1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-01 09:24:10 +01:00

Merge remote-tracking branch 'origin/next' into thread/OP-1777_Usage_statistics

This commit is contained in:
m_thread 2015-03-21 09:23:56 +01:00
commit 9a2584fae0
83 changed files with 8438 additions and 2464 deletions

View File

@ -34,6 +34,6 @@ struct path_status {
float correction_vector[3];
};
void path_progress(PathDesiredData *path, float *cur_point, struct path_status *status);
void path_progress(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode3D);
#endif

View File

@ -63,11 +63,6 @@ void plan_setup_returnToBase();
*/
void plan_setup_land();
/**
* @brief execute land
*/
void plan_run_land();
/**
* @brief setup pathplanner/pathfollower for braking
*/
@ -78,11 +73,29 @@ void plan_setup_assistedcontrol(uint8_t timeout_occurred);
#define PATHDESIRED_MODEPARAMETER_BRAKE_STARTVELOCITYVECTOR_DOWN 2
#define PATHDESIRED_MODEPARAMETER_BRAKE_TIMEOUT 3
#define PATHDESIRED_MODEPARAMETER_VELOCITY_VELOCITYVECTOR_NORTH 0
#define PATHDESIRED_MODEPARAMETER_VELOCITY_VELOCITYVECTOR_EAST 1
#define PATHDESIRED_MODEPARAMETER_VELOCITY_VELOCITYVECTOR_DOWN 2
#define PATHDESIRED_MODEPARAMETER_VELOCITY_UNUSED 3
#define PATHDESIRED_MODEPARAMETER_LAND_VELOCITYVECTOR_NORTH 0
#define PATHDESIRED_MODEPARAMETER_LAND_VELOCITYVECTOR_EAST 1
#define PATHDESIRED_MODEPARAMETER_LAND_VELOCITYVECTOR_DOWN 2
#define PATHDESIRED_MODEPARAMETER_LAND_OPTIONS 3
#define PATHDESIRED_MODEPARAMETER_LAND_OPTION_NONE 0
#define PATHDESIRED_MODEPARAMETER_LAND_OPTION_HORIZONTAL_PH 1
#define PATHDESIRED_MODEPARAMETER_GOTOENDPOINT_NEXTCOMMAND 0
#define PATHDESIRED_MODEPARAMETER_GOTOENDPOINT_UNUSED1 1
#define PATHDESIRED_MODEPARAMETER_GOTOENDPOINT_UNUSED2 2
#define PATHDESIRED_MODEPARAMETER_GOTOENDPOINT_UNUSED3 3
/**
* @brief setup pathfollower for positionvario
*/
void plan_setup_CourseLock();
void plan_setup_PositionRoam();
void plan_setup_VelocityRoam();
void plan_setup_HomeLeash();
void plan_setup_AbsolutePosition();
@ -91,6 +104,7 @@ void plan_setup_AbsolutePosition();
*/
void plan_run_CourseLock();
void plan_run_PositionRoam();
void plan_run_VelocityRoam();
void plan_run_HomeLeash();
void plan_run_AbsolutePosition();

View File

@ -33,25 +33,26 @@
#include <math.h>
#include <stdint.h>
#include <pios_math.h>
#include <mathmisc.h>
// constants/macros/typdefs
#define NUMX 13 // number of states, X is the state vector
#define NUMW 9 // number of plant noise inputs, w is disturbance noise vector
#define NUMV 10 // number of measurements, v is the measurement noise vector
#define NUMU 6 // number of deterministic inputs, U is the input vector
#pragma GCC optimize "O3"
// Private functions
void CovariancePrediction(float F[NUMX][NUMX], float G[NUMX][NUMW],
float Q[NUMW], float dT, float P[NUMX][NUMX]);
void SerialUpdate(float H[NUMV][NUMX], float R[NUMV], float Z[NUMV],
float Y[NUMV], float P[NUMX][NUMX], float X[NUMX],
uint16_t SensorsUsed);
void RungeKutta(float X[NUMX], float U[NUMU], float dT);
void StateEq(float X[NUMX], float U[NUMU], float Xdot[NUMX]);
void LinearizeFG(float X[NUMX], float U[NUMU], float F[NUMX][NUMX],
float G[NUMX][NUMW]);
void MeasurementEq(float X[NUMX], float Be[3], float Y[NUMV]);
void LinearizeH(float X[NUMX], float Be[3], float H[NUMV][NUMX]);
static void SerialUpdate(float H[NUMV][NUMX], float R[NUMV], float Z[NUMV],
float Y[NUMV], float P[NUMX][NUMX], float X[NUMX],
uint16_t SensorsUsed);
static void RungeKutta(float X[NUMX], float U[NUMU], float dT);
static void StateEq(float X[NUMX], float U[NUMU], float Xdot[NUMX]);
static void LinearizeFG(float X[NUMX], float U[NUMU], float F[NUMX][NUMX],
float G[NUMX][NUMW]);
static void MeasurementEq(float X[NUMX], float Be[3], float Y[NUMV]);
static void LinearizeH(float X[NUMX], float Be[3], float H[NUMV][NUMX]);
// Private variables
@ -60,29 +61,29 @@ void LinearizeH(float X[NUMX], float Be[3], float H[NUMV][NUMX]);
// LinearizeFG() and LinearizeH():
//
// usage F: usage G: usage H:
// 0123456789abc 012345678 0123456789abc
// -0123456789abc 012345678 0123456789abc
// 0...X......... ......... X............
// 1....X........ ......... .X...........
// 2.....X....... ......... ..X..........
// 3......XXXX... ...XXX... ...X.........
// 4......XXXX... ...XXX... ....X........
// 5......XXXX... ...XXX... .....X.......
// 6.......XXXXXX XXX...... ......XXXX...
// 7......X.XXXXX XXX...... ......XXXX...
// 8......XX.XXXX XXX...... ......XXXX...
// 9......XXX.XXX XXX...... ..X..........
// a............. ......X..
// b............. .......X.
// c............. ........X
// 6.....ooXXXXXX XXX...... ......XXXX...
// 7.....oXoXXXXX XXX...... ......XXXX...
// 8.....oXXoXXXX XXX...... ......XXXX...
// 9.....oXXXoXXX XXX...... ..X..........
// a............. ......Xoo
// b............. ......oXo
// c............. ......ooX
static const int8_t FrowMin[NUMX] = { 3, 4, 5, 6, 6, 6, 7, 6, 6, 6, 13, 13, 13 };
static const int8_t FrowMax[NUMX] = { 3, 4, 5, 9, 9, 9, 12, 12, 12, 12, -1, -1, -1 };
static int8_t FrowMin[NUMX] = { 3, 4, 5, 6, 6, 6, 5, 5, 5, 5, 13, 13, 13 };
static int8_t FrowMax[NUMX] = { 3, 4, 5, 9, 9, 9, 12, 12, 12, 12, -1, -1, -1 };
static const int8_t GrowMin[NUMX] = { 9, 9, 9, 3, 3, 3, 0, 0, 0, 0, 6, 7, 8 };
static const int8_t GrowMax[NUMX] = { -1, -1, -1, 5, 5, 5, 2, 2, 2, 2, 6, 7, 8 };
static int8_t GrowMin[NUMX] = { 9, 9, 9, 3, 3, 3, 0, 0, 0, 0, 6, 7, 8 };
static int8_t GrowMax[NUMX] = { -1, -1, -1, 5, 5, 5, 2, 2, 2, 2, 6, 7, 8 };
static const int8_t HrowMin[NUMV] = { 0, 1, 2, 3, 4, 5, 6, 6, 6, 2 };
static const int8_t HrowMax[NUMV] = { 0, 1, 2, 3, 4, 5, 9, 9, 9, 2 };
static int8_t HrowMin[NUMV] = { 0, 1, 2, 3, 4, 5, 6, 6, 6, 2 };
static int8_t HrowMax[NUMV] = { 0, 1, 2, 3, 4, 5, 9, 9, 9, 2 };
static struct EKFData {
// linearized system matrices
@ -182,8 +183,8 @@ void INSGetP(float PDiag[NUMX])
uint8_t i;
// retrieve diagonal elements (aka state variance)
for (i = 0; i < NUMX; i++) {
if (PDiag != 0) {
if (PDiag != 0) {
for (i = 0; i < NUMX; i++) {
PDiag[i] = ekf.P[i][i];
}
}
@ -289,7 +290,7 @@ void INSSetMagNorth(float B[3])
void INSStatePrediction(float gyro_data[3], float accel_data[3], float dT)
{
float U[6];
float qmag;
float invqmag;
// rate gyro inputs in units of rad/s
U[0] = gyro_data[0];
@ -304,11 +305,11 @@ void INSStatePrediction(float gyro_data[3], float accel_data[3], float dT)
// EKF prediction step
LinearizeFG(ekf.X, U, ekf.F, ekf.G);
RungeKutta(ekf.X, U, dT);
qmag = sqrtf(ekf.X[6] * ekf.X[6] + ekf.X[7] * ekf.X[7] + ekf.X[8] * ekf.X[8] + ekf.X[9] * ekf.X[9]);
ekf.X[6] /= qmag;
ekf.X[7] /= qmag;
ekf.X[8] /= qmag;
ekf.X[9] /= qmag;
invqmag = fast_invsqrtf(ekf.X[6] * ekf.X[6] + ekf.X[7] * ekf.X[7] + ekf.X[8] * ekf.X[8] + ekf.X[9] * ekf.X[9]);
ekf.X[6] *= invqmag;
ekf.X[7] *= invqmag;
ekf.X[8] *= invqmag;
ekf.X[9] *= invqmag;
// CovariancePrediction(ekf.F,ekf.G,ekf.Q,dT,ekf.P);
// Update Nav solution structure
@ -373,8 +374,8 @@ void VelBaroCorrection(float Vel[3], float BaroAlt)
void INSCorrection(float mag_data[3], float Pos[3], float Vel[3],
float BaroAlt, uint16_t SensorsUsed)
{
float Z[10], Y[10];
float Bmag, qmag;
float Z[10] = { 0 };
float Y[10] = { 0 };
// GPS Position in meters and in local NED frame
Z[0] = Pos[0];
@ -385,14 +386,15 @@ void INSCorrection(float mag_data[3], float Pos[3], float Vel[3],
Z[3] = Vel[0];
Z[4] = Vel[1];
Z[5] = Vel[2];
// magnetometer data in any units (use unit vector) and in body frame
Bmag =
sqrtf(mag_data[0] * mag_data[0] + mag_data[1] * mag_data[1] +
mag_data[2] * mag_data[2]);
Z[6] = mag_data[0] / Bmag;
Z[7] = mag_data[1] / Bmag;
Z[8] = mag_data[2] / Bmag;
if (SensorsUsed & MAG_SENSORS) {
float invBmag = fast_invsqrtf(mag_data[0] * mag_data[0] + mag_data[1] * mag_data[1] + mag_data[2] * mag_data[2]);
Z[6] = mag_data[0] * invBmag;
Z[7] = mag_data[1] * invBmag;
Z[8] = mag_data[2] * invBmag;
}
// barometric altimeter in meters and in local NED frame
Z[9] = BaroAlt;
@ -401,12 +403,12 @@ void INSCorrection(float mag_data[3], float Pos[3], float Vel[3],
LinearizeH(ekf.X, ekf.Be, ekf.H);
MeasurementEq(ekf.X, ekf.Be, Y);
SerialUpdate(ekf.H, ekf.R, Z, Y, ekf.P, ekf.X, SensorsUsed);
qmag = sqrtf(ekf.X[6] * ekf.X[6] + ekf.X[7] * ekf.X[7] + ekf.X[8] * ekf.X[8] + ekf.X[9] * ekf.X[9]);
ekf.X[6] /= qmag;
ekf.X[7] /= qmag;
ekf.X[8] /= qmag;
ekf.X[9] /= qmag;
float invqmag = fast_invsqrtf(ekf.X[6] * ekf.X[6] + ekf.X[7] * ekf.X[7] + ekf.X[8] * ekf.X[8] + ekf.X[9] * ekf.X[9]);
ekf.X[6] *= invqmag;
ekf.X[7] *= invqmag;
ekf.X[8] *= invqmag;
ekf.X[9] *= invqmag;
// Update Nav solution structure
Nav.Pos[0] = ekf.X[0];
Nav.Pos[1] = ekf.X[1];
@ -434,60 +436,78 @@ void INSCorrection(float mag_data[3], float Pos[3], float Vel[3],
// The first Method is very specific to this implementation
// ************************************************
__attribute__((optimize("O3")))
void CovariancePrediction(float F[NUMX][NUMX], float G[NUMX][NUMW],
float Q[NUMW], float dT, float P[NUMX][NUMX])
{
// Pnew = (I+F*T)*P*(I+F*T)' + (T^2)*G*Q*G' = (T^2)[(P/T + F*P)*(I/T + F') + G*Q*G')]
float dT1 = 1.0f / dT; // multiplication is faster than division on fpu.
float dTsq = dT * dT;
const float dT1 = 1.0f / dT; // multiplication is faster than division on fpu.
const float dTsq = dT * dT;
float Dummy[NUMX][NUMX];
int8_t i;
int8_t k;
for (i = 0; i < NUMX; i++) { // Calculate Dummy = (P/T +F*P)
float *Firow = F[i];
float *Pirow = P[i];
float *Dirow = Dummy[i];
int8_t Fistart = FrowMin[i];
int8_t Fiend = FrowMax[i];
float *Firow = F[i];
float *Pirow = P[i];
float *Dirow = Dummy[i];
const int8_t Fistart = FrowMin[i];
const int8_t Fiend = FrowMax[i];
int8_t j;
for (j = 0; j < NUMX; j++) {
Dirow[j] = Pirow[j] * dT1; // Dummy = P / T ...
int8_t k;
for (k = Fistart; k <= Fiend; k++) {
}
for (k = Fistart; k <= Fiend; k++) {
for (j = 0; j < NUMX; j++) {
Dirow[j] += Firow[k] * P[k][j]; // [] + F * P
}
}
}
for (i = 0; i < NUMX; i++) { // Calculate Pnew = (T^2) [Dummy/T + Dummy*F' + G*Qw*G']
float *Dirow = Dummy[i];
float *Girow = G[i];
float *Pirow = P[i];
int8_t Gistart = GrowMin[i];
int8_t Giend = GrowMax[i];
float *Dirow = Dummy[i];
float *Girow = G[i];
float *Pirow = P[i];
const int8_t Gistart = GrowMin[i];
const int8_t Giend = GrowMax[i];
int8_t j;
for (j = i; j < NUMX; j++) { // Use symmetry, ie only find upper triangular
float Ptmp = Dirow[j] * dT1; // Pnew = Dummy / T ...
{
float *Fjrow = F[j];
int8_t Fjstart = FrowMin[j];
int8_t Fjend = FrowMax[j];
int8_t k;
for (k = Fjstart; k <= Fjend; k++) {
Ptmp += Dirow[k] * Fjrow[k]; // [] + Dummy*F' ...
}
for (j = i; j < NUMX; j++) { // Use symmetry, ie only find upper triangular
float Ptmp = Dirow[j] * dT1; // Pnew = Dummy / T ...
const float *Fjrow = F[j];
int8_t Fjstart = FrowMin[j];
int8_t Fjend = FrowMax[j];
k = Fjstart;
while (k <= Fjend - 3) {
Ptmp += Dirow[k] * Fjrow[k]; // [] + Dummy*F' ...
Ptmp += Dirow[k + 1] * Fjrow[k + 1];
Ptmp += Dirow[k + 2] * Fjrow[k + 2];
Ptmp += Dirow[k + 3] * Fjrow[k + 3];
k += 4;
}
while (k <= Fjend) {
Ptmp += Dirow[k] * Fjrow[k];
k++;
}
{
float *Gjrow = G[j];
int8_t Gjstart = MAX(Gistart, GrowMin[j]);
int8_t Gjend = MIN(Giend, GrowMax[j]);
int8_t k;
for (k = Gjstart; k <= Gjend; k++) {
Ptmp += Q[k] * Girow[k] * Gjrow[k]; // [] + G*Q*G' ...
float *Gjrow = G[j];
const int8_t Gjstart = MAX(Gistart, GrowMin[j]);
const int8_t Gjend = MIN(Giend, GrowMax[j]);
k = Gjstart;
while (k <= Gjend - 2) {
Ptmp += Q[k] * Girow[k] * Gjrow[k]; // [] + G*Q*G' ...
Ptmp += Q[k + 1] * Girow[k + 1] * Gjrow[k + 1];
Ptmp += Q[k + 2] * Girow[k + 2] * Gjrow[k + 2];
k += 3;
}
if (k <= Gjend) {
Ptmp += Q[k] * Girow[k] * Gjrow[k];
if (k <= Gjend - 1) {
Ptmp += Q[k + 1] * Girow[k + 1] * Gjrow[k + 1];
}
}
@ -511,7 +531,6 @@ void CovariancePrediction(float F[NUMX][NUMX], float G[NUMX][NUMW],
// The SensorsUsed variable is a bitwise mask indicating which sensors
// should be used in the update.
// ************************************************
void SerialUpdate(float H[NUMV][NUMX], float R[NUMV], float Z[NUMV],
float Y[NUMV], float P[NUMX][NUMX], float X[NUMX],
uint16_t SensorsUsed)
@ -524,7 +543,10 @@ void SerialUpdate(float H[NUMV][NUMX], float R[NUMV], float Z[NUMV],
if (SensorsUsed & (0x01 << m)) { // use this sensor for update
for (j = 0; j < NUMX; j++) { // Find Hp = H*P
HP[j] = 0;
for (k = HrowMin[m]; k <= HrowMax[m]; k++) {
}
for (k = HrowMin[m]; k <= HrowMax[m]; k++) {
for (j = 0; j < NUMX; j++) { // Find Hp = H*P
HP[j] += H[m][k] * P[k][j];
}
}
@ -532,14 +554,13 @@ void SerialUpdate(float H[NUMV][NUMX], float R[NUMV], float Z[NUMV],
for (k = HrowMin[m]; k <= HrowMax[m]; k++) {
HPHR += HP[k] * H[m][k];
}
float invHPHR = 1.0f / HPHR;
for (k = 0; k < NUMX; k++) {
Km[k] = HP[k] / HPHR; // find K = HP/HPHR
Km[k] = HP[k] * invHPHR; // find K = HP/HPHR
}
for (i = 0; i < NUMX; i++) { // Find P(m)= P(m-1) + K*HP
for (j = i; j < NUMX; j++) {
P[i][j] = P[j][i] =
P[i][j] - Km[i] * HP[j];
P[i][j] = P[j][i] = P[i][j] - Km[i] * HP[j];
}
}
@ -560,8 +581,8 @@ void SerialUpdate(float H[NUMV][NUMX], float R[NUMV], float Z[NUMV],
void RungeKutta(float X[NUMX], float U[NUMU], float dT)
{
float dT2 =
dT / 2.0f, K1[NUMX], K2[NUMX], K3[NUMX], K4[NUMX], Xlast[NUMX];
const float dT2 = dT / 2.0f;
float K1[NUMX], K2[NUMX], K3[NUMX], K4[NUMX], Xlast[NUMX];
uint8_t i;
for (i = 0; i < NUMX; i++) {
@ -585,7 +606,7 @@ void RungeKutta(float X[NUMX], float U[NUMU], float dT)
for (i = 0; i < NUMX; i++) {
X[i] =
Xlast[i] + dT * (K1[i] + 2.0f * K2[i] + 2.0f * K3[i] +
K4[i]) / 6.0f;
K4[i]) * (1.0f / 6.0f);
}
}
@ -608,7 +629,7 @@ void RungeKutta(float X[NUMX], float U[NUMU], float dT)
// H is output of LinearizeH(), all elements not set should be zero
// ************************************************
void StateEq(float X[NUMX], float U[NUMU], float Xdot[NUMX])
static void StateEq(float X[NUMX], float U[NUMU], float Xdot[NUMX])
{
float ax, ay, az, wx, wy, wz, q0, q1, q2, q3;

View File

@ -143,3 +143,95 @@ void pid_configure(struct pid *pid, float p, float i, float d, float iLim)
pid->d = d;
pid->iLim = iLim;
}
/**
* Configure the settings for a pid2 structure
* @param[out] pid The PID2 structure to configure
* @param[in] kp proportional gain
* @param[in] ki integral gain. Time constant Ti = kp/ki
* @param[in] kd derivative gain. Time constant Td = kd/kp
* @param[in] Tf filtering time = (kd/k)/N, N is in the range of 2 to 20
* @param[in] kt tracking gain for anti-windup. Tt = TiTd and Tt = (Ti + Td)/2
* @param[in] dt delta time increment
* @param[in] beta setpoint weight on setpoint in P component. beta=1 error feedback. beta=0 smoothes out response to changes in setpoint
* @param[in] u0 initial output for r=y at activation to achieve bumpless transfer
* @param[in] va constant for compute of actuator output for check against limits for antiwindup
* @param[in] vb multiplier for compute of actuator output for check against limits for anti-windup
*/
void pid2_configure(struct pid2 *pid, float kp, float ki, float kd, float Tf, float kt, float dT, float beta, float u0, float va, float vb)
{
pid->reconfigure = true;
pid->u0 = u0;
pid->va = va;
pid->vb = vb;
pid->kp = kp;
pid->beta = beta; // setpoint weight on proportional term
pid->bi = ki * dT;
pid->br = kt * dT / vb;
pid->ad = Tf / (Tf + dT);
pid->bd = kd / (Tf + dT);
}
/**
* Achieve a bumpless transfer and trigger initialisation of I term
* @param[out] pid The PID structure to configure
* @param[in] u0 initial output for r=y at activation to achieve bumpless transfer
*/
void pid2_transfer(struct pid2 *pid, float u0)
{
pid->reconfigure = true;
pid->u0 = u0;
}
/**
* pid controller with setpoint weighting, anti-windup, with a low-pass filtered derivative on the process variable
* See "Feedback Systems" for an explanation
* @param[out] pid The PID structure to configure
* @param[in] r setpoint
* @param[in] y process variable
* @param[in] ulow lower limit on actuator
* @param[in] uhigh upper limit on actuator
*/
float pid2_apply(
struct pid2 *pid,
const float r,
const float y,
const float ulow,
const float uhigh)
{
// on reconfigure ensure bumpless transfer
// http://www.controlguru.com/2008/021008.html
if (pid->reconfigure) {
pid->reconfigure = false;
// initialise derivative terms
pid->yold = y;
pid->D = 0.0f;
// t=0, u=u0, y=y0, v=u
pid->I = (pid->u0 - pid->va) / pid->vb - pid->kp * (pid->beta * r - y);
}
// compute proportional part
pid->P = pid->kp * (pid->beta * r - y);
// update derivative part
pid->D = pid->ad * pid->D - pid->bd * (y - pid->yold);
// compute temporary output
float v = pid->va + pid->vb * (pid->P + pid->I + pid->D);
// simulate actuator saturation
float u = boundf(v, ulow, uhigh);
// update integral
pid->I = pid->I + pid->bi * (r - y) + pid->br * (u - v);
// update old process output
pid->yold = y;
return u;
}

View File

@ -44,7 +44,25 @@ struct pid {
float lastDer;
};
typedef struct pid_scaler {
// pid2 structure for a PID+setpoint weighting, anti-windup and filtered derivative control
struct pid2 {
float u0;
float va;
float vb;
float kp;
float bi;
float ad;
float bd;
float br;
float beta;
float yold;
float P;
float I;
float D;
uint8_t reconfigure;
};
typedef struct pid_scaler_s {
float p;
float i;
float d;
@ -57,4 +75,9 @@ void pid_zero(struct pid *pid);
void pid_configure(struct pid *pid, float p, float i, float d, float iLim);
void pid_configure_derivative(float cutoff, float gamma);
// Methods for use with pid2 structure
void pid2_configure(struct pid2 *pid, float kp, float ki, float kd, float Tf, float kt, float dT, float beta, float u0, float va, float vb);
void pid2_transfer(struct pid2 *pid, float u0);
float pid2_apply(struct pid2 *pid, const float r, const float y, float ulow, float uhigh);
#endif /* PID_H */

