1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-02-18 08:54:15 +01:00

Factor the relay tuning out of the main stabilization.c file into it's own

tool.
This commit is contained in:
James Cotton 2012-08-01 17:52:53 -05:00
parent ee4bb84e36
commit 8565dfbcc3
3 changed files with 239 additions and 172 deletions

View File

@ -0,0 +1,40 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup StabilizationModule Stabilization Module
* @brief Relay tuning controller
* @note This object updates the @ref ActuatorDesired "Actuator Desired" based on the
* PID loops on the @ref AttitudeDesired "Attitude Desired" and @ref AttitudeActual "Attitude Actual"
* @{
*
* @file relay_tuning.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief Attitude stabilization module.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef RELAY_TUNING_H
#define RELAY_TUNING_H
int stabilization_relay_init();
int stabilization_relay_rate(float err, float *output, int axis, bool reinit);
#endif

View File

@ -0,0 +1,179 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup StabilizationModule Stabilization Module
* @brief Relay tuning controller
* @note This object updates the @ref ActuatorDesired "Actuator Desired" based on the
* PID loops on the @ref AttitudeDesired "Attitude Desired" and @ref AttitudeActual "Attitude Actual"
* @{
*
* @file stabilization.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Attitude stabilization module.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "openpilot.h"
#include "stabilization.h"
#include "stabilizationsettings.h"
#include "actuatordesired.h"
#include "ratedesired.h"
#include "relaytuning.h"
#include "relaytuningsettings.h"
#include "stabilizationdesired.h"
#include "attitudeactual.h"
#include "gyros.h"
#include "flightstatus.h"
#include "manualcontrol.h" // Just to get a macro
#include "CoordinateConversions.h"
//! Private variables
static float *sin_lookup; // TODO: Move this to flash
static const int SIN_RESOLUTION = 180;
//! Private methods
static float sin_l(int angle);
#define MAX_AXES 3
int stabilization_relay_init()
{
sin_lookup = (float *) pvPortMalloc(sizeof(float) * SIN_RESOLUTION);
if (sin_lookup == NULL)
return -1;
for(uint32_t i = 0; i < 180; i++)
sin_lookup[i] = sinf((float)i * 2 * M_PI / 360.0f);
return 0;
}
/**
* Apply a step function for the stabilization controller and monitor the
* result
*
* Used to Replace the rate PID with a relay to measure the critical properties of this axis
* i.e. period and gain
*/
int stabilization_relay_rate(float error, float *output, int axis, bool reinit)
{
RelayTuningData relay;
RelayTuningGet(&relay);
static bool high = false;
static portTickType lastHighTime;
static portTickType lastLowTime;
static float accum_sin, accum_cos;
static uint32_t accumulated = 0;
const uint16_t DEGLITCH_TIME = 20; // ms
const float AMPLITUDE_ALPHA = 0.95;
const float PERIOD_ALPHA = 0.95;
portTickType thisTime = xTaskGetTickCount();
static bool rateRelayRunning[MAX_AXES];
// On first run initialize estimates to something reasonable
if(reinit) {
rateRelayRunning[axis] = false;
relay.Period[axis] = 200;
relay.Gain[axis] = 0;
accum_sin = 0;
accum_cos = 0;
accumulated = 0;
// These should get reinitialized anyway
high = true;
lastHighTime = thisTime;
lastLowTime = thisTime;
RelayTuningSet(&relay);
}
RelayTuningSettingsData relaySettings;
RelayTuningSettingsGet(&relaySettings);
// Compute output, simple threshold on error
*output = error > 0 ? relaySettings.Amplitude : -relaySettings.Amplitude;
/**** The code below here is to estimate the properties of the oscillation ****/
// Make sure the period can't go below limit
if (relay.Period[axis] < DEGLITCH_TIME)
relay.Period[axis] = DEGLITCH_TIME;
// Project the error onto a sine and cosine of the same frequency
// to accumulate the average amplitude
int dT = thisTime - lastHighTime;
uint32_t phase = 360 * dT / relay.Period[axis];
if(phase >= 360)
phase = 1;
accum_sin += sin_l(phase) * error;
accum_cos += sin_l(phase + 90) * error;
accumulated ++;
// Make sure we've had enough time since last transition then check for a change in the output
bool hysteresis = (high ? (thisTime - lastHighTime) : (thisTime - lastLowTime)) > DEGLITCH_TIME;
if ( !high && hysteresis && error > 0 ){ /* RISE DETECTED */
float this_amplitude = 2 * sqrtf(accum_sin*accum_sin + accum_cos*accum_cos) / accumulated;
float this_gain = this_amplitude / relaySettings.Amplitude;
accumulated = 0;
accum_sin = 0;
accum_cos = 0;
if(rateRelayRunning[axis] == false) {
rateRelayRunning[axis] = true;
relay.Period[axis] = 200;
relay.Gain[axis] = 0;
} else {
// Low pass filter each amplitude and period
relay.Gain[axis] = relay.Gain[axis] * AMPLITUDE_ALPHA + this_gain * (1 - AMPLITUDE_ALPHA);
relay.Period[axis] = relay.Period[axis] * PERIOD_ALPHA + dT * (1 - PERIOD_ALPHA);
}
lastHighTime = thisTime;
high = true;
RelayTuningSet(&relay);
} else if ( high && hysteresis && error < 0 ) { /* FALL DETECTED */
lastLowTime = thisTime;
high = false;
}
return 0;
}
/**
* Uses the lookup table to calculate sine (angle is in degrees)
* @param[in] angle in degrees
* @returns sin(angle)
*/
static float sin_l(int angle) {
angle = angle % 360;
if (angle > 180)
return - sin_lookup[angle-180];
else
return sin_lookup[angle];
}

