1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-01 09:24:10 +01:00

OP-1156 refactored pathfollower - new unified module as delayed callback - compiles but untested

This commit is contained in:
Corvus Corax 2014-08-10 19:41:40 +02:00
parent a3d18bb578
commit 8944419b0f
6 changed files with 1219 additions and 109 deletions

View File

@ -52,4 +52,31 @@ static inline float boundf(float val, float boundary1, float boundary2)
return val;
}
static inline float squaref(float x)
{
return x * x;
}
static inline float vector_lengthf(float *vector, const uint8_t dim)
{
float length = 0.0f;
for (int t = 0; t < dim; t++) {
length += squaref(vector[t]);
}
return sqrtf(length);
}
static inline void vector_normalizef(float *vector, const uint8_t dim)
{
float length = vector_lengthf(vector, dim);
if (length <= 0.0f || isnan(length)) {
return;
}
for (int t = 0; t < dim; t++) {
vector[t] /= length;
}
}
#endif /* MATHMISC_H */

View File

@ -53,7 +53,7 @@ void path_progress(float *start_point, float *end_point, float *cur_point, struc
case PATHDESIRED_MODE_FLYVECTOR:
return path_vector(start_point, end_point, cur_point, status, true);
break;
break;
case PATHDESIRED_MODE_DRIVEVECTOR:
return path_vector(start_point, end_point, cur_point, status, false);
@ -98,23 +98,23 @@ static void path_endpoint(float *start_point, float *end_point, float *cur_point
status->correction_direction[0] = status->correction_direction[1] = status->correction_direction[2] = 0;
// Distance to go
path[0] = end_point[0] - start_point[0];
path[1] = end_point[1] - start_point[1];
path[2] = mode3D ? end_point[2] - start_point[2] : 0;
path[0] = end_point[0] - start_point[0];
path[1] = end_point[1] - start_point[1];
path[2] = mode3D ? end_point[2] - start_point[2] : 0;
// Current progress location relative to end
diff[0] = end_point[0] - cur_point[0];
diff[1] = end_point[1] - cur_point[1];
diff[2] = mode3D ? end_point[2] - cur_point[2] : 0;
diff[0] = end_point[0] - cur_point[0];
diff[1] = end_point[1] - cur_point[1];
diff[2] = mode3D ? end_point[2] - cur_point[2] : 0;
dist_diff = sqrtf(diff[0]*diff[0] + diff[1]*diff[1] + diff[2]*diff[2]);
dist_path = sqrtf(path[0]*path[0] + path[1]*path[1] + path[2]*path[2]);
dist_diff = vector_lengthf(diff, 3);
dist_path = vector_lengthf(path, 3);
if (dist_diff < 1e-6f) {
status->fractional_progress = 1;
status->error = 0;
status->path_direction[0] = status->path_direction[1] = 0;
status->path_direction[2] = 1;
status->path_direction[0] = status->path_direction[1] = 0;
status->path_direction[2] = 0;
return;
}
@ -147,23 +147,23 @@ static void path_vector(float *start_point, float *end_point, float *cur_point,
float track_point[3];
// Distance to go
path[0] = end_point[0] - start_point[0];
path[1] = end_point[1] - start_point[1];
path[2] = mode3D ? end_point[2] - start_point[2] : 0;
path[0] = end_point[0] - start_point[0];
path[1] = end_point[1] - start_point[1];
path[2] = mode3D ? end_point[2] - start_point[2] : 0;
// Current progress location relative to start
diff[0] = cur_point[0] - start_point[0];
diff[1] = cur_point[1] - start_point[1];
diff[2] = mode3D ? cur_point[2] - start_point[2]: 0;
diff[0] = cur_point[0] - start_point[0];
diff[1] = cur_point[1] - start_point[1];
diff[2] = mode3D ? cur_point[2] - start_point[2] : 0;
dot = path[0] * diff[0] + path[1] * diff[1] + path[2] * diff[2];
dist_path = sqrtf(path[0] * path[0] + path[1] * path[1] + path[2] * path[2]);
dot = path[0] * diff[0] + path[1] * diff[1] + path[2] * diff[2];
dist_path = vector_lengthf(path, 3);
if (dist_path > 1e-6f) {
// Compute direction to travel & progress
status->path_direction[0] = path[0] / dist_path;
status->path_direction[1] = path[1] / dist_path;
status->path_direction[2] = path[2] / dist_path;
status->path_direction[0] = path[0] / dist_path;
status->path_direction[1] = path[1] / dist_path;
status->path_direction[2] = path[2] / dist_path;
status->fractional_progress = dot / (dist_path * dist_path);
} else {
// Fly towards the endpoint to prevent flying away,
@ -182,9 +182,7 @@ static void path_vector(float *start_point, float *end_point, float *cur_point,
status->correction_direction[1] = track_point[1] - cur_point[1];
status->correction_direction[2] = track_point[2] - cur_point[2];
status->error = sqrt(status->correction_direction[0] * status->correction_direction[0] +
status->correction_direction[1] * status->correction_direction[1] +
status->correction_direction[2] * status->correction_direction[2]);
status->error = vector_lengthf(status->correction_direction, 3);
// Normalize correction_direction but avoid division by zero
if (status->error > 1e-6f) {
@ -194,7 +192,7 @@ static void path_vector(float *start_point, float *end_point, float *cur_point,
} else {
status->correction_direction[0] = 0;
status->correction_direction[1] = 0;
status->correction_direction[2] = 1;
status->correction_direction[2] = 0;
}
}
@ -207,7 +205,7 @@ static void path_vector(float *start_point, float *end_point, float *cur_point,
*/
static void path_circle(float *start_point, float *end_point, float *cur_point, struct path_status *status, bool clockwise)
{
float radius_north, radius_east, diff_north, diff_east;
float radius_north, radius_east, diff_north, diff_east, diff_down;
float radius, cradius;
float normal[2];
float progress;
@ -220,70 +218,72 @@ static void path_circle(float *start_point, float *end_point, float *cur_point,
// Current location relative to center
diff_north = cur_point[0] - end_point[0];
diff_east = cur_point[1] - end_point[1];
diff_down = cur_point[2] - end_point[2];
radius = sqrtf(powf(radius_north, 2) + powf(radius_east, 2));
cradius = sqrtf(powf(diff_north, 2) + powf(diff_east, 2));
radius = sqrtf(squaref(radius_north) + squaref(radius_east));
cradius = sqrtf(squaref(diff_north) + squaref(diff_east));
if (cradius < 1e-6f) {
// cradius is zero, just fly somewhere and make sure correction is still a normal
status->fractional_progress = 1;
status->error = radius;
status->correction_direction[0] = 0;
status->correction_direction[1] = 1;
status->correction_direction[2] = 0;
status->path_direction[0] = 1;
status->path_direction[1] = 0;
status->path_direction[2] = 0;
return;
}
if (clockwise) {
// Compute the normal to the radius clockwise
normal[0] = -diff_east / cradius;
normal[1] = diff_north / cradius;
} else {
// Compute the normal to the radius counter clockwise
normal[0] = diff_east / cradius;
normal[1] = -diff_north / cradius;
}
// normalize progress to 0..1
a_diff = atan2f(diff_north, diff_east);
a_radius = atan2f(radius_north, radius_east);
if (a_diff < 0) {
a_diff += 2.0f * M_PI_F;
}
if (a_radius < 0) {
a_radius += 2.0f * M_PI_F;
}
