mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2025-02-18 08:54:15 +01:00
Factor the relay tuning out of the main stabilization.c file into it's own
tool.
This commit is contained in:
parent
ee4bb84e36
commit
8565dfbcc3
40
flight/Modules/Stabilization/inc/relay_tuning.h
Normal file
40
flight/Modules/Stabilization/inc/relay_tuning.h
Normal file
@ -0,0 +1,40 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @addtogroup OpenPilotModules OpenPilot Modules
|
||||
* @{
|
||||
* @addtogroup StabilizationModule Stabilization Module
|
||||
* @brief Relay tuning controller
|
||||
* @note This object updates the @ref ActuatorDesired "Actuator Desired" based on the
|
||||
* PID loops on the @ref AttitudeDesired "Attitude Desired" and @ref AttitudeActual "Attitude Actual"
|
||||
* @{
|
||||
*
|
||||
* @file relay_tuning.h
|
||||
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
|
||||
* @brief Attitude stabilization module.
|
||||
*
|
||||
* @see The GNU Public License (GPL) Version 3
|
||||
*
|
||||
*****************************************************************************/
|
||||
/*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License along
|
||||
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
#ifndef RELAY_TUNING_H
|
||||
#define RELAY_TUNING_H
|
||||
|
||||
int stabilization_relay_init();
|
||||
int stabilization_relay_rate(float err, float *output, int axis, bool reinit);
|
||||
|
||||
#endif
|
179
flight/Modules/Stabilization/relay_tuning.c
Normal file
179
flight/Modules/Stabilization/relay_tuning.c
Normal file
@ -0,0 +1,179 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @addtogroup OpenPilotModules OpenPilot Modules
|
||||
* @{
|
||||
* @addtogroup StabilizationModule Stabilization Module
|
||||
* @brief Relay tuning controller
|
||||
* @note This object updates the @ref ActuatorDesired "Actuator Desired" based on the
|
||||
* PID loops on the @ref AttitudeDesired "Attitude Desired" and @ref AttitudeActual "Attitude Actual"
|
||||
* @{
|
||||
*
|
||||
* @file stabilization.c
|
||||
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
||||
* @brief Attitude stabilization module.
|
||||
*
|
||||
* @see The GNU Public License (GPL) Version 3
|
||||
*
|
||||
*****************************************************************************/
|
||||
/*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License along
|
||||
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
#include "openpilot.h"
|
||||
#include "stabilization.h"
|
||||
#include "stabilizationsettings.h"
|
||||
#include "actuatordesired.h"
|
||||
#include "ratedesired.h"
|
||||
#include "relaytuning.h"
|
||||
#include "relaytuningsettings.h"
|
||||
#include "stabilizationdesired.h"
|
||||
#include "attitudeactual.h"
|
||||
#include "gyros.h"
|
||||
#include "flightstatus.h"
|
||||
#include "manualcontrol.h" // Just to get a macro
|
||||
#include "CoordinateConversions.h"
|
||||
|
||||
//! Private variables
|
||||
static float *sin_lookup; // TODO: Move this to flash
|
||||
static const int SIN_RESOLUTION = 180;
|
||||
|
||||
//! Private methods
|
||||
static float sin_l(int angle);
|
||||
|
||||
#define MAX_AXES 3
|
||||
|
||||
int stabilization_relay_init()
|
||||
{
|
||||