View File

@ -45,6 +45,9 @@
#include "manualcontrol.h" // Just to get a macro #include "manualcontrol.h" // Just to get a macro
#include "CoordinateConversions.h" #include "CoordinateConversions.h"
// Includes for various stabilization algorithms
#include "relay_tuning.h"
// Private constants // Private constants
#define MAX_QUEUE_SIZE 1 #define MAX_QUEUE_SIZE 1
@ -91,9 +94,6 @@ pid_type pids[PID_MAX];
int8_t vbar_gyros_suppress; int8_t vbar_gyros_suppress;
bool vbar_piro_comp = false; bool vbar_piro_comp = false;
// TODO: Move this to flash
static float sin_lookup[180];
// Private functions // Private functions
static void stabilizationTask(void* parameters); static void stabilizationTask(void* parameters);
static float ApplyPid(pid_type * pid, const float err, float dT); static float ApplyPid(pid_type * pid, const float err, float dT);
@ -101,15 +101,6 @@ static float bound(float val, float range);
static void ZeroPids(void); static void ZeroPids(void);
static void SettingsUpdatedCb(UAVObjEvent * ev); static void SettingsUpdatedCb(UAVObjEvent * ev);
//! Uses the lookup table to calculate sine (angle is in degrees)
static float sin_l(int angle) {
angle = angle % 360;
if (angle > 180)
return - sin_lookup[angle-180];
else
return sin_lookup[angle];
}
/** /**
* Module initialization * Module initialization
*/ */
@ -119,8 +110,8 @@ int32_t StabilizationStart()
// Create object queue // Create object queue
queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent)); queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent));
for(uint32_t i = 0; i < 180; i++) // This prepares this optional algorithm
sin_lookup[i] = sinf((float)i * 2 * M_PI / 360.0f); stabilization_relay_init();
// Listen for updates. // Listen for updates.
// AttitudeActualConnectQueue(queue); // AttitudeActualConnectQueue(queue);
@ -366,171 +357,28 @@ static void stabilizationTask(void* parameters)
break; break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE:
// Store to rate desired variable for storing to UAVO
rateDesiredAxis[i] = bound(attitudeDesiredAxis[i], settings.ManualRate[i]);
// Run the relay controller which also estimates the oscillation parameters
stabilization_relay_rate(rateDesiredAxis[i] - gyro_filtered[i], &actuatorDesiredAxis[i], i, reinit);
actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i],1.0);
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE: case STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE:
{ if(reinit)
RelayTuningData relay;
RelayTuningGet(&relay);
static bool rateRelayRunning[MAX_AXES];
// On first run initialize estimates to something reasonable
if(reinit) {
pids[PID_ROLL + i].iAccumulator = 0; pids[PID_ROLL + i].iAccumulator = 0;
rateRelayRunning[i] = false;
relay.Period[i] = 200;
relay.Gain[i] = 0;
}
// Replace the rate PID with a relay to measure the critical properties of this axis
// i.e. period and gain
// Compute the outer loop // Compute the outer loop like attitude mode
rateDesiredAxis[i] = ApplyPid(&pids[PID_ROLL + i], local_error[i], dT); rateDesiredAxis[i] = ApplyPid(&pids[PID_ROLL + i], local_error[i], dT);
rateDesiredAxis[i] = bound(rateDesiredAxis[i], settings.MaximumRate[i]); rateDesiredAxis[i] = bound(rateDesiredAxis[i], settings.MaximumRate[i]);
// Store to rate desired variable for storing to UAVO // Run the relay controller which also estimates the oscillation parameters
rateDesiredAxis[i] = bound(attitudeDesiredAxis[i], settings.ManualRate[i]); stabilization_relay_rate(rateDesiredAxis[i] - gyro_filtered[i], &actuatorDesiredAxis[i], i, reinit);
actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i],1.0);
RelayTuningSettingsData relaySettings;
RelayTuningSettingsGet(&relaySettings);
float error = rateDesiredAxis[i] - gyro_filtered[i];
float command = error > 0 ? relaySettings.Amplitude : -relaySettings.Amplitude;
actuatorDesiredAxis[i] = bound(command,1.0f);
static bool high = false;
static portTickType lastHighTime;
static portTickType lastLowTime;
portTickType thisTime = xTaskGetTickCount();
static float accum_sin, accum_cos;
static uint32_t accumulated = 0;
