1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-03-11 03:29:17 +01:00

AHRS: Tidied up calibration sequence

git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@1831 ebee16cc-31ac-478f-84a7-5cbb03baadba
This commit is contained in:
les 2010-10-01 19:41:00 +00:00 committed by les
parent b2d56ca34c
commit 683aa2b480

View File

@ -1,858 +1,853 @@
/** /**
****************************************************************************** ******************************************************************************
* @addtogroup AHRS AHRS * @addtogroup AHRS AHRS
* @brief The AHRS Modules perform * @brief The AHRS Modules perform
* *
* @{ * @{
* @addtogroup AHRS_Main * @addtogroup AHRS_Main
* @brief Main function which does the hardware dependent stuff * @brief Main function which does the hardware dependent stuff
* @{ * @{
* *
* *
* @file ahrs.c * @file ahrs.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief INSGPS Test Program * @brief INSGPS Test Program
* @see The GNU Public License (GPL) Version 3 * @see The GNU Public License (GPL) Version 3
* *
*****************************************************************************/ *****************************************************************************/
/* /*
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or * the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version. * (at your option) any later version.
* *
* This program is distributed in the hope that it will be useful, but * This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details. * for more details.
* *
* You should have received a copy of the GNU General Public License along * You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc., * with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/ */
/* OpenPilot Includes */ /* OpenPilot Includes */
#include "ahrs.h" #include "ahrs.h"
#include "ahrs_adc.h" #include "ahrs_adc.h"
#include "ahrs_timer.h" #include "ahrs_timer.h"
#include "pios_opahrs_proto.h" #include "pios_opahrs_proto.h"
//#include "ahrs_fsm.h" /* lfsm_state */ //#include "ahrs_fsm.h" /* lfsm_state */
#include "insgps.h" #include "insgps.h"
#include "CoordinateConversions.h" #include "CoordinateConversions.h"
#include "ahrs_spi_comm.h" #include "ahrs_spi_comm.h"
// For debugging the raw sensors // For debugging the raw sensors
//#define DUMP_RAW //#define DUMP_RAW
//#define DUMP_FRIENDLY //#define DUMP_FRIENDLY
//#define DUMP_EKF //#define DUMP_EKF
#ifdef DUMP_EKF #ifdef DUMP_EKF
#define NUMX 13 // number of states, X is the state vector #define NUMX 13 // number of states, X is the state vector
#define NUMW 9 // number of plant noise inputs, w is disturbance noise vector #define NUMW 9 // number of plant noise inputs, w is disturbance noise vector
#define NUMV 10 // number of measurements, v is the measurement noise vector #define NUMV 10 // number of measurements, v is the measurement noise vector
#define NUMU 6 // number of deterministic inputs, U is the input vector #define NUMU 6 // number of deterministic inputs, U is the input vector
extern float F[NUMX][NUMX], G[NUMX][NUMW], H[NUMV][NUMX]; // linearized system matrices extern float F[NUMX][NUMX], G[NUMX][NUMW], H[NUMV][NUMX]; // linearized system matrices
extern float P[NUMX][NUMX], X[NUMX]; // covariance matrix and state vector extern float P[NUMX][NUMX], X[NUMX]; // covariance matrix and state vector
extern float Q[NUMW], R[NUMV]; // input noise and measurement noise variances extern float Q[NUMW], R[NUMV]; // input noise and measurement noise variances
extern float K[NUMX][NUMV]; // feedback gain matrix extern float K[NUMX][NUMV]; // feedback gain matrix
#endif #endif
volatile enum algorithms ahrs_algorithm; volatile enum algorithms ahrs_algorithm;
/** /**
* @addtogroup AHRS_Structures Local Structres * @addtogroup AHRS_Structures Local Structres
* @{ * @{
*/ */
//! Contains the data from the mag sensor chip //! Contains the data from the mag sensor chip
struct mag_sensor { struct mag_sensor {
uint8_t id[4]; uint8_t id[4];
uint8_t updated; uint8_t updated;
struct { struct {
int16_t axis[3]; int16_t axis[3];
} raw; } raw;
struct { struct {
float axis[3]; float axis[3];
} scaled; } scaled;
struct { struct {
float bias[3]; float bias[3];
float scale[3]; float scale[3];
float variance[3]; float variance[3];
} calibration; } calibration;
} mag_data; } mag_data;
//! Contains the data from the accelerometer //! Contains the data from the accelerometer
struct accel_sensor { struct accel_sensor {
struct { struct {
uint16_t x; uint16_t x;
uint16_t y; uint16_t y;
uint16_t z; uint16_t z;
} raw; } raw;
struct { struct {
float x; float x;
float y; float y;
float z; float z;
} filtered; } filtered;
struct { struct {
float bias[3]; float bias[3];
float scale[3]; float scale[3];
float variance[3]; float variance[3];
} calibration; } calibration;
} accel_data; } accel_data;
//! Contains the data from the gyro //! Contains the data from the gyro
struct gyro_sensor { struct gyro_sensor {
struct { struct {
uint16_t x; uint16_t x;
uint16_t y; uint16_t y;
uint16_t z; uint16_t z;
} raw; } raw;
struct { struct {
float x; float x;
float y; float y;
float z; float z;
} filtered; } filtered;
struct { struct {
float bias[3]; float bias[3];
float scale[3]; float scale[3];
float variance[3]; float variance[3];
} calibration; } calibration;
struct { struct {
uint16_t xy; uint16_t xy;
uint16_t z; uint16_t z;
} temp; } temp;
} gyro_data; } gyro_data;
//! Conains the current estimate of the attitude //! Conains the current estimate of the attitude
struct attitude_solution { struct attitude_solution {
struct { struct {
float q1; float q1;
float q2; float q2;
float q3; float q3;
float q4; float q4;
} quaternion; } quaternion;
} attitude_data; } attitude_data;
//! Contains data from the altitude sensor //! Contains data from the altitude sensor
struct altitude_sensor { struct altitude_sensor {
float altitude; float altitude;
bool updated; bool updated;
} altitude_data; } altitude_data;
//! Contains data from the GPS (via the SPI link) //! Contains data from the GPS (via the SPI link)