View File

@ -44,33 +44,27 @@ static void path_circle(PathDesiredData *path, float *cur_point, struct path_sta
* @param[in] cur_point Current location
* @param[out] status Structure containing progress along path and deviation
*/
void path_progress(PathDesiredData *path, float *cur_point, struct path_status *status)
void path_progress(PathDesiredData *path, float *cur_point, struct path_status *status, bool mode3D)
{
switch (path->Mode) {
case PATHDESIRED_MODE_BRAKE: // should never get here...
case PATHDESIRED_MODE_FLYVECTOR:
return path_vector(path, cur_point, status, true);
case PATHDESIRED_MODE_BRAKE:
case PATHDESIRED_MODE_FOLLOWVECTOR:
return path_vector(path, cur_point, status, mode3D);
break;
case PATHDESIRED_MODE_DRIVEVECTOR:
return path_vector(path, cur_point, status, false);
case PATHDESIRED_MODE_CIRCLERIGHT:
return path_circle(path, cur_point, status, mode3D);
break;
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
case PATHDESIRED_MODE_DRIVECIRCLERIGHT:
return path_circle(path, cur_point, status, 1);
case PATHDESIRED_MODE_CIRCLELEFT:
return path_circle(path, cur_point, status, mode3D);
break;
case PATHDESIRED_MODE_FLYCIRCLELEFT:
case PATHDESIRED_MODE_DRIVECIRCLELEFT:
return path_circle(path, cur_point, status, 0);
case PATHDESIRED_MODE_GOTOENDPOINT:
return path_endpoint(path, cur_point, status, mode3D);
break;
case PATHDESIRED_MODE_FLYENDPOINT:
return path_endpoint(path, cur_point, status, true);
break;
case PATHDESIRED_MODE_DRIVEENDPOINT:
case PATHDESIRED_MODE_LAND:
default:
// use the endpoint as default failsafe if called in unknown modes
return path_endpoint(path, cur_point, status, false);

View File

@ -40,6 +40,7 @@
#include <manualcontrolcommand.h>
#include <attitudestate.h>
#include <vtolpathfollowersettings.h>
#include <stabilizationbank.h>
#include <sin_lookup.h>
#define UPDATE_EXPECTED 0.02f
@ -47,6 +48,31 @@
#define UPDATE_MAX 1.0f
#define UPDATE_ALPHA 1.0e-2f
static float applyExpo(float value, float expo);
static float applyExpo(float value, float expo)
{
// note: fastPow makes a small error, therefore result needs to be bound
float exp = boundf(fastPow(1.00695f, expo), 0.5f, 2.0f);
// magic number scales expo
// so that
// expo=100 yields value**10
// expo=0 yields value**1
// expo=-100 yields value**(1/10)
// (pow(2.0,1/100)~=1.00695)
if (value > 0.0f) {
return boundf(fastPow(value, exp), 0.0f, 1.0f);
} else if (value < -0.0f) {
return boundf(-fastPow(-value, exp), -1.0f, 0.0f);
} else {
return 0.0f;
}
}
/**
* @brief initialize UAVOs and structs used by this library
*/
@ -61,6 +87,7 @@ void plan_initialize()
ManualControlCommandInitialize();
VelocityStateInitialize();
VtolPathFollowerSettingsInitialize();
StabilizationBankInitialize();
}
/**
@ -85,7 +112,7 @@ void plan_setup_positionHold()
pathDesired.Start.Down = positionState.Down;
pathDesired.StartingVelocity = 0.0f;
pathDesired.EndingVelocity = 0.0f;
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
pathDesired.Mode = PATHDESIRED_MODE_GOTOENDPOINT;
PathDesiredSet(&pathDesired);
}
@ -126,49 +153,61 @@ void plan_setup_returnToBase()
pathDesired.StartingVelocity = 0.0f;
pathDesired.EndingVelocity = 0.0f;
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
uint8_t ReturnToBaseNextCommand;
FlightModeSettingsReturnToBaseNextCommandGet(&ReturnToBaseNextCommand);
pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_GOTOENDPOINT_NEXTCOMMAND] = (float)ReturnToBaseNextCommand;
pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_GOTOENDPOINT_UNUSED1] = 0.0f;
pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_GOTOENDPOINT_UNUSED2] = 0.0f;
pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_GOTOENDPOINT_UNUSED3] = 0.0f;
pathDesired.Mode = PATHDESIRED_MODE_GOTOENDPOINT;
PathDesiredSet(&pathDesired);
}
static PiOSDeltatimeConfig landdT;
static void plan_setup_land_helper(PathDesiredData *pathDesired)
{
PositionStateData positionState;
PositionStateGet(&positionState);
float velocity_down;
FlightModeSettingsLandingVelocityGet(&velocity_down);
pathDesired->Start.North = positionState.North;
pathDesired->Start.East = positionState.East;
pathDesired->Start.Down = positionState.Down;
pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_LAND_VELOCITYVECTOR_NORTH] = 0.0f;
pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_LAND_VELOCITYVECTOR_EAST] = 0.0f;
pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_LAND_VELOCITYVECTOR_DOWN] = velocity_down;
pathDesired->End.North = positionState.North;
pathDesired->End.East = positionState.East;
pathDesired->End.Down = positionState.Down;
pathDesired->StartingVelocity = 0.0f;
pathDesired->EndingVelocity = 0.0f;
pathDesired->Mode = PATHDESIRED_MODE_LAND;
pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_LAND_OPTIONS] = (float)PATHDESIRED_MODEPARAMETER_LAND_OPTION_HORIZONTAL_PH;
}
void plan_setup_land()
{
float descendspeed;
plan_setup_positionHold();
FlightModeSettingsLandingVelocityGet(&descendspeed);
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
pathDesired.StartingVelocity = descendspeed;
pathDesired.EndingVelocity = descendspeed;
plan_setup_land_helper(&pathDesired);
PathDesiredSet(&pathDesired);
PIOS_DELTATIME_Init(&landdT, UPDATE_EXPECTED, UPDATE_MIN, UPDATE_MAX, UPDATE_ALPHA);
}
/**
* @brief execute land
*/
void plan_run_land()
static void plan_setup_land_from_velocityroam()
{
float downPos, descendspeed;
PathDesiredEndData pathDesiredEnd;
PositionStateDownGet(&downPos); // current down position
PathDesiredEndGet(&pathDesiredEnd); // desired position
PathDesiredEndingVelocityGet(&descendspeed);
// desired position is updated to match the desired descend speed but don't run ahead
// too far if the current position can't keep up. This normaly means we have landed.
if (pathDesiredEnd.Down - downPos < 10) {
pathDesiredEnd.Down += descendspeed * PIOS_DELTATIME_GetAverageSeconds(&landdT);
}
PathDesiredEndSet(&pathDesiredEnd);
plan_setup_land();
FlightStatusAssistedControlStateOptions assistedControlFlightMode;
assistedControlFlightMode = FLIGHTSTATUS_ASSISTEDCONTROLSTATE_HOLD;
FlightStatusAssistedControlStateSet(&assistedControlFlightMode);
}
/**
* @brief positionvario functionality
*/
@ -197,6 +236,14 @@ void plan_setup_PositionRoam()
plan_setup_PositionVario();
}
void plan_setup_VelocityRoam()
{
vario_control_lowpass[0] = 0.0f;
vario_control_lowpass[1] = 0.0f;
vario_control_lowpass[2] = 0.0f;
AttitudeStateYawGet(&vario_course);
}
void plan_setup_HomeLeash()
{
plan_setup_PositionVario();
@ -340,6 +387,9 @@ static void plan_run_PositionVario(vario_type type)
pathDesired.Start.North = pathDesired.End.North + offset.Horizontal; // in FlyEndPoint the direction of this vector does not matter
pathDesired.Start.East = pathDesired.End.East;
pathDesired.Start.Down = pathDesired.End.Down;
// set mode explicitly
PathDesiredSet(&pathDesired);
}
} else {
@ -381,6 +431,106 @@ static void plan_run_PositionVario(vario_type type)
}
}
void plan_run_VelocityRoam()
{
// float alpha;
PathDesiredData pathDesired;
FlightStatusAssistedControlStateOptions assistedControlFlightMode;
FlightStatusFlightModeOptions flightMode;
PathDesiredGet(&pathDesired);
FlightModeSettingsPositionHoldOffsetData offset;
FlightModeSettingsPositionHoldOffsetGet(&offset);
FlightStatusAssistedControlStateGet(&assistedControlFlightMode);
FlightStatusFlightModeGet(&flightMode);
StabilizationBankData stabSettings;
StabilizationBankGet(&stabSettings);
ManualControlCommandData cmd;
ManualControlCommandGet(&cmd);
cmd.Roll = applyExpo(cmd.Roll, stabSettings.StickExpo.Roll);
cmd.Pitch = applyExpo(cmd.Pitch, stabSettings.StickExpo.Pitch);
cmd.Yaw = applyExpo(cmd.Yaw, stabSettings.StickExpo.Yaw);
bool flagRollPitchHasInput = (fabsf(cmd.Roll) > 0.0f || fabsf(cmd.Pitch) > 0.0f);
if (!flagRollPitchHasInput) {
// no movement desired, re-enter positionHold at current start-position
if (assistedControlFlightMode == FLIGHTSTATUS_ASSISTEDCONTROLSTATE_PRIMARY) {
// initiate braking and change assisted control flight mode to braking
if (flightMode == FLIGHTSTATUS_FLIGHTMODE_LAND) {
// avoid brake then hold sequence to continue descent.
plan_setup_land_from_velocityroam();
} else {
plan_setup_assistedcontrol(false);
}
}
// otherwise nothing to do in braking/hold modes
} else {
PositionStateData positionState;
PositionStateGet(&positionState);
// Revert assist control state to primary, which in this case implies
// we are in roaming state (a GPS vector assisted velocity roam)
assistedControlFlightMode = FLIGHTSTATUS_ASSISTEDCONTROLSTATE_PRIMARY;
// Calculate desired velocity in each direction
float angle;
AttitudeStateYawGet(&angle);
angle = DEG2RAD(angle);
float cos_angle = cosf(angle);
float sine_angle = sinf(angle);
float rotated[2] = {
-cmd.Pitch * cos_angle - cmd.Roll * sine_angle,
-cmd.Pitch * sine_angle + cmd.Roll * cos_angle
};
// flip pitch to have pitch down (away) point north
float horizontalVelMax;
float verticalVelMax;
VtolPathFollowerSettingsHorizontalVelMaxGet(&horizontalVelMax);
VtolPathFollowerSettingsVerticalVelMaxGet(&verticalVelMax);
float velocity_north = rotated[0] * horizontalVelMax;
float velocity_east = rotated[1] * horizontalVelMax;
float velocity_down = 0.0f;
if (flightMode == FLIGHTSTATUS_FLIGHTMODE_LAND) {
FlightModeSettingsLandingVelocityGet(&velocity_down);
}
float velocity = velocity_north * velocity_north + velocity_east * velocity_east;
velocity = sqrtf(velocity);
// if one stick input (pitch or roll) should we use fly by vector? set arbitrary distance of say 20m after which we
// expect new stick input
// if two stick input pilot is fighting wind manually and we use fly by velocity
// in reality setting velocity desired to zero will fight wind anyway.
pathDesired.Start.North = positionState.North;
pathDesired.Start.East = positionState.East;
pathDesired.Start.Down = positionState.Down;
pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_VELOCITY_VELOCITYVECTOR_NORTH] = velocity_north;
pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_VELOCITY_VELOCITYVECTOR_EAST] = velocity_east;
pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_VELOCITY_VELOCITYVECTOR_DOWN] = velocity_down;
pathDesired.End.North = positionState.North;
pathDesired.End.East = positionState.East;
pathDesired.End.Down = positionState.Down;
pathDesired.StartingVelocity = velocity;
pathDesired.EndingVelocity = velocity;
pathDesired.Mode = PATHDESIRED_MODE_VELOCITY;
if (flightMode == FLIGHTSTATUS_FLIGHTMODE_LAND) {
pathDesired.Mode = PATHDESIRED_MODE_LAND;
pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_LAND_OPTIONS] = (float)PATHDESIRED_MODEPARAMETER_LAND_OPTION_NONE;
} else {
pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_VELOCITY_UNUSED] = 0.0f;
}
PathDesiredSet(&pathDesired);
FlightStatusAssistedControlStateSet(&assistedControlFlightMode);
}
}
void plan_run_CourseLock()
{
plan_run_PositionVario(COURSE);
@ -437,7 +587,7 @@ void plan_setup_AutoCruise()
pathDesired.Start.Down = pathDesired.End.Down;
pathDesired.StartingVelocity = 0.0f;
pathDesired.EndingVelocity = 0.0f;
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
pathDesired.Mode = PATHDESIRED_MODE_GOTOENDPOINT;
PathDesiredSet(&pathDesired);
@ -528,22 +678,27 @@ void plan_setup_assistedcontrol(uint8_t timeout_occurred)
PositionStateGet(&positionState);
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
FlightStatusAssistedControlStateOptions assistedControlFlightMode;
FlightStatusAssistedControlStateGet(&assistedControlFlightMode);
if (timeout_occurred) {
pathDesired.End.North = positionState.North;
pathDesired.End.East = positionState.East;
pathDesired.End.Down = positionState.Down;
pathDesired.Start.North = positionState.North;
pathDesired.Start.East = positionState.East;
pathDesired.Start.Down = positionState.Down;
pathDesired.StartingVelocity = 0.0f;
pathDesired.EndingVelocity = 0.0f;
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
assistedControlFlightMode = FLIGHTSTATUS_ASSISTEDCONTROLSTATE_HOLD;
FlightStatusFlightModeOptions flightMode;
FlightStatusFlightModeGet(&flightMode);
if (flightMode == FLIGHTSTATUS_FLIGHTMODE_LAND) {
plan_setup_land_helper(&pathDesired);
} else {
pathDesired.End.North = positionState.North;
pathDesired.End.East = positionState.East;
pathDesired.End.Down = positionState.Down;
pathDesired.Start.North = positionState.North;
pathDesired.Start.East = positionState.East;
pathDesired.Start.Down = positionState.Down;
pathDesired.StartingVelocity = 0.0f;
pathDesired.EndingVelocity = 0.0f;
pathDesired.Mode = PATHDESIRED_MODE_GOTOENDPOINT;
}
assistedControlFlightMode = FLIGHTSTATUS_ASSISTEDCONTROLSTATE_HOLD;
} else {
VelocityStateData velocityState;
VelocityStateGet(&velocityState);

View File

@ -118,7 +118,7 @@ int32_t configuration_check()
ADDSEVERITY(navCapableFusion);
}
switch (modes[i]) {
switch ((FlightModeSettingsFlightModePositionOptions)modes[i]) {
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_MANUAL:
ADDSEVERITY(!gps_assisted);
ADDSEVERITY(!multirotor);
@ -143,24 +143,18 @@ int32_t configuration_check()
break;
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_PATHPLANNER:
{
// Revo supports PathPlanner and that must be OK or we are not sane
// PathPlan alarm is uninitialized if not running
// PathPlan alarm is warning or error if the flightplan is invalid
SystemAlarmsAlarmData alarms;
SystemAlarmsAlarmGet(&alarms);
ADDSEVERITY(alarms.PathPlan == SYSTEMALARMS_ALARM_OK);
ADDSEVERITY(!gps_assisted);
}
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_POSITIONHOLD:
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_POSITIONROAM:
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_LAND:
ADDSEVERITY(!coptercontrol);
ADDSEVERITY(navCapableFusion);
break;
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_COURSELOCK:
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_POSITIONROAM:
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_HOMELEASH:
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_ABSOLUTEPOSITION:
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_LAND:
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_POI:
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_RETURNTOBASE:
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_AUTOCRUISE:

View File

@ -45,6 +45,11 @@
#include "cameradesired.h"
#include "manualcontrolcommand.h"
#include "taskinfo.h"
#include <systemsettings.h>
#include <sanitycheck.h>
#ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
#include <vtolpathfollowersettings.h>
#endif
#undef PIOS_INCLUDE_INSTRUMENTATION
#ifdef PIOS_INCLUDE_INSTRUMENTATION
#include <pios_instrumentation.h>
@ -76,26 +81,33 @@ static int8_t counter;
// Private variables
static xQueueHandle queue;
static xTaskHandle taskHandle;
static FrameType_t frameType = FRAME_TYPE_MULTIROTOR;
static SystemSettingsThrustControlOptions thrustType = SYSTEMSETTINGS_THRUSTCONTROL_THROTTLE;
static float lastResult[MAX_MIX_ACTUATORS] = { 0 };
static float filterAccumulator[MAX_MIX_ACTUATORS] = { 0 };
static uint8_t pinsMode[MAX_MIX_ACTUATORS];
// used to inform the actuator thread that actuator update rate is changed
static volatile bool actuator_settings_updated;
static ActuatorSettingsData actuatorSettings;
static bool spinWhileArmed;
// used to inform the actuator thread that mixer settings are changed
static volatile bool mixer_settings_updated;
static MixerSettingsData mixerSettings;
static int mixer_settings_count = 2;
// Private functions
static void actuatorTask(void *parameters);
static int16_t scaleChannel(float value, int16_t max, int16_t min, int16_t neutral);
static void setFailsafe(const ActuatorSettingsData *actuatorSettings, const MixerSettingsData *mixerSettings);
static float MixerCurve(const float throttle, const float *curve, uint8_t elements);
static bool set_channel(uint8_t mixer_channel, uint16_t value, const ActuatorSettingsData *actuatorSettings);
static void actuator_update_rate_if_changed(const ActuatorSettingsData *actuatorSettings, bool force_update);
static void setFailsafe();
static float MixerCurveFullRangeProportional(const float input, const float *curve, uint8_t elements);
static float MixerCurveFullRangeAbsolute(const float input, const float *curve, uint8_t elements);
static bool set_channel(uint8_t mixer_channel, uint16_t value);
static void actuator_update_rate_if_changed(bool force_update);
static void MixerSettingsUpdatedCb(UAVObjEvent *ev);
static void ActuatorSettingsUpdatedCb(UAVObjEvent *ev);
static void SettingsUpdatedCb(UAVObjEvent *ev);
float ProcessMixer(const int index, const float curve1, const float curve2,
const MixerSettingsData *mixerSettings, ActuatorDesiredData *desired,
ActuatorDesiredData *desired,
const float period);
// this structure is equivalent to the UAVObjects for one mixer.
@ -116,6 +128,9 @@ int32_t ActuatorStart()
#ifdef PIOS_INCLUDE_WDG
PIOS_WDG_RegisterFlag(PIOS_WDG_ACTUATOR);
#endif
SettingsUpdatedCb(NULL);
MixerSettingsUpdatedCb(NULL);
ActuatorSettingsUpdatedCb(NULL);
return 0;
}
@ -149,6 +164,13 @@ int32_t ActuatorInitialize()
MixerStatusInitialize();
#endif
#ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
VtolPathFollowerSettingsInitialize();
VtolPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
#endif
SystemSettingsInitialize();
SystemSettingsConnectCallback(&SettingsUpdatedCb);
return 0;
}
MODULE_INITCALL(ActuatorInitialize, ActuatorStart);
@ -178,7 +200,6 @@ static void actuatorTask(__attribute__((unused)) void *parameters)
ActuatorDesiredData desired;
MixerStatusData mixerStatus;
FlightStatusData flightStatus;
SystemSettingsThrustControlOptions thrustType;
float throttleDesired;
float collectiveDesired;
@ -186,21 +207,17 @@ static void actuatorTask(__attribute__((unused)) void *parameters)
counter = PIOS_Instrumentation_CreateCounter(0xAC700001);
#endif
/* Read initial values of ActuatorSettings */
ActuatorSettingsData actuatorSettings;
actuator_settings_updated = false;
ActuatorSettingsGet(&actuatorSettings);
/* Read initial values of MixerSettings */
MixerSettingsData mixerSettings;
mixer_settings_updated = false;
MixerSettingsGet(&mixerSettings);
/* Force an initial configuration of the actuator update rates */
actuator_update_rate_if_changed(&actuatorSettings, true);
actuator_update_rate_if_changed(true);
// Go to the neutral (failsafe) values until an ActuatorDesired update is received
setFailsafe(&actuatorSettings, &mixerSettings);
setFailsafe();
// Main task loop
lastSysTime = xTaskGetTickCount();
@ -214,20 +231,10 @@ static void actuatorTask(__attribute__((unused)) void *parameters)
#ifdef PIOS_INCLUDE_INSTRUMENTATION
PIOS_Instrumentation_TimeStart(counter);
#endif
/* Process settings updated events even in timeout case so we always act on the latest settings */
if (actuator_settings_updated) {
actuator_settings_updated = false;
ActuatorSettingsGet(&actuatorSettings);
actuator_update_rate_if_changed(&actuatorSettings, false);
}
if (mixer_settings_updated) {
mixer_settings_updated = false;
MixerSettingsGet(&mixerSettings);
}
if (rc != pdTRUE) {
/* Update of ActuatorDesired timed out. Go to failsafe */
setFailsafe(&actuatorSettings, &mixerSettings);
setFailsafe();
continue;
}
@ -240,7 +247,6 @@ static void actuatorTask(__attribute__((unused)) void *parameters)
FlightStatusGet(&flightStatus);
ActuatorDesiredGet(&desired);
ActuatorCommandGet(&command);
SystemSettingsThrustControlGet(&thrustType);
// read in throttle and collective -demultiplex thrust
switch (thrustType) {
@ -258,12 +264,15 @@ static void actuatorTask(__attribute__((unused)) void *parameters)
}
bool armed = flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED;
bool activeThrottle = (throttleDesired < -0.001f || throttleDesired > 0.001f); // for ground and reversible motors
bool positiveThrottle = (throttleDesired > 0.00f);
// safety settings
if (!armed) {
throttleDesired = 0;
}
if (throttleDesired <= 0.00f || !armed) {
if ((frameType == FRAME_TYPE_GROUND && !activeThrottle) || (frameType != FRAME_TYPE_GROUND && throttleDesired <= 0.00f) || !armed) {
// force set all other controls to zero if throttle is cut (previously set in Stabilization)
if (actuatorSettings.LowThrottleZeroAxis.Roll == ACTUATORSETTINGS_LOWTHROTTLEZEROAXIS_TRUE) {
desired.Roll = 0;
@ -279,46 +288,47 @@ static void actuatorTask(__attribute__((unused)) void *parameters)
#ifdef DIAG_MIXERSTATUS
MixerStatusGet(&mixerStatus);
#endif
int nMixers = 0;
Mixer_t *mixers = (Mixer_t *)&mixerSettings.Mixer1Type;
for (int ct = 0; ct < MAX_MIX_ACTUATORS; ct++) {
if (mixers[ct].type != MIXERSETTINGS_MIXER1TYPE_DISABLED) {
nMixers++;
}
}
if ((nMixers < 2) && !ActuatorCommandReadOnly()) { // Nothing can fly with less than two mixers.
setFailsafe(&actuatorSettings, &mixerSettings); // So that channels like PWM buzzer keep working
if ((mixer_settings_count < 2) && !ActuatorCommandReadOnly()) { // Nothing can fly with less than two mixers.
setFailsafe();
continue;
}
AlarmsClear(SYSTEMALARMS_ALARM_ACTUATOR);
bool activeThrottle = (throttleDesired < 0.00f || throttleDesired > 0.00f);
bool positiveThrottle = (throttleDesired > 0.00f);
bool spinWhileArmed = actuatorSettings.MotorsSpinWhileArmed == ACTUATORSETTINGS_MOTORSSPINWHILEARMED_TRUE;
float curve1 = 0.0f;
float curve2 = 0.0f;
float curve1 = MixerCurve(throttleDesired, mixerSettings.ThrottleCurve1, MIXERSETTINGS_THROTTLECURVE1_NUMELEM);
// Interpolate curve 1 from throttleDesired as input.
// assume reversible motor/mixer initially. We can later reverse this. The difference is simply that -ve throttleDesired values
// map differently
curve1 = MixerCurveFullRangeProportional(throttleDesired, mixerSettings.ThrottleCurve1, MIXERSETTINGS_THROTTLECURVE1_NUMELEM);
// The source for the secondary curve is selectable
float curve2 = 0;
AccessoryDesiredData accessory;
switch (mixerSettings.Curve2Source) {
uint8_t curve2Source = mixerSettings.Curve2Source;
switch (curve2Source) {
case MIXERSETTINGS_CURVE2SOURCE_THROTTLE:
curve2 = MixerCurve(throttleDesired, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM);
// assume reversible motor/mixer initially
curve2 = MixerCurveFullRangeProportional(throttleDesired, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM);
break;
case MIXERSETTINGS_CURVE2SOURCE_ROLL:
curve2 = MixerCurve(desired.Roll, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM);
// Throttle curve contribution the same for +ve vs -ve roll
curve2 = MixerCurveFullRangeAbsolute(desired.Roll, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM);
break;
case MIXERSETTINGS_CURVE2SOURCE_PITCH:
curve2 = MixerCurve(desired.Pitch, mixerSettings.ThrottleCurve2,
MIXERSETTINGS_THROTTLECURVE2_NUMELEM);
// Throttle curve contribution the same for +ve vs -ve pitch
curve2 = MixerCurveFullRangeAbsolute(desired.Pitch, mixerSettings.ThrottleCurve2,
MIXERSETTINGS_THROTTLECURVE2_NUMELEM);
break;
case MIXERSETTINGS_CURVE2SOURCE_YAW:
curve2 = MixerCurve(desired.Yaw, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM);
// Throttle curve contribution the same for +ve vs -ve yaw
curve2 = MixerCurveFullRangeAbsolute(desired.Yaw, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM);
break;
case MIXERSETTINGS_CURVE2SOURCE_COLLECTIVE:
curve2 = MixerCurve(collectiveDesired, mixerSettings.ThrottleCurve2,
MIXERSETTINGS_THROTTLECURVE2_NUMELEM);
// assume reversible motor/mixer initially
curve2 = MixerCurveFullRangeProportional(collectiveDesired, mixerSettings.ThrottleCurve2,
MIXERSETTINGS_THROTTLECURVE2_NUMELEM);
break;
case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY0:
case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY1:
@ -327,14 +337,19 @@ static void actuatorTask(__attribute__((unused)) void *parameters)
case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY4:
case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY5:
if (AccessoryDesiredInstGet(mixerSettings.Curve2Source - MIXERSETTINGS_CURVE2SOURCE_ACCESSORY0, &accessory) == 0) {
curve2 = MixerCurve(accessory.AccessoryVal, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM);
// Throttle curve contribution the same for +ve vs -ve accessory....maybe not want we want.
curve2 = MixerCurveFullRangeAbsolute(accessory.AccessoryVal, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM);
} else {
curve2 = 0;
curve2 = 0.0f;
}
break;
default:
curve2 = 0.0f;
break;
}
float *status = (float *)&mixerStatus; // access status objects as an array of floats
float *status = (float *)&mixerStatus; // access status objects as an array of floats
Mixer_t *mixers = (Mixer_t *)&mixerSettings.Mixer1Type;
for (int ct = 0; ct < MAX_MIX_ACTUATORS; ct++) {
// During boot all camera actuators should be completely disabled (PWM pulse = 0).
@ -343,20 +358,24 @@ static void actuatorTask(__attribute__((unused)) void *parameters)
// Setting it to 1 by default means "Rescale this channel and enable PWM on its output".
command.Channel[ct] = 1;
if (mixers[ct].type == MIXERSETTINGS_MIXER1TYPE_DISABLED) {
uint8_t mixer_type = mixers[ct].type;
if (mixer_type == MIXERSETTINGS_MIXER1TYPE_DISABLED) {
// Set to minimum if disabled. This is not the same as saying PWM pulse = 0 us
status[ct] = -1;
continue;
}
if ((mixers[ct].type == MIXERSETTINGS_MIXER1TYPE_MOTOR) || (mixers[ct].type == MIXERSETTINGS_MIXER1TYPE_REVERSABLEMOTOR) || (mixers[ct].type == MIXERSETTINGS_MIXER1TYPE_SERVO)) {
status[ct] = ProcessMixer(ct, curve1, curve2, &mixerSettings, &desired, dTSeconds);
} else {
status[ct] = -1;
}
// Motors have additional protection for when to be on
if (mixers[ct].type == MIXERSETTINGS_MIXER1TYPE_MOTOR) {
if ((mixer_type == MIXERSETTINGS_MIXER1TYPE_MOTOR)) {
float nonreversible_curve1 = curve1;
float nonreversible_curve2 = curve2;
if (nonreversible_curve1 < 0.0f) {
nonreversible_curve1 = 0.0f;
}
if (nonreversible_curve2 < 0.0f) {
nonreversible_curve2 = 0.0f;
}
status[ct] = ProcessMixer(ct, nonreversible_curve1, nonreversible_curve2, &desired, dTSeconds);
// If not armed or motors aren't meant to spin all the time
if (!armed ||
(!spinWhileArmed && !positiveThrottle)) {
@ -369,57 +388,60 @@ static void actuatorTask(__attribute__((unused)) void *parameters)
(status[ct] < 0)) {
status[ct] = 0;
}
}
// Reversable Motors are like Motors but go to neutral instead of minimum
if (mixers[ct].type == MIXERSETTINGS_MIXER1TYPE_REVERSABLEMOTOR) {
} else if (mixer_type == MIXERSETTINGS_MIXER1TYPE_REVERSABLEMOTOR) {
status[ct] = ProcessMixer(ct, curve1, curve2, &desired, dTSeconds);
// Reversable Motors are like Motors but go to neutral instead of minimum
// If not armed or motor is inactive - no "spinwhilearmed" for this engine type
if (!armed || !activeThrottle) {
filterAccumulator[ct] = 0;
lastResult[ct] = 0;
status[ct] = 0; // force neutral throttle
}
}
} else if (mixer_type == MIXERSETTINGS_MIXER1TYPE_SERVO) {
status[ct] = ProcessMixer(ct, curve1, curve2, &desired, dTSeconds);
} else {
status[ct] = -1;
// If an accessory channel is selected for direct bypass mode
// In this configuration the accessory channel is scaled and mapped
// directly to output. Note: THERE IS NO SAFETY CHECK HERE FOR ARMING
// these also will not be updated in failsafe mode. I'm not sure what
// the correct behavior is since it seems domain specific. I don't love
// this code
if ((mixers[ct].type >= MIXERSETTINGS_MIXER1TYPE_ACCESSORY0) &&
(mixers[ct].type <= MIXERSETTINGS_MIXER1TYPE_ACCESSORY5)) {
if (AccessoryDesiredInstGet(mixers[ct].type - MIXERSETTINGS_MIXER1TYPE_ACCESSORY0, &accessory) == 0) {
status[ct] = accessory.AccessoryVal;
} else {
status[ct] = -1;
}
}
if ((mixers[ct].type >= MIXERSETTINGS_MIXER1TYPE_CAMERAROLLORSERVO1) &&
(mixers[ct].type <= MIXERSETTINGS_MIXER1TYPE_CAMERAYAW)) {
CameraDesiredData cameraDesired;
if (CameraDesiredGet(&cameraDesired) == 0) {
switch (mixers[ct].type) {
case MIXERSETTINGS_MIXER1TYPE_CAMERAROLLORSERVO1:
status[ct] = cameraDesired.RollOrServo1;
break;
case MIXERSETTINGS_MIXER1TYPE_CAMERAPITCHORSERVO2:
status[ct] = cameraDesired.PitchOrServo2;
break;
case MIXERSETTINGS_MIXER1TYPE_CAMERAYAW:
status[ct] = cameraDesired.Yaw;
break;
default:
break;
// If an accessory channel is selected for direct bypass mode
// In this configuration the accessory channel is scaled and mapped
// directly to output. Note: THERE IS NO SAFETY CHECK HERE FOR ARMING
// these also will not be updated in failsafe mode. I'm not sure what
// the correct behavior is since it seems domain specific. I don't love
// this code
if ((mixer_type >= MIXERSETTINGS_MIXER1TYPE_ACCESSORY0) &&
(mixer_type <= MIXERSETTINGS_MIXER1TYPE_ACCESSORY5)) {
if (AccessoryDesiredInstGet(mixer_type - MIXERSETTINGS_MIXER1TYPE_ACCESSORY0, &accessory) == 0) {
status[ct] = accessory.AccessoryVal;
} else {
status[ct] = -1;
}
} else {
status[ct] = -1;
}
// Disable camera actuators for CAMERA_BOOT_DELAY_MS after boot
if (thisSysTime < (CAMERA_BOOT_DELAY_MS / portTICK_RATE_MS)) {
command.Channel[ct] = 0;
if ((mixer_type >= MIXERSETTINGS_MIXER1TYPE_CAMERAROLLORSERVO1) &&
(mixer_type <= MIXERSETTINGS_MIXER1TYPE_CAMERAYAW)) {
CameraDesiredData cameraDesired;
if (CameraDesiredGet(&cameraDesired) == 0) {
switch (mixer_type) {
case MIXERSETTINGS_MIXER1TYPE_CAMERAROLLORSERVO1:
status[ct] = cameraDesired.RollOrServo1;
break;
case MIXERSETTINGS_MIXER1TYPE_CAMERAPITCHORSERVO2:
status[ct] = cameraDesired.PitchOrServo2;
break;
case MIXERSETTINGS_MIXER1TYPE_CAMERAYAW:
status[ct] = cameraDesired.Yaw;
break;
default:
break;
}
} else {
status[ct] = -1;
}
// Disable camera actuators for CAMERA_BOOT_DELAY_MS after boot
if (thisSysTime < (CAMERA_BOOT_DELAY_MS / portTICK_RATE_MS)) {
command.Channel[ct] = 0;
}
}
}
}
@ -454,7 +476,7 @@ static void actuatorTask(__attribute__((unused)) void *parameters)
bool success = true;
for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n) {
success &= set_channel(n, command.Channel[n], &actuatorSettings);
success &= set_channel(n, command.Channel[n]);
}
PIOS_Servo_Update();
@ -475,10 +497,10 @@ static void actuatorTask(__attribute__((unused)) void *parameters)
* Process mixing for one actuator
*/
float ProcessMixer(const int index, const float curve1, const float curve2,
const MixerSettingsData *mixerSettings, ActuatorDesiredData *desired, const float period)
ActuatorDesiredData *desired, const float period)
{
static float lastFilteredResult[MAX_MIX_ACTUATORS];
const Mixer_t *mixers = (Mixer_t *)&mixerSettings->Mixer1Type; // pointer to array of mixers in UAVObjects
const Mixer_t *mixers = (Mixer_t *)&mixerSettings.Mixer1Type; // pointer to array of mixers in UAVObjects
const Mixer_t *mixer = &mixers[index];
float result = ((((float)mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_THROTTLECURVE1]) * curve1) +
@ -495,18 +517,18 @@ float ProcessMixer(const int index, const float curve1, const float curve2,
// feed forward
float accumulator = filterAccumulator[index];
accumulator += (result - lastResult[index]) * mixerSettings->FeedForward;
accumulator += (result - lastResult[index]) * mixerSettings.FeedForward;
lastResult[index] = result;
result += accumulator;
if (period > 0.0f) {
if (accumulator > 0.0f) {
float invFilter = period / mixerSettings->AccelTime;
float invFilter = period / mixerSettings.AccelTime;
if (invFilter > 1) {
invFilter = 1;
}
accumulator -= accumulator * invFilter;
} else {
float invFilter = period / mixerSettings->DecelTime;
float invFilter = period / mixerSettings.DecelTime;
if (invFilter > 1) {
invFilter = 1;
}
@ -518,7 +540,7 @@ float ProcessMixer(const int index, const float curve1, const float curve2,
// acceleration limit
float dt = result - lastFilteredResult[index];
float maxDt = mixerSettings->MaxAccel * period;
float maxDt = mixerSettings.MaxAccel * period;
if (dt > maxDt) { // we are accelerating too hard
result = lastFilteredResult[index] + maxDt;
}
@ -530,21 +552,43 @@ float ProcessMixer(const int index, const float curve1, const float curve2,
/**
* Interpolate a throttle curve. Throttle input should be in the range 0 to 1.
* Output is in the range 0 to 1.
* Interpolate a throttle curve
* Full range input (-1 to 1) for yaw, roll, pitch
* Output range (-1 to 1) reversible motor/throttle curve
*
* Input of -1 -> -lookup(1)
* Input of 0 -> lookup(0)
* Input of 1 -> lookup(1)
*/
static float MixerCurve(const float throttle, const float *curve, uint8_t elements)
static float MixerCurveFullRangeProportional(const float input, const float *curve, uint8_t elements)
{
float scale = throttle * (float)(elements - 1);
int idx1 = scale;
float unsigned_value = MixerCurveFullRangeAbsolute(input, curve, elements);
if (input < 0.0f) {
return -unsigned_value;
} else {
return unsigned_value;
}
}
/**
* Interpolate a throttle curve
* Full range input (-1 to 1) for yaw, roll, pitch
* Output range (0 to 1) non-reversible motor/throttle curve
*
* Input of -1 -> lookup(1)
* Input of 0 -> lookup(0)
* Input of 1 -> lookup(1)
*/
static float MixerCurveFullRangeAbsolute(const float input, const float *curve, uint8_t elements)
{
float abs_input = fabsf(input);
float scale = abs_input * (float)(elements - 1);
int idx1 = scale;
scale -= (float)idx1; // remainder
if (curve[0] < -1) {
return throttle;
}
if (idx1 < 0) {
idx1 = 0; // clamp to lowest entry in table
scale = 0;
return abs_input;
}
int idx2 = idx1 + 1;
if (idx2 >= elements) {
@ -553,7 +597,9 @@ static float MixerCurve(const float throttle, const float *curve, uint8_t elemen
idx1 = elements - 1;
}
}
return curve[idx1] * (1.0f - scale) + curve[idx2] * scale;
float unsigned_value = curve[idx1] * (1.0f - scale) + curve[idx2] * scale;
return unsigned_value;
}
@ -593,21 +639,22 @@ static int16_t scaleChannel(float value, int16_t max, int16_t min, int16_t neutr
/**
* Set actuator output to the neutral values (failsafe)
*/
static void setFailsafe(const ActuatorSettingsData *actuatorSettings, const MixerSettingsData *mixerSettings)
static void setFailsafe()
{
/* grab only the parts that we are going to use */
int16_t Channel[ACTUATORCOMMAND_CHANNEL_NUMELEM];
ActuatorCommandChannelGet(Channel);
const Mixer_t *mixers = (Mixer_t *)&mixerSettings->Mixer1Type; // pointer to array of mixers in UAVObjects
const Mixer_t *mixers = (Mixer_t *)&mixerSettings.Mixer1Type; // pointer to array of mixers in UAVObjects
// Reset ActuatorCommand to safe values
for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n) {
if (mixers[n].type == MIXERSETTINGS_MIXER1TYPE_MOTOR) {
Channel[n] = actuatorSettings->ChannelMin[n];
Channel[n] = actuatorSettings.ChannelMin[n];
} else if (mixers[n].type == MIXERSETTINGS_MIXER1TYPE_SERVO || mixers[n].type == MIXERSETTINGS_MIXER1TYPE_REVERSABLEMOTOR) {
Channel[n] = actuatorSettings->ChannelNeutral[n];
// reversible motors need calibration wizard that allows channel neutral to be the 0 velocity point
Channel[n] = actuatorSettings.ChannelNeutral[n];
} else {
Channel[n] = 0;
}
@ -618,7 +665,7 @@ static void setFailsafe(const ActuatorSettingsData *actuatorSettings, const Mixe
// Update servo outputs
for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n) {
set_channel(n, Channel[n], actuatorSettings);
set_channel(n, Channel[n]);
}
// Send the updated command
PIOS_Servo_Update();
@ -713,39 +760,39 @@ static inline bool buzzerState(buzzertype type)
#if defined(ARCH_POSIX) || defined(ARCH_WIN32)
static bool set_channel(uint8_t mixer_channel, uint16_t value, const ActuatorSettingsData *actuatorSettings)
static bool set_channel(uint8_t mixer_channel, uint16_t value)
{
return true;
}
#else
static bool set_channel(uint8_t mixer_channel, uint16_t value, const ActuatorSettingsData *actuatorSettings)
static bool set_channel(uint8_t mixer_channel, uint16_t value)
{
switch (actuatorSettings->ChannelType[mixer_channel]) {
switch (actuatorSettings.ChannelType[mixer_channel]) {
case ACTUATORSETTINGS_CHANNELTYPE_PWMALARMBUZZER:
PIOS_Servo_Set(actuatorSettings->ChannelAddr[mixer_channel],
buzzerState(BUZZ_BUZZER) ? actuatorSettings->ChannelMax[mixer_channel] : actuatorSettings->ChannelMin[mixer_channel]);
PIOS_Servo_Set(actuatorSettings.ChannelAddr[mixer_channel],
buzzerState(BUZZ_BUZZER) ? actuatorSettings.ChannelMax[mixer_channel] : actuatorSettings.ChannelMin[mixer_channel]);
return true;
case ACTUATORSETTINGS_CHANNELTYPE_ARMINGLED:
PIOS_Servo_Set(actuatorSettings->ChannelAddr[mixer_channel],
buzzerState(BUZZ_ARMING) ? actuatorSettings->ChannelMax[mixer_channel] : actuatorSettings->ChannelMin[mixer_channel]);
PIOS_Servo_Set(actuatorSettings.ChannelAddr[mixer_channel],
buzzerState(BUZZ_ARMING) ? actuatorSettings.ChannelMax[mixer_channel] : actuatorSettings.ChannelMin[mixer_channel]);
return true;
case ACTUATORSETTINGS_CHANNELTYPE_INFOLED:
PIOS_Servo_Set(actuatorSettings->ChannelAddr[mixer_channel],
buzzerState(BUZZ_INFO) ? actuatorSettings->ChannelMax[mixer_channel] : actuatorSettings->ChannelMin[mixer_channel]);
PIOS_Servo_Set(actuatorSettings.ChannelAddr[mixer_channel],
buzzerState(BUZZ_INFO) ? actuatorSettings.ChannelMax[mixer_channel] : actuatorSettings.ChannelMin[mixer_channel]);
return true;
case ACTUATORSETTINGS_CHANNELTYPE_PWM:
{
uint8_t mode = pinsMode[actuatorSettings->ChannelAddr[mixer_channel]];
uint8_t mode = pinsMode[actuatorSettings.ChannelAddr[mixer_channel]];
switch (mode) {
case ACTUATORSETTINGS_BANKMODE_ONESHOT125:
// Remap 1000-2000 range to 125-250
PIOS_Servo_Set(actuatorSettings->ChannelAddr[mixer_channel], value / ACTUATOR_ONESHOT125_PULSE_SCALE);
PIOS_Servo_Set(actuatorSettings.ChannelAddr[mixer_channel], value / ACTUATOR_ONESHOT125_PULSE_SCALE);
break;
default:
PIOS_Servo_Set(actuatorSettings->ChannelAddr[mixer_channel], value);
PIOS_Servo_Set(actuatorSettings.ChannelAddr[mixer_channel], value);
break;
}
return true;
@ -770,12 +817,12 @@ static bool set_channel(uint8_t mixer_channel, uint16_t value, const ActuatorSet
/**
* @brief Update the servo update rate
*/
static void actuator_update_rate_if_changed(const ActuatorSettingsData *actuatorSettings, bool force_update)
static void actuator_update_rate_if_changed(bool force_update)
{
static uint16_t prevBankUpdateFreq[ACTUATORSETTINGS_BANKUPDATEFREQ_NUMELEM];
static uint8_t prevBankMode[ACTUATORSETTINGS_BANKMODE_NUMELEM];
bool updateMode = force_update || (memcmp(prevBankMode, actuatorSettings->BankMode, sizeof(prevBankMode)) != 0);
bool updateFreq = force_update || (memcmp(prevBankUpdateFreq, actuatorSettings->BankUpdateFreq, sizeof(prevBankUpdateFreq)) != 0);
bool updateMode = force_update || (memcmp(prevBankMode, actuatorSettings.BankMode, sizeof(prevBankMode)) != 0);
bool updateFreq = force_update || (memcmp(prevBankUpdateFreq, actuatorSettings.BankUpdateFreq, sizeof(prevBankUpdateFreq)) != 0);
// check if any setting is changed
if (updateMode || updateFreq) {
@ -784,15 +831,15 @@ static void actuator_update_rate_if_changed(const ActuatorSettingsData *actuator
uint16_t freq[ACTUATORSETTINGS_BANKUPDATEFREQ_NUMELEM];
uint32_t clock[ACTUATORSETTINGS_BANKUPDATEFREQ_NUMELEM] = { 0 };
for (uint8_t i = 0; i < ACTUATORSETTINGS_BANKMODE_NUMELEM; i++) {
if (force_update || (actuatorSettings->BankMode[i] != prevBankMode[i])) {
if (force_update || (actuatorSettings.BankMode[i] != prevBankMode[i])) {
PIOS_Servo_SetBankMode(i,
actuatorSettings->BankMode[i] ==
actuatorSettings.BankMode[i] ==
ACTUATORSETTINGS_BANKMODE_PWM ?
PIOS_SERVO_BANK_MODE_PWM :
PIOS_SERVO_BANK_MODE_SINGLE_PULSE
);
}
switch (actuatorSettings->BankMode[i]) {
switch (actuatorSettings.BankMode[i]) {
case ACTUATORSETTINGS_BANKMODE_ONESHOT125:
freq[i] = 100; // Value must be small enough so CCr isn't update until the PIOS_Servo_Update is triggered
clock[i] = ACTUATOR_ONESHOT125_CLOCK; // Setup an 2MHz timer clock
@ -802,37 +849,73 @@ static void actuator_update_rate_if_changed(const ActuatorSettingsData *actuator
clock[i] = ACTUATOR_PWM_CLOCK;
break;
default: // PWM
freq[i] = actuatorSettings->BankUpdateFreq[i];
freq[i] = actuatorSettings.BankUpdateFreq[i];
clock[i] = ACTUATOR_PWM_CLOCK;
break;
}
}
memcpy(prevBankMode,
actuatorSettings->BankMode,
actuatorSettings.BankMode,
sizeof(prevBankMode));
PIOS_Servo_SetHz(freq, clock, ACTUATORSETTINGS_BANKUPDATEFREQ_NUMELEM);
memcpy(prevBankUpdateFreq,
actuatorSettings->BankUpdateFreq,
actuatorSettings.BankUpdateFreq,
sizeof(prevBankUpdateFreq));
// retrieve mode from related bank
for (uint8_t i = 0; i < MAX_MIX_ACTUATORS; i++) {
uint8_t bank = PIOS_Servo_GetPinBank(i);
pinsMode[i] = actuatorSettings->BankMode[bank];
pinsMode[i] = actuatorSettings.BankMode[bank];
}
}
}
static void ActuatorSettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
actuator_settings_updated = true;
ActuatorSettingsGet(&actuatorSettings);
spinWhileArmed = actuatorSettings.MotorsSpinWhileArmed == ACTUATORSETTINGS_MOTORSSPINWHILEARMED_TRUE;
if (frameType == FRAME_TYPE_GROUND) {
spinWhileArmed = false;
}
actuator_update_rate_if_changed(false);
}
static void MixerSettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
mixer_settings_updated = true;
MixerSettingsGet(&mixerSettings);
mixer_settings_count = 0;
Mixer_t *mixers = (Mixer_t *)&mixerSettings.Mixer1Type;
for (int ct = 0; ct < MAX_MIX_ACTUATORS; ct++) {
if (mixers[ct].type != MIXERSETTINGS_MIXER1TYPE_DISABLED) {
mixer_settings_count++;
}
}
}
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
frameType = GetCurrentFrameType();
#ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
uint8_t TreatCustomCraftAs;
VtolPathFollowerSettingsTreatCustomCraftAsGet(&TreatCustomCraftAs);
if (frameType == FRAME_TYPE_CUSTOM) {
switch (TreatCustomCraftAs) {
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_FIXEDWING:
frameType = FRAME_TYPE_FIXED_WING;
break;
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_VTOL:
frameType = FRAME_TYPE_MULTIROTOR;
break;
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_GROUND:
frameType = FRAME_TYPE_GROUND;
break;
}
}
#endif
SystemSettingsThrustControlGet(&thrustType);
}
/**

View File

@ -37,7 +37,8 @@
#include <stabilizationdesired.h>
// Private constants
#define ARMED_THRESHOLD 0.50f
#define ARMED_THRESHOLD 0.50f
#define GROUND_LOW_THROTTLE 0.01f
// Private types
typedef enum {
@ -62,7 +63,7 @@ static bool forcedDisArm(void);
* @input: ManualControlCommand, AccessoryDesired
* @output: FlightStatus.Arming
*/
void armHandler(bool newinit)
void armHandler(bool newinit, FrameType_t frameType)
{
static ArmState_t armState;
@ -82,7 +83,12 @@ void armHandler(bool newinit)
bool lowThrottle = cmd.Throttle < 0;
bool armSwitch = false;
if (frameType == FRAME_TYPE_GROUND) {
// Deadbanding applied in receiver.c typically at 2% but we don't assume its enabled.
lowThrottle = fabsf(cmd.Throttle) < GROUND_LOW_THROTTLE;
}
bool armSwitch = false;
switch (settings.Arming) {
case FLIGHTMODESETTINGS_ARMING_ACCESSORY0:
@ -304,6 +310,8 @@ static bool okToArm(void)
return true;
break;
case FLIGHTSTATUS_FLIGHTMODE_LAND:
return false;
default:
return false;

View File

@ -32,6 +32,7 @@
#include <openpilot.h>
#include <flightstatus.h>
#include <sanitycheck.h>
typedef void (*handlerFunc)(bool newinit);
@ -45,7 +46,7 @@ typedef struct controlHandlerStruct {
* @input: ManualControlCommand, AccessoryDesired
* @output: FlightStatus.Arming
*/
void armHandler(bool newinit);
void armHandler(bool newinit, FrameType_t frameType);
/**
* @brief Handler to control Manual flightmode - input directly steers actuators

View File

@ -108,6 +108,7 @@ static float thrustHi = 0.0f;
#endif /* ifndef PIOS_EXCLUDE_ADVANCED_FEATURES */
// Private variables
static DelayedCallbackInfo *callbackHandle;
static FrameType_t frameType = FRAME_TYPE_MULTIROTOR;
// Private functions
static void configurationUpdatedCb(UAVObjEvent *ev);
@ -116,6 +117,7 @@ static void manualControlTask(void);
#ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
static uint8_t isAssistedFlightMode(uint8_t position, uint8_t flightMode, FlightModeSettingsData *modeSettings);
#endif
static void SettingsUpdatedCb(UAVObjEvent *ev);
#define assumptions (assumptions1 && assumptions2 && assumptions3 && assumptions4 && assumptions5 && assumptions6 && assumptions7 && assumptions_flightmode)
@ -135,11 +137,14 @@ int32_t ManualControlStart()
// clear alarms
AlarmsClear(SYSTEMALARMS_ALARM_MANUALCONTROL);
SettingsUpdatedCb(NULL);
// Make sure unarmed on power up
armHandler(true);
armHandler(true, frameType);
#ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
takeOffLocationHandlerInit();
#endif
// Start main task
PIOS_CALLBACKSCHEDULER_Dispatch(callbackHandle);
@ -164,6 +169,8 @@ int32_t ManualControlInitialize()
#ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
VtolSelfTuningStatsInitialize();
VtolPathFollowerSettingsInitialize();
VtolPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
SystemSettingsConnectCallback(&SettingsUpdatedCb);
#endif
callbackHandle = PIOS_CALLBACKSCHEDULER_Create(&manualControlTask, CALLBACK_PRIORITY, CBTASK_PRIORITY, CALLBACKINFO_RUNNING_MANUALCONTROL, STACK_SIZE_BYTES);
@ -171,13 +178,37 @@ int32_t ManualControlInitialize()
}
MODULE_INITCALL(ManualControlInitialize, ManualControlStart);
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
frameType = GetCurrentFrameType();
#ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
uint8_t TreatCustomCraftAs;
VtolPathFollowerSettingsTreatCustomCraftAsGet(&TreatCustomCraftAs);
if (frameType == FRAME_TYPE_CUSTOM) {
switch (TreatCustomCraftAs) {
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_FIXEDWING:
frameType = FRAME_TYPE_FIXED_WING;
break;
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_VTOL:
frameType = FRAME_TYPE_MULTIROTOR;
break;
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_GROUND:
frameType = FRAME_TYPE_GROUND;
break;
}
}
#endif
}
/**
* Module task
*/
static void manualControlTask(void)
{
// Process Arming
armHandler(false);
armHandler(false, frameType);
#ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
takeOffLocationHandler();
#endif
@ -366,9 +397,15 @@ static void manualControlTask(void)
break;
#ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
// During development the assistedcontrol implementation is optional and set
// set in stabi settings. Once if we decide to always have this on, it can
// can be directly set here...i.e. set the flight mode assist as required.
case FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD:
case FLIGHTSTATUS_FLIGHTMODE_POSITIONROAM:
case FLIGHTSTATUS_FLIGHTMODE_LAND:
newFlightModeAssist = isAssistedFlightMode(position, newMode, &modeSettings);
if (newFlightModeAssist) {
// Set the default thrust state
switch (newFlightModeAssist) {
case FLIGHTSTATUS_FLIGHTMODEASSIST_GPSASSIST_PRIMARYTHRUST:
newAssistedThrottleState = FLIGHTSTATUS_ASSISTEDTHROTTLESTATE_MANUAL;
@ -381,28 +418,14 @@ static void manualControlTask(void)
newAssistedThrottleState = FLIGHTSTATUS_ASSISTEDTHROTTLESTATE_MANUAL; // Effectively None
break;
}
switch (newAssistedControlState) {
case FLIGHTSTATUS_ASSISTEDCONTROLSTATE_BRAKE:
newAssistedControlState = FLIGHTSTATUS_ASSISTEDCONTROLSTATE_BRAKE;
break;
case FLIGHTSTATUS_ASSISTEDCONTROLSTATE_PRIMARY:
newAssistedControlState = FLIGHTSTATUS_ASSISTEDCONTROLSTATE_BRAKE;
break;
case FLIGHTSTATUS_ASSISTEDCONTROLSTATE_HOLD:
newAssistedControlState = FLIGHTSTATUS_ASSISTEDCONTROLSTATE_HOLD;
break;
}
}
handler = &handler_PATHFOLLOWER;
break;
case FLIGHTSTATUS_FLIGHTMODE_COURSELOCK:
case FLIGHTSTATUS_FLIGHTMODE_POSITIONROAM:
case FLIGHTSTATUS_FLIGHTMODE_HOMELEASH:
case FLIGHTSTATUS_FLIGHTMODE_ABSOLUTEPOSITION:
case FLIGHTSTATUS_FLIGHTMODE_RETURNTOBASE:
case FLIGHTSTATUS_FLIGHTMODE_LAND:
case FLIGHTSTATUS_FLIGHTMODE_POI:
case FLIGHTSTATUS_FLIGHTMODE_AUTOCRUISE:
handler = &handler_PATHFOLLOWER;
@ -497,11 +520,15 @@ static uint8_t isAssistedFlightMode(uint8_t position, uint8_t flightMode, Flight
thrustMode = modeSettings->Stabilization6Settings.Thrust;
break;
case FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD:
// we hard code the "GPS Assisted" PostionHold to use alt-vario which
case FLIGHTSTATUS_FLIGHTMODE_POSITIONROAM:
// we hard code the "GPS Assisted" PostionHold/Roam to use alt-vario which
// is a more appropriate throttle mode. "GPSAssist" adds braking
// and a better throttle management to the standard Position Hold.
thrustMode = FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_ALTITUDEVARIO;
break;
case FLIGHTSTATUS_FLIGHTMODE_LAND:
thrustMode = FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_CRUISECONTROL;
break;
// other modes will use cruisecontrol as default
}

View File

@ -57,7 +57,9 @@ void pathFollowerHandler(bool newinit)
uint8_t flightMode;
uint8_t assistedControlFlightMode;
uint8_t flightModeAssist;
FlightStatusFlightModeGet(&flightMode);
FlightStatusFlightModeAssistGet(&flightModeAssist);
FlightStatusAssistedControlStateGet(&assistedControlFlightMode);
if (newinit) {
@ -67,8 +69,9 @@ void pathFollowerHandler(bool newinit)
plan_setup_returnToBase();
break;
case FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD:
if (assistedControlFlightMode == FLIGHTSTATUS_ASSISTEDCONTROLSTATE_BRAKE) {
// Just initiated braking after returning from stabi control
if ((flightModeAssist != FLIGHTSTATUS_FLIGHTMODEASSIST_NONE) &&
(assistedControlFlightMode == FLIGHTSTATUS_ASSISTEDCONTROLSTATE_PRIMARY)) {
// Switch from primary (just entered this PH flight mode) into brake
plan_setup_assistedcontrol(false);
} else {
plan_setup_positionHold();
@ -78,7 +81,11 @@ void pathFollowerHandler(bool newinit)
plan_setup_CourseLock();
break;
case FLIGHTSTATUS_FLIGHTMODE_POSITIONROAM:
plan_setup_PositionRoam();
if (flightModeAssist == FLIGHTSTATUS_FLIGHTMODEASSIST_NONE) {
plan_setup_PositionRoam();
} else {
plan_setup_VelocityRoam();
}
break;
case FLIGHTSTATUS_FLIGHTMODE_HOMELEASH:
plan_setup_HomeLeash();
@ -88,7 +95,11 @@ void pathFollowerHandler(bool newinit)
break;
case FLIGHTSTATUS_FLIGHTMODE_LAND:
plan_setup_land();
if (flightModeAssist == FLIGHTSTATUS_FLIGHTMODEASSIST_NONE) {
plan_setup_land();
} else {
plan_setup_VelocityRoam();
}
break;
case FLIGHTSTATUS_FLIGHTMODE_AUTOCRUISE:
plan_setup_AutoCruise();
@ -117,7 +128,11 @@ void pathFollowerHandler(bool newinit)
plan_run_CourseLock();
break;
case FLIGHTSTATUS_FLIGHTMODE_POSITIONROAM:
plan_run_PositionRoam();
if (flightModeAssist == FLIGHTSTATUS_FLIGHTMODEASSIST_NONE) {
plan_run_PositionRoam();
} else {
plan_run_VelocityRoam();
}
break;
case FLIGHTSTATUS_FLIGHTMODE_HOMELEASH:
plan_run_HomeLeash();
@ -126,7 +141,9 @@ void pathFollowerHandler(bool newinit)
plan_run_AbsolutePosition();
break;
case FLIGHTSTATUS_FLIGHTMODE_LAND:
plan_run_land();
if (flightModeAssist != FLIGHTSTATUS_FLIGHTMODEASSIST_NONE) {
plan_run_VelocityRoam();
}
break;
case FLIGHTSTATUS_FLIGHTMODE_AUTOCRUISE:
plan_run_AutoCruise();

View File

@ -0,0 +1,618 @@
/*
******************************************************************************
*
* @file FixedWingFlyController.cpp
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Fixed wing fly controller implementation
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
extern "C" {
#include <openpilot.h>
#include <callbackinfo.h>
#include <math.h>
#include <pid.h>
#include <CoordinateConversions.h>
#include <sin_lookup.h>
#include <pathdesired.h>
#include <paths.h>
#include "plans.h"
#include <sanitycheck.h>
#include <homelocation.h>
#include <accelstate.h>
#include <fixedwingpathfollowersettings.h>
#include <fixedwingpathfollowerstatus.h>
#include <flightstatus.h>
#include <flightmodesettings.h>
#include <pathstatus.h>
#include <positionstate.h>
#include <velocitystate.h>
#include <velocitydesired.h>
#include <stabilizationdesired.h>
#include <airspeedstate.h>
#include <attitudestate.h>
#include <takeofflocation.h>
#include <poilocation.h>
#include <manualcontrolcommand.h>
#include <systemsettings.h>
#include <stabilizationbank.h>
#include <stabilizationdesired.h>
#include <vtolselftuningstats.h>
#include <pathsummary.h>
}
// C++ includes
#include "fixedwingflycontroller.h"
// Private constants
// pointer to a singleton instance
FixedWingFlyController *FixedWingFlyController::p_inst = 0;
FixedWingFlyController::FixedWingFlyController()
: fixedWingSettings(NULL), mActive(false), mMode(0), indicatedAirspeedStateBias(0.0f)
{}
// Called when mode first engaged
void FixedWingFlyController::Activate(void)
{
if (!mActive) {
mActive = true;
SettingsUpdated();
resetGlobals();
mMode = pathDesired->Mode;
}
}
uint8_t FixedWingFlyController::IsActive(void)
{
return mActive;
}
uint8_t FixedWingFlyController::Mode(void)
{
return mMode;
}
// Objective updated in pathdesired
void FixedWingFlyController::ObjectiveUpdated(void)
{}
void FixedWingFlyController::Deactivate(void)
{
if (mActive) {
mActive = false;
resetGlobals();
}
}
void FixedWingFlyController::SettingsUpdated(void)
{
// fixed wing PID only
pid_configure(&PIDposH[0], fixedWingSettings->HorizontalPosP, 0.0f, 0.0f, 0.0f);
pid_configure(&PIDposH[1], fixedWingSettings->HorizontalPosP, 0.0f, 0.0f, 0.0f);
pid_configure(&PIDposV, fixedWingSettings->VerticalPosP, 0.0f, 0.0f, 0.0f);
pid_configure(&PIDcourse, fixedWingSettings->CoursePI.Kp, fixedWingSettings->CoursePI.Ki, 0.0f, fixedWingSettings->CoursePI.ILimit);
pid_configure(&PIDspeed, fixedWingSettings->SpeedPI.Kp, fixedWingSettings->SpeedPI.Ki, 0.0f, fixedWingSettings->SpeedPI.ILimit);
pid_configure(&PIDpower, fixedWingSettings->PowerPI.Kp, fixedWingSettings->PowerPI.Ki, 0.0f, fixedWingSettings->PowerPI.ILimit);
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t FixedWingFlyController::Initialize(FixedWingPathFollowerSettingsData *ptr_fixedWingSettings)
{
PIOS_Assert(ptr_fixedWingSettings);
fixedWingSettings = ptr_fixedWingSettings;
resetGlobals();
return 0;
}
/**
* reset integrals
*/
void FixedWingFlyController::resetGlobals()
{
pid_zero(&PIDposH[0]);
pid_zero(&PIDposH[1]);
pid_zero(&PIDposV);
pid_zero(&PIDcourse);
pid_zero(&PIDspeed);
pid_zero(&PIDpower);
pathStatus->path_time = 0.0f;
}
void FixedWingFlyController::UpdateAutoPilot()
{
uint8_t result = updateAutoPilotFixedWing();
if (result) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
} else {
pathStatus->Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
}
PathStatusSet(pathStatus);
}
/**
* fixed wing autopilot:
* straight forward:
* 1. update path velocity for limited motion crafts
* 2. update attitude according to default fixed wing pathfollower algorithm
*/
uint8_t FixedWingFlyController::updateAutoPilotFixedWing()
{
updatePathVelocity(fixedWingSettings->CourseFeedForward, true);
return updateFixedDesiredAttitude();
}
/**
* Compute desired velocity from the current position and path
*/
void FixedWingFlyController::updatePathVelocity(float kFF, bool limited)
{
PositionStateData positionState;
PositionStateGet(&positionState);
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
VelocityDesiredData velocityDesired;
const float dT = fixedWingSettings->UpdatePeriod / 1000.0f;
// look ahead kFF seconds
float cur[3] = { positionState.North + (velocityState.North * kFF),
positionState.East + (velocityState.East * kFF),
positionState.Down + (velocityState.Down * kFF) };
struct path_status progress;
path_progress(pathDesired, cur, &progress, true);
// calculate velocity - can be zero if waypoints are too close
velocityDesired.North = progress.path_vector[0];
velocityDesired.East = progress.path_vector[1];
velocityDesired.Down = progress.path_vector[2];
if (limited &&
// if a plane is crossing its desired flightpath facing the wrong way (away from flight direction)
// it would turn towards the flightpath to get on its desired course. This however would reverse the correction vector
// once it crosses the flightpath again, which would make it again turn towards the flightpath (but away from its desired heading)
// leading to an S-shape snake course the wrong way
// this only happens especially if HorizontalPosP is too high, as otherwise the angle between velocity desired and path_direction won't
// turn steep unless there is enough space complete the turn before crossing the flightpath
// in this case the plane effectively needs to be turned around
// indicators:
// difference between correction_direction and velocitystate >90 degrees and
// difference between path_direction and velocitystate >90 degrees ( 4th sector, facing away from everything )
// fix: ignore correction, steer in path direction until the situation has become better (condition doesn't apply anymore)
// calculating angles < 90 degrees through dot products
(vector_lengthf(progress.path_vector, 2) > 1e-6f) &&
((progress.path_vector[0] * velocityState.North + progress.path_vector[1] * velocityState.East) < 0.0f) &&
((progress.correction_vector[0] * velocityState.North + progress.correction_vector[1] * velocityState.East) < 0.0f)) {
;
} else {
// calculate correction
velocityDesired.North += pid_apply(&PIDposH[0], progress.correction_vector[0], dT);
velocityDesired.East += pid_apply(&PIDposH[1], progress.correction_vector[1], dT);
}
velocityDesired.Down += pid_apply(&PIDposV, progress.correction_vector[2], dT);
// update pathstatus
pathStatus->error = progress.error;
pathStatus->fractional_progress = progress.fractional_progress;
pathStatus->path_direction_north = progress.path_vector[0];
pathStatus->path_direction_east = progress.path_vector[1];
pathStatus->path_direction_down = progress.path_vector[2];
pathStatus->correction_direction_north = progress.correction_vector[0];
pathStatus->correction_direction_east = progress.correction_vector[1];
pathStatus->correction_direction_down = progress.correction_vector[2];
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired attitude from the desired velocity for fixed wing craft
*/
uint8_t FixedWingFlyController::updateFixedDesiredAttitude()
{
uint8_t result = 1;
const float dT = fixedWingSettings->UpdatePeriod / 1000.0f;
VelocityDesiredData velocityDesired;
VelocityStateData velocityState;
StabilizationDesiredData stabDesired;
AttitudeStateData attitudeState;
FixedWingPathFollowerStatusData fixedWingPathFollowerStatus;
AirspeedStateData airspeedState;
SystemSettingsData systemSettings;
float groundspeedProjection;
float indicatedAirspeedState;
float indicatedAirspeedDesired;
float airspeedError;
float pitchCommand;
float descentspeedDesired;
float descentspeedError;
float powerCommand;
float airspeedVector[2];
float fluidMovement[2];
float courseComponent[2];
float courseError;
float courseCommand;
FixedWingPathFollowerStatusGet(&fixedWingPathFollowerStatus);
VelocityStateGet(&velocityState);
StabilizationDesiredGet(&stabDesired);
VelocityDesiredGet(&velocityDesired);
AttitudeStateGet(&attitudeState);
AirspeedStateGet(&airspeedState);
SystemSettingsGet(&systemSettings);
/**
* Compute speed error and course
*/
// missing sensors for airspeed-direction we have to assume within
// reasonable error that measured airspeed is actually the airspeed
// component in forward pointing direction
// airspeedVector is normalized
airspeedVector[0] = cos_lookup_deg(attitudeState.Yaw);
airspeedVector[1] = sin_lookup_deg(attitudeState.Yaw);
// current ground speed projected in forward direction
groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
// note that airspeedStateBias is ( calibratedAirspeed - groundspeedProjection ) at the time of measurement,
// but thanks to accelerometers, groundspeedProjection reacts faster to changes in direction
// than airspeed and gps sensors alone
indicatedAirspeedState = groundspeedProjection + indicatedAirspeedStateBias;
// fluidMovement is a vector describing the aproximate movement vector of
// the surrounding fluid in 2d space (aka wind vector)
fluidMovement[0] = velocityState.North - (indicatedAirspeedState * airspeedVector[0]);
fluidMovement[1] = velocityState.East - (indicatedAirspeedState * airspeedVector[1]);
// calculate the movement vector we need to fly to reach velocityDesired -
// taking fluidMovement into account
courseComponent[0] = velocityDesired.North - fluidMovement[0];
courseComponent[1] = velocityDesired.East - fluidMovement[1];
indicatedAirspeedDesired = boundf(sqrtf(courseComponent[0] * courseComponent[0] + courseComponent[1] * courseComponent[1]),
fixedWingSettings->HorizontalVelMin,
fixedWingSettings->HorizontalVelMax);
// if we could fly at arbitrary speeds, we'd just have to move towards the
// courseComponent vector as previously calculated and we'd be fine
// unfortunately however we are bound by min and max air speed limits, so
// we need to recalculate the correct course to meet at least the
// velocityDesired vector direction at our current speed
// this overwrites courseComponent
bool valid = correctCourse(courseComponent, (float *)&velocityDesired.North, fluidMovement, indicatedAirspeedDesired);
// Error condition: wind speed too high, we can't go where we want anymore
fixedWingPathFollowerStatus.Errors.Wind = 0;
if ((!valid) &&
fixedWingSettings->Safetymargins.Wind > 0.5f) { // alarm switched on
fixedWingPathFollowerStatus.Errors.Wind = 1;
result = 0;
}
// Airspeed error
airspeedError = indicatedAirspeedDesired - indicatedAirspeedState;
// Vertical speed error
descentspeedDesired = boundf(
velocityDesired.Down,
-fixedWingSettings->VerticalVelMax,
fixedWingSettings->VerticalVelMax);
descentspeedError = descentspeedDesired - velocityState.Down;
// Error condition: plane too slow or too fast
fixedWingPathFollowerStatus.Errors.Highspeed = 0;
fixedWingPathFollowerStatus.Errors.Lowspeed = 0;
if (indicatedAirspeedState > systemSettings.AirSpeedMax * fixedWingSettings->Safetymargins.Overspeed) {
fixedWingPathFollowerStatus.Errors.Overspeed = 1;
result = 0;
}
if (indicatedAirspeedState > fixedWingSettings->HorizontalVelMax * fixedWingSettings->Safetymargins.Highspeed) {
fixedWingPathFollowerStatus.Errors.Highspeed = 1;
result = 0;
}
if (indicatedAirspeedState < fixedWingSettings->HorizontalVelMin * fixedWingSettings->Safetymargins.Lowspeed) {
fixedWingPathFollowerStatus.Errors.Lowspeed = 1;
result = 0;
}
if (indicatedAirspeedState < systemSettings.AirSpeedMin * fixedWingSettings->Safetymargins.Stallspeed) {
fixedWingPathFollowerStatus.Errors.Stallspeed = 1;
result = 0;
}
/**
* Compute desired thrust command
*/
// Compute the cross feed from vertical speed to pitch, with saturation
float speedErrorToPowerCommandComponent = boundf(
(airspeedError / fixedWingSettings->HorizontalVelMin) * fixedWingSettings->AirspeedToPowerCrossFeed.Kp,
-fixedWingSettings->AirspeedToPowerCrossFeed.Max,
fixedWingSettings->AirspeedToPowerCrossFeed.Max
);
// Compute final thrust response
powerCommand = pid_apply(&PIDpower, -descentspeedError, dT) +
speedErrorToPowerCommandComponent;
// Output internal state to telemetry
fixedWingPathFollowerStatus.Error.Power = descentspeedError;
fixedWingPathFollowerStatus.ErrorInt.Power = PIDpower.iAccumulator;
fixedWingPathFollowerStatus.Command.Power = powerCommand;
// set thrust
stabDesired.Thrust = boundf(fixedWingSettings->ThrustLimit.Neutral + powerCommand,
fixedWingSettings->ThrustLimit.Min,
fixedWingSettings->ThrustLimit.Max);
// Error condition: plane cannot hold altitude at current speed.
fixedWingPathFollowerStatus.Errors.Lowpower = 0;
if (fixedWingSettings->ThrustLimit.Neutral + powerCommand >= fixedWingSettings->ThrustLimit.Max && // thrust at maximum
velocityState.Down > 0.0f && // we ARE going down
descentspeedDesired < 0.0f && // we WANT to go up
airspeedError > 0.0f && // we are too slow already
fixedWingSettings->Safetymargins.Lowpower > 0.5f) { // alarm switched on
fixedWingPathFollowerStatus.Errors.Lowpower = 1;
result = 0;
}
// Error condition: plane keeps climbing despite minimum thrust (opposite of above)
fixedWingPathFollowerStatus.Errors.Highpower = 0;
if (fixedWingSettings->ThrustLimit.Neutral + powerCommand <= fixedWingSettings->ThrustLimit.Min && // thrust at minimum
velocityState.Down < 0.0f && // we ARE going up
descentspeedDesired > 0.0f && // we WANT to go down
airspeedError < 0.0f && // we are too fast already
fixedWingSettings->Safetymargins.Highpower > 0.5f) { // alarm switched on
fixedWingPathFollowerStatus.Errors.Highpower = 1;
result = 0;
}
/**
* Compute desired pitch command
*/
// Compute the cross feed from vertical speed to pitch, with saturation
float verticalSpeedToPitchCommandComponent = boundf(-descentspeedError * fixedWingSettings->VerticalToPitchCrossFeed.Kp,
-fixedWingSettings->VerticalToPitchCrossFeed.Max,
fixedWingSettings->VerticalToPitchCrossFeed.Max
);
// Compute the pitch command as err*Kp + errInt*Ki + X_feed.
pitchCommand = -pid_apply(&PIDspeed, airspeedError, dT) + verticalSpeedToPitchCommandComponent;
fixedWingPathFollowerStatus.Error.Speed = airspeedError;
fixedWingPathFollowerStatus.ErrorInt.Speed = PIDspeed.iAccumulator;
fixedWingPathFollowerStatus.Command.Speed = pitchCommand;
stabDesired.Pitch = boundf(fixedWingSettings->PitchLimit.Neutral + pitchCommand,
fixedWingSettings->PitchLimit.Min,
fixedWingSettings->PitchLimit.Max);
// Error condition: high speed dive
fixedWingPathFollowerStatus.Errors.Pitchcontrol = 0;
if (fixedWingSettings->PitchLimit.Neutral + pitchCommand >= fixedWingSettings->PitchLimit.Max && // pitch demand is full up
velocityState.Down > 0.0f && // we ARE going down
descentspeedDesired < 0.0f && // we WANT to go up
airspeedError < 0.0f && // we are too fast already
fixedWingSettings->Safetymargins.Pitchcontrol > 0.5f) { // alarm switched on
fixedWingPathFollowerStatus.Errors.Pitchcontrol = 1;
result = 0;
}
/**
* Compute desired roll command
*/
courseError = RAD2DEG(atan2f(courseComponent[1], courseComponent[0])) - attitudeState.Yaw;
if (courseError < -180.0f) {
courseError += 360.0f;
}
if (courseError > 180.0f) {
courseError -= 360.0f;
}
// overlap calculation. Theres a dead zone behind the craft where the
// counter-yawing of some craft while rolling could render a desired right
// turn into a desired left turn. Making the turn direction based on
// current roll angle keeps the plane committed to a direction once chosen
if (courseError < -180.0f + (fixedWingSettings->ReverseCourseOverlap * 0.5f)
&& attitudeState.Roll > 0.0f) {
courseError += 360.0f;
}
if (courseError > 180.0f - (fixedWingSettings->ReverseCourseOverlap * 0.5f)
&& attitudeState.Roll < 0.0f) {
courseError -= 360.0f;
}
courseCommand = pid_apply(&PIDcourse, courseError, dT);
fixedWingPathFollowerStatus.Error.Course = courseError;
fixedWingPathFollowerStatus.ErrorInt.Course = PIDcourse.iAccumulator;
fixedWingPathFollowerStatus.Command.Course = courseCommand;
stabDesired.Roll = boundf(fixedWingSettings->RollLimit.Neutral +
courseCommand,
fixedWingSettings->RollLimit.Min,
fixedWingSettings->RollLimit.Max);
// TODO: find a check to determine loss of directional control. Likely needs some check of derivative
/**
* Compute desired yaw command
*/
// TODO implement raw control mode for yaw and base on Accels.Y
stabDesired.Yaw = 0.0f;
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
FixedWingPathFollowerStatusSet(&fixedWingPathFollowerStatus);
return result;
}
/**
* Function to calculate course vector C based on airspeed s, fluid movement F
* and desired movement vector V
* parameters in: V,F,s
* parameters out: C
* returns true if a valid solution could be found for V,F,s, false if not
* C will be set to a best effort attempt either way
*/
bool FixedWingFlyController::correctCourse(float *C, float *V, float *F, float s)
{
// Approach:
// Let Sc be a circle around origin marking possible movement vectors
// of the craft with airspeed s (all possible options for C)
// Let Vl be a line through the origin along movement vector V where fr any
// point v on line Vl v = k * (V / |V|) = k' * V
// Let Wl be a line parallel to Vl where for any point v on line Vl exists
// a point w on WL with w = v - F
// Then any intersection between circle Sc and line Wl represents course
// vector which would result in a movement vector
// V' = k * ( V / |V|) = k' * V
// If there is no intersection point, S is insufficient to compensate
// for F and we can only try to fly in direction of V (thus having wind drift
// but at least making progress orthogonal to wind)
s = fabsf(s);
float f = vector_lengthf(F, 2);
// normalize Cn=V/|V|, |V| must be >0
float v = vector_lengthf(V, 2);
if (v < 1e-6f) {
// if |V|=0, we aren't supposed to move, turn into the wind
// (this allows hovering)
C[0] = -F[0];
C[1] = -F[1];
// if desired airspeed matches fluidmovement a hover is actually
// intended so return true
return fabsf(f - s) < 1e-3f;
}
float Vn[2] = { V[0] / v, V[1] / v };
// project F on V
float fp = F[0] * Vn[0] + F[1] * Vn[1];
// find component Fo of F that is orthogonal to V
// (which is exactly the distance between Vl and Wl)
float Fo[2] = { F[0] - (fp * Vn[0]), F[1] - (fp * Vn[1]) };
float fo2 = Fo[0] * Fo[0] + Fo[1] * Fo[1];
// find k where k * Vn = C - Fo
// |C|=s is the hypothenuse in any rectangular triangle formed by k * Vn and Fo
// so k^2 + fo^2 = s^2 (since |Vn|=1)
float k2 = s * s - fo2;
if (k2 <= -1e-3f) {
// there is no solution, we will be drifted off either way
// fallback: fly stupidly in direction of V and hope for the best
C[0] = V[0];
C[1] = V[1];
return false;
} else if (k2 <= 1e-3f) {
// there is exactly one solution: -Fo
C[0] = -Fo[0];
C[1] = -Fo[1];
return true;
}
// we have two possible solutions k positive and k negative as there are
// two intersection points between Wl and Sc
// which one is better? two criteria:
// 1. we MUST move in the right direction, if any k leads to -v its invalid
// 2. we should minimize the speed error
float k = sqrt(k2);
float C1[2] = { -k * Vn[0] - Fo[0], -k * Vn[1] - Fo[1] };
float C2[2] = { k *Vn[0] - Fo[0], k * Vn[1] - Fo[1] };
// project C+F on Vn to find signed resulting movement vector length
float vp1 = (C1[0] + F[0]) * Vn[0] + (C1[1] + F[1]) * Vn[1];
float vp2 = (C2[0] + F[0]) * Vn[0] + (C2[1] + F[1]) * Vn[1];
if (vp1 >= 0.0f && fabsf(v - vp1) < fabsf(v - vp2)) {
// in this case the angle between course and resulting movement vector
// is greater than 90 degrees - so we actually fly backwards
C[0] = C1[0];
C[1] = C1[1];
return true;
}
C[0] = C2[0];
C[1] = C2[1];
if (vp2 >= 0.0f) {
// in this case the angle between course and movement vector is less than
// 90 degrees, but we do move in the right direction
return true;
} else {
// in this case we actually get driven in the opposite direction of V
// with both solutions for C
// this might be reached in headwind stronger than maximum allowed
// airspeed.
return false;
}
}
void FixedWingFlyController::AirspeedStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
AirspeedStateData airspeedState;
VelocityStateData velocityState;
AirspeedStateGet(&airspeedState);
VelocityStateGet(&velocityState);
float airspeedVector[2];
float yaw;
AttitudeStateYawGet(&yaw);
airspeedVector[0] = cos_lookup_deg(yaw);
airspeedVector[1] = sin_lookup_deg(yaw);
// vector projection of groundspeed on airspeed vector to handle both forward and backwards movement
float groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
indicatedAirspeedStateBias = airspeedState.CalibratedAirspeed - groundspeedProjection;
// note - we do fly by Indicated Airspeed (== calibrated airspeed) however
// since airspeed is updated less often than groundspeed, we use sudden
// changes to groundspeed to offset the airspeed by the same measurement.
// This has a side effect that in the absence of any airspeed updates, the
// pathfollower will fly using groundspeed.
}

