1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-02-20 10:54:14 +01:00

Fixed possible memory leaks. Now check for NULL pointers from all MALLOC calls. Functions now return '0' if OK, otherwise returns a value < 0.

git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2381 ebee16cc-31ac-478f-84a7-5cbb03baadba
This commit is contained in:
pip 2011-01-11 11:11:23 +00:00 committed by pip
parent c6e99a5c4f
commit 7b50e09eb9
3 changed files with 357 additions and 140 deletions

View File

@ -143,9 +143,9 @@ static const float CoeffFile[91][6] = { {0, 0, 0, 0, 0, 0},
{12, 12, 0.0, 0.9, 0.1, 0.0}
};
static WMMtype_Ellipsoid *Ellip;
static WMMtype_MagneticModel *MagneticModel;
static float decimal_date;
static WMMtype_Ellipsoid *Ellip = NULL;
static WMMtype_MagneticModel *MagneticModel = NULL;
static float decimal_date;
/**************************************************************************************
* Example use - very simple - only two exposed functions
@ -162,6 +162,8 @@ int WMM_Initialize()
// Sets default values for WMM subroutines.
// UPDATES : Ellip and MagneticModel
{
if (!Ellip) return -1; // invalid pointer
if (!MagneticModel) return -2; // invalid pointer
// Sets WGS-84 parameters
Ellip->a = 6378.137; // semi-major axis of the ellipsoid in km
@ -180,40 +182,115 @@ int WMM_Initialize()
MagneticModel->EditionDate = 5.7863328170559505e-307;
MagneticModel->epoch = 2010.0;
sprintf(MagneticModel->ModelName, "WMM-2010");
return 0;
return 0; // OK
}
void WMM_GetMagVector(float Lat, float Lon, float AltEllipsoid, uint16_t Month, uint16_t Day, uint16_t Year, float B[3])
int WMM_GetMagVector(float Lat, float Lon, float AltEllipsoid, uint16_t Month, uint16_t Day, uint16_t Year, float B[3])
{
Ellip = (WMMtype_Ellipsoid *) MALLOC(sizeof(WMMtype_Ellipsoid));
MagneticModel = (WMMtype_MagneticModel *) MALLOC(sizeof(WMMtype_MagneticModel));
WMMtype_CoordSpherical *CoordSpherical = (WMMtype_CoordSpherical *) MALLOC(sizeof(WMMtype_CoordSpherical));
WMMtype_CoordGeodetic *CoordGeodetic = (WMMtype_CoordGeodetic *) MALLOC(sizeof(WMMtype_CoordGeodetic));
WMMtype_GeoMagneticElements *GeoMagneticElements = (WMMtype_GeoMagneticElements *) MALLOC(sizeof(WMMtype_GeoMagneticElements));
// return '0' if all appears to be OK
// return < 0 if error
WMM_Initialize();
int returned = 0; // default to OK
CoordGeodetic->lambda = Lon;
CoordGeodetic->phi = Lat;
CoordGeodetic->HeightAboveEllipsoid = AltEllipsoid;
WMM_GeodeticToSpherical(CoordGeodetic, CoordSpherical); /*Convert from geodeitic to Spherical Equations: 17-18, WMM Technical report */
// ***********
// range check supplied params
WMM_DateToYear(Month, Day, Year);
WMM_Geomag(CoordSpherical, CoordGeodetic, GeoMagneticElements); /* Computes the geoMagnetic field elements and their time change */
if (Lat < -90) return -1; // error
if (Lat > 90) return -2; // error
B[0] = GeoMagneticElements->X;
B[1] = GeoMagneticElements->Y;
B[2] = GeoMagneticElements->Z;
if (Lon < -180) return -3; // error
if (Lon > 180) return -4; // error
FREE(Ellip);
FREE(MagneticModel);
FREE(CoordSpherical);
FREE(CoordGeodetic);
FREE(GeoMagneticElements);
// ***********
// allocated required memory
// Ellip = NULL;
// MagneticModel = NULL;
// MagneticModel = NULL;
// CoordGeodetic = NULL;
// GeoMagneticElements = NULL;
Ellip = (WMMtype_Ellipsoid *) MALLOC(sizeof(WMMtype_Ellipsoid));
MagneticModel = (WMMtype_MagneticModel *) MALLOC(sizeof(WMMtype_MagneticModel));
WMMtype_CoordSpherical *CoordSpherical = (WMMtype_CoordSpherical *) MALLOC(sizeof(WMMtype_CoordSpherical));
WMMtype_CoordGeodetic *CoordGeodetic = (WMMtype_CoordGeodetic *) MALLOC(sizeof(WMMtype_CoordGeodetic));
WMMtype_GeoMagneticElements *GeoMagneticElements = (WMMtype_GeoMagneticElements *) MALLOC(sizeof(WMMtype_GeoMagneticElements));