struct gps_sensor { struct gps_sensor {
float NED[3]; float NED[3];
float heading; float heading;
float groundspeed; float groundspeed;
float quality; float quality;
bool updated; bool updated;
} gps_data; } gps_data;
/** /**
* @} * @}
*/ */
/* Function Prototypes */ /* Function Prototypes */
void process_spi_request(void); void process_spi_request(void);
void downsample_data(void); void downsample_data(void);
void calibrate_sensors(void); void calibrate_sensors(void);
void reset_values(); void reset_values();
void send_calibration(void); void send_calibration(void);
void altitude_callback(AhrsObjHandle obj); void altitude_callback(AhrsObjHandle obj);
void calibration_callback(AhrsObjHandle obj); void calibration_callback(AhrsObjHandle obj);
void gps_callback(AhrsObjHandle obj); void gps_callback(AhrsObjHandle obj);
void settings_callback(AhrsObjHandle obj); void settings_callback(AhrsObjHandle obj);
volatile uint32_t last_counter_idle_start = 0; volatile uint32_t last_counter_idle_start = 0;
volatile uint32_t last_counter_idle_end = 0; volatile uint32_t last_counter_idle_end = 0;
volatile uint32_t idle_counts; volatile uint32_t idle_counts;
volatile uint32_t running_counts; volatile uint32_t running_counts;
uint32_t counter_val; uint32_t counter_val;
/** /**
* @addtogroup AHRS_Global_Data AHRS Global Data * @addtogroup AHRS_Global_Data AHRS Global Data
* @{ * @{
* Public data. Used by both EKF and the sender * Public data. Used by both EKF and the sender
*/ */
//! Filter coefficients used in decimation. Limited order so filter can't run between samples //! Filter coefficients used in decimation. Limited order so filter can't run between samples
int16_t fir_coeffs[50]; int16_t fir_coeffs[50];
//! Indicates the communications are requesting a calibration
uint8_t calibration_pending = FALSE; //! The oversampling rate, ekf is 2k / this
static uint8_t adc_oversampling = 17;
//! The oversampling rate, ekf is 2k / this
static uint8_t adc_oversampling = 17;
/**
* @}
/** */
* @}
*/ /**
* @brief AHRS Main function
/** */
* @brief AHRS Main function int main()
*/ {
int main() float gyro[3], accel[3], mag[3];
{ float vel[3] = { 0, 0, 0 };
float gyro[3], accel[3], mag[3]; gps_data.quality = -1;
float vel[3] = { 0, 0, 0 };
gps_data.quality = -1; ahrs_algorithm = INSGPS_Algo;
ahrs_algorithm = INSGPS_Algo; /* Brings up System using CMSIS functions, enables the LEDs. */
PIOS_SYS_Init();
/* Brings up System using CMSIS functions, enables the LEDs. */
PIOS_SYS_Init(); /* Delay system */
PIOS_DELAY_Init();
/* Delay system */
PIOS_DELAY_Init(); /* Communication system */
PIOS_COM_Init();
/* Communication system */
PIOS_COM_Init(); /* ADC system */
AHRS_ADC_Config(adc_oversampling);
/* ADC system */
AHRS_ADC_Config(adc_oversampling); /* Setup the Accelerometer FS (Full-Scale) GPIO */
PIOS_GPIO_Enable(0);
/* Setup the Accelerometer FS (Full-Scale) GPIO */ SET_ACCEL_2G;
PIOS_GPIO_Enable(0); #if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
SET_ACCEL_2G; /* Magnetic sensor system */
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C) PIOS_I2C_Init();
/* Magnetic sensor system */ PIOS_HMC5843_Init();
PIOS_I2C_Init(); // Get 3 ID bytes
PIOS_HMC5843_Init(); strcpy((char *)mag_data.id, "ZZZ");
// Get 3 ID bytes PIOS_HMC5843_ReadID(mag_data.id);
strcpy((char *)mag_data.id, "ZZZ"); #endif
PIOS_HMC5843_ReadID(mag_data.id);
#endif /* SPI link to master */
// PIOS_SPI_Init();
/* SPI link to master */
// PIOS_SPI_Init(); // lfsm_init();
reset_values();
// lfsm_init();
reset_values(); ahrs_state = AHRS_IDLE;
AhrsInitComms();
ahrs_state = AHRS_IDLE; ahrs_state = AHRS_IDLE;
AhrsInitComms(); while(!AhrsLinkReady()) {
ahrs_state = AHRS_IDLE; AhrsPoll();
while(!AhrsLinkReady()) { while(ahrs_state != AHRS_DATA_READY) ;
AhrsPoll(); ahrs_state = AHRS_PROCESSING;
while(ahrs_state != AHRS_DATA_READY) ; downsample_data();
ahrs_state = AHRS_PROCESSING; ahrs_state = AHRS_IDLE;
downsample_data(); if((total_conversion_blocks % 10) == 0)
ahrs_state = AHRS_IDLE; PIOS_LED_Toggle(LED1);
if((total_conversion_blocks % 10) == 0) }
PIOS_LED_Toggle(LED1); /* we didn't connect the callbacks before because we have to wait
} for all data to be up to date before doing anything*/
/* we didn't connect the callbacks before because we have to wait AHRSCalibrationConnectCallback(calibration_callback);
for all data to be up to date before doing anything*/ GPSPositionConnectCallback(gps_callback);
AHRSCalibrationConnectCallback(calibration_callback); BaroAltitudeConnectCallback(altitude_callback);
GPSPositionConnectCallback(gps_callback); AHRSSettingsConnectCallback(settings_callback);
BaroAltitudeConnectCallback(altitude_callback);
AHRSSettingsConnectCallback(settings_callback); calibration_callback(AHRSCalibrationHandle()); //force an update
calibration_callback(AHRSCalibrationHandle()); //force an update
/* Use simple averaging filter for now */
for (int i = 0; i < adc_oversampling; i++)
/* Use simple averaging filter for now */ fir_coeffs[i] = 1;
for (int i = 0; i < adc_oversampling; i++) fir_coeffs[adc_oversampling] = adc_oversampling;
fir_coeffs[i] = 1;
fir_coeffs[adc_oversampling] = adc_oversampling; INSGPSInit();
INSGPSInit(); #ifdef DUMP_RAW
int previous_conversion;
#ifdef DUMP_RAW while (1) {
int previous_conversion; AhrsPoll();
while (1) { int result;
AhrsPoll(); uint8_t framing[16] =
int result; { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
uint8_t framing[16] = 15 };
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, while (ahrs_state != AHRS_DATA_READY) ;
15 }; ahrs_state = AHRS_PROCESSING;
while (ahrs_state != AHRS_DATA_READY) ;
ahrs_state = AHRS_PROCESSING; if (total_conversion_blocks != previous_conversion + 1)
PIOS_LED_On(LED1); // not keeping up
if (total_conversion_blocks != previous_conversion + 1) else
PIOS_LED_On(LED1); // not keeping up PIOS_LED_Off(LED1);
else previous_conversion = total_conversion_blocks;
PIOS_LED_Off(LED1);
previous_conversion = total_conversion_blocks; downsample_data();
ahrs_state = AHRS_IDLE;;
downsample_data();
ahrs_state = AHRS_IDLE;; // Dump raw buffer