progress = (a_diff - a_radius + M_PI_F) / (2.0f * M_PI_F);
if (progress < 0) {
progress += 1.0f;
} else if (progress >= 1.0f) {
progress -= 1.0f;
}
if (clockwise) {
progress = 1 - progress;
}
status->fractional_progress = progress;
// circles are always horizontal (for now - TODO: allow 3d circles - problem: clockwise/counterclockwise does no longer apply)
status->path_direction[2] = 0.0f;
// error is current radius minus wanted radius - positive if too close
status->error = radius - cradius;
// Compute direction to correct error
status->correction_direction[0] = (status->error > 0 ? 1 : -1) * diff_north / cradius;
status->correction_direction[1] = (status->error > 0 ? 1 : -1) * diff_east / cradius;
status->correction_direction[2] = 0;
if (cradius < 1e-6f) {
// cradius is zero, just fly somewhere and make sure correction is still a normal
status->fractional_progress = 1;
status->correction_direction[0] = 0;
status->correction_direction[1] = 1;
status->path_direction[0] = 1;
status->path_direction[1] = 0;
} else {
if (clockwise) {
// Compute the normal to the radius clockwise
normal[0] = -diff_east / cradius;
normal[1] = diff_north / cradius;
} else {
// Compute the normal to the radius counter clockwise
normal[0] = diff_east / cradius;
normal[1] = -diff_north / cradius;
}
// Compute direction to travel
status->path_direction[0] = normal[0];
status->path_direction[1] = normal[1];
status->path_direction[2] = 0;
// normalize progress to 0..1
a_diff = atan2f(diff_north, diff_east);
a_radius = atan2f(radius_north, radius_east);
if (a_diff < 0) {
a_diff += 2.0f * M_PI_F;
}
if (a_radius < 0) {
a_radius += 2.0f * M_PI_F;
}
progress = (a_diff - a_radius + M_PI_F) / (2.0f * M_PI_F);
if (progress < 0.0f) {
progress += 1.0f;
} else if (progress >= 1.0f) {
progress -= 1.0f;
}
if (clockwise) {
progress = 1.0f - progress;
}
status->fractional_progress = progress;
// Compute direction to travel
status->path_direction[0] = normal[0];
status->path_direction[1] = normal[1];
// Compute direction to correct error
status->correction_direction[0] = status->error * diff_north / cradius;
status->correction_direction[1] = status->error * diff_east / cradius;
}
status->correction_direction[2] = -diff_down;
vector_normalizef(status->correction_direction, 3);
status->error = fabs(status->error);
}

View File

@ -132,6 +132,7 @@ static PiOSDeltatimeConfig landdT;
void plan_setup_land()
{
float descendspeed;
plan_setup_positionHold();
FlightModeSettingsLandingVelocityGet(&descendspeed);

View File

@ -51,12 +51,29 @@
#include <math.h>
#include <pid.h>
#include <CoordinateConversions.h>
#include <pios_struct_helper.h>
#include <sin_lookup.h>
#include <paths.h>
#include <sanitycheck.h>
#include <fixedwingpathfollowersettings.h>
#include <fixedwingpathfollowerstatus.h>
#include <vtolpathfollowersettings.h>
#include <flightstatus.h>
#include <pathstatus.h>
#include <pathdesired.h>
#include <positionstate.h>
#include <velocitystate.h>
#include <velocitydesired.h>
#include <stabilizationdesired.h>
#include <airspeedstate.h>
#include <attitudestate.h>
#include <takeofflocation.h>
#include <poilocation.h>
#include <manualcontrolcommand.h>
#include <systemsettings.h>
#include <stabilizationbank.h>
// Private constants
@ -67,16 +84,53 @@
#define PF_IDLE_UPDATE_RATE_MS 100
#define STACK_SIZE_BYTES 2048
#define DEADBAND_HIGH 0.10f
#define DEADBAND_LOW -0.10f
// Private types
struct Integrals {
float vel[3];
float course;
float speed;
float power;
float airspeed;
float poiRadius;
bool vtolEmergencyFallback;
};
// Private variables
static DelayedCallbackInfo *pathFollowerCBInfo;
static uint32_t updatePeriod = PF_IDLE_UPDATE_RATE_MS;
static struct Integrals i;
static PathStatusData pathStatus;
static PathDesiredData pathDesired;
static FixedWingPathFollowerSettingsData fixedWingPathFollowerSettings;
static VtolPathFollowerSettingsData vtolPathFollowerSettings;
// correct speed by measured airspeed
static float indicatedAirspeedStateBias = 0.0f;
// Private functions
static void pathFollowerTask(void);
static void resetIntegrals();
static void SettingsUpdatedCb(UAVObjEvent *ev);
static uint8_t updateAutoPilotByFrameType();
static uint8_t updateAutoPilotFixedWing();
static uint8_t updateAutoPilotVtol();
static float updateTailInBearing();
static float updateCourseBearing();
static float updatePOIBearing();
static void processPOI();
static void updatePathVelocity(float kFF, float kH, float kV, bool limited);
static uint8_t updateFixedDesiredAttitude();
static int8_t updateVtolDesiredAttitude(bool yaw_attitude, float yaw_direction);
static void updateFixedAttitude();
static void updateVtolDesiredAttitudeEmergencyFallback();
static void airspeedStateUpdatedCb(UAVObjEvent *ev);
static bool correctCourse(float *C, float *V, float *F, float s);
/**
* Initialise the module, called on startup
@ -85,6 +139,7 @@ static void SettingsUpdatedCb(UAVObjEvent *ev);
int32_t PathFollowerStart()
{
// Start main task
PathStatusGet(&pathStatus);
SettingsUpdatedCb(NULL);
PIOS_CALLBACKSCHEDULER_Dispatch(pathFollowerCBInfo);
@ -99,15 +154,32 @@ int32_t PathFollowerInitialize()
{
// initialize objects
FixedWingPathFollowerSettingsInitialize();
FixedWingPathFollowerStatusInitialize();
VtolPathFollowerSettingsInitialize();
FlightStatusInitialize();
PathStatusInitialize();
PathDesiredInitialize();
PositionStateInitialize();
VelocityStateInitialize();
VelocityDesiredInitialize();
StabilizationDesiredInitialize();
AirspeedStateInitialize();
AttitudeStateInitialize();
TakeOffLocationInitialize();
PoiLocationInitialize();
ManualControlCommandInitialize();
SystemSettingsInitialize();
StabilizationBankInitialize();
// reset integrals
resetIntegrals();
// Create object queue
pathFollowerCBInfo = PIOS_CALLBACKSCHEDULER_Create(&pathFollowerTask, CALLBACK_PRIORITY, CBTASK_PRIORITY, CALLBACKINFO_RUNNING_ALTITUDEHOLD, STACK_SIZE_BYTES);
FixedWingPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
VtolPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
PathDesiredConnectCallback(SettingsUpdatedCb);
AirspeedStateConnectCallback(airspeedStateUpdatedCb);
return 0;
}
@ -122,17 +194,1021 @@ static void pathFollowerTask(void)
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
if (flightStatus.ControlChain.PathFollower != FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
resetIntegrals();
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_UNINITIALISED);
PIOS_CALLBACKSCHEDULER_Schedule(pathFollowerCBInfo, PF_IDLE_UPDATE_RATE_MS, CALLBACK_UPDATEMODE_SOONER);
return;
}
// do pathfollower things here
if (flightStatus.FlightMode == FLIGHTSTATUS_FLIGHTMODE_POI) { // TODO Hack from vtolpathfollower, move that shit into manualcontrol!