if (!Ellip || !MagneticModel || !CoordSpherical || !CoordGeodetic || !GeoMagneticElements)
returned = -5; // error
// ***********
if (returned >= 0)
{
if (WMM_Initialize() < 0)
returned = -6; // error
}
if (returned >= 0)
{
CoordGeodetic->lambda = Lon;
CoordGeodetic->phi = Lat;
CoordGeodetic->HeightAboveEllipsoid = AltEllipsoid;
// Convert from geodeitic to Spherical Equations: 17-18, WMM Technical report
if (WMM_GeodeticToSpherical(CoordGeodetic, CoordSpherical) < 0)
returned = -7; // error
}
if (returned >= 0)
{
if (WMM_DateToYear(Month, Day, Year) < 0)
returned = -8; // error
}
if (returned >= 0)
{
// Compute the geoMagnetic field elements and their time change
if (WMM_Geomag(CoordSpherical, CoordGeodetic, GeoMagneticElements) < 0)
returned = -9; // error
else
{ // set the returned values
B[0] = GeoMagneticElements->X;
B[1] = GeoMagneticElements->Y;
B[2] = GeoMagneticElements->Z;
}
}
// ***********
// free allocated memory
if (GeoMagneticElements)
FREE(GeoMagneticElements);
if (CoordGeodetic)
FREE(CoordGeodetic);
if (CoordSpherical)
FREE(CoordSpherical);
if (MagneticModel)
{
FREE(MagneticModel);
MagneticModel = NULL;
}
if (Ellip)
{
FREE(Ellip);
Ellip = NULL;
}
// ***********
return returned;
}
uint16_t WMM_Geomag(WMMtype_CoordSpherical * CoordSpherical, WMMtype_CoordGeodetic * CoordGeodetic, WMMtype_GeoMagneticElements * GeoMagneticElements)
int WMM_Geomag(WMMtype_CoordSpherical * CoordSpherical, WMMtype_CoordGeodetic * CoordGeodetic, WMMtype_GeoMagneticElements * GeoMagneticElements)
/*
The main subroutine that calls a sequence of WMM sub-functions to calculate the magnetic field elements for a single point.
The function expects the model coefficients and point coordinates as input and returns the magnetic field elements and
@ -238,29 +315,87 @@ uint16_t WMM_Geomag(WMMtype_CoordSpherical * CoordSpherical, WMMtype_CoordGeodet
*/
{
WMMtype_LegendreFunction *LegendreFunction = (WMMtype_LegendreFunction *) MALLOC(sizeof(WMMtype_LegendreFunction));
WMMtype_SphericalHarmonicVariables *SphVariables = (WMMtype_SphericalHarmonicVariables *) MALLOC(sizeof(WMMtype_SphericalHarmonicVariables));
int returned = 0; // default to OK
WMMtype_MagneticResults MagneticResultsSph;
WMMtype_MagneticResults MagneticResultsGeo;
WMMtype_MagneticResults MagneticResultsSphVar;
WMMtype_MagneticResults MagneticResultsGeoVar;
WMM_ComputeSphericalHarmonicVariables(CoordSpherical, MagneticModel->nMax, SphVariables); /* Compute Spherical Harmonic variables */
WMM_AssociatedLegendreFunction(CoordSpherical, MagneticModel->nMax, LegendreFunction); /* Compute ALF */
WMM_Summation(LegendreFunction, SphVariables, CoordSpherical, &MagneticResultsSph); /* Accumulate the spherical harmonic coefficients */
WMM_SecVarSummation(LegendreFunction, SphVariables, CoordSpherical, &MagneticResultsSphVar); /*Sum the Secular Variation Coefficients */
WMM_RotateMagneticVector(CoordSpherical, CoordGeodetic, &MagneticResultsSph, &MagneticResultsGeo); /* Map the computed Magnetic fields to Geodeitic coordinates */
WMM_RotateMagneticVector(CoordSpherical, CoordGeodetic, &MagneticResultsSphVar, &MagneticResultsGeoVar); /* Map the secular variation field components to Geodetic coordinates */
WMM_CalculateGeoMagneticElements(&MagneticResultsGeo, GeoMagneticElements); /* Calculate the Geomagnetic elements, Equation 18 , WMM Technical report */
WMM_CalculateSecularVariation(&MagneticResultsGeoVar, GeoMagneticElements); /*Calculate the secular variation of each of the Geomagnetic elements */
// ********
// allocate required memory
FREE(SphVariables);
FREE(LegendreFunction);
WMMtype_LegendreFunction *LegendreFunction = (WMMtype_LegendreFunction *) MALLOC(sizeof(WMMtype_LegendreFunction));
WMMtype_SphericalHarmonicVariables *SphVariables = (WMMtype_SphericalHarmonicVariables *) MALLOC(sizeof(WMMtype_SphericalHarmonicVariables));