result = PIOS_COM_SendBuffer(PIOS_COM_AUX, &framing[0], 16); // framing header
// Dump raw buffer result += PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & total_conversion_blocks, sizeof(total_conversion_blocks)); // dump block number
result = PIOS_COM_SendBuffer(PIOS_COM_AUX, &framing[0], 16); // framing header result +=
result += PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & total_conversion_blocks, sizeof(total_conversion_blocks)); // dump block number PIOS_COM_SendBuffer(PIOS_COM_AUX,
result += (uint8_t *) & valid_data_buffer[0],
PIOS_COM_SendBuffer(PIOS_COM_AUX, adc_oversampling *
(uint8_t *) & valid_data_buffer[0], ADC_CONTINUOUS_CHANNELS *
adc_oversampling * sizeof(valid_data_buffer[0]));
ADC_CONTINUOUS_CHANNELS * if (result == 0)
sizeof(valid_data_buffer[0])); PIOS_LED_Off(LED1);
if (result == 0) else {
PIOS_LED_Off(LED1); PIOS_LED_On(LED1);
else { }
PIOS_LED_On(LED1); }
} #endif
}
#endif timer_start();
timer_start(); /******************* Main EKF loop ****************************/
while(1) {
/******************* Main EKF loop ****************************/ AhrsPoll();
while(1) { AhrsStatus2Data status;
AhrsPoll(); AhrsStatus2Get(&status);
AhrsStatus2Data status; status.CPULoad = ((float)running_counts /
AhrsStatus2Get(&status); (float)(idle_counts + running_counts)) * 100;
status.CPULoad = ((float)running_counts / status.IdleTimePerCyle = idle_counts / (TIMER_RATE / 10000);
(float)(idle_counts + running_counts)) * 100; status.RunningTimePerCyle = running_counts / (TIMER_RATE / 10000);
status.IdleTimePerCyle = idle_counts / (TIMER_RATE / 10000); status.DroppedUpdates = ekf_too_slow;
status.RunningTimePerCyle = running_counts / (TIMER_RATE / 10000); AhrsStatus2Set(&status);
status.DroppedUpdates = ekf_too_slow;
AhrsStatus2Set(&status); // Alive signal
if ((total_conversion_blocks % 100) == 0)
// Alive signal PIOS_LED_Toggle(LED1);
if ((total_conversion_blocks % 100) == 0)
PIOS_LED_Toggle(LED1); #if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
// Get magnetic readings
if (calibration_pending) { if (PIOS_HMC5843_NewDataAvailable()) {
calibrate_sensors(); PIOS_HMC5843_ReadMag(mag_data.raw.axis);
calibration_pending = FALSE; mag_data.scaled.axis[0] = (mag_data.raw.axis[0] * mag_data.calibration.scale[0]) + mag_data.calibration.bias[0];
} mag_data.scaled.axis[1] = (mag_data.raw.axis[1] * mag_data.calibration.scale[1]) + mag_data.calibration.bias[1];
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C) mag_data.scaled.axis[2] = (mag_data.raw.axis[2] * mag_data.calibration.scale[2]) + mag_data.calibration.bias[2];
// Get magnetic readings mag_data.updated = 1;
if (PIOS_HMC5843_NewDataAvailable()) { }
PIOS_HMC5843_ReadMag(mag_data.raw.axis);
mag_data.scaled.axis[0] = (mag_data.raw.axis[0] * mag_data.calibration.scale[0]) + mag_data.calibration.bias[0]; #endif
mag_data.scaled.axis[1] = (mag_data.raw.axis[1] * mag_data.calibration.scale[1]) + mag_data.calibration.bias[1]; // Delay for valid data
mag_data.scaled.axis[2] = (mag_data.raw.axis[2] * mag_data.calibration.scale[2]) + mag_data.calibration.bias[2];
mag_data.updated = 1; counter_val = timer_count();
} running_counts = counter_val - last_counter_idle_end;
last_counter_idle_start = counter_val;
#endif
// Delay for valid data while (ahrs_state != AHRS_DATA_READY) ;
counter_val = timer_count(); counter_val = timer_count();
running_counts = counter_val - last_counter_idle_end; idle_counts = counter_val - last_counter_idle_start;
last_counter_idle_start = counter_val; last_counter_idle_end = counter_val;
while (ahrs_state != AHRS_DATA_READY) ; ahrs_state = AHRS_PROCESSING;
counter_val = timer_count(); downsample_data();
idle_counts = counter_val - last_counter_idle_start;
last_counter_idle_end = counter_val; /******************** INS ALGORITHM **************************/
if (ahrs_algorithm == INSGPS_Algo) {
ahrs_state = AHRS_PROCESSING;
// format data for INS algo
downsample_data(); gyro[0] = gyro_data.filtered.x;
gyro[1] = gyro_data.filtered.y;
/******************** INS ALGORITHM **************************/ gyro[2] = gyro_data.filtered.z;
if (ahrs_algorithm == INSGPS_Algo) { accel[0] = accel_data.filtered.x,
accel[1] = accel_data.filtered.y,
// format data for INS algo accel[2] = accel_data.filtered.z,
gyro[0] = gyro_data.filtered.x; // Note: The magnetometer driver returns registers X,Y,Z from the chip which are
gyro[1] = gyro_data.filtered.y; // (left, backward, up). Remapping to (forward, right, down).
gyro[2] = gyro_data.filtered.z; mag[0] = -mag_data.scaled.axis[1];
accel[0] = accel_data.filtered.x, mag[1] = -mag_data.scaled.axis[0];
accel[1] = accel_data.filtered.y, mag[2] = -mag_data.scaled.axis[2];
accel[2] = accel_data.filtered.z,
// Note: The magnetometer driver returns registers X,Y,Z from the chip which are INSStatePrediction(gyro, accel, 1 / (float)EKF_RATE);
// (left, backward, up). Remapping to (forward, right, down). process_spi_request(); // get message out quickly
mag[0] = -mag_data.scaled.axis[1]; INSCovariancePrediction(1 / (float)EKF_RATE);
mag[1] = -mag_data.scaled.axis[0];
mag[2] = -mag_data.scaled.axis[2]; if (gps_data.updated && gps_data.quality == 1) {
// Compute velocity from Heading and groundspeed
INSStatePrediction(gyro, accel, 1 / (float)EKF_RATE); vel[0] =
process_spi_request(); // get message out quickly gps_data.groundspeed *
INSCovariancePrediction(1 / (float)EKF_RATE); cos(gps_data.heading * M_PI / 180);
vel[1] =
if (gps_data.updated && gps_data.quality == 1) { gps_data.groundspeed *
// Compute velocity from Heading and groundspeed sin(gps_data.heading * M_PI / 180);
vel[0] =
gps_data.groundspeed * INSSetPosVelVar(0.004);
cos(gps_data.heading * M_PI / 180); if (gps_data.updated) {
vel[1] = //TOOD: add check for altitude updates
gps_data.groundspeed * FullCorrection(mag, gps_data.NED,
sin(gps_data.heading * M_PI / 180); vel,
altitude_data.
INSSetPosVelVar(0.004); altitude);
if (gps_data.updated) { gps_data.updated = 0;
//TOOD: add check for altitude updates } else {
FullCorrection(mag, gps_data.NED, GpsBaroCorrection(gps_data.NED,
vel, vel,
altitude_data. altitude_data.