sin_lookup = (float *) pvPortMalloc(sizeof(float) * SIN_RESOLUTION);
|
||||
if (sin_lookup == NULL)
|
||||
return -1;
|
||||
|
||||
for(uint32_t i = 0; i < 180; i++)
|
||||
sin_lookup[i] = sinf((float)i * 2 * M_PI / 360.0f);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Apply a step function for the stabilization controller and monitor the
|
||||
* result
|
||||
*
|
||||
* Used to Replace the rate PID with a relay to measure the critical properties of this axis
|
||||
* i.e. period and gain
|
||||
*/
|
||||
int stabilization_relay_rate(float error, float *output, int axis, bool reinit)
|
||||
{
|
||||
RelayTuningData relay;
|
||||
RelayTuningGet(&relay);
|
||||
|
||||
static bool high = false;
|
||||
static portTickType lastHighTime;
|
||||
static portTickType lastLowTime;
|
||||
|
||||
static float accum_sin, accum_cos;
|
||||
static uint32_t accumulated = 0;
|
||||
|
||||
const uint16_t DEGLITCH_TIME = 20; // ms
|
||||
const float AMPLITUDE_ALPHA = 0.95;
|
||||
const float PERIOD_ALPHA = 0.95;
|
||||
|
||||
portTickType thisTime = xTaskGetTickCount();
|
||||
|
||||
static bool rateRelayRunning[MAX_AXES];
|
||||
|
||||
// On first run initialize estimates to something reasonable
|
||||
if(reinit) {
|
||||
rateRelayRunning[axis] = false;
|
||||
relay.Period[axis] = 200;
|
||||
relay.Gain[axis] = 0;
|
||||
|
||||
accum_sin = 0;
|
||||
accum_cos = 0;
|
||||
accumulated = 0;
|
||||
|
||||
// These should get reinitialized anyway
|
||||
high = true;
|
||||
lastHighTime = thisTime;
|
||||
lastLowTime = thisTime;
|
||||
RelayTuningSet(&relay);
|
||||
}
|
||||
|
||||
|
||||
RelayTuningSettingsData relaySettings;
|
||||
RelayTuningSettingsGet(&relaySettings);
|
||||
|
||||
// Compute output, simple threshold on error
|
||||
*output = error > 0 ? relaySettings.Amplitude : -relaySettings.Amplitude;
|
||||
|
||||
/**** The code below here is to estimate the properties of the oscillation ****/
|
||||
|
||||
// Make sure the period can't go below limit
|
||||
if (relay.Period[axis] < DEGLITCH_TIME)
|
||||
relay.Period[axis] = DEGLITCH_TIME;
|
||||
|
||||
// Project the error onto a sine and cosine of the same frequency
|
||||
// to accumulate the average amplitude
|
||||
int dT = thisTime - lastHighTime;
|
||||
uint32_t phase = 360 * dT / relay.Period[axis];
|
||||
if(phase >= 360)
|
||||
phase = 1;
|
||||
accum_sin += sin_l(phase) * error;
|
||||
accum_cos += sin_l(phase + 90) * error;
|
||||
accumulated ++;
|
||||
|
||||
// Make sure we've had enough time since last transition then check for a change in the output
|
||||
bool hysteresis = (high ? (thisTime - lastHighTime) : (thisTime - lastLowTime)) > DEGLITCH_TIME;
|
||||
if ( !high && hysteresis && error > 0 ){ /* RISE DETECTED */
|
||||
float this_amplitude = 2 * sqrtf(accum_sin*accum_sin + accum_cos*accum_cos) / accumulated;
|
||||
float this_gain = this_amplitude / relaySettings.Amplitude;
|
||||
|
||||
accumulated = 0;
|
||||
accum_sin = 0;
|
||||
accum_cos = 0;
|
||||
|
||||
if(rateRelayRunning[axis] == false) {
|
||||
rateRelayRunning[axis] = true;
|
||||
relay.Period[axis] = 200;
|
||||
relay.Gain[axis] = 0;
|
||||
} else {
|
||||
// Low pass filter each amplitude and period
|
||||
relay.Gain[axis] = relay.Gain[axis] * AMPLITUDE_ALPHA + this_gain * (1 - AMPLITUDE_ALPHA);