processPOI();
}
pathStatus.UID = pathDesired.UID;
pathStatus.Status = PATHSTATUS_STATUS_INPROGRESS;
switch (pathDesired.Mode) {
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_FLYVECTOR:
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
case PATHDESIRED_MODE_FLYCIRCLELEFT:
{
uint8_t result = updateAutoPilotByFrameType();
if (result) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
} else {
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
}
}
break;
case PATHDESIRED_MODE_FIXEDATTITUDE:
updateFixedAttitude(pathDesired.ModeParameters);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
break;
case PATHDESIRED_MODE_DISARMALARM:
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
break;
default:
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_ERROR);
break;
}
PathStatusSet(&pathStatus);
PIOS_CALLBACKSCHEDULER_Schedule(pathFollowerCBInfo, updatePeriod, CALLBACK_UPDATEMODE_SOONER);
}
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
// read in settings (TODO)
FixedWingPathFollowerSettingsGet(&fixedWingPathFollowerSettings);
VtolPathFollowerSettingsGet(&vtolPathFollowerSettings);
PathDesiredGet(&pathDesired);
}
static void airspeedStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
AirspeedStateData airspeedState;
VelocityStateData velocityState;
AirspeedStateGet(&airspeedState);
VelocityStateGet(&velocityState);
float airspeedVector[2];
float yaw;
AttitudeStateYawGet(&yaw);
airspeedVector[0] = cos_lookup_deg(yaw);
airspeedVector[1] = sin_lookup_deg(yaw);
// vector projection of groundspeed on airspeed vector to handle both forward and backwards movement
float groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
indicatedAirspeedStateBias = airspeedState.CalibratedAirspeed - groundspeedProjection;
// note - we do fly by Indicated Airspeed (== calibrated airspeed) however
// since airspeed is updated less often than groundspeed, we use sudden
// changes to groundspeed to offset the airspeed by the same measurement.
// This has a side effect that in the absence of any airspeed updates, the
// pathfollower will fly using groundspeed.
}
/**
* reset integrals
*/
static void resetIntegrals()
{
i.vel[0] = 0.0f;
i.vel[1] = 0.0f;
i.vel[2] = 0.0f;
i.course = 0.0f;
i.speed = 0.0f;
i.power = 0.0f;
i.airspeed = 0.0f;
i.poiRadius = 0.0f;
i.vtolEmergencyFallback = 0;
}
static uint8_t updateAutoPilotByFrameType()
{
FrameType_t frameType = GetCurrentFrameType();
if (frameType == FRAME_TYPE_CUSTOM || frameType == FRAME_TYPE_GROUND) {
switch (vtolPathFollowerSettings.TreatCustomCraftAs) {
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_FIXEDWING:
frameType = FRAME_TYPE_FIXED_WING;
break;
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_VTOL:
frameType = FRAME_TYPE_MULTIROTOR;
break;
}
}
switch (frameType) {
case FRAME_TYPE_MULTIROTOR:
case FRAME_TYPE_HELI:
updatePeriod = vtolPathFollowerSettings.UpdatePeriod;
return updateAutoPilotVtol();
break;
case FRAME_TYPE_FIXED_WING:
default:
updatePeriod = fixedWingPathFollowerSettings.UpdatePeriod;
return updateAutoPilotFixedWing();
break;
}
}
/**
* fixed wing autopilot:
* straight forward:
* 1. update path velocity for limited motion crafts
* 2. update attitude according to default fixed wing pathfollower algorithm
*/
static uint8_t updateAutoPilotFixedWing()
{
updatePathVelocity(fixedWingPathFollowerSettings.CourseFeedForward, fixedWingPathFollowerSettings.HorizontalPosP, fixedWingPathFollowerSettings.VerticalPosP, true);
return updateFixedDesiredAttitude();
}
/**
* vtol autopilot
* use hover capable algorithm with unlimeted movement calculation. if that fails (flyaway situation due to compass failure)
* fall back to emergency fallback autopilot to keep minimum amount of flight control
*/
static uint8_t updateAutoPilotVtol()
{
if (!i.vtolEmergencyFallback) {
if (vtolPathFollowerSettings.FlyawayEmergencyFallback == VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_ALWAYS) {
updatePathVelocity(vtolPathFollowerSettings.CourseFeedForward, vtolPathFollowerSettings.HorizontalPosP, vtolPathFollowerSettings.VerticalPosP, true);
updateVtolDesiredAttitudeEmergencyFallback();
return 1;
} else {
updatePathVelocity(vtolPathFollowerSettings.CourseFeedForward, vtolPathFollowerSettings.HorizontalPosP, vtolPathFollowerSettings.VerticalPosP, false);
uint8_t result = 1;
bool yaw_attitude = true;
float yaw = 0.0f;
switch (vtolPathFollowerSettings.YawControl) {
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_MANUAL:
yaw_attitude = false;
break;
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_TAILIN:
yaw = updateTailInBearing();
break;
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_COURSE:
yaw = updateCourseBearing();
break;
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_POI:
yaw = updatePOIBearing();
break;
}
updateVtolDesiredAttitude(yaw_attitude, yaw);
if (!result && (vtolPathFollowerSettings.FlyawayEmergencyFallback == VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_ENABLED || vtolPathFollowerSettings.FlyawayEmergencyFallback == VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_DEBUGTEST)) {
i.vtolEmergencyFallback = true;
}
return result;
}
} else {
updatePathVelocity(vtolPathFollowerSettings.CourseFeedForward, vtolPathFollowerSettings.HorizontalPosP, vtolPathFollowerSettings.VerticalPosP, true);
updateVtolDesiredAttitudeEmergencyFallback();
return 0;
}
}
/**
* Compute bearing of current takeoff location
*/
static float updateTailInBearing()
{
PositionStateData p;
PositionStateGet(&p);
TakeOffLocationData t;
TakeOffLocationGet(&t);
// atan2f always returns in between + and - 180 degrees
float yaw = RAD2DEG(atan2f(p.East - t.East, p.North - t.North));
// result is in between 0 and 360 degrees
if (yaw < 0.0f) {
yaw += 360.0f;
}
return yaw;
}
/**
* Compute bearing of current movement direction
*/
static float updateCourseBearing()
{
VelocityStateData v;
VelocityStateGet(&v);
// atan2f always returns in between + and - 180 degrees
float yaw = RAD2DEG(atan2f(v.East, v.North));
// result is in between 0 and 360 degrees
if (yaw < 0.0f) {
yaw += 360.0f;
}
return yaw;
}
/**
* Compute bearing between current position and POI
*/
static float updatePOIBearing()
{
PoiLocationData poi;
PoiLocationGet(&poi);
PositionStateData positionState;
PositionStateGet(&positionState);
float dT = updatePeriod / 1000.0f;
float dLoc[3];
float yaw = 0;
/*float elevation = 0;*/
dLoc[0] = positionState.North - poi.North;
dLoc[1] = positionState.East - poi.East;
dLoc[2] = positionState.Down - poi.Down;
if (dLoc[1] < 0) {
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) + 180.0f;
} else {
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) - 180.0f;
}
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
float pathAngle = 0;
if (manualControlData.Roll > DEADBAND_HIGH) {
pathAngle = -(manualControlData.Roll - DEADBAND_HIGH) * dT * 300.0f;
} else if (manualControlData.Roll < DEADBAND_LOW) {
pathAngle = -(manualControlData.Roll - DEADBAND_LOW) * dT * 300.0f;
}
return yaw + (pathAngle / 2.0f);
}
/**
* process POI control logic TODO: this should most likely go into manualcontrol!!!!