altitude); altitude);
gps_data.updated = 0; }
} else {
GpsBaroCorrection(gps_data.NED, gps_data.updated = false;
vel, mag_data.updated = 0;
altitude_data. } else if (gps_data.quality != -1
altitude); && mag_data.updated == 1) {
} float mag_var[3] = {mag_data.calibration.variance[1], mag_data.calibration.variance[0], mag_data.calibration.variance[2]};
INSSetMagVar(mag_var);
gps_data.updated = false; MagCorrection(mag); // only trust mags if outdoors
mag_data.updated = 0; mag_data.updated = 0;
} else if (gps_data.quality != -1 } else {
&& mag_data.updated == 1) { // Indoors, update with zero position and velocity and high covariance
float mag_var[3] = {mag_data.calibration.variance[1], mag_data.calibration.variance[0], mag_data.calibration.variance[2]}; INSSetPosVelVar(0.1);
INSSetMagVar(mag_var); vel[0] = 0;
MagCorrection(mag); // only trust mags if outdoors vel[1] = 0;
mag_data.updated = 0; vel[2] = 0;
} else {
// Indoors, update with zero position and velocity and high covariance if(mag_data.updated == 1) {
INSSetPosVelVar(0.1); float mag_var[3] = {10,10,10};
vel[0] = 0; INSSetMagVar(mag_var);
vel[1] = 0; MagVelBaroCorrection(mag,vel,altitude_data.altitude); // only trust mags if outdoors
vel[2] = 0; mag_data.updated = 0;
} else {
if(mag_data.updated == 1) { VelBaroCorrection(vel, altitude_data.altitude);
float mag_var[3] = {10,10,10}; }
INSSetMagVar(mag_var); }
MagVelBaroCorrection(mag,vel,altitude_data.altitude); // only trust mags if outdoors
mag_data.updated = 0; attitude_data.quaternion.q1 = Nav.q[0];
} else { attitude_data.quaternion.q2 = Nav.q[1];
VelBaroCorrection(vel, altitude_data.altitude); attitude_data.quaternion.q3 = Nav.q[2];
} attitude_data.quaternion.q4 = Nav.q[3];
} } else if (ahrs_algorithm == SIMPLE_Algo) {
float q[4];
attitude_data.quaternion.q1 = Nav.q[0]; float rpy[3];
attitude_data.quaternion.q2 = Nav.q[1]; /***************** SIMPLE ATTITUDE FROM NORTH AND ACCEL ************/
attitude_data.quaternion.q3 = Nav.q[2]; /* Very simple computation of the heading and attitude from accel. */
attitude_data.quaternion.q4 = Nav.q[3]; rpy[2] =
} else if (ahrs_algorithm == SIMPLE_Algo) { atan2((mag_data.raw.axis[0]),
float q[4]; (-1 * mag_data.raw.axis[1])) * 180 /
float rpy[3]; M_PI;
/***************** SIMPLE ATTITUDE FROM NORTH AND ACCEL ************/ rpy[1] =
/* Very simple computation of the heading and attitude from accel. */ atan2(accel_data.filtered.x,
rpy[2] = accel_data.filtered.z) * 180 / M_PI;
atan2((mag_data.raw.axis[0]), rpy[0] =
(-1 * mag_data.raw.axis[1])) * 180 / atan2(accel_data.filtered.y,
M_PI; accel_data.filtered.z) * 180 / M_PI;
rpy[1] =
atan2(accel_data.filtered.x, RPY2Quaternion(rpy, q);
accel_data.filtered.z) * 180 / M_PI; attitude_data.quaternion.q1 = q[0];
rpy[0] = attitude_data.quaternion.q2 = q[1];
atan2(accel_data.filtered.y, attitude_data.quaternion.q3 = q[2];
accel_data.filtered.z) * 180 / M_PI; attitude_data.quaternion.q4 = q[3];
process_spi_request();
RPY2Quaternion(rpy, q);
attitude_data.quaternion.q1 = q[0]; }
attitude_data.quaternion.q2 = q[1];
attitude_data.quaternion.q3 = q[2]; ahrs_state = AHRS_IDLE;
attitude_data.quaternion.q4 = q[3];
process_spi_request(); #ifdef DUMP_FRIENDLY
PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX, "b: %d\r\n",
} total_conversion_blocks);
PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX,"a: %d %d %d\r\n",
ahrs_state = AHRS_IDLE; (int16_t) (accel_data.filtered.x * 1000),
(int16_t) (accel_data.filtered.y * 1000),
#ifdef DUMP_FRIENDLY (int16_t) (accel_data.filtered.z * 1000));
PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX, "b: %d\r\n", PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX, "g: %d %d %d\r\n",
total_conversion_blocks); (int16_t) (gyro_data.filtered.x * 1000),
PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX,"a: %d %d %d\r\n", (int16_t) (gyro_data.filtered.y * 1000),
(int16_t) (accel_data.filtered.x * 1000), (int16_t) (gyro_data.filtered.z * 1000));
(int16_t) (accel_data.filtered.y * 1000), PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX,"m: %d %d %d\r\n",
(int16_t) (accel_data.filtered.z * 1000)); mag_data.raw.axis[0],
PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX, "g: %d %d %d\r\n", mag_data.raw.axis[1],
(int16_t) (gyro_data.filtered.x * 1000), mag_data.raw.axis[2]);
(int16_t) (gyro_data.filtered.y * 1000), PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX,
(int16_t) (gyro_data.filtered.z * 1000)); "q: %d %d %d %d\r\n",
PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX,"m: %d %d %d\r\n", (int16_t) (Nav.q[0] * 1000),
mag_data.raw.axis[0], (int16_t) (Nav.q[1] * 1000),
mag_data.raw.axis[1], (int16_t) (Nav.q[2] * 1000),
mag_data.raw.axis[2]); (int16_t) (Nav.q[3] * 1000));
PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX, #endif
"q: %d %d %d %d\r\n", #ifdef DUMP_EKF
(int16_t) (Nav.q[0] * 1000), uint8_t framing[16] =
(int16_t) (Nav.q[1] * 1000), { 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
(int16_t) (Nav.q[2] * 1000), 0 };
(int16_t) (Nav.q[3] * 1000)); extern float F[NUMX][NUMX], G[NUMX][NUMW], H[NUMV][NUMX]; // linearized system matrices
#endif extern float P[NUMX][NUMX], X[NUMX]; // covariance matrix and state vector
#ifdef DUMP_EKF extern float Q[NUMW], R[NUMV]; // input noise and measurement noise variances
uint8_t framing[16] = extern float K[NUMX][NUMV]; // feedback gain matrix
{ 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
0 }; // Dump raw buffer
extern float F[NUMX][NUMX], G[NUMX][NUMW], H[NUMV][NUMX]; // linearized system matrices int8_t result;
extern float P[NUMX][NUMX], X[NUMX]; // covariance matrix and state vector result = PIOS_COM_SendBuffer(PIOS_COM_AUX, &framing[0], 16); // framing header
extern float Q[NUMW], R[NUMV]; // input noise and measurement noise variances result += PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & total_conversion_blocks, sizeof(total_conversion_blocks)); // dump block number
extern float K[NUMX][NUMV]; // feedback gain matrix result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX,
// Dump raw buffer (uint8_t *) & mag_data,
int8_t result; sizeof(mag_data));
result = PIOS_COM_SendBuffer(PIOS_COM_AUX, &framing[0], 16); // framing header result +=
result += PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & total_conversion_blocks, sizeof(total_conversion_blocks)); // dump block number PIOS_COM_SendBuffer(PIOS_COM_AUX,
result += (uint8_t *) & gps_data,
PIOS_COM_SendBuffer(PIOS_COM_AUX, sizeof(gps_data));
(uint8_t *) & mag_data, result +=
sizeof(mag_data)); PIOS_COM_SendBuffer(PIOS_COM_AUX,
result += (uint8_t *) & accel_data,
PIOS_COM_SendBuffer(PIOS_COM_AUX, sizeof(accel_data));
(uint8_t *) & gps_data, result +=
sizeof(gps_data)); PIOS_COM_SendBuffer(PIOS_COM_AUX,
result += (uint8_t *) & gyro_data,
PIOS_COM_SendBuffer(PIOS_COM_AUX, sizeof(gyro_data));
(uint8_t *) & accel_data, result +=
sizeof(accel_data)); PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & Q,
result += sizeof(float) * NUMX * NUMX);
PIOS_COM_SendBuffer(PIOS_COM_AUX, result +=
(uint8_t *) & gyro_data, PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & K,
sizeof(gyro_data)); sizeof(float) * NUMX * NUMV);
result += result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & Q, PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & X,
sizeof(float) * NUMX * NUMX); sizeof(float) * NUMX * NUMX);
result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & K, if (result == 0)
sizeof(float) * NUMX * NUMV); PIOS_LED_Off(LED1);
result += else {
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & X, PIOS_LED_On(LED1);
sizeof(float) * NUMX * NUMX); }
#endif
if (result == 0)
PIOS_LED_Off(LED1); }
else {
PIOS_LED_On(LED1); return 0;
} }
#endif
/**
} * @brief Downsample the analog data
* @return none
return 0; *
} * Tried to make as much of the filtering fixed point when possible. Need to account
* for offset for each sample before the multiplication if filter not a boxcar. Could
/** * precompute fixed offset as sum[fir_coeffs[i]] * ACCEL_OFFSET. Puts data into global
* @brief Downsample the analog data * data structures @ref accel_data and @ref gyro_data.