View File

@ -0,0 +1,303 @@
/*
******************************************************************************
*
* @file grounddrivecontroller.cpp
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Ground drive controller
* the required PathDesired LAND mode.
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
extern "C" {
#include <openpilot.h>
#include <callbackinfo.h>
#include <math.h>
#include <pid.h>
#include <CoordinateConversions.h>
#include <sin_lookup.h>
#include <pathdesired.h>
#include <paths.h>
#include "plans.h"
#include <sanitycheck.h>
#include <homelocation.h>
#include <accelstate.h>
#include <groundpathfollowersettings.h>
#include <flightstatus.h>
#include <flightmodesettings.h>
#include <pathstatus.h>
#include <positionstate.h>
#include <velocitystate.h>
#include <velocitydesired.h>
#include <stabilizationdesired.h>
#include <airspeedstate.h>
#include <attitudestate.h>
#include <takeofflocation.h>
#include <poilocation.h>
#include <manualcontrolcommand.h>
#include <systemsettings.h>
#include <stabilizationbank.h>
#include <stabilizationdesired.h>
#include <pathsummary.h>
#include <statusgrounddrive.h>
}
// C++ includes
#include "grounddrivecontroller.h"
// Private constants
// pointer to a singleton instance
GroundDriveController *GroundDriveController::p_inst = 0;
GroundDriveController::GroundDriveController()
: groundSettings(0), mActive(false), mMode(0)
{}
// Called when mode first engaged
void GroundDriveController::Activate(void)
{
if (!mActive) {
mActive = true;
SettingsUpdated();
controlNE.Activate();
mMode = pathDesired->Mode;
}
}
uint8_t GroundDriveController::IsActive(void)
{
return mActive;
}
uint8_t GroundDriveController::Mode(void)
{
return mMode;
}
// Objective updated in pathdesired
void GroundDriveController::ObjectiveUpdated(void)
{}
void GroundDriveController::Deactivate(void)
{
if (mActive) {
mActive = false;
controlNE.Deactivate();
}
}
void GroundDriveController::SettingsUpdated(void)
{
const float dT = groundSettings->UpdatePeriod / 1000.0f;
controlNE.UpdatePositionalParameters(groundSettings->HorizontalPosP);
controlNE.UpdateParameters(groundSettings->SpeedPI.Kp,
groundSettings->SpeedPI.Ki,
groundSettings->SpeedPI.Kd,
groundSettings->SpeedPI.Beta,
dT,
groundSettings->HorizontalVelMax);
// max/min are NE command values equivalent to thrust but must be symmetrical as this is NE not forward/reverse.
controlNE.UpdateCommandParameters(-groundSettings->ThrustLimit.Max, groundSettings->ThrustLimit.Max, groundSettings->VelocityFeedForward);
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t GroundDriveController::Initialize(GroundPathFollowerSettingsData *ptr_groundSettings)
{
PIOS_Assert(ptr_groundSettings);
groundSettings = ptr_groundSettings;
return 0;
}
void GroundDriveController::UpdateAutoPilot()
{
uint8_t result = updateAutoPilotGround();
if (result) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
} else {
pathStatus->Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
}
PathStatusSet(pathStatus);
}
/**
* fixed wing autopilot:
* straight forward:
* 1. update path velocity for limited motion crafts
* 2. update attitude according to default fixed wing pathfollower algorithm
*/
uint8_t GroundDriveController::updateAutoPilotGround()
{
updatePathVelocity(groundSettings->CourseFeedForward);
return updateGroundDesiredAttitude();
}
/**
* Compute desired velocity from the current position and path
*/
void GroundDriveController::updatePathVelocity(float kFF)
{
PositionStateData positionState;
PositionStateGet(&positionState);
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
VelocityDesiredData velocityDesired;
controlNE.UpdateVelocityState(velocityState.North, velocityState.East);
// look ahead kFF seconds
float cur[3] = { positionState.North + (velocityState.North * kFF),
positionState.East + (velocityState.East * kFF),
positionState.Down + (velocityState.Down * kFF) };
struct path_status progress;
path_progress(pathDesired, cur, &progress, false);
// GOTOENDPOINT: correction_vector is distance array to endpoint, path_vector is velocity vector
// FOLLOWVECTOR: correct_vector is distance to vector path, path_vector is the desired velocity vector
// Calculate the desired velocity from the lateral vector path errors (correct_vector) and the desired velocity vector (path_vector)
controlNE.ControlPositionWithPath(&progress);
float north, east;
controlNE.GetVelocityDesired(&north, &east);
velocityDesired.North = north;
velocityDesired.East = east;
velocityDesired.Down = 0.0f;
// update pathstatus
pathStatus->error = progress.error;
pathStatus->fractional_progress = progress.fractional_progress;
// FOLLOWVECTOR: desired velocity vector
pathStatus->path_direction_north = progress.path_vector[0];
pathStatus->path_direction_east = progress.path_vector[1];
pathStatus->path_direction_down = progress.path_vector[2];
// FOLLOWVECTOR: correction distance to vector path
pathStatus->correction_direction_north = progress.correction_vector[0];
pathStatus->correction_direction_east = progress.correction_vector[1];
pathStatus->correction_direction_down = progress.correction_vector[2];
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired attitude for ground vehicles
*/
uint8_t GroundDriveController::updateGroundDesiredAttitude()
{
StatusGroundDriveData statusGround;
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
AttitudeStateData attitudeState;
AttitudeStateGet(&attitudeState);
statusGround.State.Yaw = attitudeState.Yaw;
statusGround.State.Velocity = sqrtf(velocityState.North * velocityState.North + velocityState.East * velocityState.East);
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
// estimate a north/east command value to control the velocity error.
// ThrustLimits.Max(+-) limits the range. Think of this as a command unit vector
// of the ultimate direction to reduce lateral error and achieve the target direction (desired angle).
float northCommand, eastCommand;
controlNE.GetNECommand(&northCommand, &eastCommand);
// Get current vehicle orientation
float angle_radians = DEG2RAD(attitudeState.Yaw); // (+-pi)
float cos_angle = cosf(angle_radians);
float sine_angle = sinf(angle_radians);
float courseCommand = 0.0f;
float speedCommand = 0.0f;
float lateralCommand = boundf(-northCommand * sine_angle + eastCommand * cos_angle, -groundSettings->ThrustLimit.Max, groundSettings->ThrustLimit.Max);
float forwardCommand = boundf(northCommand * cos_angle + eastCommand * sine_angle, -groundSettings->ThrustLimit.Max, groundSettings->ThrustLimit.Max);
// +ve facing correct direction, lateral command should just correct angle,
if (forwardCommand > 0.0f) {
// if +ve forward command, -+ lateralCommand drives steering to manage lateral error and angular error
courseCommand = boundf(lateralCommand, -1.0f, 1.0f);
speedCommand = boundf(forwardCommand, groundSettings->ThrustLimit.SlowForward, groundSettings->ThrustLimit.Max);
// reinstate max thrust
controlNE.UpdateCommandParameters(-groundSettings->ThrustLimit.Max, groundSettings->ThrustLimit.Max, groundSettings->VelocityFeedForward);
statusGround.ControlState = STATUSGROUNDDRIVE_CONTROLSTATE_ONTRACK;
} else {
// -ve facing opposite direction, lateral command irrelevant, need to turn to change direction and do so slowly.
// Reduce steering angle based on current velocity
float steeringReductionFactor = 1.0f;
if (stabDesired.Thrust > 0.3f) {
steeringReductionFactor = (groundSettings->HorizontalVelMax - statusGround.State.Velocity) / groundSettings->HorizontalVelMax;
steeringReductionFactor = boundf(steeringReductionFactor, 0.05f, 1.0f);
}
// should we turn left or right?
if (lateralCommand >= 0.1f) {
courseCommand = 1.0f * steeringReductionFactor;
statusGround.ControlState = STATUSGROUNDDRIVE_CONTROLSTATE_TURNAROUNDRIGHT;
} else {
courseCommand = -1.0f * steeringReductionFactor;
statusGround.ControlState = STATUSGROUNDDRIVE_CONTROLSTATE_TURNAROUNDLEFT;
}
// Impose limits to slow down.
controlNE.UpdateCommandParameters(-groundSettings->ThrustLimit.SlowForward, groundSettings->ThrustLimit.SlowForward, 0.0f);
speedCommand = groundSettings->ThrustLimit.SlowForward;
}
stabDesired.Roll = 0.0f;
stabDesired.Pitch = 0.0f;
stabDesired.Yaw = courseCommand;
// Mix yaw into thrust limit TODO
stabDesired.Thrust = boundf(speedCommand, groundSettings->ThrustLimit.Min, groundSettings->ThrustLimit.Max);
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
statusGround.NECommand.North = northCommand;
statusGround.NECommand.East = eastCommand;
statusGround.State.Thrust = stabDesired.Thrust;
statusGround.BodyCommand.Forward = forwardCommand;
statusGround.BodyCommand.Right = lateralCommand;
statusGround.ControlCommand.Course = courseCommand;
statusGround.ControlCommand.Speed = speedCommand;
StatusGroundDriveSet(&statusGround);
return 1;
}

View File

@ -0,0 +1,80 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup FixedWing CONTROL interface class
* @brief CONTROL interface class for pathfollower fixed wing fly controller
* @{
*
* @file FixedWingCONTROL.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Executes CONTROL for fixed wing fly objectives
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef FIXEDWINGFLYCONTROLLER_H
#define FIXEDWINGFLYCONTROLLER_H
#include "pathfollowercontrol.h"
class FixedWingFlyController : public PathFollowerControl {
private:
static FixedWingFlyController *p_inst;
FixedWingFlyController();
public:
static FixedWingFlyController *instance()
{
if (!p_inst) {
p_inst = new FixedWingFlyController();
}
return p_inst;
}
int32_t Initialize(FixedWingPathFollowerSettingsData *fixedWingSettings);
void Activate(void);
void Deactivate(void);
void SettingsUpdated(void);
void UpdateAutoPilot(void);
void ObjectiveUpdated(void);
uint8_t IsActive(void);
uint8_t Mode(void);
void AirspeedStateUpdatedCb(__attribute__((unused)) UAVObjEvent * ev);
private:
void resetGlobals();
uint8_t updateAutoPilotFixedWing();
void updatePathVelocity(float kFF, bool limited);
uint8_t updateFixedDesiredAttitude();
bool correctCourse(float *C, float *V, float *F, float s);
FixedWingPathFollowerSettingsData *fixedWingSettings;
uint8_t mActive;
uint8_t mMode;
struct pid PIDposH[2];
struct pid PIDposV;
struct pid PIDcourse;
struct pid PIDspeed;
struct pid PIDpower;
// correct speed by measured airspeed
float indicatedAirspeedStateBias;
};
#endif // FIXEDWINGFLYCONTROLLER_H

View File

@ -0,0 +1,71 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup Ground CONTROL interface class
* @brief CONTROL interface class for ground drive controller
* @{
*
* @file grounddrivecontroller.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Class definition for ground drive controller implementation
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef GROUNDDRIVECONTROLLER_H
#define GROUNDDRIVECONTROLLER_H
#include "pathfollowercontrol.h"
#include "pidcontrolne.h"
class GroundDriveController : public PathFollowerControl {
private:
static GroundDriveController *p_inst;
GroundDriveController();
public:
static GroundDriveController *instance()
{
if (!p_inst) {
p_inst = new GroundDriveController();
}
return p_inst;
}
int32_t Initialize(GroundPathFollowerSettingsData *groundSettings);
void Activate(void);
void Deactivate(void);
void SettingsUpdated(void);
void UpdateAutoPilot(void);
void ObjectiveUpdated(void);
uint8_t IsActive(void);
uint8_t Mode(void);
private:
uint8_t updateAutoPilotGround();
void updatePathVelocity(float kFF);
uint8_t updateGroundDesiredAttitude();
GroundPathFollowerSettingsData *groundSettings;
uint8_t mActive;
uint8_t mMode;
PIDControlNE controlNE;
};
#endif // GROUNDDRIVECONTROLLER_H

View File

@ -0,0 +1,50 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup PathFollower CONTROL interface class
* @brief CONTROL interface class for pathfollower goal implementations
* @{
*
* @file pathfollowercontrol.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Interface class for controllers
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef PATHFOLLOWERCONTROL_H
#define PATHFOLLOWERCONTROL_H
class PathFollowerControl {
public:
virtual void Activate(void) = 0;
virtual void Deactivate(void) = 0;
virtual void SettingsUpdated(void) = 0;
virtual void UpdateAutoPilot(void) = 0;
virtual void ObjectiveUpdated(void) = 0;
virtual uint8_t Mode(void) = 0;
static int32_t Initialize(PathDesiredData *ptr_pathDesired,
FlightStatusData *ptr_flightStatus,
PathStatusData *ptr_pathStatus);
protected:
static PathDesiredData *pathDesired;
static FlightStatusData *flightStatus;
static PathStatusData *pathStatus;
};
#endif // PATHFOLLOWERCONTROL_H

View File

@ -0,0 +1,80 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup PathFollower FSM interface class
* @brief FSM interface class for pathfollower goal fsm implementations
* @{
*
* @file pathfollowerfsm.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Interface class for PathFollower FSMs
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef PATHFOLLOWERFSM_H
#define PATHFOLLOWERFSM_H
extern "C" {
#include <stabilizationdesired.h>
}
typedef enum {
PFFSM_STATE_INACTIVE = 0, // Inactive state is the initialised state on startup
PFFSM_STATE_ACTIVE,
PFFSM_STATE_DISARMED,
PFFSM_STATE_ABORT // Abort on error
} PathFollowerFSMState_T;
class PathFollowerFSM {
public:
// PathFollowerFSM() {};
virtual void Inactive(void) {}
virtual void Activate(void) {}
virtual void Update(void) {}
virtual void SettingsUpdated(void) {}
virtual void BoundThrust(__attribute__((unused)) float &ulow, __attribute__((unused)) float &uhigh) {}
virtual PathFollowerFSMState_T GetCurrentState(void)
{
return PFFSM_STATE_INACTIVE;
}
virtual void ConstrainStabiDesired(__attribute__((unused)) StabilizationDesiredData *stabDesired) {}
virtual float BoundVelocityDown(float velocity)
{
return velocity;
}
virtual void CheckPidScaler(__attribute__((unused)) pid_scaler *scaler) {}
virtual void GetYaw(bool &yaw_attitude, float &yaw_direction)
{
yaw_attitude = false; yaw_direction = 0.0f;
}
virtual void Abort(void) {}
virtual uint8_t ManualThrust(void)
{
return false;
}
virtual uint8_t PositionHoldState(void)
{
return false;
}
// virtual ~PathFollowerFSM() = 0;
};
#endif // PATHFOLLOWERFSM_H

View File

@ -0,0 +1,95 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup PathFollower PID Control implementation
* @brief PID Controller for down direction
* @{
*
* @file PIDControlDown.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Executes control loop for down direction
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef PIDCONTROLDOWN_H
#define PIDCONTROLDOWN_H
extern "C" {
#include <pid.h>
#include <stabilizationdesired.h>
}
#include "pathfollowerfsm.h"
class PIDControlDown {
public:
PIDControlDown();
~PIDControlDown();
void Initialize(PathFollowerFSM *fsm);
void SetThrustLimits(float min_thrust, float max_thrust);
void Deactivate();
void Activate();
void UpdateParameters(float kp, float ki, float kd, float beta, float dT, float velocityMax);
void UpdateNeutralThrust(float neutral);
void UpdateVelocitySetpoint(float setpoint);
void RateLimit(float *spDesired, float *spCurrent, float rateLimit);
void UpdateVelocityState(float pv);
float GetVelocityDesired(void);
float GetDownCommand(void);
void UpdatePositionalParameters(float kp);
void UpdatePositionState(float pvDown);
void UpdatePositionSetpoint(float setpointDown);
void ControlPosition();
void ControlPositionWithPath(struct path_status *progress);
void UpdateBrakeVelocity(float startingVelocity, float dT, float brakeRate, float currentVelocity, float *updatedVelocity);
void UpdateVelocityStateWithBrake(float pvDown, float path_time, float brakeRate);
private:
void setup_neutralThrustCalc();
void run_neutralThrustCalc();
struct pid2 PID;
float deltaTime;
float mVelocitySetpointTarget;
float mVelocitySetpointCurrent;
float mVelocityState;
float mDownCommand;
PathFollowerFSM *mFSM;
float mNeutral;
float mVelocityMax;
struct pid PIDpos;
float mPositionSetpointTarget;
float mPositionState;
float mMinThrust;
float mMaxThrust;
uint8_t mActive;
struct NeutralThrustEstimation {
uint32_t count;
float sum;
float average;
float correction;
float min;
float max;
bool start_sampling;
bool have_correction;
};
struct NeutralThrustEstimation neutralThrustEst;
};
#endif // PIDCONTROLDOWN_H

View File

@ -0,0 +1,80 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup PathFollower CONTROL interface class
* @brief PID Controler for NE Class definition
* @{
*
* @file pidcontrolne.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Executes pid control loop for NE
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef PIDCONTROLNE_H
#define PIDCONTROLNE_H
extern "C" {
#include <pid.h>
}
#include "pathfollowerfsm.h"
class PIDControlNE {
public:
PIDControlNE();
~PIDControlNE();
void Initialize();
void Deactivate();
void Activate();
void UpdateParameters(float kp, float ki, float kd, __attribute__((unused)) float ilimit, float dT, float velocityMax);
void UpdatePositionalParameters(float kp);
void UpdatePositionState(float pvNorth, float pvEast);
void UpdatePositionSetpoint(float setpointNorth, float setpointEast);
void UpdateVelocitySetpoint(float setpointNorth, float setpointEast);
// void RateLimit(float *spDesired, float *spCurrent, float rateLimit);
void UpdateVelocityState(float pvNorth, float pvEast);
void UpdateCommandParameters(float minCommand, float maxCommand, float velocityFeedforward);
void ControlPosition();
void ControlPositionWithPath(struct path_status *progress);
void GetNECommand(float *northCommand, float *eastCommand);
void GetVelocityDesired(float *north, float *east);
void UpdateBrakeVelocity(float startingVelocity, float dT, float brakeRate, float currentVelocity, float *updatedVelocity);
void UpdateVelocityStateWithBrake(float pvNorth, float pvEast, float path_time, float brakeRate);
private:
struct pid2 PIDvel[2]; // North, East
float mVelocitySetpointTarget[2];
float mVelocityState[2];
struct pid PIDposH[2];
float mPositionSetpointTarget[2];
float mPositionState[2];
float deltaTime;
float mVelocitySetpointCurrent[2];
float mNECommand;
float mNeutral;
float mVelocityMax;
float mMinCommand;
float mMaxCommand;
float mVelocityFeedforward;
uint8_t mActive;
};
#endif // PIDCONTROLNE_H

View File

@ -0,0 +1,76 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup PathFollower CONTROL interface class
* @brief CONTROL interface class for brake controller
* @{
*
* @file vtolbrakecontroller.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Executes brake controller for vtol
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef VTOLBRAKECONTROLLER_H
#define VTOLBRAKECONTROLLER_H
#include "pathfollowercontrol.h"
#include "pidcontroldown.h"
#include "pidcontrolne.h"
// forward decl
class PathFollowerFSM;
class VtolBrakeController : public PathFollowerControl {
private:
static VtolBrakeController *p_inst;
VtolBrakeController();
public:
static VtolBrakeController *instance()
{
if (!p_inst) {
p_inst = new VtolBrakeController();
}
return p_inst;
}
int32_t Initialize(VtolPathFollowerSettingsData *vtolPathFollowerSettings);
void Activate(void);
void Deactivate(void);
void SettingsUpdated(void);
void UpdateAutoPilot(void);
void ObjectiveUpdated(void);
uint8_t IsActive(void);
uint8_t Mode(void);
private:
void UpdateVelocityDesired(void);
int8_t UpdateStabilizationDesired(void);
void updateBrakeVelocity(float startingVelocity, float dT, float brakeRate, float currentVelocity, float *updatedVelocity);
PathFollowerFSM *fsm;
VtolPathFollowerSettingsData *vtolPathFollowerSettings;
PIDControlDown controlDown;
PIDControlNE controlNE;
uint8_t mActive;
uint8_t mHoldActive;
uint8_t mManualThrust;
};
#endif // VTOLBRAKECONTROLLER_H

View File

@ -0,0 +1,111 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup PathFollower FSM Brake
* @brief Executes brake seqeuence
* @{
*
* @file vtolbrakfsm.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Executes brake sequence fsm
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef VTOLBRAKEFSM_H
#define VTOLBRAKEFSM_H
#include "pathfollowerfsm.h"
// Brakeing state machine
typedef enum {
BRAKE_STATE_INACTIVE = 0, // Inactive state is the initialised state on startup
BRAKE_STATE_BRAKE, // Initiate altitude hold before starting descent
BRAKE_STATE_HOLD, // Waiting for attainment of landing descent rate
BRAKE_STATE_SIZE
} PathFollowerFSM_BrakeState_T;
typedef enum {
FSMBRAKESTATUS_STATEEXITREASON_NONE = 0
} VtolBrakeFSMStatusStateExitReasonOptions;
class VtolBrakeFSM : public PathFollowerFSM {
private:
static VtolBrakeFSM *p_inst;
VtolBrakeFSM();
public:
static VtolBrakeFSM *instance()
{
if (!p_inst) {
p_inst = new VtolBrakeFSM();
}
return p_inst;
}
int32_t Initialize(VtolPathFollowerSettingsData *vtolPathFollowerSettings,
PathDesiredData *pathDesired,
FlightStatusData *flightStatus,
PathStatusData *ptr_pathStatus);
void Inactive(void);
void Activate(void);
void Update(void);
PathFollowerFSMState_T GetCurrentState(void);
void Abort(void);
uint8_t PositionHoldState(void);
protected:
// FSM instance data type
typedef struct {
PathFollowerFSM_BrakeState_T currentState;
uint32_t stateRunCount;
uint32_t stateTimeoutCount;
float sum1;
float sum2;
uint8_t observationCount;
uint8_t observation2Count;
} VtolBrakeFSMData_T;
// FSM state structure
typedef struct {
void(VtolBrakeFSM::*setup) (void); // Called to initialise the state
void(VtolBrakeFSM::*run) (uint8_t); // Run the event detection code for a state
} PathFollowerFSM_BrakeStateHandler_T;
// Private variables
VtolBrakeFSMData_T *mBrakeData;
VtolPathFollowerSettingsData *vtolPathFollowerSettings;
PathDesiredData *pathDesired;
PathStatusData *pathStatus;
FlightStatusData *flightStatus;
void setup_brake(void);
void run_brake(uint8_t);
void initFSM(void);
void setState(PathFollowerFSM_BrakeState_T newState, VtolBrakeFSMStatusStateExitReasonOptions reason);
int32_t runState();
// void updateVtolBrakeFSMStatus();
void setStateTimeout(int32_t count);
void fallback_to_hold(void);
static PathFollowerFSM_BrakeStateHandler_T sBrakeStateTable[BRAKE_STATE_SIZE];
};
#endif // VTOLBRAKEFSM_H

View File

@ -0,0 +1,84 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup PathFollower CONTROL interface class
* @brief vtol fly controller class definition
* @{
*
* @file vtolflycontroller.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Executes fly control for vtols
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef VTOLFLYCONTROLLER_H
#define VTOLFLYCONTROLLER_H
#include "pathfollowercontrol.h"
#include "pidcontrolne.h"
#include "pidcontroldown.h"
class VtolFlyController : public PathFollowerControl {
private:
static VtolFlyController *p_inst;
VtolFlyController();
public:
static VtolFlyController *instance()
{
if (!p_inst) {
p_inst = new VtolFlyController();
}
return p_inst;
}
int32_t Initialize(VtolPathFollowerSettingsData *vtolPathFollowerSettings);
void Activate(void);
void Deactivate(void);
void SettingsUpdated(void);
void UpdateAutoPilot(void);
void ObjectiveUpdated(void);
uint8_t IsActive(void);
uint8_t Mode(void);
private:
void UpdateVelocityDesired(void);
int8_t UpdateStabilizationDesired(bool yaw_attitude, float yaw_direction);
void UpdateDesiredAttitudeEmergencyFallback();
void fallback_to_hold(void);
float updateTailInBearing();
float updateCourseBearing();
float updatePathBearing();
float updatePOIBearing();
uint8_t RunAutoPilot();
VtolPathFollowerSettingsData *vtolPathFollowerSettings;
PIDControlNE controlNE;
PIDControlDown controlDown;
uint8_t mActive;
uint8_t mManualThrust;
uint8_t mMode;
float vtolEmergencyFallback;
bool vtolEmergencyFallbackSwitch;
};
#endif // VTOLFLYCONTROLLER_H

View File

@ -0,0 +1,76 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup PathFollower CONTROL interface class
* @brief vtol land controller class
* @{
*
* @file vtollandcontroller.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Executes CONTROL for landing sequence
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef VTOLLANDCONTROLLER_H
#define VTOLLANDCONTROLLER_H
#include "pathfollowercontrol.h"
#include "pidcontroldown.h"
#include "pidcontrolne.h"
// forward decl
class PathFollowerFSM;
class VtolLandController : public PathFollowerControl {
private:
static VtolLandController *p_inst;
VtolLandController();
public:
static VtolLandController *instance()
{
if (!p_inst) {
p_inst = new VtolLandController();
}
return p_inst;
}
int32_t Initialize(VtolPathFollowerSettingsData *vtolPathFollowerSettings);
void Activate(void);
void Deactivate(void);
void SettingsUpdated(void);
void UpdateAutoPilot(void);
void ObjectiveUpdated(void);
uint8_t IsActive(void);
uint8_t Mode(void);
private:
void UpdateVelocityDesired(void);
int8_t UpdateStabilizationDesired(bool yaw_attitude, float yaw_direction);
void setArmedIfChanged(uint8_t val);
PathFollowerFSM *fsm;
VtolPathFollowerSettingsData *vtolPathFollowerSettings;
PIDControlDown controlDown;
PIDControlNE controlNE;
uint8_t mActive;
};
#endif // VTOLLANDCONTROLLER_H

View File

@ -0,0 +1,148 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup PathFollower FSM
* @brief Executes landing sequence via an FSM
* @{
*
* @file vtollandfsm.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Executes FSM for landing sequence
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef VTOLLANDFSM_H
#define VTOLLANDFSM_H
extern "C" {
#include "statusvtolland.h"
}
#include "pathfollowerfsm.h"
// Landing state machine
typedef enum {
LAND_STATE_INACTIVE = 0, // Inactive state is the initialised state on startup
LAND_STATE_INIT_ALTHOLD, // Initiate altitude hold before starting descent
LAND_STATE_WTG_FOR_DESCENTRATE, // Waiting for attainment of landing descent rate
LAND_STATE_AT_DESCENTRATE, // Landing descent rate achieved
LAND_STATE_WTG_FOR_GROUNDEFFECT, // Waiting for group effect to be detected
LAND_STATE_GROUNDEFFECT, // Ground effect detected
LAND_STATE_THRUSTDOWN, // Thrust down sequence
LAND_STATE_THRUSTOFF, // Thrust is now off
LAND_STATE_DISARMED, // Disarmed
LAND_STATE_ABORT, // Abort on error triggerig fallback to hold
LAND_STATE_SIZE
} PathFollowerFSM_LandState_T;
class VtolLandFSM : public PathFollowerFSM {
private:
static VtolLandFSM *p_inst;
VtolLandFSM();
public:
static VtolLandFSM *instance()
{
if (!p_inst) {
p_inst = new VtolLandFSM();
}
return p_inst;
}
int32_t Initialize(VtolPathFollowerSettingsData *vtolPathFollowerSettings,
PathDesiredData *pathDesired,
FlightStatusData *flightStatus);
void Inactive(void);
void Activate(void);
void Update(void);
void BoundThrust(float &ulow, float &uhigh);
PathFollowerFSMState_T GetCurrentState(void);
void ConstrainStabiDesired(StabilizationDesiredData *stabDesired);
float BoundVelocityDown(float);
void CheckPidScaler(pid_scaler *scaler);
void Abort(void);
protected:
// FSM instance data type
typedef struct {
StatusVtolLandData fsmLandStatus;
PathFollowerFSM_LandState_T currentState;
TakeOffLocationData takeOffLocation;
uint32_t stateRunCount;
uint32_t stateTimeoutCount;
float sum1;
float sum2;
float expectedLandPositionNorth;
float expectedLandPositionEast;
float thrustLimit;
float boundThrustMin;
float boundThrustMax;
uint8_t observationCount;
uint8_t observation2Count;
uint8_t flZeroStabiHorizontal;
uint8_t flConstrainThrust;
uint8_t flLowAltitude;
uint8_t flAltitudeHold;
} VtolLandFSMData_T;
// FSM state structure
typedef struct {
void(VtolLandFSM::*setup) (void); // Called to initialise the state
void(VtolLandFSM::*run) (uint8_t); // Run the event detection code for a state
} PathFollowerFSM_LandStateHandler_T;
// Private variables
VtolLandFSMData_T *mLandData;
VtolPathFollowerSettingsData *vtolPathFollowerSettings;
PathDesiredData *pathDesired;
FlightStatusData *flightStatus;
void setup_inactive(void);
void setup_init_althold(void);
void setup_wtg_for_descentrate(void);
void setup_at_descentrate(void);
void setup_wtg_for_groundeffect(void);
void run_init_althold(uint8_t);
void run_wtg_for_descentrate(uint8_t);
void run_at_descentrate(uint8_t);
void run_wtg_for_groundeffect(uint8_t);
void setup_groundeffect(void);
void run_groundeffect(uint8_t);
void setup_thrustdown(void);
void run_thrustdown(uint8_t);
void setup_thrustoff(void);
void run_thrustoff(uint8_t);
void setup_disarmed(void);
void run_disarmed(uint8_t);
void setup_abort(void);
void run_abort(uint8_t);
void initFSM(void);
void setState(PathFollowerFSM_LandState_T newState, StatusVtolLandStateExitReasonOptions reason);
int32_t runState();
int32_t runAlways();
void updateVtolLandFSMStatus();
void assessAltitude(void);
void setStateTimeout(int32_t count);
void fallback_to_hold(void);
static PathFollowerFSM_LandStateHandler_T sLandStateTable[LAND_STATE_SIZE];
};
#endif // VTOLLANDFSM_H

View File

@ -0,0 +1,72 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup PathFollower Controller
* @brief Controller for Vtol velocity roam
* @{
*
* @file vtolvelocitycontroller.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Executes velocity roam control
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef PATHFOLLOWERCONTROLVELOCITYROAM_H
#define PATHFOLLOWERCONTROLVELOCITYROAM_H
#include "pathfollowercontrol.h"
#include "pidcontrolne.h"
class VtolVelocityController : public PathFollowerControl {
private:
static VtolVelocityController *p_inst;
VtolVelocityController();
public:
static VtolVelocityController *instance()
{
if (!p_inst) {
p_inst = new VtolVelocityController();
}
return p_inst;
}
int32_t Initialize(VtolPathFollowerSettingsData *vtolPathFollowerSettings);
void Activate(void);
void Deactivate(void);
void SettingsUpdated(void);
void UpdateAutoPilot(void);
void ObjectiveUpdated(void);
uint8_t IsActive(void);
uint8_t Mode(void);
private:
void UpdateVelocityDesired(void);
int8_t UpdateStabilizationDesired(bool yaw_attitude, float yaw_direction);
void fallback_to_hold(void);
VtolPathFollowerSettingsData *vtolPathFollowerSettings;
PIDControlNE controlNE;
uint8_t mActive;
};
#endif // ifndef PATHFOLLOWERCONTROLVELOCITYROAM_H

View File

@ -1,1544 +0,0 @@
/**
******************************************************************************
*
* @file pathfollower.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief This module compared @ref PositionActuatl to @ref ActiveWaypoint
* and sets @ref AttitudeDesired. It only does this when the FlightMode field
* of @ref ManualControlCommand is Auto.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input object: PathDesired
* Input object: PositionState
* Input object: ManualControlCommand
* Output object: StabilizationDesired
*
* This module acts as "autopilot" - it controls the setpoints of stabilization
* based on current flight situation and desired flight path (PathDesired) as
* directed by flightmode selection or pathplanner
* This is a periodic delayed callback module
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include <openpilot.h>
#include <callbackinfo.h>
#include <math.h>
#include <pid.h>
#include <CoordinateConversions.h>
#include <sin_lookup.h>
#include <pathdesired.h>
#include <paths.h>
#include "plans.h"
#include <sanitycheck.h>
#include <fixedwingpathfollowersettings.h>
#include <fixedwingpathfollowerstatus.h>
#include <vtolpathfollowersettings.h>
#include <flightstatus.h>
#include <flightmodesettings.h>
#include <pathstatus.h>
#include <positionstate.h>
#include <velocitystate.h>
#include <velocitydesired.h>
#include <stabilizationdesired.h>
#include <airspeedstate.h>
#include <attitudestate.h>
#include <takeofflocation.h>
#include <poilocation.h>
#include <manualcontrolcommand.h>
#include <systemsettings.h>
#include <stabilizationbank.h>
#include <vtolselftuningstats.h>
#include <pathsummary.h>
// Private constants
#define CALLBACK_PRIORITY CALLBACK_PRIORITY_LOW
#define CBTASK_PRIORITY CALLBACK_TASK_FLIGHTCONTROL
#define PF_IDLE_UPDATE_RATE_MS 100
#define STACK_SIZE_BYTES 2048
#define DEADBAND_HIGH 0.10f
#define DEADBAND_LOW -0.10f
#define BRAKE_FRACTIONALPROGRESS_STARTVELOCITYCHECK 0.95f
#define BRAKE_EXIT_VELOCITY_LIMIT 0.2f
#define BRAKE_RATE_MINIMUM 0.2f
#define NEUTRALTHRUST_PH_POSITIONAL_ERROR_LIMIT 0.5f
#define NEUTRALTHRUST_PH_VEL_DESIRED_LIMIT 0.2f
#define NEUTRALTHRUST_PH_VEL_STATE_LIMIT 0.2f
#define NEUTRALTHRUST_PH_VEL_ERROR_LIMIT 0.1f
#define NEUTRALTHRUST_START_DELAY (2 * 20) // 2 seconds at rate of 20Hz (50ms update rate)
#define NEUTRALTHRUST_END_COUNT (NEUTRALTHRUST_START_DELAY + (4 * 20)) // 4 second sample
// Private types
struct Globals {
struct pid PIDposH[2];
struct pid PIDposV;
struct pid PIDvel[3]; // North, East, Down
struct pid BrakePIDvel[2]; // North, East
struct pid PIDcourse;
struct pid PIDspeed;
struct pid PIDpower;
float poiRadius;
float vtolEmergencyFallback;
bool vtolEmergencyFallbackSwitch;
};
struct NeutralThrustEstimation {
uint32_t count;
float sum;
float average;
float correction;
float algo_erro_check;
float min;
float max;
bool start_sampling;
bool have_correction;
};
static struct NeutralThrustEstimation neutralThrustEst;
// Private variables
static DelayedCallbackInfo *pathFollowerCBInfo;
static uint32_t updatePeriod = PF_IDLE_UPDATE_RATE_MS;
static struct Globals global;
static PathStatusData pathStatus;
static PathDesiredData pathDesired;
static FixedWingPathFollowerSettingsData fixedWingPathFollowerSettings;
static VtolPathFollowerSettingsData vtolPathFollowerSettings;
static FlightStatusData flightStatus;
static PathSummaryData pathSummary;
// correct speed by measured airspeed
static float indicatedAirspeedStateBias = 0.0f;
// Private functions
static void pathFollowerTask(void);
static void resetGlobals();
static void SettingsUpdatedCb(UAVObjEvent *ev);
static uint8_t updateAutoPilotByFrameType();
static uint8_t updateAutoPilotFixedWing();
static uint8_t updateAutoPilotVtol();
static float updateTailInBearing();
static float updateCourseBearing();
static float updatePathBearing();
static float updatePOIBearing();
static void processPOI();
static void updateBrakeVelocity(float startingVelocity, float dT, float brakeRate, float currentVelocity, float *updatedVelocity);
static void updatePathVelocity(float kFF, bool limited);
static uint8_t updateFixedDesiredAttitude();
static int8_t updateVtolDesiredAttitude(bool yaw_attitude, float yaw_direction);
static void updateFixedAttitude();
static void updateVtolDesiredAttitudeEmergencyFallback();
static void airspeedStateUpdatedCb(UAVObjEvent *ev);
static bool correctCourse(float *C, float *V, float *F, float s);
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t PathFollowerStart()
{
// Start main task
PathStatusGet(&pathStatus);
SettingsUpdatedCb(NULL);
PIOS_CALLBACKSCHEDULER_Dispatch(pathFollowerCBInfo);
return 0;
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t PathFollowerInitialize()
{
// initialize objects
FixedWingPathFollowerSettingsInitialize();
FixedWingPathFollowerStatusInitialize();
VtolPathFollowerSettingsInitialize();
FlightStatusInitialize();
FlightModeSettingsInitialize();
PathStatusInitialize();
PathSummaryInitialize();
PathDesiredInitialize();
PositionStateInitialize();
VelocityStateInitialize();
VelocityDesiredInitialize();
StabilizationDesiredInitialize();
AirspeedStateInitialize();
AttitudeStateInitialize();
TakeOffLocationInitialize();
PoiLocationInitialize();
ManualControlCommandInitialize();
SystemSettingsInitialize();
StabilizationBankInitialize();
VtolSelfTuningStatsInitialize();
// reset integrals
resetGlobals();
// Create object queue
pathFollowerCBInfo = PIOS_CALLBACKSCHEDULER_Create(&pathFollowerTask, CALLBACK_PRIORITY, CBTASK_PRIORITY, CALLBACKINFO_RUNNING_PATHFOLLOWER, STACK_SIZE_BYTES);
FixedWingPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
VtolPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
PathDesiredConnectCallback(SettingsUpdatedCb);
AirspeedStateConnectCallback(airspeedStateUpdatedCb);
return 0;
}
MODULE_INITCALL(PathFollowerInitialize, PathFollowerStart);
/**
* Module thread, should not return.
*/
static void pathFollowerTask(void)
{
FlightStatusGet(&flightStatus);
if (flightStatus.ControlChain.PathFollower != FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
resetGlobals();
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_UNINITIALISED);
PIOS_CALLBACKSCHEDULER_Schedule(pathFollowerCBInfo, PF_IDLE_UPDATE_RATE_MS, CALLBACK_UPDATEMODE_SOONER);
return;
}
if (flightStatus.FlightMode == FLIGHTSTATUS_FLIGHTMODE_POI) { // TODO Hack from vtolpathfollower, move into manualcontrol!
processPOI();
}
int16_t old_uid = pathStatus.UID;
pathStatus.UID = pathDesired.UID;
pathStatus.Status = PATHSTATUS_STATUS_INPROGRESS;
if (pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_BRAKE_TIMEOUT] > 0.0f) {
if (old_uid != pathStatus.UID) {
pathStatus.path_time = 0.0f;
} else {
pathStatus.path_time += updatePeriod / 1000.0f;
}
}
switch (pathDesired.Mode) {
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_FLYVECTOR:
case PATHDESIRED_MODE_BRAKE:
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
case PATHDESIRED_MODE_FLYCIRCLELEFT:
{
uint8_t result = updateAutoPilotByFrameType();
if (result) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
} else {
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
}
}
break;
case PATHDESIRED_MODE_FIXEDATTITUDE:
updateFixedAttitude(pathDesired.ModeParameters);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
break;
case PATHDESIRED_MODE_DISARMALARM:
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
break;
default:
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_ERROR);
break;
}
PathStatusSet(&pathStatus);
PIOS_CALLBACKSCHEDULER_Schedule(pathFollowerCBInfo, updatePeriod, CALLBACK_UPDATEMODE_SOONER);
}
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
FixedWingPathFollowerSettingsGet(&fixedWingPathFollowerSettings);
pid_configure(&global.PIDcourse, fixedWingPathFollowerSettings.CoursePI.Kp, fixedWingPathFollowerSettings.CoursePI.Ki, 0.0f, fixedWingPathFollowerSettings.CoursePI.ILimit);
pid_configure(&global.PIDspeed, fixedWingPathFollowerSettings.SpeedPI.Kp, fixedWingPathFollowerSettings.SpeedPI.Ki, 0.0f, fixedWingPathFollowerSettings.SpeedPI.ILimit);
pid_configure(&global.PIDpower, fixedWingPathFollowerSettings.PowerPI.Kp, fixedWingPathFollowerSettings.PowerPI.Ki, 0.0f, fixedWingPathFollowerSettings.PowerPI.ILimit);
VtolPathFollowerSettingsGet(&vtolPathFollowerSettings);
pid_configure(&global.PIDvel[0], vtolPathFollowerSettings.HorizontalVelPID.Kp, vtolPathFollowerSettings.HorizontalVelPID.Ki, vtolPathFollowerSettings.HorizontalVelPID.Kd, vtolPathFollowerSettings.HorizontalVelPID.ILimit);
pid_configure(&global.PIDvel[1], vtolPathFollowerSettings.HorizontalVelPID.Kp, vtolPathFollowerSettings.HorizontalVelPID.Ki, vtolPathFollowerSettings.HorizontalVelPID.Kd, vtolPathFollowerSettings.HorizontalVelPID.ILimit);
pid_configure(&global.PIDvel[2], vtolPathFollowerSettings.VerticalVelPID.Kp, vtolPathFollowerSettings.VerticalVelPID.Ki, vtolPathFollowerSettings.VerticalVelPID.Kd, vtolPathFollowerSettings.VerticalVelPID.ILimit);
pid_configure(&global.BrakePIDvel[0], vtolPathFollowerSettings.BrakeHorizontalVelPID.Kp, vtolPathFollowerSettings.BrakeHorizontalVelPID.Ki, vtolPathFollowerSettings.BrakeHorizontalVelPID.Kd, vtolPathFollowerSettings.BrakeHorizontalVelPID.ILimit);
pid_configure(&global.BrakePIDvel[1], vtolPathFollowerSettings.BrakeHorizontalVelPID.Kp, vtolPathFollowerSettings.BrakeHorizontalVelPID.Ki, vtolPathFollowerSettings.BrakeHorizontalVelPID.Kd, vtolPathFollowerSettings.BrakeHorizontalVelPID.ILimit);
PathDesiredGet(&pathDesired);
}
static void airspeedStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
AirspeedStateData airspeedState;
VelocityStateData velocityState;
AirspeedStateGet(&airspeedState);
VelocityStateGet(&velocityState);
float airspeedVector[2];
float yaw;
AttitudeStateYawGet(&yaw);
airspeedVector[0] = cos_lookup_deg(yaw);
airspeedVector[1] = sin_lookup_deg(yaw);
// vector projection of groundspeed on airspeed vector to handle both forward and backwards movement
float groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
indicatedAirspeedStateBias = airspeedState.CalibratedAirspeed - groundspeedProjection;
// note - we do fly by Indicated Airspeed (== calibrated airspeed) however
// since airspeed is updated less often than groundspeed, we use sudden
// changes to groundspeed to offset the airspeed by the same measurement.
// This has a side effect that in the absence of any airspeed updates, the
// pathfollower will fly using groundspeed.
}
/**
* reset integrals
*/
static void resetGlobals()
{
pid_zero(&global.PIDposH[0]);
pid_zero(&global.PIDposH[1]);
pid_zero(&global.PIDposV);
pid_zero(&global.PIDvel[0]);
pid_zero(&global.PIDvel[1]);
pid_zero(&global.PIDvel[2]);
pid_zero(&global.BrakePIDvel[0]);
pid_zero(&global.BrakePIDvel[1]);
pid_zero(&global.PIDcourse);
pid_zero(&global.PIDspeed);
pid_zero(&global.PIDpower);
global.poiRadius = 0.0f;
global.vtolEmergencyFallback = 0;
global.vtolEmergencyFallbackSwitch = false;
// reset neutral thrust assessment. We restart this process
// and do once for each position hold engagement
neutralThrustEst.start_sampling = false;
neutralThrustEst.count = 0;
neutralThrustEst.sum = 0.0f;
neutralThrustEst.have_correction = false;
neutralThrustEst.average = 0.0f;
neutralThrustEst.correction = 0.0f;
neutralThrustEst.min = 0.0f;
neutralThrustEst.max = 0.0f;
pathStatus.path_time = 0.0f;
}
static uint8_t updateAutoPilotByFrameType()
{
FrameType_t frameType = GetCurrentFrameType();
if (frameType == FRAME_TYPE_CUSTOM || frameType == FRAME_TYPE_GROUND) {
switch (vtolPathFollowerSettings.TreatCustomCraftAs) {
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_FIXEDWING:
frameType = FRAME_TYPE_FIXED_WING;
break;
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_VTOL:
frameType = FRAME_TYPE_MULTIROTOR;
break;
}
}
switch (frameType) {
case FRAME_TYPE_MULTIROTOR:
case FRAME_TYPE_HELI:
updatePeriod = vtolPathFollowerSettings.UpdatePeriod;
return updateAutoPilotVtol();
break;
case FRAME_TYPE_FIXED_WING:
default:
updatePeriod = fixedWingPathFollowerSettings.UpdatePeriod;
return updateAutoPilotFixedWing();
break;
}
}
/**
* fixed wing autopilot:
* straight forward:
* 1. update path velocity for limited motion crafts
* 2. update attitude according to default fixed wing pathfollower algorithm
*/
static uint8_t updateAutoPilotFixedWing()
{
pid_configure(&global.PIDposH[0], fixedWingPathFollowerSettings.HorizontalPosP, 0.0f, 0.0f, 0.0f);
pid_configure(&global.PIDposH[1], fixedWingPathFollowerSettings.HorizontalPosP, 0.0f, 0.0f, 0.0f);
pid_configure(&global.PIDposV, fixedWingPathFollowerSettings.VerticalPosP, 0.0f, 0.0f, 0.0f);
updatePathVelocity(fixedWingPathFollowerSettings.CourseFeedForward, true);
return updateFixedDesiredAttitude();
}
/**
* vtol autopilot
* use hover capable algorithm with unlimeted movement calculation. if that fails (flyaway situation due to compass failure)
* fall back to emergency fallback autopilot to keep minimum amount of flight control
*/
static uint8_t updateAutoPilotVtol()
{
enum { RETURN_0 = 0, RETURN_1 = 1, RETURN_RESULT } returnmode;
enum { FOLLOWER_REGULAR, FOLLOWER_FALLBACK } followermode;
uint8_t result = 0;
// decide on behaviour based on settings and system state
if (global.vtolEmergencyFallbackSwitch) {
returnmode = RETURN_0;
followermode = FOLLOWER_FALLBACK;
} else {
if (vtolPathFollowerSettings.FlyawayEmergencyFallback == VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_ALWAYS) {
returnmode = RETURN_1;
followermode = FOLLOWER_FALLBACK;
} else {
returnmode = RETURN_RESULT;
followermode = FOLLOWER_REGULAR;
}
}
// vertical positon control PID loops works the same in both regular and fallback modes, setup according to settings
pid_configure(&global.PIDposV, vtolPathFollowerSettings.VerticalPosP, 0.0f, 0.0f, 0.0f);
switch (followermode) {
case FOLLOWER_REGULAR:
{
// horizontal position control PID loop works according to settings in regular mode, allowing integral terms
pid_configure(&global.PIDposH[0], vtolPathFollowerSettings.HorizontalPosP, 0.0f, 0.0f, 0.0f);
pid_configure(&global.PIDposH[1], vtolPathFollowerSettings.HorizontalPosP, 0.0f, 0.0f, 0.0f);
updatePathVelocity(vtolPathFollowerSettings.CourseFeedForward, false);
// yaw behaviour is configurable in vtolpathfollower, select yaw control algorithm
bool yaw_attitude = true;
float yaw = 0.0f;
if (pathDesired.Mode == PATHDESIRED_MODE_BRAKE) {
yaw_attitude = false;
} else {
switch (vtolPathFollowerSettings.YawControl) {
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_MANUAL:
yaw_attitude = false;
break;
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_TAILIN:
yaw = updateTailInBearing();
break;
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_MOVEMENTDIRECTION:
yaw = updateCourseBearing();
break;
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_PATHDIRECTION:
yaw = updatePathBearing();
break;
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_POI:
yaw = updatePOIBearing();
break;
}
}
result = updateVtolDesiredAttitude(yaw_attitude, yaw);
if (!result) {
if (pathDesired.Mode == PATHDESIRED_MODE_BRAKE) {
plan_setup_assistedcontrol(true); // revert braking to position hold, user can always stick override
} else if (vtolPathFollowerSettings.FlyawayEmergencyFallback != VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_DISABLED) {
// switch to emergency follower if follower indicates problems
global.vtolEmergencyFallbackSwitch = true;
}
}
}
break;
case FOLLOWER_FALLBACK:
{
// fallback loop only cares about intended horizontal flight direction, simplify control behaviour accordingly
pid_configure(&global.PIDposH[0], 1.0f, 0.0f, 0.0f, 0.0f);
pid_configure(&global.PIDposH[1], 1.0f, 0.0f, 0.0f, 0.0f);
updatePathVelocity(vtolPathFollowerSettings.CourseFeedForward, true);
// emergency follower has no return value
updateVtolDesiredAttitudeEmergencyFallback();
}
break;
}
// Brake mode end condition checks
if (pathDesired.Mode == PATHDESIRED_MODE_BRAKE) {
bool exit_brake = false;
VelocityStateData velocityState;
if (pathStatus.path_time > pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_BRAKE_TIMEOUT]) { // enter hold on timeout
pathSummary.brake_exit_reason = PATHSUMMARY_BRAKE_EXIT_REASON_TIMEOUT;
exit_brake = true;
} else if (pathStatus.fractional_progress > BRAKE_FRACTIONALPROGRESS_STARTVELOCITYCHECK) {
VelocityStateGet(&velocityState);
if (fabsf(velocityState.East) < BRAKE_EXIT_VELOCITY_LIMIT && fabsf(velocityState.North) < BRAKE_EXIT_VELOCITY_LIMIT) {
pathSummary.brake_exit_reason = PATHSUMMARY_BRAKE_EXIT_REASON_PATHCOMPLETED;
exit_brake = true;
}
}
if (exit_brake) {
// Calculate the distance error between the originally desired
// stopping point and the actual brake-exit point.
PositionStateData p;
PositionStateGet(&p);
float north_offset = pathDesired.End.North - p.North;
float east_offset = pathDesired.End.East - p.East;
float down_offset = pathDesired.End.Down - p.Down;
pathSummary.brake_distance_offset = sqrtf(north_offset * north_offset + east_offset * east_offset + down_offset * down_offset);
pathSummary.time_remaining = pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_BRAKE_TIMEOUT] - pathStatus.path_time;
pathSummary.fractional_progress = pathStatus.fractional_progress;
float cur_velocity = velocityState.North * velocityState.North + velocityState.East * velocityState.East + velocityState.Down * velocityState.Down;
cur_velocity = sqrtf(cur_velocity);
pathSummary.decelrate = (pathDesired.StartingVelocity - cur_velocity) / pathStatus.path_time;
pathSummary.brakeRateActualDesiredRatio = pathSummary.decelrate / vtolPathFollowerSettings.BrakeRate;
pathSummary.velocityIntoHold = cur_velocity;
pathSummary.UID = pathStatus.UID;
PathSummarySet(&pathSummary);
plan_setup_assistedcontrol(true); // braking timeout true
// having re-entered hold allow reassessment of neutral thrust
neutralThrustEst.have_correction = false;
}
}
switch (returnmode) {
case RETURN_RESULT:
return result;
default:
// returns either 0 or 1 according to enum definition above
return returnmode;
}
}
/**
* Compute bearing of current takeoff location
*/
static float updateTailInBearing()
{
PositionStateData p;
PositionStateGet(&p);
TakeOffLocationData t;
TakeOffLocationGet(&t);
// atan2f always returns in between + and - 180 degrees
return RAD2DEG(atan2f(p.East - t.East, p.North - t.North));
}
/**
* Compute bearing of current movement direction
*/
static float updateCourseBearing()
{
VelocityStateData v;
VelocityStateGet(&v);
// atan2f always returns in between + and - 180 degrees
return RAD2DEG(atan2f(v.East, v.North));
}
/**
* Compute bearing of current path direction
*/
static float updatePathBearing()
{
PositionStateData positionState;
PositionStateGet(&positionState);
float cur[3] = { positionState.North,
positionState.East,
positionState.Down };
struct path_status progress;
path_progress(&pathDesired, cur, &progress);
// atan2f always returns in between + and - 180 degrees
return RAD2DEG(atan2f(progress.path_vector[1], progress.path_vector[0]));
}
/**
* Compute bearing between current position and POI
*/
static float updatePOIBearing()
{
PoiLocationData poi;
PoiLocationGet(&poi);
PositionStateData positionState;
PositionStateGet(&positionState);
const float dT = updatePeriod / 1000.0f;
float dLoc[3];
float yaw = 0;
/*float elevation = 0;*/
dLoc[0] = positionState.North - poi.North;
dLoc[1] = positionState.East - poi.East;
dLoc[2] = positionState.Down - poi.Down;
if (dLoc[1] < 0) {
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) + 180.0f;
} else {
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) - 180.0f;
}
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
float pathAngle = 0;
if (manualControlData.Roll > DEADBAND_HIGH) {
pathAngle = -(manualControlData.Roll - DEADBAND_HIGH) * dT * 300.0f;
} else if (manualControlData.Roll < DEADBAND_LOW) {
pathAngle = -(manualControlData.Roll - DEADBAND_LOW) * dT * 300.0f;
}
return yaw + (pathAngle / 2.0f);
}
/**
* process POI control logic TODO: this should most likely go into manualcontrol!!!!
* TODO: the whole process of POI handling likely needs cleanup and rethinking, might be broken since manualcontrol was refactored currently
**/
static void processPOI()
{
const float dT = updatePeriod / 1000.0f;
PositionStateData positionState;
PositionStateGet(&positionState);
// TODO put commented out camera feature code back in place either
// permanently or optionally or remove it
// CameraDesiredData cameraDesired;
// CameraDesiredGet(&cameraDesired);
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
PoiLocationData poi;
PoiLocationGet(&poi);
float dLoc[3];
float yaw = 0;
// TODO camera feature
/*float elevation = 0;*/
dLoc[0] = positionState.North - poi.North;
dLoc[1] = positionState.East - poi.East;
dLoc[2] = positionState.Down - poi.Down;
if (dLoc[1] < 0) {
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) + 180.0f;
} else {
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) - 180.0f;
}
// distance
float distance = sqrtf(powf(dLoc[0], 2.0f) + powf(dLoc[1], 2.0f));
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
float changeRadius = 0;
// Move closer or further, radially
if (manualControlData.Pitch > DEADBAND_HIGH) {
changeRadius = (manualControlData.Pitch - DEADBAND_HIGH) * dT * 100.0f;
} else if (manualControlData.Pitch < DEADBAND_LOW) {
changeRadius = (manualControlData.Pitch - DEADBAND_LOW) * dT * 100.0f;
}
// move along circular path
float pathAngle = 0;
if (manualControlData.Roll > DEADBAND_HIGH) {
pathAngle = -(manualControlData.Roll - DEADBAND_HIGH) * dT * 300.0f;
} else if (manualControlData.Roll < DEADBAND_LOW) {
pathAngle = -(manualControlData.Roll - DEADBAND_LOW) * dT * 300.0f;
} else if (manualControlData.Roll >= DEADBAND_LOW && manualControlData.Roll <= DEADBAND_HIGH) {
// change radius only when not circling
global.poiRadius = distance + changeRadius;
}
// don't try to move any closer
if (global.poiRadius >= 3.0f || changeRadius > 0) {
if (fabsf(pathAngle) > 0.0f || fabsf(changeRadius) > 0.0f) {
pathDesired.End.North = poi.North + (global.poiRadius * cosf(DEG2RAD(pathAngle + yaw - 180.0f)));
pathDesired.End.East = poi.East + (global.poiRadius * sinf(DEG2RAD(pathAngle + yaw - 180.0f)));
pathDesired.StartingVelocity = 1.0f;
pathDesired.EndingVelocity = 0.0f;
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
PathDesiredSet(&pathDesired);
}
}
// not above
if (distance >= 3.0f) {
// TODO camera feature
// You can feed this into camerastabilization
/*elevation = RAD2DEG(atan2f(dLoc[2],distance));*/
// cameraDesired.Yaw=yaw;
// cameraDesired.PitchOrServo2=elevation;
// CameraDesiredSet(&cameraDesired);
}
}
static void updateBrakeVelocity(float startingVelocity, float dT, float brakeRate, float currentVelocity, float *updatedVelocity)
{
if (startingVelocity >= 0.0f) {
*updatedVelocity = startingVelocity - dT * brakeRate;
if (*updatedVelocity > currentVelocity) {
*updatedVelocity = currentVelocity;
}
if (*updatedVelocity < 0.0f) {
*updatedVelocity = 0.0f;
}
} else {
*updatedVelocity = startingVelocity + dT * brakeRate;
if (*updatedVelocity < currentVelocity) {
*updatedVelocity = currentVelocity;
}
if (*updatedVelocity > 0.0f) {
*updatedVelocity = 0.0f;
}
}
}
/**
* Compute desired velocity from the current position and path
*/
static void updatePathVelocity(float kFF, bool limited)
{
PositionStateData positionState;
PositionStateGet(&positionState);
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
VelocityDesiredData velocityDesired;
const float dT = updatePeriod / 1000.0f;
if (pathDesired.Mode == PATHDESIRED_MODE_BRAKE) {
float brakeRate = vtolPathFollowerSettings.BrakeRate;
if (brakeRate < BRAKE_RATE_MINIMUM) {
brakeRate = BRAKE_RATE_MINIMUM; // set a minimum to avoid a divide by zero potential below
}
updateBrakeVelocity(pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_BRAKE_STARTVELOCITYVECTOR_NORTH], pathStatus.path_time, brakeRate, velocityState.North, &velocityDesired.North);
updateBrakeVelocity(pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_BRAKE_STARTVELOCITYVECTOR_EAST], pathStatus.path_time, brakeRate, velocityState.East, &velocityDesired.East);
updateBrakeVelocity(pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_BRAKE_STARTVELOCITYVECTOR_DOWN], pathStatus.path_time, brakeRate, velocityState.Down, &velocityDesired.Down);
float cur_velocity = velocityState.North * velocityState.North + velocityState.East * velocityState.East + velocityState.Down * velocityState.Down;
cur_velocity = sqrtf(cur_velocity);
float desired_velocity = velocityDesired.North * velocityDesired.North + velocityDesired.East * velocityDesired.East + velocityDesired.Down * velocityDesired.Down;
desired_velocity = sqrtf(desired_velocity);
// update pathstatus
pathStatus.error = cur_velocity - desired_velocity;
pathStatus.fractional_progress = 1.0f;
if (pathDesired.StartingVelocity > 0.0f) {
pathStatus.fractional_progress = (pathDesired.StartingVelocity - cur_velocity) / pathDesired.StartingVelocity;
// sometimes current velocity can exceed starting velocity due to initial acceleration
if (pathStatus.fractional_progress < 0.0f) {
pathStatus.fractional_progress = 0.0f;
}
}
pathStatus.path_direction_north = velocityDesired.North;
pathStatus.path_direction_east = velocityDesired.East;
pathStatus.path_direction_down = velocityDesired.Down;
pathStatus.correction_direction_north = velocityDesired.North - velocityState.North;
pathStatus.correction_direction_east = velocityDesired.East - velocityState.East;
pathStatus.correction_direction_down = velocityDesired.Down - velocityState.Down;
} else {
// look ahead kFF seconds
float cur[3] = { positionState.North + (velocityState.North * kFF),
positionState.East + (velocityState.East * kFF),
positionState.Down + (velocityState.Down * kFF) };
struct path_status progress;
path_progress(&pathDesired, cur, &progress);
// calculate velocity - can be zero if waypoints are too close
velocityDesired.North = progress.path_vector[0];
velocityDesired.East = progress.path_vector[1];
velocityDesired.Down = progress.path_vector[2];
if (limited &&
// if a plane is crossing its desired flightpath facing the wrong way (away from flight direction)
// it would turn towards the flightpath to get on its desired course. This however would reverse the correction vector
// once it crosses the flightpath again, which would make it again turn towards the flightpath (but away from its desired heading)
// leading to an S-shape snake course the wrong way
// this only happens especially if HorizontalPosP is too high, as otherwise the angle between velocity desired and path_direction won't
// turn steep unless there is enough space complete the turn before crossing the flightpath
// in this case the plane effectively needs to be turned around
// indicators:
// difference between correction_direction and velocitystate >90 degrees and
// difference between path_direction and velocitystate >90 degrees ( 4th sector, facing away from everything )
// fix: ignore correction, steer in path direction until the situation has become better (condition doesn't apply anymore)
// calculating angles < 90 degrees through dot products
(vector_lengthf(progress.path_vector, 2) > 1e-6f) &&
((progress.path_vector[0] * velocityState.North + progress.path_vector[1] * velocityState.East) < 0.0f) &&
((progress.correction_vector[0] * velocityState.North + progress.correction_vector[1] * velocityState.East) < 0.0f)) {
;
} else {
// calculate correction
velocityDesired.North += pid_apply(&global.PIDposH[0], progress.correction_vector[0], dT);
velocityDesired.East += pid_apply(&global.PIDposH[1], progress.correction_vector[1], dT);
}
velocityDesired.Down += pid_apply(&global.PIDposV, progress.correction_vector[2], dT);
// update pathstatus
pathStatus.error = progress.error;
pathStatus.fractional_progress = progress.fractional_progress;
pathStatus.path_direction_north = progress.path_vector[0];
pathStatus.path_direction_east = progress.path_vector[1];
pathStatus.path_direction_down = progress.path_vector[2];
pathStatus.correction_direction_north = progress.correction_vector[0];
pathStatus.correction_direction_east = progress.correction_vector[1];
pathStatus.correction_direction_down = progress.correction_vector[2];
}
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired attitude from the desired velocity for fixed wing craft
*/
static uint8_t updateFixedDesiredAttitude()
{
uint8_t result = 1;
const float dT = updatePeriod / 1000.0f; // Convert from [ms] to [s]
VelocityDesiredData velocityDesired;
VelocityStateData velocityState;
StabilizationDesiredData stabDesired;
AttitudeStateData attitudeState;
FixedWingPathFollowerStatusData fixedWingPathFollowerStatus;
AirspeedStateData airspeedState;
SystemSettingsData systemSettings;
float groundspeedProjection;
float indicatedAirspeedState;
float indicatedAirspeedDesired;
float airspeedError;
float pitchCommand;
float descentspeedDesired;
float descentspeedError;
float powerCommand;
float airspeedVector[2];
float fluidMovement[2];
float courseComponent[2];
float courseError;
float courseCommand;
FixedWingPathFollowerStatusGet(&fixedWingPathFollowerStatus);
VelocityStateGet(&velocityState);
StabilizationDesiredGet(&stabDesired);
VelocityDesiredGet(&velocityDesired);
AttitudeStateGet(&attitudeState);
AirspeedStateGet(&airspeedState);
SystemSettingsGet(&systemSettings);
/**
* Compute speed error and course
*/
// missing sensors for airspeed-direction we have to assume within
// reasonable error that measured airspeed is actually the airspeed
// component in forward pointing direction
// airspeedVector is normalized
airspeedVector[0] = cos_lookup_deg(attitudeState.Yaw);
airspeedVector[1] = sin_lookup_deg(attitudeState.Yaw);
// current ground speed projected in forward direction
groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
// note that airspeedStateBias is ( calibratedAirspeed - groundspeedProjection ) at the time of measurement,
// but thanks to accelerometers, groundspeedProjection reacts faster to changes in direction
// than airspeed and gps sensors alone
indicatedAirspeedState = groundspeedProjection + indicatedAirspeedStateBias;
// fluidMovement is a vector describing the aproximate movement vector of
// the surrounding fluid in 2d space (aka wind vector)
fluidMovement[0] = velocityState.North - (indicatedAirspeedState * airspeedVector[0]);
fluidMovement[1] = velocityState.East - (indicatedAirspeedState * airspeedVector[1]);
// calculate the movement vector we need to fly to reach velocityDesired -
// taking fluidMovement into account
courseComponent[0] = velocityDesired.North - fluidMovement[0];
courseComponent[1] = velocityDesired.East - fluidMovement[1];
indicatedAirspeedDesired = boundf(sqrtf(courseComponent[0] * courseComponent[0] + courseComponent[1] * courseComponent[1]),
fixedWingPathFollowerSettings.HorizontalVelMin,
fixedWingPathFollowerSettings.HorizontalVelMax);
// if we could fly at arbitrary speeds, we'd just have to move towards the
// courseComponent vector as previously calculated and we'd be fine
// unfortunately however we are bound by min and max air speed limits, so
// we need to recalculate the correct course to meet at least the
// velocityDesired vector direction at our current speed
// this overwrites courseComponent
bool valid = correctCourse(courseComponent, (float *)&velocityDesired.North, fluidMovement, indicatedAirspeedDesired);
// Error condition: wind speed too high, we can't go where we want anymore
fixedWingPathFollowerStatus.Errors.Wind = 0;
if ((!valid) &&
fixedWingPathFollowerSettings.Safetymargins.Wind > 0.5f) { // alarm switched on
fixedWingPathFollowerStatus.Errors.Wind = 1;
result = 0;
}
// Airspeed error
airspeedError = indicatedAirspeedDesired - indicatedAirspeedState;
// Vertical speed error
descentspeedDesired = boundf(
velocityDesired.Down,
-fixedWingPathFollowerSettings.VerticalVelMax,
fixedWingPathFollowerSettings.VerticalVelMax);
descentspeedError = descentspeedDesired - velocityState.Down;
// Error condition: plane too slow or too fast
fixedWingPathFollowerStatus.Errors.Highspeed = 0;
fixedWingPathFollowerStatus.Errors.Lowspeed = 0;
if (indicatedAirspeedState > systemSettings.AirSpeedMax * fixedWingPathFollowerSettings.Safetymargins.Overspeed) {
fixedWingPathFollowerStatus.Errors.Overspeed = 1;
result = 0;
}
if (indicatedAirspeedState > fixedWingPathFollowerSettings.HorizontalVelMax * fixedWingPathFollowerSettings.Safetymargins.Highspeed) {
fixedWingPathFollowerStatus.Errors.Highspeed = 1;
result = 0;
}
if (indicatedAirspeedState < fixedWingPathFollowerSettings.HorizontalVelMin * fixedWingPathFollowerSettings.Safetymargins.Lowspeed) {
fixedWingPathFollowerStatus.Errors.Lowspeed = 1;
result = 0;
}
if (indicatedAirspeedState < systemSettings.AirSpeedMin * fixedWingPathFollowerSettings.Safetymargins.Stallspeed) {
fixedWingPathFollowerStatus.Errors.Stallspeed = 1;
result = 0;
}
/**
* Compute desired thrust command
*/
// Compute the cross feed from vertical speed to pitch, with saturation
float speedErrorToPowerCommandComponent = boundf(
(airspeedError / fixedWingPathFollowerSettings.HorizontalVelMin) * fixedWingPathFollowerSettings.AirspeedToPowerCrossFeed.Kp,
-fixedWingPathFollowerSettings.AirspeedToPowerCrossFeed.Max,
fixedWingPathFollowerSettings.AirspeedToPowerCrossFeed.Max
);
// Compute final thrust response
powerCommand = pid_apply(&global.PIDpower, -descentspeedError, dT) +
speedErrorToPowerCommandComponent;
// Output internal state to telemetry
fixedWingPathFollowerStatus.Error.Power = descentspeedError;
fixedWingPathFollowerStatus.ErrorInt.Power = global.PIDpower.iAccumulator;
fixedWingPathFollowerStatus.Command.Power = powerCommand;
// set thrust
stabDesired.Thrust = boundf(fixedWingPathFollowerSettings.ThrustLimit.Neutral + powerCommand,
fixedWingPathFollowerSettings.ThrustLimit.Min,
fixedWingPathFollowerSettings.ThrustLimit.Max);
// Error condition: plane cannot hold altitude at current speed.
fixedWingPathFollowerStatus.Errors.Lowpower = 0;
if (fixedWingPathFollowerSettings.ThrustLimit.Neutral + powerCommand >= fixedWingPathFollowerSettings.ThrustLimit.Max && // thrust at maximum
velocityState.Down > 0.0f && // we ARE going down
descentspeedDesired < 0.0f && // we WANT to go up
airspeedError > 0.0f && // we are too slow already
fixedWingPathFollowerSettings.Safetymargins.Lowpower > 0.5f) { // alarm switched on
fixedWingPathFollowerStatus.Errors.Lowpower = 1;
result = 0;
}
// Error condition: plane keeps climbing despite minimum thrust (opposite of above)
fixedWingPathFollowerStatus.Errors.Highpower = 0;
if (fixedWingPathFollowerSettings.ThrustLimit.Neutral + powerCommand <= fixedWingPathFollowerSettings.ThrustLimit.Min && // thrust at minimum
velocityState.Down < 0.0f && // we ARE going up
descentspeedDesired > 0.0f && // we WANT to go down
airspeedError < 0.0f && // we are too fast already
fixedWingPathFollowerSettings.Safetymargins.Highpower > 0.5f) { // alarm switched on
fixedWingPathFollowerStatus.Errors.Highpower = 1;
result = 0;
}
/**
* Compute desired pitch command
*/
// Compute the cross feed from vertical speed to pitch, with saturation
float verticalSpeedToPitchCommandComponent = boundf(-descentspeedError * fixedWingPathFollowerSettings.VerticalToPitchCrossFeed.Kp,
-fixedWingPathFollowerSettings.VerticalToPitchCrossFeed.Max,
fixedWingPathFollowerSettings.VerticalToPitchCrossFeed.Max
);
// Compute the pitch command as err*Kp + errInt*Ki + X_feed.
pitchCommand = -pid_apply(&global.PIDspeed, airspeedError, dT) + verticalSpeedToPitchCommandComponent;
fixedWingPathFollowerStatus.Error.Speed = airspeedError;
fixedWingPathFollowerStatus.ErrorInt.Speed = global.PIDspeed.iAccumulator;
fixedWingPathFollowerStatus.Command.Speed = pitchCommand;
stabDesired.Pitch = boundf(fixedWingPathFollowerSettings.PitchLimit.Neutral + pitchCommand,
fixedWingPathFollowerSettings.PitchLimit.Min,
fixedWingPathFollowerSettings.PitchLimit.Max);
// Error condition: high speed dive
fixedWingPathFollowerStatus.Errors.Pitchcontrol = 0;
if (fixedWingPathFollowerSettings.PitchLimit.Neutral + pitchCommand >= fixedWingPathFollowerSettings.PitchLimit.Max && // pitch demand is full up
velocityState.Down > 0.0f && // we ARE going down
descentspeedDesired < 0.0f && // we WANT to go up
airspeedError < 0.0f && // we are too fast already
fixedWingPathFollowerSettings.Safetymargins.Pitchcontrol > 0.5f) { // alarm switched on
fixedWingPathFollowerStatus.Errors.Pitchcontrol = 1;
result = 0;
}
/**
* Compute desired roll command
*/
courseError = RAD2DEG(atan2f(courseComponent[1], courseComponent[0])) - attitudeState.Yaw;
if (courseError < -180.0f) {
courseError += 360.0f;
}
if (courseError > 180.0f) {
courseError -= 360.0f;
}
// overlap calculation. Theres a dead zone behind the craft where the
// counter-yawing of some craft while rolling could render a desired right
// turn into a desired left turn. Making the turn direction based on
// current roll angle keeps the plane committed to a direction once chosen
if (courseError < -180.0f + (fixedWingPathFollowerSettings.ReverseCourseOverlap * 0.5f)
&& attitudeState.Roll > 0.0f) {
courseError += 360.0f;
}
if (courseError > 180.0f - (fixedWingPathFollowerSettings.ReverseCourseOverlap * 0.5f)
&& attitudeState.Roll < 0.0f) {
courseError -= 360.0f;
}
courseCommand = pid_apply(&global.PIDcourse, courseError, dT);
fixedWingPathFollowerStatus.Error.Course = courseError;
fixedWingPathFollowerStatus.ErrorInt.Course = global.PIDcourse.iAccumulator;
fixedWingPathFollowerStatus.Command.Course = courseCommand;
stabDesired.Roll = boundf(fixedWingPathFollowerSettings.RollLimit.Neutral +
courseCommand,
fixedWingPathFollowerSettings.RollLimit.Min,
fixedWingPathFollowerSettings.RollLimit.Max);
// TODO: find a check to determine loss of directional control. Likely needs some check of derivative
/**
* Compute desired yaw command
*/
// TODO implement raw control mode for yaw and base on Accels.Y
stabDesired.Yaw = 0.0f;
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
FixedWingPathFollowerStatusSet(&fixedWingPathFollowerStatus);
return result;
}
/**
* Function to calculate course vector C based on airspeed s, fluid movement F
* and desired movement vector V
* parameters in: V,F,s
* parameters out: C
* returns true if a valid solution could be found for V,F,s, false if not
* C will be set to a best effort attempt either way
*/
static bool correctCourse(float *C, float *V, float *F, float s)
{
// Approach:
// Let Sc be a circle around origin marking possible movement vectors
// of the craft with airspeed s (all possible options for C)
// Let Vl be a line through the origin along movement vector V where fr any
// point v on line Vl v = k * (V / |V|) = k' * V
// Let Wl be a line parallel to Vl where for any point v on line Vl exists
// a point w on WL with w = v - F
// Then any intersection between circle Sc and line Wl represents course
// vector which would result in a movement vector
// V' = k * ( V / |V|) = k' * V
// If there is no intersection point, S is insufficient to compensate
// for F and we can only try to fly in direction of V (thus having wind drift
// but at least making progress orthogonal to wind)
s = fabsf(s);
float f = vector_lengthf(F, 2);
// normalize Cn=V/|V|, |V| must be >0
float v = vector_lengthf(V, 2);
if (v < 1e-6f) {
// if |V|=0, we aren't supposed to move, turn into the wind
// (this allows hovering)
C[0] = -F[0];
C[1] = -F[1];
// if desired airspeed matches fluidmovement a hover is actually
// intended so return true
return fabsf(f - s) < 1e-3f;
}
float Vn[2] = { V[0] / v, V[1] / v };
// project F on V
float fp = F[0] * Vn[0] + F[1] * Vn[1];
// find component Fo of F that is orthogonal to V
// (which is exactly the distance between Vl and Wl)
float Fo[2] = { F[0] - (fp * Vn[0]), F[1] - (fp * Vn[1]) };
float fo2 = Fo[0] * Fo[0] + Fo[1] * Fo[1];
// find k where k * Vn = C - Fo
// |C|=s is the hypothenuse in any rectangular triangle formed by k * Vn and Fo
// so k^2 + fo^2 = s^2 (since |Vn|=1)
float k2 = s * s - fo2;
if (k2 <= -1e-3f) {
// there is no solution, we will be drifted off either way
// fallback: fly stupidly in direction of V and hope for the best
C[0] = V[0];
C[1] = V[1];
return false;
} else if (k2 <= 1e-3f) {
// there is exactly one solution: -Fo
C[0] = -Fo[0];
C[1] = -Fo[1];
return true;
}
// we have two possible solutions k positive and k negative as there are
// two intersection points between Wl and Sc
// which one is better? two criteria:
// 1. we MUST move in the right direction, if any k leads to -v its invalid
// 2. we should minimize the speed error
float k = sqrt(k2);
float C1[2] = { -k * Vn[0] - Fo[0], -k * Vn[1] - Fo[1] };
float C2[2] = { k *Vn[0] - Fo[0], k * Vn[1] - Fo[1] };
// project C+F on Vn to find signed resulting movement vector length
float vp1 = (C1[0] + F[0]) * Vn[0] + (C1[1] + F[1]) * Vn[1];
float vp2 = (C2[0] + F[0]) * Vn[0] + (C2[1] + F[1]) * Vn[1];
if (vp1 >= 0.0f && fabsf(v - vp1) < fabsf(v - vp2)) {
// in this case the angle between course and resulting movement vector
// is greater than 90 degrees - so we actually fly backwards
C[0] = C1[0];
C[1] = C1[1];
return true;
}
C[0] = C2[0];
C[1] = C2[1];
if (vp2 >= 0.0f) {
// in this case the angle between course and movement vector is less than
// 90 degrees, but we do move in the right direction
return true;
} else {
// in this case we actually get driven in the opposite direction of V
// with both solutions for C
// this might be reached in headwind stronger than maximum allowed
// airspeed.
return false;
}
}
/**
* Compute desired attitude from the desired velocity
*
* Takes in @ref NedState which has the acceleration in the
* NED frame as the feedback term and then compares the
* @ref VelocityState against the @ref VelocityDesired
*/
static int8_t updateVtolDesiredAttitude(bool yaw_attitude, float yaw_direction)
{
const float dT = updatePeriod / 1000.0f;
uint8_t result = 1;
bool manual_thrust = false;
VelocityDesiredData velocityDesired;
VelocityStateData velocityState;
StabilizationDesiredData stabDesired;
AttitudeStateData attitudeState;
StabilizationBankData stabSettings;
SystemSettingsData systemSettings;
VtolSelfTuningStatsData vtolSelfTuningStats;
float northError;
float northCommand;
float eastError;
float eastCommand;
float downError;
float downCommand;
SystemSettingsGet(&systemSettings);
VelocityStateGet(&velocityState);
VelocityDesiredGet(&velocityDesired);
StabilizationDesiredGet(&stabDesired);
VelocityDesiredGet(&velocityDesired);
AttitudeStateGet(&attitudeState);
StabilizationBankGet(&stabSettings);
VtolSelfTuningStatsGet(&vtolSelfTuningStats);
if (pathDesired.Mode != PATHDESIRED_MODE_BRAKE) {
// scale velocity if it is above configured maximum
// for braking, we can not help it if initial velocity was greater
float velH = sqrtf(velocityDesired.North * velocityDesired.North + velocityDesired.East * velocityDesired.East);
if (velH > vtolPathFollowerSettings.HorizontalVelMax) {
velocityDesired.North *= vtolPathFollowerSettings.HorizontalVelMax / velH;
velocityDesired.East *= vtolPathFollowerSettings.HorizontalVelMax / velH;
}
if (fabsf(velocityDesired.Down) > vtolPathFollowerSettings.VerticalVelMax) {
velocityDesired.Down *= vtolPathFollowerSettings.VerticalVelMax / fabsf(velocityDesired.Down);
}
}
// calculate the velocity errors between desired and actual
northError = velocityDesired.North - velocityState.North;
eastError = velocityDesired.East - velocityState.East;
downError = velocityDesired.Down - velocityState.Down;
// Must flip this sign
downError = -downError;
// Compute desired commands
if (pathDesired.Mode != PATHDESIRED_MODE_BRAKE) {
northCommand = pid_apply(&global.PIDvel[0], northError, dT) + velocityDesired.North * vtolPathFollowerSettings.VelocityFeedforward;
eastCommand = pid_apply(&global.PIDvel[1], eastError, dT) + velocityDesired.East * vtolPathFollowerSettings.VelocityFeedforward;
} else {
northCommand = pid_apply(&global.BrakePIDvel[0], northError, dT) + velocityDesired.North * vtolPathFollowerSettings.BrakeVelocityFeedforward;
eastCommand = pid_apply(&global.BrakePIDvel[1], eastError, dT) + velocityDesired.East * vtolPathFollowerSettings.BrakeVelocityFeedforward;
}
downCommand = pid_apply(&global.PIDvel[2], downError, dT);
if ((vtolPathFollowerSettings.ThrustControl == VTOLPATHFOLLOWERSETTINGS_THRUSTCONTROL_MANUAL &&
flightStatus.FlightModeAssist == FLIGHTSTATUS_FLIGHTMODEASSIST_NONE) ||
(flightStatus.FlightModeAssist && flightStatus.AssistedThrottleState == FLIGHTSTATUS_ASSISTEDTHROTTLESTATE_MANUAL)) {
manual_thrust = true;
}
// if auto thrust and we have not run a correction calc check for PH and stability to then run an assessment
// note that arming into this flight mode is not allowed, so assumption here is that
// we have not landed. If GPSAssist+Manual/Cruise control thrust mode is used, a user overriding the
// altitude maintaining PID will have moved the throttle state to FLIGHTSTATUS_ASSISTEDTHROTTLESTATE_MANUAL.
// In manualcontrol.c the state will stay in manual throttle until the throttle command exceeds the vtol thrust min,
// avoiding auto-takeoffs. Therefore no need to check that here.
if (!manual_thrust && neutralThrustEst.have_correction != true) {
// Assess if position hold state running. This can be normal position hold or
// another mode with assist-hold active.
bool ph_active =
((flightStatus.FlightMode == FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD &&
flightStatus.FlightModeAssist == FLIGHTSTATUS_FLIGHTMODEASSIST_NONE) ||
(flightStatus.FlightModeAssist != FLIGHTSTATUS_FLIGHTMODEASSIST_NONE &&
flightStatus.AssistedControlState == FLIGHTSTATUS_ASSISTEDCONTROLSTATE_HOLD));
bool stable = (fabsf(pathStatus.correction_direction_down) < NEUTRALTHRUST_PH_POSITIONAL_ERROR_LIMIT &&
fabsf(velocityDesired.Down) < NEUTRALTHRUST_PH_VEL_DESIRED_LIMIT &&
fabsf(velocityState.Down) < NEUTRALTHRUST_PH_VEL_STATE_LIMIT &&
fabsf(downError) < NEUTRALTHRUST_PH_VEL_ERROR_LIMIT);
if (ph_active && stable) {
if (neutralThrustEst.start_sampling) {
neutralThrustEst.count++;
// delay count for 2 seconds into hold allowing for stablisation
if (neutralThrustEst.count > NEUTRALTHRUST_START_DELAY) {
neutralThrustEst.sum += global.PIDvel[2].iAccumulator;
if (global.PIDvel[2].iAccumulator < neutralThrustEst.min) {
neutralThrustEst.min = global.PIDvel[2].iAccumulator;
}
if (global.PIDvel[2].iAccumulator > neutralThrustEst.max) {
neutralThrustEst.max = global.PIDvel[2].iAccumulator;
}
}
if (neutralThrustEst.count >= NEUTRALTHRUST_END_COUNT) {
// 6 seconds have past
// lets take an average
neutralThrustEst.average = neutralThrustEst.sum / (float)(NEUTRALTHRUST_END_COUNT - NEUTRALTHRUST_START_DELAY);
neutralThrustEst.correction = neutralThrustEst.average / 1000.0f;
global.PIDvel[2].iAccumulator -= neutralThrustEst.average;
neutralThrustEst.start_sampling = false;
neutralThrustEst.have_correction = true;
// Write a new adjustment value
// vtolSelfTuningStats.NeutralThrustOffset was incremental adjusted above
VtolSelfTuningStatsData new_vtolSelfTuningStats;
// add the average remaining i value to the
new_vtolSelfTuningStats.NeutralThrustOffset = vtolSelfTuningStats.NeutralThrustOffset + neutralThrustEst.correction;
new_vtolSelfTuningStats.NeutralThrustCorrection = neutralThrustEst.correction; // the i term thrust correction value applied
new_vtolSelfTuningStats.NeutralThrustAccumulator = global.PIDvel[2].iAccumulator; // the actual iaccumulator value after correction
new_vtolSelfTuningStats.NeutralThrustRange = neutralThrustEst.max - neutralThrustEst.min;
VtolSelfTuningStatsSet(&new_vtolSelfTuningStats);
}
} else {
// start a tick count
neutralThrustEst.start_sampling = true;
neutralThrustEst.count = 0;
neutralThrustEst.sum = 0.0f;
neutralThrustEst.max = 0.0f;
neutralThrustEst.min = 0.0f;
}
} else {
// reset sampling as we did't get 6 continuous seconds
neutralThrustEst.start_sampling = false;
}
} // else we already have a correction for this PH run
// Generally in braking the downError will be an increased altitude. We really will rely on cruisecontrol to backoff.
stabDesired.Thrust = boundf(vtolSelfTuningStats.NeutralThrustOffset + downCommand + vtolPathFollowerSettings.ThrustLimits.Neutral, vtolPathFollowerSettings.ThrustLimits.Min, vtolPathFollowerSettings.ThrustLimits.Max);
// DEBUG HACK: allow user to skew compass on purpose to see if emergency failsafe kicks in
if (vtolPathFollowerSettings.FlyawayEmergencyFallback == VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_DEBUGTEST) {
attitudeState.Yaw += 120.0f;
if (attitudeState.Yaw > 180.0f) {
attitudeState.Yaw -= 360.0f;
}
}
if ( // emergency flyaway detection
( // integral already at its limit
vtolPathFollowerSettings.HorizontalVelPID.ILimit - fabsf(global.PIDvel[0].iAccumulator) < 1e-6f ||
vtolPathFollowerSettings.HorizontalVelPID.ILimit - fabsf(global.PIDvel[1].iAccumulator) < 1e-6f
) &&
// angle between desired and actual velocity >90 degrees (by dot product)
(velocityDesired.North * velocityState.North + velocityDesired.East * velocityState.East < 0.0f) &&
// quad is moving at significant speed (during flyaway it would keep speeding up)
squaref(velocityState.North) + squaref(velocityState.East) > 1.0f
) {
global.vtolEmergencyFallback += dT;
if (global.vtolEmergencyFallback >= vtolPathFollowerSettings.FlyawayEmergencyFallbackTriggerTime) {
// after emergency timeout, trigger alarm - everything else is handled by callers
// (switch to emergency algorithm, switch to emergency waypoint in pathplanner, alarms, ...)
result = 0;
}
} else {
global.vtolEmergencyFallback = 0.0f;
}
// Project the north and east command signals into the pitch and roll based on yaw. For this to behave well the
// craft should move similarly for 5 deg roll versus 5 deg pitch
float maxPitch = vtolPathFollowerSettings.MaxRollPitch;
if (pathDesired.Mode == PATHDESIRED_MODE_BRAKE) {
maxPitch = vtolPathFollowerSettings.BrakeMaxPitch;
}
stabDesired.Pitch = boundf(-northCommand * cosf(DEG2RAD(attitudeState.Yaw)) +
-eastCommand * sinf(DEG2RAD(attitudeState.Yaw)),
-maxPitch, maxPitch);
stabDesired.Roll = boundf(-northCommand * sinf(DEG2RAD(attitudeState.Yaw)) +
eastCommand * cosf(DEG2RAD(attitudeState.Yaw)),
-maxPitch, maxPitch);
ManualControlCommandData manualControl;
ManualControlCommandGet(&manualControl);
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
if (yaw_attitude) {
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.Yaw = yaw_direction;
} else {
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
stabDesired.Yaw = stabSettings.MaximumRate.Yaw * manualControl.Yaw;
}
// default thrust mode to cruise control
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_CRUISECONTROL;
// when flight mode assist is active but in primary-thrust mode, the thrust mode must be set to the same as per the primary mode.
if (flightStatus.FlightModeAssist == FLIGHTSTATUS_FLIGHTMODEASSIST_GPSASSIST_PRIMARYTHRUST) {
FlightModeSettingsData settings;
FlightModeSettingsGet(&settings);
FlightModeSettingsStabilization1SettingsOptions thrustMode = FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_CRUISECONTROL;
switch (flightStatus.FlightMode) {
case FLIGHTSTATUS_FLIGHTMODE_STABILIZED1:
thrustMode = settings.Stabilization1Settings.Thrust;
break;
case FLIGHTSTATUS_FLIGHTMODE_STABILIZED2:
thrustMode = settings.Stabilization2Settings.Thrust;
break;
case FLIGHTSTATUS_FLIGHTMODE_STABILIZED3:
thrustMode = settings.Stabilization3Settings.Thrust;
break;
case FLIGHTSTATUS_FLIGHTMODE_STABILIZED4:
thrustMode = settings.Stabilization4Settings.Thrust;
break;
case FLIGHTSTATUS_FLIGHTMODE_STABILIZED5:
thrustMode = settings.Stabilization5Settings.Thrust;
break;
case FLIGHTSTATUS_FLIGHTMODE_STABILIZED6:
thrustMode = settings.Stabilization6Settings.Thrust;
break;
case FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD:
// we hard code the "GPS Assisted" PostionHold to use alt-vario which
// is a more appropriate throttle mode. "GPSAssist" adds braking
// and a better throttle management to the standard Position Hold.
thrustMode = FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_ALTITUDEVARIO;
break;
}
stabDesired.StabilizationMode.Thrust = thrustMode;
stabDesired.Thrust = manualControl.Thrust;
} else if (manual_thrust) {
stabDesired.Thrust = manualControl.Thrust;
}
// else thrust is set by the PID controller
StabilizationDesiredSet(&stabDesired);
return result;
}
/**
* Compute desired attitude for vtols - emergency fallback
*/
static void updateVtolDesiredAttitudeEmergencyFallback()
{
const float dT = updatePeriod / 1000.0f;
VelocityDesiredData velocityDesired;
VelocityStateData velocityState;
StabilizationDesiredData stabDesired;
float courseError;
float courseCommand;
float downError;
float downCommand;
VelocityStateGet(&velocityState);
VelocityDesiredGet(&velocityDesired);
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
courseError = RAD2DEG(atan2f(velocityDesired.East, velocityDesired.North) - atan2f(velocityState.East, velocityState.North));
if (courseError < -180.0f) {
courseError += 360.0f;
}
if (courseError > 180.0f) {
courseError -= 360.0f;
}
courseCommand = (courseError * vtolPathFollowerSettings.EmergencyFallbackYawRate.kP);
stabDesired.Yaw = boundf(courseCommand, -vtolPathFollowerSettings.EmergencyFallbackYawRate.Max, vtolPathFollowerSettings.EmergencyFallbackYawRate.Max);
// Compute desired down command
downError = velocityDesired.Down - velocityState.Down;
// Must flip this sign
downError = -downError;
downCommand = pid_apply(&global.PIDvel[2], downError, dT);
stabDesired.Thrust = boundf(downCommand + vtolPathFollowerSettings.ThrustLimits.Neutral, vtolPathFollowerSettings.ThrustLimits.Min, vtolPathFollowerSettings.ThrustLimits.Max);
stabDesired.Roll = vtolPathFollowerSettings.EmergencyFallbackAttitude.Roll;
stabDesired.Pitch = vtolPathFollowerSettings.EmergencyFallbackAttitude.Pitch;
if (vtolPathFollowerSettings.ThrustControl == VTOLPATHFOLLOWERSETTINGS_THRUSTCONTROL_MANUAL) {
// For now override thrust with manual control. Disable at your risk, quad goes to China.
ManualControlCommandData manualControl;
ManualControlCommandGet(&manualControl);
stabDesired.Thrust = manualControl.Thrust;
}
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_CRUISECONTROL;
StabilizationDesiredSet(&stabDesired);
}
/**
* Compute desired attitude from a fixed preset
*
*/
static void updateFixedAttitude(float *attitude)
{
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
stabDesired.Roll = attitude[0];
stabDesired.Pitch = attitude[1];
stabDesired.Yaw = attitude[2];
stabDesired.Thrust = attitude[3];
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
}