* TODO: the whole process of POI handling likely needs cleanup and rethinking, might be broken since manualcontrol was refactored currently
**/
static void processPOI()
{
float dT = updatePeriod / 1000.0f;
PositionStateData positionState;
PositionStateGet(&positionState);
// CameraDesiredData cameraDesired;
// CameraDesiredGet(&cameraDesired);
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
PoiLocationData poi;
PoiLocationGet(&poi);
float dLoc[3];
float yaw = 0;
/*float elevation = 0;*/
dLoc[0] = positionState.North - poi.North;
dLoc[1] = positionState.East - poi.East;
dLoc[2] = positionState.Down - poi.Down;
if (dLoc[1] < 0) {
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) + 180.0f;
} else {
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) - 180.0f;
}
// distance
float distance = sqrtf(powf(dLoc[0], 2.0f) + powf(dLoc[1], 2.0f));
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
float changeRadius = 0;
// Move closer or further, radially
if (manualControlData.Pitch > DEADBAND_HIGH) {
changeRadius = (manualControlData.Pitch - DEADBAND_HIGH) * dT * 100.0f;
} else if (manualControlData.Pitch < DEADBAND_LOW) {
changeRadius = (manualControlData.Pitch - DEADBAND_LOW) * dT * 100.0f;
}
// move along circular path
float pathAngle = 0;
if (manualControlData.Roll > DEADBAND_HIGH) {
pathAngle = -(manualControlData.Roll - DEADBAND_HIGH) * dT * 300.0f;
} else if (manualControlData.Roll < DEADBAND_LOW) {
pathAngle = -(manualControlData.Roll - DEADBAND_LOW) * dT * 300.0f;
} else if (manualControlData.Roll >= DEADBAND_LOW && manualControlData.Roll <= DEADBAND_HIGH) {
// change radius only when not circling
i.poiRadius = distance + changeRadius;
}
// don't try to move any closer
if (i.poiRadius >= 3.0f || changeRadius > 0) {
if (fabsf(pathAngle) > 0.0f || fabsf(changeRadius) > 0.0f) {
pathDesired.End.North = poi.North + (i.poiRadius * cosf(DEG2RAD(pathAngle + yaw - 180.0f)));
pathDesired.End.East = poi.East + (i.poiRadius * sinf(DEG2RAD(pathAngle + yaw - 180.0f)));
pathDesired.StartingVelocity = 1.0f;
pathDesired.EndingVelocity = 0.0f;
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
PathDesiredSet(&pathDesired);
}
}
// not above
if (distance >= 3.0f) {
// You can feed this into camerastabilization
/*elevation = RAD2DEG(atan2f(dLoc[2],distance));*/
// cameraDesired.Yaw=yaw;
// cameraDesired.PitchOrServo2=elevation;
// CameraDesiredSet(&cameraDesired);
}
}
/**
* Compute desired velocity from the current position and path
*/
static void updatePathVelocity(float kFF, float kH, float kV, bool limited)
{
PositionStateData positionState;
PositionStateGet(&positionState);
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
// look ahead kFF seconds
float cur[3] = { positionState.North + (velocityState.North * kFF),
positionState.East + (velocityState.East * kFF),
positionState.Down + (velocityState.Down * kFF) };
struct path_status progress;
path_progress(cast_struct_to_array(pathDesired.Start, pathDesired.Start.North),
cast_struct_to_array(pathDesired.End, pathDesired.End.North),
cur, &progress, pathDesired.Mode);
float groundspeed;
switch (pathDesired.Mode) {
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
case PATHDESIRED_MODE_DRIVECIRCLERIGHT:
case PATHDESIRED_MODE_FLYCIRCLELEFT:
case PATHDESIRED_MODE_DRIVECIRCLELEFT:
groundspeed = pathDesired.EndingVelocity;
break;
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_DRIVEENDPOINT:
case PATHDESIRED_MODE_FLYVECTOR:
case PATHDESIRED_MODE_DRIVEVECTOR:
default:
groundspeed = pathDesired.StartingVelocity + (pathDesired.EndingVelocity - pathDesired.StartingVelocity) *
boundf(progress.fractional_progress, 0.0f, 1.0f);
break;
}
// make sure groundspeed is not zero
if (limited && groundspeed < 1e-6f) {
groundspeed = 1e-6f;
}
// calculate velocity - can be zero if waypoints are too close
VelocityDesiredData velocityDesired;
velocityDesired.North = progress.path_direction[0];
velocityDesired.East = progress.path_direction[1];
velocityDesired.Down = progress.path_direction[2];
float error_speed_horizontal = progress.error * kH;
float error_speed_vertical = progress.error * kV;
if (limited &&
// if a plane is crossing its desired flightpath facing the wrong way (away from flight direction)
// it would turn towards the flightpath to get on its desired course. This however would reverse the correction vector
// once it crosses the flightpath again, which would make it again turn towards the flightpath (but away from its desired heading)
// leading to an S-shape snake course the wrong way
// this only happens especially if HorizontalPosP is too high, as otherwise the angle between velocity desired and path_direction won't
// turn steep unless there is enough space complete the turn before crossing the flightpath
// in this case the plane effectively needs to be turned around
// indicators:
// difference between correction_direction and velocitystate >90 degrees and
// difference between path_direction and velocitystate >90 degrees ( 4th sector, facing away from everything )
// fix: ignore correction, steer in path direction until the situation has become better (condition doesn't apply anymore)
// calculating angles < 90 degrees through dot products
((progress.path_direction[0] * velocityState.North + progress.path_direction[1] * velocityState.East + progress.path_direction[2] * velocityState.Down) < 0.0f) &&
((progress.correction_direction[0] * velocityState.North + progress.correction_direction[1] * velocityState.East + progress.correction_direction[2] * velocityState.Down) < 0.0f)) {
error_speed_horizontal = 0.0f;
error_speed_vertical = 0.0f;
}
// calculate correction - can also be zero if correction vector is 0 or no error present
velocityDesired.North += progress.correction_direction[0] * error_speed_horizontal;
velocityDesired.East += progress.correction_direction[1] * error_speed_horizontal;
velocityDesired.Down += progress.correction_direction[2] * error_speed_vertical;
// scale to correct length
float l = sqrtf(velocityDesired.North * velocityDesired.North + velocityDesired.East * velocityDesired.East + velocityDesired.Down * velocityDesired.Down);
if (l > 1e-9f) {
velocityDesired.North *= groundspeed / l;
velocityDesired.East *= groundspeed / l;
velocityDesired.Down *= groundspeed / l;
} else {
velocityDesired.North = 0.0f;
velocityDesired.East = 0.0f;
velocityDesired.Down = 0.0f;
}
// update pathstatus
pathStatus.error = progress.error;
pathStatus.fractional_progress = progress.fractional_progress;
pathStatus.path_direction_north = progress.path_direction[0];
pathStatus.path_direction_east = progress.path_direction[1];
pathStatus.path_direction_down = progress.path_direction[2];
pathStatus.correction_direction_north = progress.correction_direction[0];
pathStatus.correction_direction_east = progress.correction_direction[1];
pathStatus.correction_direction_down = progress.correction_direction[2];
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired attitude from the desired velocity for fixed wing craft
*/
static uint8_t updateFixedDesiredAttitude()
{
uint8_t result = 1;
const float dT = updatePeriod / 1000.0f; // Convert from [ms] to [s]
VelocityDesiredData velocityDesired;
VelocityStateData velocityState;
StabilizationDesiredData stabDesired;
AttitudeStateData attitudeState;
FixedWingPathFollowerStatusData fixedWingPathFollowerStatus;
AirspeedStateData airspeedState;
SystemSettingsData systemSettings;
float groundspeedProjection;
float indicatedAirspeedState;
float indicatedAirspeedDesired;
float airspeedError;
float pitchCommand;
float descentspeedDesired;
float descentspeedError;
float powerCommand;
float airspeedVector[2];
float fluidMovement[2];
float courseComponent[2];
float courseError;
float courseCommand;
FixedWingPathFollowerStatusGet(&fixedWingPathFollowerStatus);
VelocityStateGet(&velocityState);
StabilizationDesiredGet(&stabDesired);
VelocityDesiredGet(&velocityDesired);
AttitudeStateGet(&attitudeState);
AirspeedStateGet(&airspeedState);
SystemSettingsGet(&systemSettings);
/**
* Compute speed error and course
*/
// missing sensors for airspeed-direction we have to assume within
// reasonable error that measured airspeed is actually the airspeed
// component in forward pointing direction
// airspeedVector is normalized
airspeedVector[0] = cos_lookup_deg(attitudeState.Yaw);
airspeedVector[1] = sin_lookup_deg(attitudeState.Yaw);
// current ground speed projected in forward direction
groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
// note that airspeedStateBias is ( calibratedAirspeed - groundspeedProjection ) at the time of measurement,
// but thanks to accelerometers, groundspeedProjection reacts faster to changes in direction
// than airspeed and gps sensors alone
indicatedAirspeedState = groundspeedProjection + indicatedAirspeedStateBias;
// fluidMovement is a vector describing the aproximate movement vector of
// the surrounding fluid in 2d space (aka wind vector)
fluidMovement[0] = velocityState.North - (indicatedAirspeedState * airspeedVector[0]);
fluidMovement[1] = velocityState.East - (indicatedAirspeedState * airspeedVector[1]);
// calculate the movement vector we need to fly to reach velocityDesired -
// taking fluidMovement into account
courseComponent[0] = velocityDesired.North - fluidMovement[0];
courseComponent[1] = velocityDesired.East - fluidMovement[1];
indicatedAirspeedDesired = boundf(sqrtf(courseComponent[0] * courseComponent[0] + courseComponent[1] * courseComponent[1]),
fixedWingPathFollowerSettings.HorizontalVelMin,
fixedWingPathFollowerSettings.HorizontalVelMax);
// if we could fly at arbitrary speeds, we'd just have to move towards the
// courseComponent vector as previously calculated and we'd be fine
// unfortunately however we are bound by min and max air speed limits, so
// we need to recalculate the correct course to meet at least the
// velocityDesired vector direction at our current speed
// this overwrites courseComponent
bool valid = correctCourse(courseComponent, (float *)&velocityDesired.North, fluidMovement, indicatedAirspeedDesired);
// Error condition: wind speed too high, we can't go where we want anymore
fixedWingPathFollowerStatus.Errors.Wind = 0;
if ((!valid) &&
fixedWingPathFollowerSettings.Safetymargins.Wind > 0.5f) { // alarm switched on
fixedWingPathFollowerStatus.Errors.Wind = 1;
result = 0;
}
// Airspeed error
airspeedError = indicatedAirspeedDesired - indicatedAirspeedState;
// Vertical speed error
descentspeedDesired = boundf(
velocityDesired.Down,
-fixedWingPathFollowerSettings.VerticalVelMax,
fixedWingPathFollowerSettings.VerticalVelMax);
descentspeedError = descentspeedDesired - velocityState.Down;
// Error condition: plane too slow or too fast
fixedWingPathFollowerStatus.Errors.Highspeed = 0;
fixedWingPathFollowerStatus.Errors.Lowspeed = 0;
if (indicatedAirspeedState > systemSettings.AirSpeedMax * fixedWingPathFollowerSettings.Safetymargins.Overspeed) {
fixedWingPathFollowerStatus.Errors.Overspeed = 1;
result = 0;
}
if (indicatedAirspeedState > fixedWingPathFollowerSettings.HorizontalVelMax * fixedWingPathFollowerSettings.Safetymargins.Highspeed) {
fixedWingPathFollowerStatus.Errors.Highspeed = 1;
result = 0;
}
if (indicatedAirspeedState < fixedWingPathFollowerSettings.HorizontalVelMin * fixedWingPathFollowerSettings.Safetymargins.Lowspeed) {
fixedWingPathFollowerStatus.Errors.Lowspeed = 1;
result = 0;
}
if (indicatedAirspeedState < systemSettings.AirSpeedMin * fixedWingPathFollowerSettings.Safetymargins.Stallspeed) {
fixedWingPathFollowerStatus.Errors.Stallspeed = 1;
result = 0;
}
/**
* Compute desired thrust command
*/
// compute saturated integral error thrust response. Make integral leaky for better performance. Approximately 30s time constant.
if (fixedWingPathFollowerSettings.PowerPI.Ki > 0.0f) {
i.power = boundf(i.power + -descentspeedError * dT,
-fixedWingPathFollowerSettings.PowerPI.ILimit / fixedWingPathFollowerSettings.PowerPI.Ki,
fixedWingPathFollowerSettings.PowerPI.ILimit / fixedWingPathFollowerSettings.PowerPI.Ki
) * (1.0f - 1.0f / (1.0f + 30.0f / dT));
} else {
i.power = 0.0f;
}
// Compute the cross feed from vertical speed to pitch, with saturation
float speedErrorToPowerCommandComponent = boundf(
(airspeedError / fixedWingPathFollowerSettings.HorizontalVelMin) * fixedWingPathFollowerSettings.AirspeedToPowerCrossFeed.Kp,
-fixedWingPathFollowerSettings.AirspeedToPowerCrossFeed.Max,
fixedWingPathFollowerSettings.AirspeedToPowerCrossFeed.Max
);
// Compute final thrust response
powerCommand = -descentspeedError * fixedWingPathFollowerSettings.PowerPI.Kp +
i.power * fixedWingPathFollowerSettings.PowerPI.Ki +
speedErrorToPowerCommandComponent;
// Output internal state to telemetry
fixedWingPathFollowerStatus.Error.Power = descentspeedError;
fixedWingPathFollowerStatus.ErrorInt.Power = i.power;
fixedWingPathFollowerStatus.Command.Power = powerCommand;
// set thrust
stabDesired.Thrust = boundf(fixedWingPathFollowerSettings.ThrustLimit.Neutral + powerCommand,
fixedWingPathFollowerSettings.ThrustLimit.Min,
fixedWingPathFollowerSettings.ThrustLimit.Max);
// Error condition: plane cannot hold altitude at current speed.
fixedWingPathFollowerStatus.Errors.Lowpower = 0;
if (fixedWingPathFollowerSettings.ThrustLimit.Neutral + powerCommand >= fixedWingPathFollowerSettings.ThrustLimit.Max && // thrust at maximum
velocityState.Down > 0.0f && // we ARE going down
descentspeedDesired < 0.0f && // we WANT to go up
airspeedError > 0.0f && // we are too slow already
fixedWingPathFollowerSettings.Safetymargins.Lowpower > 0.5f) { // alarm switched on
fixedWingPathFollowerStatus.Errors.Lowpower = 1;
result = 0;
}
// Error condition: plane keeps climbing despite minimum thrust (opposite of above)
fixedWingPathFollowerStatus.Errors.Highpower = 0;
if (fixedWingPathFollowerSettings.ThrustLimit.Neutral + powerCommand <= fixedWingPathFollowerSettings.ThrustLimit.Min && // thrust at minimum
velocityState.Down < 0.0f && // we ARE going up
descentspeedDesired > 0.0f && // we WANT to go down
airspeedError < 0.0f && // we are too fast already
fixedWingPathFollowerSettings.Safetymargins.Highpower > 0.5f) { // alarm switched on
fixedWingPathFollowerStatus.Errors.Highpower = 1;
result = 0;
}
/**
* Compute desired pitch command
*/
if (fixedWingPathFollowerSettings.SpeedPI.Ki > 0) {
// Integrate with saturation
i.airspeed = boundf(i.airspeed + airspeedError * dT,
-fixedWingPathFollowerSettings.SpeedPI.ILimit / fixedWingPathFollowerSettings.SpeedPI.Ki,
fixedWingPathFollowerSettings.SpeedPI.ILimit / fixedWingPathFollowerSettings.SpeedPI.Ki);
}
// Compute the cross feed from vertical speed to pitch, with saturation
float verticalSpeedToPitchCommandComponent = boundf(-descentspeedError * fixedWingPathFollowerSettings.VerticalToPitchCrossFeed.Kp,
-fixedWingPathFollowerSettings.VerticalToPitchCrossFeed.Max,
fixedWingPathFollowerSettings.VerticalToPitchCrossFeed.Max
);
// Compute the pitch command as err*Kp + errInt*Ki + X_feed.