* @return none *
* * The accel_data values are converted into a coordinate system where X is forwards along
* Tried to make as much of the filtering fixed point when possible. Need to account * the fuselage, Y is along right the wing, and Z is down.
* for offset for each sample before the multiplication if filter not a boxcar. Could */
* precompute fixed offset as sum[fir_coeffs[i]] * ACCEL_OFFSET. Puts data into global void downsample_data()
* data structures @ref accel_data and @ref gyro_data. {
* uint16_t i;
* The accel_data values are converted into a coordinate system where X is forwards along
* the fuselage, Y is along right the wing, and Z is down. // Get the Y data. Third byte in. Convert to m/s
*/ accel_data.filtered.y = 0;
void downsample_data() for (i = 0; i < adc_oversampling; i++)
{ accel_data.filtered.y += valid_data_buffer[0 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
uint16_t i; accel_data.filtered.y /= (float) fir_coeffs[adc_oversampling];
accel_data.filtered.y = (accel_data.filtered.y * accel_data.calibration.scale[1]) + accel_data.calibration.bias[1];
// Get the Y data. Third byte in. Convert to m/s
accel_data.filtered.y = 0; // Get the X data which projects forward/backwards. Fifth byte in. Convert to m/s
for (i = 0; i < adc_oversampling; i++) accel_data.filtered.x = 0;
accel_data.filtered.y += valid_data_buffer[0 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i]; for (i = 0; i < adc_oversampling; i++)
accel_data.filtered.y /= (float) fir_coeffs[adc_oversampling]; accel_data.filtered.x += valid_data_buffer[2 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
accel_data.filtered.y = (accel_data.filtered.y * accel_data.calibration.scale[1]) + accel_data.calibration.bias[1]; accel_data.filtered.x /= (float) fir_coeffs[adc_oversampling];
accel_data.filtered.x = (accel_data.filtered.x * accel_data.calibration.scale[0]) + accel_data.calibration.bias[0];
// Get the X data which projects forward/backwards. Fifth byte in. Convert to m/s
accel_data.filtered.x = 0; // Get the Z data. Third byte in. Convert to m/s
for (i = 0; i < adc_oversampling; i++) accel_data.filtered.z = 0;
accel_data.filtered.x += valid_data_buffer[2 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i]; for (i = 0; i < adc_oversampling; i++)
accel_data.filtered.x /= (float) fir_coeffs[adc_oversampling]; accel_data.filtered.z += valid_data_buffer[4 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
accel_data.filtered.x = (accel_data.filtered.x * accel_data.calibration.scale[0]) + accel_data.calibration.bias[0]; accel_data.filtered.z /= (float) fir_coeffs[adc_oversampling];
accel_data.filtered.z = (accel_data.filtered.z * accel_data.calibration.scale[2]) + accel_data.calibration.bias[2];
// Get the Z data. Third byte in. Convert to m/s
accel_data.filtered.z = 0; // Get the X gyro data. Seventh byte in. Convert to deg/s.
for (i = 0; i < adc_oversampling; i++) gyro_data.filtered.x = 0;
accel_data.filtered.z += valid_data_buffer[4 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i]; for (i = 0; i < adc_oversampling; i++)
accel_data.filtered.z /= (float) fir_coeffs[adc_oversampling]; gyro_data.filtered.x += valid_data_buffer[1 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
accel_data.filtered.z = (accel_data.filtered.z * accel_data.calibration.scale[2]) + accel_data.calibration.bias[2]; gyro_data.filtered.x /= fir_coeffs[adc_oversampling];
gyro_data.filtered.x = (gyro_data.filtered.x * gyro_data.calibration.scale[0]) + gyro_data.calibration.bias[0];
// Get the X gyro data. Seventh byte in. Convert to deg/s.
gyro_data.filtered.x = 0; // Get the Y gyro data. Second byte in. Convert to deg/s.
for (i = 0; i < adc_oversampling; i++) gyro_data.filtered.y = 0;
gyro_data.filtered.x += valid_data_buffer[1 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i]; for (i = 0; i < adc_oversampling; i++)
gyro_data.filtered.x /= fir_coeffs[adc_oversampling]; gyro_data.filtered.y += valid_data_buffer[3 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
gyro_data.filtered.x = (gyro_data.filtered.x * gyro_data.calibration.scale[0]) + gyro_data.calibration.bias[0]; gyro_data.filtered.y /= fir_coeffs[adc_oversampling];
gyro_data.filtered.y = (gyro_data.filtered.y * gyro_data.calibration.scale[1]) + gyro_data.calibration.bias[1];
// Get the Y gyro data. Second byte in. Convert to deg/s.
gyro_data.filtered.y = 0; // Get the Z gyro data. Fifth byte in. Convert to deg/s.
for (i = 0; i < adc_oversampling; i++) gyro_data.filtered.z = 0;
gyro_data.filtered.y += valid_data_buffer[3 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i]; for (i = 0; i < adc_oversampling; i++)
gyro_data.filtered.y /= fir_coeffs[adc_oversampling]; gyro_data.filtered.z += valid_data_buffer[5 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
gyro_data.filtered.y = (gyro_data.filtered.y * gyro_data.calibration.scale[1]) + gyro_data.calibration.bias[1]; gyro_data.filtered.z /= fir_coeffs[adc_oversampling];
gyro_data.filtered.z = (gyro_data.filtered.z * gyro_data.calibration.scale[2]) + gyro_data.calibration.bias[2];
// Get the Z gyro data. Fifth byte in. Convert to deg/s.
gyro_data.filtered.z = 0; AttitudeRawData raw;
for (i = 0; i < adc_oversampling; i++)
gyro_data.filtered.z += valid_data_buffer[5 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i]; raw.gyros[0] = valid_data_buffer[1];
gyro_data.filtered.z /= fir_coeffs[adc_oversampling]; raw.gyros[1] = valid_data_buffer[3];
gyro_data.filtered.z = (gyro_data.filtered.z * gyro_data.calibration.scale[2]) + gyro_data.calibration.bias[2]; raw.gyros[2] = valid_data_buffer[5];
AttitudeRawData raw; raw.gyros_filtered[0] = gyro_data.filtered.x;
raw.gyros_filtered[1] = gyro_data.filtered.y;
raw.gyros[0] = valid_data_buffer[1]; raw.gyros_filtered[2] = gyro_data.filtered.z;
raw.gyros[1] = valid_data_buffer[3];
raw.gyros[2] = valid_data_buffer[5]; raw.accels[0] = valid_data_buffer[2];
raw.accels[1] = valid_data_buffer[0];
raw.gyros_filtered[0] = gyro_data.filtered.x; raw.accels[2] = valid_data_buffer[4];
raw.gyros_filtered[1] = gyro_data.filtered.y;
raw.gyros_filtered[2] = gyro_data.filtered.z; raw.accels_filtered[0] = accel_data.filtered.x;
raw.accels_filtered[1] = accel_data.filtered.y;
raw.accels[0] = valid_data_buffer[2]; raw.accels_filtered[2] = accel_data.filtered.z;
raw.accels[1] = valid_data_buffer[0];
raw.accels[2] = valid_data_buffer[4]; raw.magnetometers[0] = mag_data.scaled.axis[0];
raw.magnetometers[1] = mag_data.scaled.axis[1];
raw.accels_filtered[0] = accel_data.filtered.x; raw.magnetometers[2] = mag_data.scaled.axis[2];
raw.accels_filtered[1] = accel_data.filtered.y;
raw.accels_filtered[2] = accel_data.filtered.z; AttitudeRawSet(&raw);
}
raw.magnetometers[0] = mag_data.scaled.axis[0];
raw.magnetometers[1] = mag_data.scaled.axis[1]; /**
raw.magnetometers[2] = mag_data.scaled.axis[2]; * @brief Assumes board is not moving computes biases and variances of sensors
* @returns None
AttitudeRawSet(&raw); *
} * All data is stored in global structures. This function should be called from OP when
* aircraft is in stable state and then the data stored to SD card.