|
||||
relay.Period[axis] = relay.Period[axis] * PERIOD_ALPHA + dT * (1 - PERIOD_ALPHA);
|
||||
}
|
||||
lastHighTime = thisTime;
|
||||
high = true;
|
||||
RelayTuningSet(&relay);
|
||||
} else if ( high && hysteresis && error < 0 ) { /* FALL DETECTED */
|
||||
lastLowTime = thisTime;
|
||||
high = false;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Uses the lookup table to calculate sine (angle is in degrees)
|
||||
* @param[in] angle in degrees
|
||||
* @returns sin(angle)
|
||||
*/
|
||||
static float sin_l(int angle) {
|
||||
angle = angle % 360;
|
||||
if (angle > 180)
|
||||
return - sin_lookup[angle-180];
|
||||
else
|
||||
return sin_lookup[angle];
|
||||
}
|
||||
|
@ -45,6 +45,9 @@
|
||||
#include "manualcontrol.h" // Just to get a macro
|
||||
#include "CoordinateConversions.h"
|
||||
|
||||
// Includes for various stabilization algorithms
|
||||
#include "relay_tuning.h"
|
||||
|
||||
// Private constants
|
||||
#define MAX_QUEUE_SIZE 1
|
||||
|
||||
@ -91,9 +94,6 @@ pid_type pids[PID_MAX];
|
||||
int8_t vbar_gyros_suppress;
|
||||
bool vbar_piro_comp = false;
|
||||
|
||||
// TODO: Move this to flash
|
||||
static float sin_lookup[180];
|
||||
|
||||
// Private functions
|
||||
static void stabilizationTask(void* parameters);
|
||||
static float ApplyPid(pid_type * pid, const float err, float dT);
|
||||
@ -101,15 +101,6 @@ static float bound(float val, float range);
|
||||
static void ZeroPids(void);
|
||||
static void SettingsUpdatedCb(UAVObjEvent * ev);
|
||||
|
||||
//! Uses the lookup table to calculate sine (angle is in degrees)
|
||||
static float sin_l(int angle) {
|
||||
angle = angle % 360;
|
||||
if (angle > 180)
|
||||
return - sin_lookup[angle-180];
|
||||
else
|
||||
return sin_lookup[angle];
|
||||
}
|
||||
|
||||
/**
|
||||
* Module initialization
|
||||
*/
|
||||
@ -119,8 +110,8 @@ int32_t StabilizationStart()
|
||||
// Create object queue
|
||||
queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent));
|
||||
|
||||
for(uint32_t i = 0; i < 180; i++)
|
||||
sin_lookup[i] = sinf((float)i * 2 * M_PI / 360.0f);
|
||||
// This prepares this optional algorithm
|
||||
stabilization_relay_init();
|
||||
|
||||
// Listen for updates.
|
||||
// AttitudeActualConnectQueue(queue);
|
||||
@ -366,171 +357,28 @@ static void stabilizationTask(void* parameters)
|
||||
|
||||
break;
|
||||
|
||||
case STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE:
|
||||
// Store to rate desired variable for storing to UAVO
|
||||
rateDesiredAxis[i] = bound(attitudeDesiredAxis[i], settings.ManualRate[i]);
|
||||
|
||||
// Run the relay controller which also estimates the oscillation parameters
|
||||
stabilization_relay_rate(rateDesiredAxis[i] - gyro_filtered[i], &actuatorDesiredAxis[i], i, reinit);
|
||||
actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i],1.0);
|
||||
|
||||
break;
|
||||
|
||||
case STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE:
|
||||
{
|
||||
RelayTuningData relay;
|
||||
RelayTuningGet(&relay);
|
||||
|
||||
static bool rateRelayRunning[MAX_AXES];
|
||||
|
||||
// On first run initialize estimates to something reasonable
|
||||
if(reinit) {
|
||||
if(reinit)
|
||||
pids[PID_ROLL + i].iAccumulator = 0;
|
||||
rateRelayRunning[i] = false;
|
||||
relay.Period[i] = 200;
|
||||
relay.Gain[i] = 0;
|
||||
}
|
||||
// Replace the rate PID with a relay to measure the critical properties of this axis
|
||||
// i.e. period and gain
|
||||
|
||||
// Compute the outer loop
|
||||
// Compute the outer loop like attitude mode
|
||||
rateDesiredAxis[i] = ApplyPid(&pids[PID_ROLL + i], local_error[i], dT);
|
||||
rateDesiredAxis[i] = bound(rateDesiredAxis[i], settings.MaximumRate[i]);
|
||||
|
||||
// Store to rate desired variable for storing to UAVO
|
||||
rateDesiredAxis[i] = bound(attitudeDesiredAxis[i], settings.ManualRate[i]);
|
||||
// Run the relay controller which also estimates the oscillation parameters
|
||||
stabilization_relay_rate(rateDesiredAxis[i] - gyro_filtered[i], &actuatorDesiredAxis[i], i, reinit);
|
||||
actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i],1.0);
|
||||
|
||||
RelayTuningSettingsData relaySettings;
|
||||
RelayTuningSettingsGet(&relaySettings);
|
||||
float error = rateDesiredAxis[i] - gyro_filtered[i];
|
||||
float command = error > 0 ? relaySettings.Amplitude : -relaySettings.Amplitude;
|
||||
actuatorDesiredAxis[i] = bound(command,1.0f);
|
||||
|
||||
static bool high = false;
|
||||
static portTickType lastHighTime;
|
||||
static portTickType lastLowTime;
|
||||
portTickType thisTime = xTaskGetTickCount();
|
||||
|
||||
static float accum_sin, accum_cos;
|
||||
static uint32_t accumulated = 0;
|
||||
|
||||
const uint16_t DEGLITCH_TIME = 20; // ms
|
||||
const float AMPLITUDE_ALPHA = 0.95;
|
||||
const float PERIOD_ALPHA = 0.95;
|
||||
|
||||
// Make sure the period can't go below limit
|
||||
if (relay.Period[i] < DEGLITCH_TIME)
|
||||
relay.Period[i] = DEGLITCH_TIME;
|
||||
|
||||
// Project the error onto a sine and cosine of the same frequency
|
||||
// to accumulate the average amplitude
|
||||
float dT = thisTime - lastHighTime;
|
||||
uint32_t phase = 360 * dT / relay.Period[i];
|
||||
if(phase >= 360)
|
||||
phase = 1;
|
||||
accum_sin += sin_l(phase) * error;
|
||||
accum_cos += sin_l(phase + 90) * error;
|
||||
accumulated ++;
|
||||
|
||||
// Make susre we've had enough time since last transition then check for a change in the output
|
||||
bool hysteresis = (high ? (thisTime - lastHighTime) : (thisTime - lastLowTime)) > DEGLITCH_TIME;
|
||||
if ( !high && hysteresis && error > 0 ){ /* RISE DETECTED */
|
||||
float this_amplitude = 2 * sqrtf(accum_sin*accum_sin + accum_cos*accum_cos) / accumulated;
|
||||
float this_gain = this_amplitude / relaySettings.Amplitude;
|
||||
|
||||
accumulated = 0;
|
||||
accum_sin = 0;
|
||||
accum_cos = 0;
|
||||
|
||||
if(rateRelayRunning[i] == false) {
|
||||
rateRelayRunning[i] = true;
|
||||
relay.Period[i] = 200;
|
||||
relay.Gain[i] = 0;
|
||||
} else {
|
||||
// Low pass filter each amplitude and period
|
||||
relay.Gain[i] = relay.Gain[i] * AMPLITUDE_ALPHA + this_gain * (1 - AMPLITUDE_ALPHA);
|
||||
relay.Period[i] = relay.Period[i] * PERIOD_ALPHA + dT * (1 - PERIOD_ALPHA);
|
||||
}
|
||||
lastHighTime = thisTime;
|
||||
high = true;
|
||||
RelayTuningSet(&relay);
|
||||
} else if ( high && hysteresis && error < 0 ) { /* FALL DETECTED */
|
||||
lastLowTime = thisTime;
|
||||
high = false;