pitchCommand = -(airspeedError * fixedWingPathFollowerSettings.SpeedPI.Kp
+ i.airspeed * fixedWingPathFollowerSettings.SpeedPI.Ki
) + verticalSpeedToPitchCommandComponent;
fixedWingPathFollowerStatus.Error.Speed = airspeedError;
fixedWingPathFollowerStatus.ErrorInt.Speed = i.airspeed;
fixedWingPathFollowerStatus.Command.Speed = pitchCommand;
stabDesired.Pitch = boundf(fixedWingPathFollowerSettings.PitchLimit.Neutral + pitchCommand,
fixedWingPathFollowerSettings.PitchLimit.Min,
fixedWingPathFollowerSettings.PitchLimit.Max);
// Error condition: high speed dive
fixedWingPathFollowerStatus.Errors.Pitchcontrol = 0;
if (fixedWingPathFollowerSettings.PitchLimit.Neutral + pitchCommand >= fixedWingPathFollowerSettings.PitchLimit.Max && // pitch demand is full up
velocityState.Down > 0.0f && // we ARE going down
descentspeedDesired < 0.0f && // we WANT to go up
airspeedError < 0.0f && // we are too fast already
fixedWingPathFollowerSettings.Safetymargins.Pitchcontrol > 0.5f) { // alarm switched on
fixedWingPathFollowerStatus.Errors.Pitchcontrol = 1;
result = 0;
}
/**
* Compute desired roll command
*/
courseError = RAD2DEG(atan2f(courseComponent[1], courseComponent[0])) - attitudeState.Yaw;
if (courseError < -180.0f) {
courseError += 360.0f;
}
if (courseError > 180.0f) {
courseError -= 360.0f;
}
// overlap calculation. Theres a dead zone behind the craft where the
// counter-yawing of some craft while rolling could render a desired right
// turn into a desired left turn. Making the turn direction based on
// current roll angle keeps the plane committed to a direction once chosen
if (courseError < -180.0f + (fixedWingPathFollowerSettings.ReverseCourseOverlap * 0.5f)
&& attitudeState.Roll > 0.0f) {
courseError += 360.0f;
}
if (courseError > 180.0f - (fixedWingPathFollowerSettings.ReverseCourseOverlap * 0.5f)
&& attitudeState.Roll < 0.0f) {
courseError -= 360.0f;
}
i.course = boundf(i.course + courseError * dT * fixedWingPathFollowerSettings.CoursePI.Ki,
-fixedWingPathFollowerSettings.CoursePI.ILimit,
fixedWingPathFollowerSettings.CoursePI.ILimit);
courseCommand = (courseError * fixedWingPathFollowerSettings.CoursePI.Kp +
i.course);
fixedWingPathFollowerStatus.Error.Course = courseError;
fixedWingPathFollowerStatus.ErrorInt.Course = i.course;
fixedWingPathFollowerStatus.Command.Course = courseCommand;
stabDesired.Roll = boundf(fixedWingPathFollowerSettings.RollLimit.Neutral +
courseCommand,
fixedWingPathFollowerSettings.RollLimit.Min,
fixedWingPathFollowerSettings.RollLimit.Max);
// TODO: find a check to determine loss of directional control. Likely needs some check of derivative
/**
* Compute desired yaw command
*/
// TODO implement raw control mode for yaw and base on Accels.Y
stabDesired.Yaw = 0.0f;
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
FixedWingPathFollowerStatusSet(&fixedWingPathFollowerStatus);
return result;
}
/**
* Function to calculate course vector C based on airspeed s, fluid movement F
* and desired movement vector V
* parameters in: V,F,s
* parameters out: C
* returns true if a valid solution could be found for V,F,s, false if not
* C will be set to a best effort attempt either way
*/
static bool correctCourse(float *C, float *V, float *F, float s)
{
// Approach:
// Let Sc be a circle around origin marking possible movement vectors
// of the craft with airspeed s (all possible options for C)
// Let Vl be a line through the origin along movement vector V where fr any
// point v on line Vl v = k * (V / |V|) = k' * V
// Let Wl be a line parallel to Vl where for any point v on line Vl exists
// a point w on WL with w = v - F
// Then any intersection between circle Sc and line Wl represents course
// vector which would result in a movement vector
// V' = k * ( V / |V|) = k' * V
// If there is no intersection point, S is insufficient to compensate
// for F and we can only try to fly in direction of V (thus having wind drift
// but at least making progress orthogonal to wind)
s = fabsf(s);
float f = vector_lengthf(F, 2);
// normalize Cn=V/|V|, |V| must be >0
float v = vector_lengthf(V, 2);
if (v < 1e-6f) {
// if |V|=0, we aren't supposed to move, turn into the wind
// (this allows hovering)
C[0] = -F[0];
C[1] = -F[1];
// if desired airspeed matches fluidmovement a hover is actually
// intended so return true
return fabsf(f - s) < 1e-3f;
}
float Vn[2] = { V[0] / v, V[1] / v };
// project F on V
float fp = F[0] * Vn[0] + F[1] * Vn[1];
// find component Fo of F that is orthogonal to V
// (which is exactly the distance between Vl and Wl)
float Fo[2] = { F[0] - (fp * Vn[0]), F[1] - (fp * Vn[1]) };
float fo2 = Fo[0] * Fo[0] + Fo[1] * Fo[1];
// find k where k * Vn = C - Fo
// |C|=s is the hypothenuse in any rectangular triangle formed by k * Vn and Fo
// so k^2 + fo^2 = s^2 (since |Vn|=1)
float k2 = s * s - fo2;
if (k2 <= -1e-3f) {
// there is no solution, we will be drifted off either way
// fallback: fly stupidly in direction of V and hope for the best
C[0] = V[0];
C[1] = V[1];
return false;
} else if (k2 <= 1e-3f) {
// there is exactly one solution: -Fo
C[0] = -Fo[0];
C[1] = -Fo[1];
return true;
}
// we have two possible solutions k positive and k negative as there are
// two intersection points between Wl and Sc
// which one is better? two criteria:
// 1. we MUST move in the right direction, if any k leads to -v its invalid
// 2. we should minimize the speed error
float k = sqrt(k2);
float C1[2] = { -k * Vn[0] - Fo[0], -k * Vn[1] - Fo[1] };
float C2[2] = { k *Vn[0] - Fo[0], k * Vn[1] - Fo[1] };
// project C+F on Vn to find signed resulting movement vector length
float vp1 = (C1[0] + F[0]) * Vn[0] + (C1[1] + F[1]) * Vn[1];
float vp2 = (C2[0] + F[0]) * Vn[0] + (C2[1] + F[1]) * Vn[1];
if (vp1 >= 0.0f && fabsf(v - vp1) < fabsf(v - vp2)) {
// in this case the angle between course and resulting movement vector
// is greater than 90 degrees - so we actually fly backwards
C[0] = C1[0];
C[1] = C1[1];
return true;
}
C[0] = C2[0];
C[1] = C2[1];
if (vp2 >= 0.0f) {
// in this case the angle between course and movement vector is less than
// 90 degrees, but we do move in the right direction
return true;
} else {
// in this case we actually get driven in the opposite direction of V
// with both solutions for C
// this might be reached in headwind stronger than maximum allowed
// airspeed.
return false;
}
}
/**
* Compute desired attitude from the desired velocity
*
* Takes in @ref NedState which has the acceleration in the
* NED frame as the feedback term and then compares the
* @ref VelocityState against the @ref VelocityDesired
*/
static int8_t updateVtolDesiredAttitude(bool yaw_attitude, float yaw_direction)
{
float dT = updatePeriod / 1000.0f;
uint8_t result = 1;
VelocityDesiredData velocityDesired;
VelocityStateData velocityState;
StabilizationDesiredData stabDesired;
AttitudeStateData attitudeState;
StabilizationBankData stabSettings;
SystemSettingsData systemSettings;
float northError;
float northCommand;
float eastError;
float eastCommand;
float downError;
float downCommand;
SystemSettingsGet(&systemSettings);
VelocityStateGet(&velocityState);
VelocityDesiredGet(&velocityDesired);
StabilizationDesiredGet(&stabDesired);
VelocityDesiredGet(&velocityDesired);
AttitudeStateGet(&attitudeState);
StabilizationBankGet(&stabSettings);
// Testing code - refactor into manual control command
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
// Compute desired north command
northError = velocityDesired.North - velocityState.North;
i.vel[0] = boundf(i.vel[0] + northError * dT * vtolPathFollowerSettings.HorizontalVelPI.Ki,
-vtolPathFollowerSettings.HorizontalVelPI.ILimit,
vtolPathFollowerSettings.HorizontalVelPI.ILimit);
northCommand = (northError * vtolPathFollowerSettings.HorizontalVelPI.Kp + i.vel[0]
+ velocityDesired.North * vtolPathFollowerSettings.VelocityFeedforward);
// Compute desired east command
eastError = velocityDesired.East - velocityState.East;
i.vel[1] = boundf(i.vel[1] + eastError * dT * vtolPathFollowerSettings.HorizontalVelPI.Ki,
-vtolPathFollowerSettings.HorizontalVelPI.ILimit,
vtolPathFollowerSettings.HorizontalVelPI.ILimit);
eastCommand = (eastError * vtolPathFollowerSettings.HorizontalVelPI.Kp + i.vel[1]
+ velocityDesired.East * vtolPathFollowerSettings.VelocityFeedforward);
// Compute desired down command
downError = velocityDesired.Down - velocityState.Down;
// Must flip this sign
downError = -downError;
i.vel[2] = boundf(i.vel[2] + downError * dT * vtolPathFollowerSettings.VerticalVelPI.Ki,
-vtolPathFollowerSettings.VerticalVelPI.ILimit,
vtolPathFollowerSettings.VerticalVelPI.ILimit);
downCommand = (downError * vtolPathFollowerSettings.VerticalVelPI.Kp + i.vel[2]);
stabDesired.Thrust = boundf(downCommand + vtolPathFollowerSettings.ThrustLimits.Neutral, vtolPathFollowerSettings.ThrustLimits.Min, vtolPathFollowerSettings.ThrustLimits.Max);
// DEBUG HACK: allow user to skew compass on purpose to see if emergency failsafe kicks in
if (vtolPathFollowerSettings.FlyawayEmergencyFallback == VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_DEBUGTEST) {
attitudeState.Yaw += 120.0f;
if (attitudeState.Yaw > 180.0f) {
attitudeState.Yaw -= 360.0f;
}
}
if ( // emergency flyaway detection
(fabsf(i.vel[0]) - vtolPathFollowerSettings.HorizontalVelPI.ILimit < 1e-6f || fabsf(i.vel[1]) - vtolPathFollowerSettings.HorizontalVelPI.ILimit < 1e-6f) && // integral at its limit
velocityDesired.North * velocityState.North + velocityDesired.East * velocityState.East < 0.0f // angle between desired and actual velocity >90 degrees
) {
result = 0; // trigger alarm - everything else is handled by callers (switch to emergency algorithm, switch to emergency waypoint in pathplanner, alarms, ...)
}
// Project the north and east command signals into the pitch and roll based on yaw. For this to behave well the
// craft should move similarly for 5 deg roll versus 5 deg pitch
stabDesired.Pitch = boundf(-northCommand * cosf(DEG2RAD(attitudeState.Yaw)) +
-eastCommand * sinf(DEG2RAD(attitudeState.Yaw)),
-vtolPathFollowerSettings.MaxRollPitch, vtolPathFollowerSettings.MaxRollPitch);
stabDesired.Roll = boundf(-northCommand * sinf(DEG2RAD(attitudeState.Yaw)) +
eastCommand * cosf(DEG2RAD(attitudeState.Yaw)),
-vtolPathFollowerSettings.MaxRollPitch, vtolPathFollowerSettings.MaxRollPitch);
if (vtolPathFollowerSettings.ThrustControl == VTOLPATHFOLLOWERSETTINGS_THRUSTCONTROL_MANUAL) {
// For now override thrust with manual control. Disable at your risk, quad goes to China.
ManualControlCommandData manualControl;
ManualControlCommandGet(&manualControl);
stabDesired.Thrust = manualControl.Thrust;
}
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
if (yaw_attitude) {
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.Yaw = yaw_direction;
} else {
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
stabDesired.Yaw = stabSettings.MaximumRate.Yaw * manualControlData.Yaw;
}
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_CRUISECONTROL;
StabilizationDesiredSet(&stabDesired);
return result;
}
/**
* Compute desired attitude for vtols - emergency fallback
*/
static void updateVtolDesiredAttitudeEmergencyFallback()
{
float dT = updatePeriod / 1000.0f;
VelocityDesiredData velocityDesired;
VelocityStateData velocityState;
StabilizationDesiredData stabDesired;
float courseError;
float courseCommand;
float downError;
float downCommand;
VelocityStateGet(&velocityState);
VelocityDesiredGet(&velocityDesired);
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
courseError = RAD2DEG(atan2f(velocityDesired.East, velocityDesired.North) - atan2f(velocityState.East, velocityState.North));
if (courseError < -180.0f) {
courseError += 360.0f;
}
if (courseError > 180.0f) {
courseError -= 360.0f;
}
courseCommand = (courseError * vtolPathFollowerSettings.EmergencyFallbackYawRate.kP);
stabDesired.Yaw = boundf(courseCommand, -vtolPathFollowerSettings.EmergencyFallbackYawRate.Max, vtolPathFollowerSettings.EmergencyFallbackYawRate.Max);
// Compute desired down command
downError = velocityDesired.Down - velocityState.Down;
// Must flip this sign
downError = -downError;
i.vel[2] = boundf(i.vel[2] + downError * dT * vtolPathFollowerSettings.VerticalVelPI.Ki,
-vtolPathFollowerSettings.VerticalVelPI.ILimit,
vtolPathFollowerSettings.VerticalVelPI.ILimit);
downCommand = (downError * vtolPathFollowerSettings.VerticalVelPI.Kp + i.vel[2]);
stabDesired.Thrust = boundf(downCommand + vtolPathFollowerSettings.ThrustLimits.Neutral, vtolPathFollowerSettings.ThrustLimits.Min, vtolPathFollowerSettings.ThrustLimits.Max);
stabDesired.Roll = vtolPathFollowerSettings.EmergencyFallbackAttitude.Roll;
stabDesired.Pitch = vtolPathFollowerSettings.EmergencyFallbackAttitude.Pitch;
if (vtolPathFollowerSettings.ThrustControl == VTOLPATHFOLLOWERSETTINGS_THRUSTCONTROL_MANUAL) {
// For now override thrust with manual control. Disable at your risk, quad goes to China.