/** *
* @brief Assumes board is not moving computes biases and variances of sensors * After this function the bias for each sensor will be the mean value. This doesn't make
* @returns None * sense for the z accel so make sure 6 point calibration is also run and those values set
* * after these read.
* All data is stored in global structures. This function should be called from OP when */
* aircraft is in stable state and then the data stored to SD card. #define NBIAS 100
* #define NVAR 500
* After this function the bias for each sensor will be the mean value. This doesn't make void calibrate_sensors()
* sense for the z accel so make sure 6 point calibration is also run and those values set {
* after these read. int i,j;
*/ float accel_bias[3] = {0, 0, 0};
#define NBIAS 100 float gyro_bias[3] = {0, 0, 0};
#define NVAR 500 float mag_bias[3] = {0, 0, 0};
void calibrate_sensors()
{
int i,j; for (i = 0, j = 0; i < NBIAS; i++) {
float accel_bias[3] = {0, 0, 0}; while (ahrs_state != AHRS_DATA_READY) ;
float gyro_bias[3] = {0, 0, 0}; ahrs_state = AHRS_PROCESSING;
float mag_bias[3] = {0, 0, 0}; downsample_data();
gyro_bias[0] += gyro_data.filtered.x / NBIAS;
gyro_bias[1] += gyro_data.filtered.y / NBIAS;
for (i = 0, j = 0; i < NBIAS; i++) { gyro_bias[2] += gyro_data.filtered.z / NBIAS;
while (ahrs_state != AHRS_DATA_READY) ; accel_bias[0] += accel_data.filtered.x / NBIAS;
ahrs_state = AHRS_PROCESSING; accel_bias[1] += accel_data.filtered.y / NBIAS;
downsample_data(); accel_bias[2] += accel_data.filtered.z / NBIAS;
gyro_bias[0] += gyro_data.filtered.x / NBIAS; ahrs_state = AHRS_IDLE;
gyro_bias[1] += gyro_data.filtered.y / NBIAS;
gyro_bias[2] += gyro_data.filtered.z / NBIAS; #if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
accel_bias[0] += accel_data.filtered.x / NBIAS; if(PIOS_HMC5843_NewDataAvailable()) {
accel_bias[1] += accel_data.filtered.y / NBIAS; j ++;
accel_bias[2] += accel_data.filtered.z / NBIAS; PIOS_HMC5843_ReadMag(mag_data.raw.axis);
ahrs_state = AHRS_IDLE; mag_data.scaled.axis[0] = (mag_data.raw.axis[0] * mag_data.calibration.scale[0]) + mag_data.calibration.bias[0];
mag_data.scaled.axis[1] = (mag_data.raw.axis[1] * mag_data.calibration.scale[1]) + mag_data.calibration.bias[1];
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C) mag_data.scaled.axis[2] = (mag_data.raw.axis[2] * mag_data.calibration.scale[2]) + mag_data.calibration.bias[2];
if(PIOS_HMC5843_NewDataAvailable()) { mag_bias[0] += mag_data.scaled.axis[0];
j ++; mag_bias[1] += mag_data.scaled.axis[1];
PIOS_HMC5843_ReadMag(mag_data.raw.axis); mag_bias[2] += mag_data.scaled.axis[2];
mag_data.scaled.axis[0] = (mag_data.raw.axis[0] * mag_data.calibration.scale[0]) + mag_data.calibration.bias[0]; }
mag_data.scaled.axis[1] = (mag_data.raw.axis[1] * mag_data.calibration.scale[1]) + mag_data.calibration.bias[1]; #endif
mag_data.scaled.axis[2] = (mag_data.raw.axis[2] * mag_data.calibration.scale[2]) + mag_data.calibration.bias[2];
mag_bias[0] += mag_data.scaled.axis[0]; }
mag_bias[1] += mag_data.scaled.axis[1]; mag_bias[0] /= j;
mag_bias[2] += mag_data.scaled.axis[2]; mag_bias[1] /= j;
} mag_bias[2] /= j;
#endif
gyro_data.calibration.variance[0] = 0;
} gyro_data.calibration.variance[1] = 0;
mag_bias[0] /= j; gyro_data.calibration.variance[2] = 0;
mag_bias[1] /= j; mag_data.calibration.variance[0] = 0;
mag_bias[2] /= j; mag_data.calibration.variance[1] = 0;
mag_data.calibration.variance[2] = 0;
gyro_data.calibration.variance[0] = 0; accel_data.calibration.variance[0] = 0;
gyro_data.calibration.variance[1] = 0; accel_data.calibration.variance[1] = 0;
gyro_data.calibration.variance[2] = 0; accel_data.calibration.variance[2] = 0;
mag_data.calibration.variance[0] = 0;
mag_data.calibration.variance[1] = 0; for (i = 0, j = 0; j < NVAR; j++) {
mag_data.calibration.variance[2] = 0; while (ahrs_state != AHRS_DATA_READY) ;
accel_data.calibration.variance[0] = 0; ahrs_state = AHRS_PROCESSING;
accel_data.calibration.variance[1] = 0; downsample_data();
accel_data.calibration.variance[2] = 0; gyro_data.calibration.variance[0] += pow(gyro_data.filtered.x-gyro_bias[0],2) / NVAR;
gyro_data.calibration.variance[1] += pow(gyro_data.filtered.y-gyro_bias[1],2) / NVAR;
for (i = 0, j = 0; j < NVAR; j++) { gyro_data.calibration.variance[2] += pow(gyro_data.filtered.z-gyro_bias[2],2) / NVAR;
while (ahrs_state != AHRS_DATA_READY) ; accel_data.calibration.variance[0] += pow(accel_data.filtered.x-accel_bias[0],2) / NVAR;
ahrs_state = AHRS_PROCESSING; accel_data.calibration.variance[1] += pow(accel_data.filtered.y-accel_bias[1],2) / NVAR;
downsample_data(); accel_data.calibration.variance[2] += pow(accel_data.filtered.z-accel_bias[2],2) / NVAR;
gyro_data.calibration.variance[0] += pow(gyro_data.filtered.x-gyro_bias[0],2) / NVAR; ahrs_state = AHRS_IDLE;
gyro_data.calibration.variance[1] += pow(gyro_data.filtered.y-gyro_bias[1],2) / NVAR; #if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
gyro_data.calibration.variance[2] += pow(gyro_data.filtered.z-gyro_bias[2],2) / NVAR; if(PIOS_HMC5843_NewDataAvailable()) {
accel_data.calibration.variance[0] += pow(accel_data.filtered.x-accel_bias[0],2) / NVAR; j ++;
accel_data.calibration.variance[1] += pow(accel_data.filtered.y-accel_bias[1],2) / NVAR; PIOS_HMC5843_ReadMag(mag_data.raw.axis);