return TRUE;
if (!LegendreFunction || !SphVariables)
returned = -1; // memory allocation error
// ********
if (returned >= 0)
{ // Compute Spherical Harmonic variables
if (WMM_ComputeSphericalHarmonicVariables(CoordSpherical, MagneticModel->nMax, SphVariables) < 0)
returned = -2; // error
}
if (returned >= 0)
{ // Compute ALF
if (WMM_AssociatedLegendreFunction(CoordSpherical, MagneticModel->nMax, LegendreFunction) < 0)
returned = -3; // error
}
if (returned >= 0)
{ // Accumulate the spherical harmonic coefficients
if (WMM_Summation(LegendreFunction, SphVariables, CoordSpherical, &MagneticResultsSph) < 0)
returned = -4; // error
}
if (returned >= 0)
{ // Sum the Secular Variation Coefficients
if (WMM_SecVarSummation(LegendreFunction, SphVariables, CoordSpherical, &MagneticResultsSphVar) < 0)
returned = -5; // error
}
if (returned >= 0)
{ // Map the computed Magnetic fields to Geodeitic coordinates
if (WMM_RotateMagneticVector(CoordSpherical, CoordGeodetic, &MagneticResultsSph, &MagneticResultsGeo) < 0)
returned = -6; // error
}
if (returned >= 0)
{ // Map the secular variation field components to Geodetic coordinates
if (WMM_RotateMagneticVector(CoordSpherical, CoordGeodetic, &MagneticResultsSphVar, &MagneticResultsGeoVar) < 0)
returned = -7; // error
}
if (returned >= 0)
{ // Calculate the Geomagnetic elements, Equation 18 , WMM Technical report
if (WMM_CalculateGeoMagneticElements(&MagneticResultsGeo, GeoMagneticElements) < 0)
returned = -8; // error
}
if (returned >= 0)
{ // Calculate the secular variation of each of the Geomagnetic elements
if (WMM_CalculateSecularVariation(&MagneticResultsGeoVar, GeoMagneticElements) < 0)
returned = -9; // error
}
// ********
// free allocated memory
if (SphVariables)
FREE(SphVariables);
if (LegendreFunction)
FREE(LegendreFunction);
// ********
return returned;
}
uint16_t WMM_ComputeSphericalHarmonicVariables(WMMtype_CoordSpherical *CoordSpherical, uint16_t nMax, WMMtype_SphericalHarmonicVariables *SphVariables)
int WMM_ComputeSphericalHarmonicVariables(WMMtype_CoordSpherical *CoordSpherical, uint16_t nMax, WMMtype_SphericalHarmonicVariables *SphVariables)
/* Computes Spherical variables
Variables computed are (a/r)^(n+2), cos_m(lamda) and sin_m(lambda) for spherical harmonic
@ -287,10 +422,13 @@ uint16_t WMM_ComputeSphericalHarmonicVariables(WMMtype_CoordSpherical *CoordSphe
{
float cos_lambda, sin_lambda;
uint16_t m, n;
cos_lambda = cos(DEG2RAD(CoordSpherical->lambda));
sin_lambda = sin(DEG2RAD(CoordSpherical->lambda));
/* for n = 0 ... model_order, compute (Radius of Earth / Spherica radius r)^(n+2)
for n 1..nMax-1 (this is much faster than calling pow MAX_N+1 times). */
SphVariables->RelativeRadiusPower[0] = (Ellip->re / CoordSpherical->r) * (Ellip->re / CoordSpherical->r);
for (n = 1; n <= nMax; n++)
SphVariables->RelativeRadiusPower[n] = SphVariables->RelativeRadiusPower[n - 1] * (Ellip->re / CoordSpherical->r);
@ -310,10 +448,11 @@ uint16_t WMM_ComputeSphericalHarmonicVariables(WMMtype_CoordSpherical *CoordSphe
SphVariables->cos_mlambda[m] = SphVariables->cos_mlambda[m - 1] * cos_lambda - SphVariables->sin_mlambda[m - 1] * sin_lambda;
SphVariables->sin_mlambda[m] = SphVariables->cos_mlambda[m - 1] * sin_lambda + SphVariables->sin_mlambda[m - 1] * cos_lambda;
}
return TRUE;
} /*WMM_ComputeSphericalHarmonicVariables */
uint16_t WMM_AssociatedLegendreFunction(WMMtype_CoordSpherical * CoordSpherical, uint16_t nMax, WMMtype_LegendreFunction * LegendreFunction)
return 0; // OK
}
int WMM_AssociatedLegendreFunction(WMMtype_CoordSpherical * CoordSpherical, uint16_t nMax, WMMtype_LegendreFunction * LegendreFunction)
/* Computes all of the Schmidt-semi normalized associated Legendre
functions up to degree nMax. If nMax <= 16, function WMM_PcupLow is used.