ManualControlCommandData manualControl;
ManualControlCommandGet(&manualControl);
stabDesired.Thrust = manualControl.Thrust;
}
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_CRUISECONTROL;
StabilizationDesiredSet(&stabDesired);
}
/**
* Compute desired attitude from a fixed preset
*
*/
static void updateFixedAttitude(float *attitude)
{
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
stabDesired.Roll = attitude[0];
stabDesired.Pitch = attitude[1];
stabDesired.Yaw = attitude[2];
stabDesired.Thrust = attitude[3];
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
}

View File

@ -372,6 +372,7 @@ static void updatePathVelocity()
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
PositionStateData positionState;
PositionStateGet(&positionState);
@ -403,7 +404,7 @@ static void updatePathVelocity()
case PATHDESIRED_MODE_DRIVEVECTOR:
default:
speed = pathDesired.StartingVelocity
+ (pathDesired.EndingVelocity - pathDesired.StartingVelocity) * boundf(progress.fractional_progress, 0, 1);
+ (pathDesired.EndingVelocity - pathDesired.StartingVelocity) * boundf(progress.fractional_progress, 0, 1);
if (progress.fractional_progress > 1) {
speed = 0;
}
@ -416,19 +417,19 @@ static void updatePathVelocity()
eastPosIntegral += progress.correction_direction[1] * progress.error * vtolpathfollowerSettings.HorizontalPosPI.Ki * dT;
downPosIntegral += progress.correction_direction[2] * progress.error * vtolpathfollowerSettings.VerticalPosPI.Ki * dT;
northPosIntegral = boundf(northPosIntegral, -vtolpathfollowerSettings.HorizontalPosPI.ILimit,
vtolpathfollowerSettings.HorizontalPosPI.ILimit);
eastPosIntegral = boundf(eastPosIntegral, -vtolpathfollowerSettings.HorizontalPosPI.ILimit,
vtolpathfollowerSettings.HorizontalPosPI.ILimit);
downPosIntegral = boundf(downPosIntegral, -vtolpathfollowerSettings.VerticalPosPI.ILimit,
vtolpathfollowerSettings.VerticalPosPI.ILimit);
northPosIntegral = boundf(northPosIntegral, -vtolpathfollowerSettings.HorizontalPosPI.ILimit,
vtolpathfollowerSettings.HorizontalPosPI.ILimit);
eastPosIntegral = boundf(eastPosIntegral, -vtolpathfollowerSettings.HorizontalPosPI.ILimit,
vtolpathfollowerSettings.HorizontalPosPI.ILimit);
downPosIntegral = boundf(downPosIntegral, -vtolpathfollowerSettings.VerticalPosPI.ILimit,
vtolpathfollowerSettings.VerticalPosPI.ILimit);
velocityDesired.North = progress.path_direction[0] * speed + northPosIntegral +
progress.correction_direction[0] * progress.error * vtolpathfollowerSettings.HorizontalPosPI.Kp;
progress.correction_direction[0] * progress.error * vtolpathfollowerSettings.HorizontalPosPI.Kp;
velocityDesired.East = progress.path_direction[1] * speed + eastPosIntegral +
progress.correction_direction[1] * progress.error * vtolpathfollowerSettings.HorizontalPosPI.Kp;
progress.correction_direction[1] * progress.error * vtolpathfollowerSettings.HorizontalPosPI.Kp;
velocityDesired.Down = progress.path_direction[2] * speed + downPosIntegral +
progress.correction_direction[2] * progress.error * vtolpathfollowerSettings.VerticalPosPI.Kp;
progress.correction_direction[2] * progress.error * vtolpathfollowerSettings.VerticalPosPI.Kp;
// Make sure the desired velocities don't exceed PathFollower limits.
float groundspeedDesired = sqrtf(powf(velocityDesired.North, 2) + powf(velocityDesired.East, 2));
@ -441,7 +442,7 @@ static void updatePathVelocity()
velocityDesired.Down = boundf(velocityDesired.Down, -vtolpathfollowerSettings.VerticalVelMax, vtolpathfollowerSettings.VerticalVelMax);
// update pathstatus
pathStatus.error = progress.error;
pathStatus.error = progress.error;
pathStatus.fractional_progress = progress.fractional_progress;
pathStatus.path_direction_north = progress.path_direction[0];
pathStatus.path_direction_east = progress.path_direction[1];

View File

@ -1,18 +1,23 @@
<xml>
<object name="VtolPathFollowerSettings" singleinstance="true" settings="true" category="Control">
<description>Settings for the @ref VtolPathFollowerModule</description>
<field name="GuidanceMode" units="" type="enum" elements="1" options="DUAL_LOOP,VELOCITY_CONTROL" defaultvalue="DUAL_LOOP"/>
<field name="HorizontalVelMax" units="m/s" type="uint16" elements="1" defaultvalue="2"/>
<field name="VerticalVelMax" units="m/s" type="uint16" elements="1" defaultvalue="1"/>
<field name="HorizontalPosPI" units="(m/s)/m" type="float" elementnames="Kp,Ki,ILimit" defaultvalue="0.25,0.02,1"/>
<field name="HorizontalVelPID" units="deg/(m/s)" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="8,0.5,0.002,4"/>
<field name="VerticalPosPI" units="" type="float" elementnames="Kp,Ki,ILimit" defaultvalue="0.4,0.02,1"/>
<field name="VerticalVelPID" units="" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="0.1,0.01,0,1"/>
<field name="TreatCustomCraftAs" units="switch" type="enum" elements="1" options="FixedWing,VTOL" defaultvalue="FixedWing"/>
<field name="HorizontalVelMax" units="m/s" type="float" elements="1" defaultvalue="2.0"/>
<field name="VerticalVelMax" units="m/s" type="float" elements="1" defaultvalue="1.0"/>
<field name="CourseFeedForward" units="s" type="float" elements="1" defaultvalue="1.0"/>
<field name="HorizontalPosP" units="(m/s)/m" type="float" elements="1" defaultvalue="0.25"/>
<field name="VerticalPosP" units="" type="float" elements="1" defaultvalue="0.4"/>
<field name="HorizontalVelPI" units="deg/(m/s)" type="float" elementnames="Kp,Ki,ILimit" defaultvalue="8.0, 0.5, 10"/>
<field name="VerticalVelPI" units="" type="float" elementnames="Kp,Ki,ILimit" defaultvalue="0.1, 0.01, 1.0"/>
<field name="ThrustLimits" units="" type="float" elementnames="Min,Neutral,Max" defaultvalue="0.2, 0.5, 0.9"/>
<field name="VelocityFeedforward" units="deg/(m/s)" type="float" elements="1" defaultvalue="2"/>
<field name="ThrustControl" units="" type="enum" elements="1" options="FALSE,TRUE" defaultvalue="FALSE"/>
<field name="VelocitySource" units="" type="enum" elements="1" options="STATE_ESTIMATION,GPS_VELNED,GPS_GROUNDSPEED" defaultvalue="STATE_ESTIMATION"/>
<field name="ThrustControl" units="" type="enum" elements="1" options="manual,auto" defaultvalue="manual"/>
<field name="YawControl" units="" type="enum" elements="1" options="manual,tailin,course,poi" defaultvalue="manual"/>
<field name="FlyawayEmergencyFallback" units="switch" type="enum" elements="1" options="disabled,enabled,always,debugtest" defaultvalue="enabled"/>
<field name="EmergencyFallbackAttitude" units="deg" type="float" elementnames="Roll,Pitch" defaultvalue="0,-10.0"/>
<field name="EmergencyFallbackYawRate" units="(deg/s)/deg" type="float" elementnames="kP,Max" defaultvalue="2.0, 30.0"/>
<field name="MaxRollPitch" units="deg" type="float" elements="1" defaultvalue="20"/>
<field name="UpdatePeriod" units="ms" type="int32" elements="1" defaultvalue="50"/>
<field name="UpdatePeriod" units="ms" type="uint16" elements="1" defaultvalue="50"/>
<access gcs="readwrite" flight="readwrite"/>
<telemetrygcs acked="true" updatemode="onchange" period="0"/>
<telemetryflight acked="true" updatemode="onchange" period="0"/>