accel_data.calibration.variance[2] += pow(accel_data.filtered.z-accel_bias[2],2) / NVAR; mag_data.scaled.axis[0] = (mag_data.raw.axis[0] * mag_data.calibration.scale[0]) + mag_data.calibration.bias[0];
ahrs_state = AHRS_IDLE; mag_data.scaled.axis[1] = (mag_data.raw.axis[1] * mag_data.calibration.scale[1]) + mag_data.calibration.bias[1];
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C) mag_data.scaled.axis[2] = (mag_data.raw.axis[2] * mag_data.calibration.scale[2]) + mag_data.calibration.bias[2];
if(PIOS_HMC5843_NewDataAvailable()) { mag_data.calibration.variance[0] += pow(mag_data.scaled.axis[0]-mag_bias[0],2);
j ++; mag_data.calibration.variance[1] += pow(mag_data.scaled.axis[1]-mag_bias[1],2);
PIOS_HMC5843_ReadMag(mag_data.raw.axis); mag_data.calibration.variance[2] += pow(mag_data.scaled.axis[2]-mag_bias[2],2);
mag_data.scaled.axis[0] = (mag_data.raw.axis[0] * mag_data.calibration.scale[0]) + mag_data.calibration.bias[0]; }
mag_data.scaled.axis[1] = (mag_data.raw.axis[1] * mag_data.calibration.scale[1]) + mag_data.calibration.bias[1]; #endif
mag_data.scaled.axis[2] = (mag_data.raw.axis[2] * mag_data.calibration.scale[2]) + mag_data.calibration.bias[2];
mag_data.calibration.variance[0] += pow(mag_data.scaled.axis[0]-mag_bias[0],2); }
mag_data.calibration.variance[1] += pow(mag_data.scaled.axis[1]-mag_bias[1],2);
mag_data.calibration.variance[2] += pow(mag_data.scaled.axis[2]-mag_bias[2],2); mag_data.calibration.variance[0] /= j;
} mag_data.calibration.variance[1] /= j;
#endif mag_data.calibration.variance[2] /= j;
} gyro_data.calibration.bias[0] -= gyro_bias[0];
gyro_data.calibration.bias[1] -= gyro_bias[1];
mag_data.calibration.variance[0] /= j; gyro_data.calibration.bias[2] -= gyro_bias[2];
mag_data.calibration.variance[1] /= j; }
mag_data.calibration.variance[2] /= j;
/**
gyro_data.calibration.bias[0] -= gyro_bias[0]; * @brief Populate fields with initial values
gyro_data.calibration.bias[1] -= gyro_bias[1]; */
gyro_data.calibration.bias[2] -= gyro_bias[2]; void reset_values() {
AHRSCalibrationData cal; accel_data.calibration.scale[0] = 0.012;
AHRSCalibrationGet(&cal); accel_data.calibration.scale[1] = 0.012;
cal.measure_var = AHRSCALIBRATION_MEASURE_VAR_SET; accel_data.calibration.scale[2] = -0.012;
AHRSCalibrationSet(&cal); accel_data.calibration.bias[0] = 24;
} accel_data.calibration.bias[1] = 24;
accel_data.calibration.bias[2] = -24;
/** accel_data.calibration.variance[0] = 1e-4;
* @brief Populate fields with initial values accel_data.calibration.variance[1] = 1e-4;
*/ accel_data.calibration.variance[2] = 1e-4;
void reset_values() { gyro_data.calibration.scale[0] = -0.014;
accel_data.calibration.scale[0] = 0.012; gyro_data.calibration.scale[1] = 0.014;
accel_data.calibration.scale[1] = 0.012; gyro_data.calibration.scale[2] = -0.014;
accel_data.calibration.scale[2] = -0.012; gyro_data.calibration.bias[0] = -24;
accel_data.calibration.bias[0] = 24; gyro_data.calibration.bias[1] = -24;
accel_data.calibration.bias[1] = 24; gyro_data.calibration.bias[2] = -24;
accel_data.calibration.bias[2] = -24; gyro_data.calibration.variance[0] = 1;
accel_data.calibration.variance[0] = 1e-4; gyro_data.calibration.variance[1] = 1;
accel_data.calibration.variance[1] = 1e-4; gyro_data.calibration.variance[2] = 1;
accel_data.calibration.variance[2] = 1e-4; mag_data.calibration.scale[0] = 1;
gyro_data.calibration.scale[0] = -0.014; mag_data.calibration.scale[1] = 1;
gyro_data.calibration.scale[1] = 0.014; mag_data.calibration.scale[2] = 1;
gyro_data.calibration.scale[2] = -0.014; mag_data.calibration.bias[0] = 0;
gyro_data.calibration.bias[0] = -24; mag_data.calibration.bias[1] = 0;
gyro_data.calibration.bias[1] = -24; mag_data.calibration.bias[2] = 0;
gyro_data.calibration.bias[2] = -24; mag_data.calibration.variance[0] = 1;
gyro_data.calibration.variance[0] = 1; mag_data.calibration.variance[1] = 1;
gyro_data.calibration.variance[1] = 1; mag_data.calibration.variance[2] = 1;
gyro_data.calibration.variance[2] = 1; }
mag_data.calibration.scale[0] = 1;
mag_data.calibration.scale[1] = 1;
mag_data.calibration.scale[2] = 1; void process_spi_request(void)
mag_data.calibration.bias[0] = 0; {
mag_data.calibration.bias[1] = 0; AttitudeActualData attitude;
mag_data.calibration.bias[2] = 0; attitude.q1 = attitude_data.quaternion.q1;
mag_data.calibration.variance[0] = 1; attitude.q2 = attitude_data.quaternion.q2;
mag_data.calibration.variance[1] = 1; attitude.q3 = attitude_data.quaternion.q3;
mag_data.calibration.variance[2] = 1; attitude.q4 = attitude_data.quaternion.q4;
} float rpy[3];
Quaternion2RPY(&attitude_data.quaternion.q1, rpy);
attitude.Roll = rpy[0];
void process_spi_request(void) attitude.Pitch = rpy[1];
{ attitude.Yaw = rpy[2];
AttitudeActualData attitude; AttitudeActualSet(&attitude);
attitude.q1 = attitude_data.quaternion.q1; }
attitude.q2 = attitude_data.quaternion.q2;
attitude.q3 = attitude_data.quaternion.q3; void send_calibration(void)
attitude.q4 = attitude_data.quaternion.q4; {
float rpy[3]; AHRSCalibrationData cal;
Quaternion2RPY(&attitude_data.quaternion.q1, rpy); AHRSCalibrationGet(&cal);
attitude.Roll = rpy[0]; for(int ct=0; ct<3; ct++)
attitude.Pitch = rpy[1]; {
attitude.Yaw = rpy[2]; cal.accel_var[ct] = accel_data.calibration.variance[ct];
AttitudeActualSet(&attitude); cal.gyro_bias[ct] = gyro_data.calibration.bias[ct];
} cal.gyro_var[ct] = gyro_data.calibration.variance[ct];
cal.mag_var[ct] = mag_data.calibration.variance[ct];
void send_calibration(void) }
