mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2024-12-02 10:24:11 +01:00
OP-191: Spellcheck comments. Also, prevent an infinite loop in the case of a terrible calibration point set.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@3147 ebee16cc-31ac-478f-84a7-5cbb03baadba
This commit is contained in:
parent
33d9d31082
commit
8f26a6fa83
@ -8,7 +8,7 @@
|
||||
* @{
|
||||
* @addtogroup Config plugin
|
||||
* @{
|
||||
* @brief Impliments low-level calibration algorithms
|
||||
* @brief Implements low-level calibration algorithms
|
||||
*****************************************************************************/
|
||||
/*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
@ -45,7 +45,7 @@
|
||||
* reading these first. Any bugs should be presumed to be JB's fault rather
|
||||
* than Alonso and Shuster until proven otherwise.
|
||||
*
|
||||
* Reference [1]: "A New Algorithm for Attitude-independant magnetometer
|
||||
* Reference [1]: "A New Algorithm for Attitude-independent magnetometer
|
||||
* calibration", Robert Alonso and Malcolmn D. Shuster, Flight Mechanics/
|
||||
* Estimation Theory Symposium, NASA Goddard, 1994, pp 513-527
|
||||
*
|
||||
@ -237,7 +237,7 @@ theta_to_sane(const Matrix<double, 6, 1>& theta)
|
||||
* b is the bias in the global reference frame
|
||||
* \epsilon_k is the noise at the kth sample
|
||||
* This implementation makes the assumption that \epsilon is a constant white,
|
||||
* guassian noise source that is common to all k. The misalignment matrix O
|
||||
* gaussian noise source that is common to all k. The misalignment matrix O
|
||||
* is not computed, and the off-diagonal elements of D, corresponding to the
|
||||
* misalignment scale factors are not either.
|
||||
*
|
||||
@ -385,7 +385,7 @@ E_theta(const Matrix<double, 9, 1>& theta)
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute the gradiant of the squared norm of b with respect to theta. Note
|
||||
* Compute the gradient of the squared norm of b with respect to theta. Note
|
||||
* that b itself is just a function of theta. Therefore, this function
|
||||
* computes \frac{\delta,\delta\theta'}\left|b(\theta')\right|
|
||||
* From eq 55 of [2].
|
||||
@ -409,12 +409,12 @@ dnormb_dtheta(const Matrix<double, 9, 1>& theta)
|
||||
-2*IE_inv_c.coeff(1)*IE_inv_c.coeff(2)).finished();
|
||||
}
|
||||
|
||||
// The gradiant of the cost function with respect to theta, at a particular
|
||||
// The gradient of the cost function with respect to theta, at a particular
|
||||
// value of theta.
|
||||
// @param centerL: The center of the samples theta'
|
||||
// @param centerMag: The center of the magnitude data
|
||||
// @param theta: The estimate of the bias and scale factor
|
||||
// @return the gradiant of the cost function with respect to the
|
||||
// @return the gradient of the cost function with respect to the
|
||||
// current value of the estimate, theta'
|
||||
Matrix<double, 9, 1>
|
||||
dJ_dtheta(const Matrix<double, 9, 1>& centerL,
|
||||
@ -452,12 +452,12 @@ dJ_dtheta(const Matrix<double, 9, 1>& centerL,
|
||||
* b is the bias in the global reference frame
|
||||
* \epsilon_k is the noise at the kth sample
|
||||
*
|
||||
* After computing the scale factor and bias matricies, the optimal estimate is
|
||||
* After computing the scale factor and bias matrices, the optimal estimate is
|
||||
* given by
|
||||
* \tilde{B}_k = (I_{3x3} + D)B_k - b
|
||||
*
|
||||
* This implementation makes the assumption that \epsilon is a constant white,
|
||||
* guassian noise source that is common to all k. The misalignment matrix O
|
||||
* gaussian noise source that is common to all k. The misalignment matrix O
|
||||
* is not computed.
|
||||
*
|
||||
* @param bias[out] The computed bias, in the global frame
|
||||
@ -477,7 +477,7 @@ void twostep_bias_scale(Vector3f& bias,
|
||||
{
|
||||
// Define L_k by eq 51 for k = 1 .. n_samples
|
||||
Matrix<double, Dynamic, 9> fullSamples(n_samples, 9);
|
||||
// \hbar{L} by eq 52, simplified by obesrving that the common noise term
|
||||
// \hbar{L} by eq 52, simplified by observing that the common noise term
|
||||
// makes this a simple average.
|
||||
Matrix<double, 1, 9> centerSample = Matrix<double, 1, 9>::Zero();
|
||||
// Define the sample differences z_k by eq 23 a)
|
||||
@ -534,11 +534,11 @@ void twostep_bias_scale(Vector3f& bias,
|
||||
// By eq 57a
|
||||
P_theta_theta_inv.ldlt().solve(estimateSummation, &estimate);
|
||||
|
||||
// estimate i+1 = estimate_i - Fisher^{-1}(at estimate_i)*gradiant(theta)
|
||||
// estimate i+1 = estimate_i - Fisher^{-1}(at estimate_i)*gradient(theta)
|
||||
// Fisher^{-1} = \tilde{Fisher}^-1 + \hbar{Fisher}^{-1}
|
||||
size_t count = 0;
|
||||
double eta = 10000;
|
||||
while (count++ < 2000 && eta > 1e-8) {
|
||||
while (count++ < 200 && eta > 1e-8) {
|
||||
static bool warned = false;
|
||||
if (hasNaN(estimate)) {
|
||||
std::cout << "WARNING: found NaN at time " << count << "\n";
|
||||
@ -583,6 +583,7 @@ void twostep_bias_scale(Vector3f& bias,
|
||||
std::cout << "terminated at eta = " << eta
|
||||
<< " after " << count << " iterations\n";
|
||||
|
||||
if (!isnan(eta) && !isinf(eta)) {
|
||||
// Transform the estimated parameters from [c | E] back into [b | D].
|
||||
// See eq 63-65
|
||||
SelfAdjointEigenSolver<Matrix3d> eig_E(E_theta(estimate));
|
||||
@ -595,5 +596,13 @@ void twostep_bias_scale(Vector3f& bias,
|
||||
|
||||
(Matrix3f::Identity() + scale).ldlt().solve(
|
||||
estimate.start<3>().cast<float>(), &bias);
|
||||
}
|
||||
else {
|
||||
// return nonsense data. The eigensolver can fall ingo
|
||||
// an infinite loop otherwise.
|
||||
// TODO: Add error code return
|
||||
scale = Matrix3f::Ones()*std::numeric_limits<float>::quiet_NaN();
|
||||
bias = Vector3f::Zero();
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user