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
case STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE:
|
||||
{
|
||||
RelayTuningData relay;
|
||||
RelayTuningGet(&relay);
|
||||
|
||||
static bool rateRelayRunning[MAX_AXES];
|
||||
|
||||
// On first run initialize estimates to something reasonable
|
||||
if(reinit) {
|
||||
pids[PID_ROLL + i].iAccumulator = 0;
|
||||
rateRelayRunning[i] = false;
|
||||
relay.Period[i] = 200;
|
||||
relay.Gain[i] = 0;
|
||||
}
|
||||
|
||||
// Replace the rate PID with a relay to measure the critical properties of this axis
|
||||
// i.e. period and gain
|
||||
|
||||
// Store to rate desired variable for storing to UAVO
|
||||
rateDesiredAxis[i] = bound(attitudeDesiredAxis[i], settings.ManualRate[i]);
|
||||
|
||||
RelayTuningSettingsData relaySettings;
|
||||
RelayTuningSettingsGet(&relaySettings);
|
||||
float error = rateDesiredAxis[i] - gyro_filtered[i];
|
||||
float command = error > 0 ? relaySettings.Amplitude : -relaySettings.Amplitude;
|
||||
actuatorDesiredAxis[i] = bound(command,1.0);
|
||||
|
||||
static bool high = false;
|
||||
static portTickType lastHighTime;
|
||||
static portTickType lastLowTime;
|
||||
portTickType thisTime = xTaskGetTickCount();
|
||||
|
||||
static float accum_sin, accum_cos;
|
||||
static uint32_t accumulated = 0;
|
||||
|
||||
const uint16_t DEGLITCH_TIME = 20; // ms
|
||||
const float AMPLITUDE_ALPHA = 0.95;
|
||||
const float PERIOD_ALPHA = 0.95;
|
||||
|
||||
// Make sure the period can't go below limit
|
||||
if (relay.Period[i] < DEGLITCH_TIME)
|
||||
relay.Period[i] = DEGLITCH_TIME;
|
||||
|
||||
// Project the error onto a sine and cosine of the same frequency
|
||||
// to accumulate the average amplitude
|
||||
float dT = thisTime - lastHighTime;
|
||||
uint32_t phase = 360 * dT / relay.Period[i];
|
||||
if(phase >= 360)
|
||||
phase = 1;
|
||||
accum_sin += sin_l(phase) * error;
|
||||
accum_cos += sin_l(phase + 90) * error;
|
||||
accumulated ++;
|
||||
|
||||
// Make susre we've had enough time since last transition then check for a change in the output
|
||||
bool hysteresis = (high ? (thisTime - lastHighTime) : (thisTime - lastLowTime)) > DEGLITCH_TIME;
|
||||
if ( !high && hysteresis && error > 0 ){ /* RISE DETECTED */
|
||||
float this_amplitude = 2 * sqrtf(accum_sin*accum_sin + accum_cos*accum_cos) / accumulated;
|
||||
float this_gain = this_amplitude / relaySettings.Amplitude;
|
||||
|
||||
accumulated = 0;
|
||||
accum_sin = 0;
|
||||
accum_cos = 0;
|
||||
|
||||
if(rateRelayRunning[i] == false) {
|
||||
rateRelayRunning[i] = true;
|
||||
relay.Period[i] = 200;
|
||||
relay.Gain[i] = 0;
|
||||
} else {
|
||||
// Low pass filter each amplitude and period
|
||||
relay.Gain[i] = relay.Gain[i] * AMPLITUDE_ALPHA + this_gain * (1 - AMPLITUDE_ALPHA);
|
||||
relay.Period[i] = relay.Period[i] * PERIOD_ALPHA + dT * (1 - PERIOD_ALPHA);
|
||||
}
|
||||
lastHighTime = thisTime;
|
||||
high = true;
|
||||
RelayTuningSet(&relay);
|
||||
} else if ( high && hysteresis && error < 0 ) { /* FALL DETECTED */
|
||||
lastLowTime = thisTime;
|
||||
high = false;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case STABILIZATIONDESIRED_STABILIZATIONMODE_NONE:
|
||||
|
Loading…
x
Reference in New Issue
Block a user