{ cal.measure_var = AHRSCALIBRATION_MEASURE_VAR_SET;
AHRSCalibrationData cal; AHRSCalibrationSet(&cal);
AHRSCalibrationGet(&cal); }
for(int ct=0; ct<3; ct++)
{ /**
cal.accel_var[ct] = accel_data.calibration.variance[ct]; * @brief AHRS calibration callback
cal.gyro_bias[ct] = gyro_data.calibration.bias[ct]; *
cal.gyro_var[ct] = gyro_data.calibration.variance[ct]; * Called when the OP board sets the calibration
cal.mag_var[ct] = mag_data.calibration.variance[ct]; */
} void calibration_callback(AhrsObjHandle obj)
cal.measure_var = AHRSCALIBRATION_MEASURE_VAR_SET; {
AHRSCalibrationSet(&cal); AHRSCalibrationData cal;
} AHRSCalibrationGet(&cal);
if(cal.measure_var == AHRSCALIBRATION_MEASURE_VAR_SET){
/** for(int ct=0; ct<3; ct++)
* @brief AHRS calibration callback {
* accel_data.calibration.scale[ct] = cal.accel_scale[ct];
* Called when the OP board sets the calibration accel_data.calibration.bias[ct] = cal.accel_bias[ct];
*/ accel_data.calibration.variance[ct] = cal.accel_var[ct];
void calibration_callback(AhrsObjHandle obj) gyro_data.calibration.scale[ct] = cal.gyro_scale[ct];
{ gyro_data.calibration.bias[ct] = cal.gyro_bias[ct];
AHRSCalibrationData cal; gyro_data.calibration.variance[ct] = cal.gyro_var[ct];
AHRSCalibrationGet(&cal); mag_data.calibration.bias[ct] = cal.mag_bias[ct];
if(cal.measure_var == AHRSCALIBRATION_MEASURE_VAR_SET){ mag_data.calibration.scale[ct] = cal.mag_scale[ct];
for(int ct=0; ct<3; ct++) mag_data.calibration.variance[ct] = cal.mag_var[ct];
{ }
accel_data.calibration.scale[ct] = cal.accel_scale[ct]; }else if(cal.measure_var == AHRSCALIBRATION_MEASURE_VAR_MEASURE){
accel_data.calibration.bias[ct] = cal.accel_bias[ct]; calibrate_sensors();
accel_data.calibration.variance[ct] = cal.accel_var[ct]; AHRSCalibrationData cal;
gyro_data.calibration.scale[ct] = cal.gyro_scale[ct]; AHRSCalibrationGet(&cal);
gyro_data.calibration.bias[ct] = cal.gyro_bias[ct]; cal.measure_var = AHRSCALIBRATION_MEASURE_VAR_SET;
gyro_data.calibration.variance[ct] = cal.gyro_var[ct]; AHRSCalibrationSet(&cal);
mag_data.calibration.bias[ct] = cal.mag_bias[ct];
mag_data.calibration.scale[ct] = cal.mag_scale[ct]; }else if(cal.measure_var == AHRSCALIBRATION_MEASURE_VAR_ECHO){
mag_data.calibration.variance[ct] = cal.mag_var[ct]; send_calibration();
} }
}else if(cal.measure_var == AHRSCALIBRATION_MEASURE_VAR_MEASURE){ }
calibration_pending = true;
}else if(cal.measure_var == AHRSCALIBRATION_MEASURE_VAR_ECHO){ void gps_callback(AhrsObjHandle obj)
send_calibration(); {
} GPSPositionData pos;
} GPSPositionGet(&pos);
HomeLocationData home;
void gps_callback(AhrsObjHandle obj) HomeLocationGet(&home);
{
GPSPositionData pos; if(home.Set == HOMELOCATION_SET_FALSE || home.Indoor == HOMELOCATION_INDOOR_TRUE) {
GPSPositionGet(&pos); gps_data.NED[0] = 0;
HomeLocationData home; gps_data.NED[1] = 0;
HomeLocationGet(&home); gps_data.NED[2] = 0;
gps_data.groundspeed = 0;
if(home.Set == HOMELOCATION_SET_FALSE || home.Indoor == HOMELOCATION_INDOOR_TRUE) { gps_data.heading = 0;
gps_data.NED[0] = 0; gps_data.quality = -1; // indicates indoor mode, high variance zeros update
gps_data.NED[1] = 0; gps_data.updated = true;
gps_data.NED[2] = 0; return;
gps_data.groundspeed = 0; }
gps_data.heading = 0;
gps_data.quality = -1; // indicates indoor mode, high variance zeros update if(pos.Status != GPSPOSITION_STATUS_FIX3D) //FIXME: Will this work? the old ahrs_comms does it differently.
gps_data.updated = true; {
return; gps_data.quality = 0;
} gps_data.updated = true;
return;
if(pos.Status != GPSPOSITION_STATUS_FIX3D) //FIXME: Will this work? the old ahrs_comms does it differently. }
{
gps_data.quality = 0; double LLA[3] = {(double) pos.Latitude / 1e7, (double) pos.Longitude / 1e7, (double) (pos.GeoidSeparation + pos.Altitude)};
gps_data.updated = true; // convert from cm back to meters
return; double ECEF[3] = {(double) (home.ECEF[0] / 100), (double) (home.ECEF[1] / 100), (double) (home.ECEF[2] / 100)};
} LLA2Base(LLA, ECEF, (float (*)[3]) home.RNE, gps_data.NED);
double LLA[3] = {(double) pos.Latitude / 1e7, (double) pos.Longitude / 1e7, (double) (pos.GeoidSeparation + pos.Altitude)}; gps_data.heading = pos.Heading;
// convert from cm back to meters gps_data.groundspeed = pos.Groundspeed;
double ECEF[3] = {(double) (home.ECEF[0] / 100), (double) (home.ECEF[1] / 100), (double) (home.ECEF[2] / 100)}; gps_data.quality = 1;
LLA2Base(LLA, ECEF, (float (*)[3]) home.RNE, gps_data.NED); gps_data.updated = true;
}
gps_data.heading = pos.Heading;
gps_data.groundspeed = pos.Groundspeed; void altitude_callback(AhrsObjHandle obj)
gps_data.quality = 1; {
gps_data.updated = true; BaroAltitudeData alt;
} BaroAltitudeGet(&alt);
altitude_data.altitude = alt.Altitude;
void altitude_callback(AhrsObjHandle obj) altitude_data.updated = true;
{ }
BaroAltitudeData alt;
BaroAltitudeGet(&alt); void settings_callback(AhrsObjHandle obj)
altitude_data.altitude = alt.Altitude; {
altitude_data.updated = true; AHRSSettingsData settings;
} AHRSSettingsGet(&settings);
void settings_callback(AhrsObjHandle obj) if(settings.Algorithm == AHRSSETTINGS_ALGORITHM_INSGPS)
{ {
AHRSSettingsData settings; ahrs_algorithm = INSGPS_Algo;
AHRSSettingsGet(&settings); }else
{
if(settings.Algorithm == AHRSSETTINGS_ALGORITHM_INSGPS) ahrs_algorithm = SIMPLE_Algo;
{ }
ahrs_algorithm = INSGPS_Algo; }
}else
{
ahrs_algorithm = SIMPLE_Algo;
} /**
} * @}
*/
/**
* @}
*/