@ -331,22 +470,23 @@ uint16_t WMM_AssociatedLegendreFunction(WMMtype_CoordSpherical * CoordSpherical,
*/
{
float sin_phi;
uint16_t FLAG = 1;
sin_phi = sin(DEG2RAD(CoordSpherical->phig)); /* sin (geocentric latitude) */
float sin_phi = sin(DEG2RAD(CoordSpherical->phig)); /* sin (geocentric latitude) */
if (nMax <= 16 || (1 - fabs(sin_phi)) < 1.0e-10) /* If nMax is less tha 16 or at the poles */
FLAG = WMM_PcupLow(LegendreFunction->Pcup, LegendreFunction->dPcup, sin_phi, nMax);
{
if (WMM_PcupLow(LegendreFunction->Pcup, LegendreFunction->dPcup, sin_phi, nMax) < 0)
return -1; // error
}
else
FLAG = WMM_PcupHigh(LegendreFunction->Pcup, LegendreFunction->dPcup, sin_phi, nMax);
if (FLAG == 0) /* Error while computing Legendre variables */
return FALSE;
{
if (WMM_PcupHigh(LegendreFunction->Pcup, LegendreFunction->dPcup, sin_phi, nMax) < 0)
return -2; // error
}
return TRUE;
} /*WMM_AssociatedLegendreFunction */
return 0; // OK
}
uint16_t WMM_Summation(WMMtype_LegendreFunction * LegendreFunction,
int WMM_Summation(WMMtype_LegendreFunction * LegendreFunction,
WMMtype_SphericalHarmonicVariables * SphVariables,
WMMtype_CoordSpherical * CoordSpherical, WMMtype_MagneticResults * MagneticResults)
{
@ -370,13 +510,18 @@ uint16_t WMM_Summation(WMMtype_LegendreFunction * LegendreFunction,
Manoj Nair, June, 2009 Manoj.C.Nair@Noaa.Gov
*/
uint16_t m, n, index;
uint16_t m, n, index;
float cos_phi;
MagneticResults->Bz = 0.0;
MagneticResults->By = 0.0;
MagneticResults->Bx = 0.0;
for (n = 1; n <= MagneticModel->nMax; n++) {
for (m = 0; m <= n; m++) {
for (n = 1; n <= MagneticModel->nMax; n++)
{
for (m = 0; m <= n; m++)
{
index = (n * (n + 1) / 2 + m);
/* nMax (n+2) n m m m
@ -413,22 +558,25 @@ uint16_t WMM_Summation(WMMtype_LegendreFunction * LegendreFunction,
}
cos_phi = cos(DEG2RAD(CoordSpherical->phig));
if (fabs(cos_phi) > 1.0e-10) {
MagneticResults->By = MagneticResults->By / cos_phi;
} else
/* Special calculation for component - By - at Geographic poles.
* If the user wants to avoid using this function, please make sure that
* the latitude is not exactly +/-90. An option is to make use the function
* WMM_CheckGeographicPoles.
*/
if (fabs(cos_phi) > 1.0e-10)
{
WMM_SummationSpecial(SphVariables, CoordSpherical, MagneticResults);
MagneticResults->By = MagneticResults->By / cos_phi;
}
else
{
/* Special calculation for component - By - at Geographic poles.
* If the user wants to avoid using this function, please make sure that
* the latitude is not exactly +/-90. An option is to make use the function
* WMM_CheckGeographicPoles.
*/
if (WMM_SummationSpecial(SphVariables, CoordSpherical, MagneticResults) < 0)
return -1; // error
}
return TRUE;
} /*WMM_Summation */
uint16_t WMM_SecVarSummation(WMMtype_LegendreFunction * LegendreFunction,
return 0; // OK
}
int WMM_SecVarSummation(WMMtype_LegendreFunction * LegendreFunction,
WMMtype_SphericalHarmonicVariables *
SphVariables, WMMtype_CoordSpherical * CoordSpherical, WMMtype_MagneticResults * MagneticResults)
{
@ -442,12 +590,16 @@ uint16_t WMM_SecVarSummation(WMMtype_LegendreFunction * LegendreFunction,
CALLS : WMM_SecVarSummationSpecial
*/
uint16_t m, n, index;
uint16_t m, n, index;
float cos_phi;
MagneticModel->SecularVariationUsed = TRUE;
MagneticResults->Bz = 0.0;
MagneticResults->By = 0.0;
MagneticResults->Bx = 0.0;
for (n = 1; n <= MagneticModel->nMaxSecVar; n++)
{
for (m = 0; m <= n; m++)
@ -493,12 +645,14 @@ uint16_t WMM_SecVarSummation(WMMtype_LegendreFunction * LegendreFunction,
else
/* Special calculation for component By at Geographic poles */
{
WMM_SecVarSummationSpecial(SphVariables, CoordSpherical, MagneticResults);
if (WMM_SecVarSummationSpecial(SphVariables, CoordSpherical, MagneticResults) < 0)
return -1; // error
}
return TRUE;
} /*WMM_SecVarSummation */
uint16_t WMM_RotateMagneticVector(WMMtype_CoordSpherical * CoordSpherical,
return 0; // OK
}
int WMM_RotateMagneticVector(WMMtype_CoordSpherical * CoordSpherical,
WMMtype_CoordGeodetic * CoordGeodetic,
WMMtype_MagneticResults * MagneticResultsSph, WMMtype_MagneticResults * MagneticResultsGeo)
/* Rotate the Magnetic Vectors to Geodetic Coordinates
@ -530,18 +684,18 @@ uint16_t WMM_RotateMagneticVector(WMMtype_CoordSpherical * CoordSpherical,
*/
{
float Psi;
/* Difference between the spherical and Geodetic latitudes */
Psi = (M_PI / 180) * (CoordSpherical->phig - CoordGeodetic->phi);
float Psi = (M_PI / 180) * (CoordSpherical->phig - CoordGeodetic->phi);
/* Rotate spherical field components to the Geodeitic system */
MagneticResultsGeo->Bz = MagneticResultsSph->Bx * sin(Psi) + MagneticResultsSph->Bz * cos(Psi);
MagneticResultsGeo->Bx = MagneticResultsSph->Bx * cos(Psi) - MagneticResultsSph->Bz * sin(Psi);
MagneticResultsGeo->By = MagneticResultsSph->By;
return TRUE;
} /*WMM_RotateMagneticVector */
uint16_t WMM_CalculateGeoMagneticElements(WMMtype_MagneticResults * MagneticResultsGeo, WMMtype_GeoMagneticElements * GeoMagneticElements)
return 0;
}
int WMM_CalculateGeoMagneticElements(WMMtype_MagneticResults * MagneticResultsGeo, WMMtype_GeoMagneticElements * GeoMagneticElements)
/* Calculate all the Geomagnetic elements from X,Y and Z components
INPUT MagneticResultsGeo Pointer to data structure with the following elements
@ -568,10 +722,10 @@ uint16_t WMM_CalculateGeoMagneticElements(WMMtype_MagneticResults * MagneticResu
GeoMagneticElements->Decl = RAD2DEG(atan2(GeoMagneticElements->Y, GeoMagneticElements->X));
GeoMagneticElements->Incl = RAD2DEG(atan2(GeoMagneticElements->Z, GeoMagneticElements->H));
return TRUE;
} /*WMM_CalculateGeoMagneticElements */
return 0; // OK
}
uint16_t WMM_CalculateSecularVariation(WMMtype_MagneticResults * MagneticVariation, WMMtype_GeoMagneticElements * MagneticElements)
int WMM_CalculateSecularVariation(WMMtype_MagneticResults * MagneticVariation, WMMtype_GeoMagneticElements * MagneticElements)
/*This takes the Magnetic Variation in x, y, and z and uses it to calculate the secular variation of each of the Geomagnetic elements.
INPUT MagneticVariation Data structure with the following elements
float Bx; ( North )
@ -604,10 +758,11 @@ uint16_t WMM_CalculateSecularVariation(WMMtype_MagneticResults * MagneticVariati
180.0 / M_PI * (MagneticElements->H * MagneticElements->Zdot -
MagneticElements->Z * MagneticElements->Hdot) / (MagneticElements->F * MagneticElements->F);
MagneticElements->GVdot = MagneticElements->Decldot;
return TRUE;
} /*WMM_CalculateSecularVariation */
uint16_t WMM_PcupHigh(float *Pcup, float *dPcup, float x, uint16_t nMax)
return 0; // OK
}
int WMM_PcupHigh(float *Pcup, float *dPcup, float x, uint16_t nMax)
/* This function evaluates all of the Schmidt-semi normalized associated Legendre
functions up to degree nMax. The functions are initially scaled by
@ -649,15 +804,29 @@ uint16_t WMM_PcupHigh(float *Pcup, float *dPcup, float x, uint16_t nMax)
*/
{
uint16_t k, kstart, m, n;
float pm2, pm1, pmm, plm, rescalem, z, scalef;
float pm2, pm1, pmm, plm, rescalem, z, scalef;
float *f1 = (float *) MALLOC(sizeof(float) * NUMPCUP);
float *f2 = (float *) MALLOC(sizeof(float) * NUMPCUP);
float *PreSqr = (float *) MALLOC(sizeof(float) * NUMPCUP);
if (!PreSqr || !f2 || !f1)
{ // memory allocation error
if (PreSqr) FREE(PreSqr);
if (f2) FREE(f2);
if (f1) FREE(f1);
return -1;
}
if (fabs(x) == 1.0)
{
FREE(PreSqr);
FREE(f2);
FREE(f1);
// printf("Error in PcupHigh: derivative cannot be calculated at poles\n");
return FALSE;
return -2;
}
scalef = 1.0e-280;
@ -687,7 +856,12 @@ uint16_t WMM_PcupHigh(float *Pcup, float *dPcup, float x, uint16_t nMax)
Pcup[0] = 1.0;
dPcup[0] = 0.0;
if (nMax == 0)
return FALSE;
{
FREE(PreSqr);
FREE(f2);
FREE(f1);
return -3;
}
pm1 = x;
Pcup[1] = pm1;
dPcup[1] = z;
@ -741,14 +915,19 @@ uint16_t WMM_PcupHigh(float *Pcup, float *dPcup, float x, uint16_t nMax)
Pcup[kstart] = pmm * rescalem;
dPcup[kstart] = -(float)(nMax) * x * Pcup[kstart] / z;
// *********
// free allocated memory
FREE(PreSqr);
FREE(f2);
FREE(f1);
return TRUE;
} /* WMM_PcupHigh */
// *********
uint16_t WMM_PcupLow(float *Pcup, float *dPcup, float x, uint16_t nMax)
return 0; // OK
}
int WMM_PcupLow(float *Pcup, float *dPcup, float x, uint16_t nMax)
/* This function evaluates all of the Schmidt-semi normalized associated Legendre
functions up to degree nMax.
@ -776,7 +955,12 @@ uint16_t WMM_PcupLow(float *Pcup, float *dPcup, float x, uint16_t nMax)
{
uint16_t n, m, index, index1, index2;
float k, z;
float *schmidtQuasiNorm = (float *) MALLOC(sizeof(float) * NUMPCUP);
if (!schmidtQuasiNorm)
{ // memory allocation error
return -1;
}
Pcup[0] = 1.0;
dPcup[0] = 0.0;
@ -785,24 +969,36 @@ uint16_t WMM_PcupLow(float *Pcup, float *dPcup, float x, uint16_t nMax)
z = sqrt((1.0 - x) * (1.0 + x));
/* First, Compute the Gauss-normalized associated Legendre functions */
for (n = 1; n <= nMax; n++) {
for (m = 0; m <= n; m++) {
for (n = 1; n <= nMax; n++)
{
for (m = 0; m <= n; m++)
{
index = (n * (n + 1) / 2 + m);
if (n == m) {
if (n == m)
{
index1 = (n - 1) * n / 2 + m - 1;
Pcup[index] = z * Pcup[index1];
dPcup[index] = z * dPcup[index1] + x * Pcup[index1];
} else if (n == 1 && m == 0) {
}
else
if (n == 1 && m == 0)
{
index1 = (n - 1) * n / 2 + m;
Pcup[index] = x * Pcup[index1];
dPcup[index] = x * dPcup[index1] - z * Pcup[index1];
} else if (n > 1 && n != m) {
}
else
if (n > 1 && n != m)
{
index1 = (n - 2) * (n - 1) / 2 + m;
index2 = (n - 1) * n / 2 + m;
if (m > n - 2) {
if (m > n - 2)
{
Pcup[index] = x * Pcup[index2];
dPcup[index] = x * dPcup[index2] - z * Pcup[index2];
} else {
}
else
{
k = (float)(((n - 1) * (n - 1)) - (m * m)) / (float)((2 * n - 1)
* (2 * n - 3));
Pcup[index] = x * Pcup[index2] - k * Pcup[index1];
@ -816,13 +1012,15 @@ uint16_t WMM_PcupLow(float *Pcup, float *dPcup, float x, uint16_t nMax)
sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)! */
schmidtQuasiNorm[0] = 1.0;
for (n = 1; n <= nMax; n++) {
for (n = 1; n <= nMax; n++)
{
index = (n * (n + 1) / 2);
index1 = (n - 1) * n / 2;
/* for m = 0 */
schmidtQuasiNorm[index] = schmidtQuasiNorm[index1] * (float)(2 * n - 1) / (float)n;
for (m = 1; m <= n; m++) {
for (m = 1; m <= n; m++)
{
index = (n * (n + 1) / 2 + m);
index1 = (n * (n + 1) / 2 + m - 1);
schmidtQuasiNorm[index] = schmidtQuasiNorm[index1] * sqrt((float)((n - m + 1) * (m == 1 ? 2 : 1)) / (float)(n + m));
@ -834,8 +1032,10 @@ uint16_t WMM_PcupLow(float *Pcup, float *dPcup, float x, uint16_t nMax)
functions to the Schmidt quasi-normalized version using pre-computed
relation stored in the variable schmidtQuasiNorm */
for (n = 1; n <= nMax; n++) {
for (m = 0; m <= n; m++) {
for (n = 1; n <= nMax; n++)
{
for (m = 0; m <= n; m++)
{
index = (n * (n + 1) / 2 + m);
Pcup[index] = Pcup[index] * schmidtQuasiNorm[index];
dPcup[index] = -dPcup[index] * schmidtQuasiNorm[index];
@ -846,10 +1046,10 @@ uint16_t WMM_PcupLow(float *Pcup, float *dPcup, float x, uint16_t nMax)
FREE(schmidtQuasiNorm);
return TRUE;
} /*WMM_PcupLow */
return 0; // OK
}
uint16_t WMM_SummationSpecial(WMMtype_SphericalHarmonicVariables *
int WMM_SummationSpecial(WMMtype_SphericalHarmonicVariables *
SphVariables, WMMtype_CoordSpherical * CoordSpherical, WMMtype_MagneticResults * MagneticResults)
/* Special calculation for the component By at Geographic poles.
Manoj Nair, June, 2009 manoj.c.nair@noaa.gov
@ -867,7 +1067,10 @@ uint16_t WMM_SummationSpecial(WMMtype_SphericalHarmonicVariables *
float schmidtQuasiNorm1;
float schmidtQuasiNorm2;
float schmidtQuasiNorm3;
float *PcupS = (float *) MALLOC(sizeof(float) * NUMPCUPS);
if (!PcupS)
return -1; // memory allocation error
PcupS[0] = 1;
schmidtQuasiNorm1 = 1.0;
@ -875,7 +1078,8 @@ uint16_t WMM_SummationSpecial(WMMtype_SphericalHarmonicVariables *
MagneticResults->By = 0.0;
sin_phi = sin(DEG2RAD(CoordSpherical->phig));
for (n = 1; n <= MagneticModel->nMax; n++) {
for (n = 1; n <= MagneticModel->nMax; n++)
{
/*Compute the ration between the Gauss-normalized associated Legendre
functions and the Schmidt quasi-normalized version. This is equivalent to
@ -885,9 +1089,12 @@ uint16_t WMM_SummationSpecial(WMMtype_SphericalHarmonicVariables *
schmidtQuasiNorm2 = schmidtQuasiNorm1 * (float)(2 * n - 1) / (float)n;
schmidtQuasiNorm3 = schmidtQuasiNorm2 * sqrt((float)(n * 2) / (float)(n + 1));
schmidtQuasiNorm1 = schmidtQuasiNorm2;
if (n == 1) {
if (n == 1)
{
PcupS[n] = PcupS[n - 1];
} else {
}
else
{
k = (float)(((n - 1) * (n - 1)) - 1) / (float)((2 * n - 1) * (2 * n - 3));
PcupS[n] = sin_phi * PcupS[n - 1] - k * PcupS[n - 2];
}
@ -906,10 +1113,10 @@ uint16_t WMM_SummationSpecial(WMMtype_SphericalHarmonicVariables *
FREE(PcupS);
return TRUE;
} /*WMM_SummationSpecial */
return 0; // OK
}
uint16_t WMM_SecVarSummationSpecial(WMMtype_SphericalHarmonicVariables *
int WMM_SecVarSummationSpecial(WMMtype_SphericalHarmonicVariables *
SphVariables, WMMtype_CoordSpherical * CoordSpherical, WMMtype_MagneticResults * MagneticResults)
{
/*Special calculation for the secular variation summation at the poles.
@ -926,7 +1133,10 @@ uint16_t WMM_SecVarSummationSpecial(WMMtype_SphericalHarmonicVariables *
float schmidtQuasiNorm1;
float schmidtQuasiNorm2;
float schmidtQuasiNorm3;
float *PcupS = (float *) MALLOC(sizeof(float) * NUMPCUPS);
if (!PcupS)
return -1; // memory allocation error
PcupS[0] = 1;
schmidtQuasiNorm1 = 1.0;
@ -934,14 +1144,18 @@ uint16_t WMM_SecVarSummationSpecial(WMMtype_SphericalHarmonicVariables *
MagneticResults->By = 0.0;
sin_phi = sin(DEG2RAD(CoordSpherical->phig));
for (n = 1; n <= MagneticModel->nMaxSecVar; n++) {
for (n = 1; n <= MagneticModel->nMaxSecVar; n++)
{
index = (n * (n + 1) / 2 + 1);
schmidtQuasiNorm2 = schmidtQuasiNorm1 * (float)(2 * n - 1) / (float)n;
schmidtQuasiNorm3 = schmidtQuasiNorm2 * sqrt((float)(n * 2) / (float)(n + 1));
schmidtQuasiNorm1 = schmidtQuasiNorm2;
if (n == 1) {
if (n == 1)
{
PcupS[n] = PcupS[n - 1];
} else {
}
else
{
k = (float)(((n - 1) * (n - 1)) - 1) / (float)((2 * n - 1) * (2 * n - 3));
PcupS[n] = sin_phi * PcupS[n - 1] - k * PcupS[n - 2];
}
@ -960,8 +1174,8 @@ uint16_t WMM_SecVarSummationSpecial(WMMtype_SphericalHarmonicVariables *
FREE(PcupS);
return TRUE;
} /*SecVarSummationSpecial */
return 0; // OK
}
/**
* @brief Comput the MainFieldCoeffH accounting for the date
@ -1042,7 +1256,7 @@ float WMM_get_secular_var_coeff_h(uint16_t index)
return CoeffFile[index][5];
}
uint16_t WMM_DateToYear(uint16_t month, uint16_t day, uint16_t year)
int WMM_DateToYear(uint16_t month, uint16_t day, uint16_t year)
// Converts a given calendar date into a decimal year
{
uint16_t temp = 0; // Total number of days
@ -1055,10 +1269,12 @@ uint16_t WMM_DateToYear(uint16_t month, uint16_t day, uint16_t year)
MonthDays[2] += ExtraDay;
/******************Validation********************************/
if (month <= 0 || month > 12)
return 0;
return -1; // error
if (day <= 0 || day > MonthDays[month])
return 0;
return -2; // error
/****************Calculation of t***************************/
for (i = 1; i <= month; i++)
@ -1067,10 +1283,10 @@ uint16_t WMM_DateToYear(uint16_t month, uint16_t day, uint16_t year)
decimal_date = year + (temp - 1) / (365.0 + ExtraDay);
return 1;
} /*WMM_DateToYear */
return 0; // OK
}
void WMM_GeodeticToSpherical(WMMtype_CoordGeodetic * CoordGeodetic, WMMtype_CoordSpherical * CoordSpherical)
int WMM_GeodeticToSpherical(WMMtype_CoordGeodetic * CoordGeodetic, WMMtype_CoordSpherical * CoordSpherical)
// Converts Geodetic coordinates to Spherical coordinates
// Convert geodetic coordinates, (defined by the WGS-84
// reference ellipsoid), to Earth Centered Earth Fixed Cartesian
@ -1095,4 +1311,5 @@ void WMM_GeodeticToSpherical(WMMtype_CoordGeodetic * CoordGeodetic, WMMtype_Coor
CoordSpherical->phig = RAD2DEG(asin(zp / CoordSpherical->r)); // geocentric latitude
CoordSpherical->lambda = CoordGeodetic->lambda; // longitude
} // WMM_GeodeticToSpherical
return 0; // OK
}

View File

@ -119,40 +119,40 @@ typedef struct {
// Internal Function Prototypes
void WMM_Set_Coeff_Array();
void WMM_GeodeticToSpherical(WMMtype_CoordGeodetic * CoordGeodetic, WMMtype_CoordSpherical * CoordSpherical);
uint16_t WMM_DateToYear(uint16_t month, uint16_t day, uint16_t year);
uint16_t WMM_Geomag(WMMtype_CoordSpherical * CoordSpherical,
int WMM_GeodeticToSpherical(WMMtype_CoordGeodetic * CoordGeodetic, WMMtype_CoordSpherical * CoordSpherical);
int WMM_DateToYear(uint16_t month, uint16_t day, uint16_t year);
int WMM_Geomag(WMMtype_CoordSpherical * CoordSpherical,
WMMtype_CoordGeodetic * CoordGeodetic, WMMtype_GeoMagneticElements * GeoMagneticElements);
uint16_t WMM_AssociatedLegendreFunction(WMMtype_CoordSpherical * CoordSpherical, uint16_t nMax, WMMtype_LegendreFunction * LegendreFunction);
int WMM_AssociatedLegendreFunction(WMMtype_CoordSpherical * CoordSpherical, uint16_t nMax, WMMtype_LegendreFunction * LegendreFunction);
uint16_t WMM_CalculateGeoMagneticElements(WMMtype_MagneticResults * MagneticResultsGeo, WMMtype_GeoMagneticElements * GeoMagneticElements);
int WMM_CalculateGeoMagneticElements(WMMtype_MagneticResults * MagneticResultsGeo, WMMtype_GeoMagneticElements * GeoMagneticElements);
uint16_t WMM_CalculateSecularVariation(WMMtype_MagneticResults * MagneticVariation, WMMtype_GeoMagneticElements * MagneticElements);
int WMM_CalculateSecularVariation(WMMtype_MagneticResults * MagneticVariation, WMMtype_GeoMagneticElements * MagneticElements);
uint16_t WMM_ComputeSphericalHarmonicVariables(WMMtype_CoordSpherical *
int WMM_ComputeSphericalHarmonicVariables(WMMtype_CoordSpherical *
CoordSpherical, uint16_t nMax, WMMtype_SphericalHarmonicVariables * SphVariables);
uint16_t WMM_PcupLow(float *Pcup, float *dPcup, float x, uint16_t nMax);
int WMM_PcupLow(float *Pcup, float *dPcup, float x, uint16_t nMax);
uint16_t WMM_PcupHigh(float *Pcup, float *dPcup, float x, uint16_t nMax);
int WMM_PcupHigh(float *Pcup, float *dPcup, float x, uint16_t nMax);
uint16_t WMM_RotateMagneticVector(WMMtype_CoordSpherical *,
int WMM_RotateMagneticVector(WMMtype_CoordSpherical *,
WMMtype_CoordGeodetic * CoordGeodetic,
WMMtype_MagneticResults * MagneticResultsSph, WMMtype_MagneticResults * MagneticResultsGeo);
uint16_t WMM_SecVarSummation(WMMtype_LegendreFunction * LegendreFunction,
int WMM_SecVarSummation(WMMtype_LegendreFunction * LegendreFunction,
WMMtype_SphericalHarmonicVariables *
SphVariables, WMMtype_CoordSpherical * CoordSpherical, WMMtype_MagneticResults * MagneticResults);
uint16_t WMM_SecVarSummationSpecial(WMMtype_SphericalHarmonicVariables *
int WMM_SecVarSummationSpecial(WMMtype_SphericalHarmonicVariables *
SphVariables, WMMtype_CoordSpherical * CoordSpherical, WMMtype_MagneticResults * MagneticResults);
uint16_t WMM_Summation(WMMtype_LegendreFunction * LegendreFunction,
int WMM_Summation(WMMtype_LegendreFunction * LegendreFunction,
WMMtype_SphericalHarmonicVariables * SphVariables,
WMMtype_CoordSpherical * CoordSpherical, WMMtype_MagneticResults * MagneticResults);
uint16_t WMM_SummationSpecial(WMMtype_SphericalHarmonicVariables *
int WMM_SummationSpecial(WMMtype_SphericalHarmonicVariables *
SphVariables, WMMtype_CoordSpherical * CoordSpherical, WMMtype_MagneticResults * MagneticResults);
float WMM_get_main_field_coeff_g(uint16_t index);

View File

@ -29,6 +29,6 @@
// Exposed Function Prototypes
int WMM_Initialize();
void WMM_GetMagVector(float Lat, float Lon, float AltEllipsoid, uint16_t Month, uint16_t Day, uint16_t Year, float B[3]);
int WMM_GetMagVector(float Lat, float Lon, float AltEllipsoid, uint16_t Month, uint16_t Day, uint16_t Year, float B[3]);
#endif /* WORLDMAGMODEL_H_ */