const uint16_t DEGLITCH_TIME = 20; // ms
const float AMPLITUDE_ALPHA = 0.95;
const float PERIOD_ALPHA = 0.95;
// Make sure the period can't go below limit
if (relay.Period[i] < DEGLITCH_TIME)
relay.Period[i] = DEGLITCH_TIME;
// Project the error onto a sine and cosine of the same frequency
// to accumulate the average amplitude
float dT = thisTime - lastHighTime;
uint32_t phase = 360 * dT / relay.Period[i];
if(phase >= 360)
phase = 1;
accum_sin += sin_l(phase) * error;
accum_cos += sin_l(phase + 90) * error;
accumulated ++;
// Make susre we've had enough time since last transition then check for a change in the output
bool hysteresis = (high ? (thisTime - lastHighTime) : (thisTime - lastLowTime)) > DEGLITCH_TIME;
if ( !high && hysteresis && error > 0 ){ /* RISE DETECTED */
float this_amplitude = 2 * sqrtf(accum_sin*accum_sin + accum_cos*accum_cos) / accumulated;
float this_gain = this_amplitude / relaySettings.Amplitude;
accumulated = 0;
accum_sin = 0;
accum_cos = 0;
if(rateRelayRunning[i] == false) {
rateRelayRunning[i] = true;
relay.Period[i] = 200;
relay.Gain[i] = 0;
} else {
// Low pass filter each amplitude and period
relay.Gain[i] = relay.Gain[i] * AMPLITUDE_ALPHA + this_gain * (1 - AMPLITUDE_ALPHA);
relay.Period[i] = relay.Period[i] * PERIOD_ALPHA + dT * (1 - PERIOD_ALPHA);
}
lastHighTime = thisTime;
high = true;
RelayTuningSet(&relay);
} else if ( high && hysteresis && error < 0 ) { /* FALL DETECTED */
lastLowTime = thisTime;
high = false;
}
break;
}
case STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE:
{
RelayTuningData relay;
RelayTuningGet(&relay);
static bool rateRelayRunning[MAX_AXES];
// On first run initialize estimates to something reasonable
if(reinit) {
pids[PID_ROLL + i].iAccumulator = 0;
rateRelayRunning[i] = false;
relay.Period[i] = 200;
relay.Gain[i] = 0;
}
// Replace the rate PID with a relay to measure the critical properties of this axis
// i.e. period and gain
// Store to rate desired variable for storing to UAVO
rateDesiredAxis[i] = bound(attitudeDesiredAxis[i], settings.ManualRate[i]);
RelayTuningSettingsData relaySettings;
RelayTuningSettingsGet(&relaySettings);
float error = rateDesiredAxis[i] - gyro_filtered[i];
float command = error > 0 ? relaySettings.Amplitude : -relaySettings.Amplitude;
actuatorDesiredAxis[i] = bound(command,1.0);
static bool high = false;
static portTickType lastHighTime;
static portTickType lastLowTime;
portTickType thisTime = xTaskGetTickCount();
static float accum_sin, accum_cos;
static uint32_t accumulated = 0;
const uint16_t DEGLITCH_TIME = 20; // ms
const float AMPLITUDE_ALPHA = 0.95;
const float PERIOD_ALPHA = 0.95;
// Make sure the period can't go below limit
if (relay.Period[i] < DEGLITCH_TIME)
relay.Period[i] = DEGLITCH_TIME;
// Project the error onto a sine and cosine of the same frequency
// to accumulate the average amplitude
float dT = thisTime - lastHighTime;
uint32_t phase = 360 * dT / relay.Period[i];
if(phase >= 360)
phase = 1;
accum_sin += sin_l(phase) * error;
accum_cos += sin_l(phase + 90) * error;
accumulated ++;
// Make susre we've had enough time since last transition then check for a change in the output
bool hysteresis = (high ? (thisTime - lastHighTime) : (thisTime - lastLowTime)) > DEGLITCH_TIME;
if ( !high && hysteresis && error > 0 ){ /* RISE DETECTED */
float this_amplitude = 2 * sqrtf(accum_sin*accum_sin + accum_cos*accum_cos) / accumulated;
float this_gain = this_amplitude / relaySettings.Amplitude;
accumulated = 0;
accum_sin = 0;
accum_cos = 0;
if(rateRelayRunning[i] == false) {
rateRelayRunning[i] = true;
relay.Period[i] = 200;
relay.Gain[i] = 0;
} else {
// Low pass filter each amplitude and period
relay.Gain[i] = relay.Gain[i] * AMPLITUDE_ALPHA + this_gain * (1 - AMPLITUDE_ALPHA);
relay.Period[i] = relay.Period[i] * PERIOD_ALPHA + dT * (1 - PERIOD_ALPHA);
}
lastHighTime = thisTime;
high = true;
RelayTuningSet(&relay);
} else if ( high && hysteresis && error < 0 ) { /* FALL DETECTED */
lastLowTime = thisTime;
high = false;
}
}
break; break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_NONE: case STABILIZATIONDESIRED_STABILIZATIONMODE_NONE: