOP,VELOCITY_CONTROL" defaultvalue="DUAL_LOOP"/>
<field name="HorizontalVelMax" units="m/s" type="uint16" elements="1" defaultvalue="2"/>
<field name="VerticalVelMax" units="m/s" type="uint16" elements="1" defaultvalue="1"/>
<field name="HorizontalPosPI" units="(m/s)/m" type="float" elementnames="Kp,Ki,ILimit" defaultvalue="0.25,0.02,1"/>
<field name="HorizontalVelPID" units="deg/(m/s)" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="8,0.5,0.002,4"/>
<field name="VerticalPosPI" units="" type="float" elementnames="Kp,Ki,ILimit" defaultvalue="0.4,0.02,1"/>
<field name="VerticalVelPID" units="" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="0.1,0.01,0,1"/>
<field name="TreatCustomCraftAs" units="switch" type="enum" elements="1" options="FixedWing,VTOL" defaultvalue="FixedWing"/>
<field name="HorizontalVelMax" units="m/s" type="float" elements="1" defaultvalue="5.0"/>
<field name="VerticalVelMax" units="m/s" type="float" elements="1" defaultvalue="1.0"/>
<field name="CourseFeedForward" units="s" type="float" elements="1" defaultvalue="1.0"/>
<field name="HorizontalPosPI" units="(m/s)/m" type="float" elementnames="Kp,Ki,ILimit" defaultvalue="0.25,0.0,0.0"/>
<field name="VerticalPosPI" units="" type="float" elements="1" elementnames="Kp,Ki,Ilimit" defaultvalue="0.4,0.0,0.0"/>
<field name="HorizontalVelPID" units="deg/(m/s)" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="8.0, 0.5, 0.0, 15"/>
<field name="VerticalVelPID" units="" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="0.1, 0.01, 0.0, 1.0"/>
<field name="ThrustLimits" units="" type="float" elementnames="Min,Neutral,Max" defaultvalue="0.2, 0.5, 0.9"/>
<field name="VelocityFeedforward" units="deg/(m/s)" type="float" elements="1" defaultvalue="2"/>
<field name="ThrustControl" units="" type="enum" elements="1" options="FALSE,TRUE" defaultvalue="FALSE"/>
<field name="VelocitySource" units="" type="enum" elements="1" options="STATE_ESTIMATION,GPS_VELNED,GPS_GROUNDSPEED" defaultvalue="STATE_ESTIMATION"/>
<field name="MaxRollPitch" units="deg" type="float" elements="1" defaultvalue="20"/>
<field name="UpdatePeriod" units="ms" type="int32" elements="1" defaultvalue="50"/>
<field name="ThrustControl" units="" type="enum" elements="1" options="manual,auto" defaultvalue="manual"/>
<field name="YawControl" units="" type="enum" elements="1" options="manual,tailin,movementdirection,pathdirection,poi" defaultvalue="manual"/>
<field name="FlyawayEmergencyFallback" units="switch" type="enum" elements="1" options="disabled,enabled,always,debugtest" defaultvalue="enabled"/>
<field name="FlyawayEmergencyFallbackTriggerTime" units="s" type="float" elements="1" defaultvalue="10.0"/>
<field name="EmergencyFallbackAttitude" units="deg" type="float" elementnames="Roll,Pitch" defaultvalue="0,-20.0"/>
<field name="EmergencyFallbackYawRate" units="(deg/s)/deg" type="float" elementnames="kP,Max" defaultvalue="2.0, 30.0"/>
<field name="MaxRollPitch" units="deg" type="float" elements="1" defaultvalue="25"/>
<field name="UpdatePeriod" units="ms" type="uint16" elements="1" defaultvalue="50"/>
<access gcs="readwrite" flight="readwrite"/>
<telemetrygcs acked="true" updatemode="onchange" period="0"/>
<telemetryflight acked="true" updatemode="onchange" period="0"/>