View File

@ -0,0 +1,462 @@
/**
******************************************************************************
*
* @file pathfollower.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief This module compared @ref PositionActuatl to @ref ActiveWaypoint
* and sets @ref AttitudeDesired. It only does this when the FlightMode field
* of @ref ManualControlCommand is Auto.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input object: PathDesired
* Input object: PositionState
* Input object: ManualControlCommand
* Output object: StabilizationDesired
*
* This module acts as "autopilot" - it controls the setpoints of stabilization
* based on current flight situation and desired flight path (PathDesired) as
* directed by flightmode selection or pathplanner
* This is a periodic delayed callback module
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
extern "C" {
#include <openpilot.h>
#include <callbackinfo.h>
#include <math.h>
#include <pid.h>
#include <CoordinateConversions.h>
#include <sin_lookup.h>
#include <pathdesired.h>
#include <paths.h>
#include "plans.h"
#include <sanitycheck.h>
#include <groundpathfollowersettings.h>
#include <fixedwingpathfollowersettings.h>
#include <fixedwingpathfollowerstatus.h>
#include <vtolpathfollowersettings.h>
#include <flightstatus.h>
#include <flightmodesettings.h>
#include <pathstatus.h>
#include <positionstate.h>
#include <velocitystate.h>
#include <velocitydesired.h>
#include <stabilizationdesired.h>
#include <airspeedstate.h>
#include <attitudestate.h>
#include <takeofflocation.h>
#include <poilocation.h>
#include <manualcontrolcommand.h>
#include <systemsettings.h>
#include <stabilizationbank.h>
#include <vtolselftuningstats.h>
#include <pathsummary.h>
#include <pidstatus.h>
#include <homelocation.h>
#include <accelstate.h>
#include <statusvtolland.h>
#include <statusgrounddrive.h>
}
#include "pathfollowercontrol.h"
#include "vtollandcontroller.h"
#include "vtolvelocitycontroller.h"
#include "vtolbrakecontroller.h"
#include "vtolflycontroller.h"
#include "fixedwingflycontroller.h"
#include "grounddrivecontroller.h"
// Private constants
#define CALLBACK_PRIORITY CALLBACK_PRIORITY_LOW
#define CBTASK_PRIORITY CALLBACK_TASK_FLIGHTCONTROL
#define PF_IDLE_UPDATE_RATE_MS 100
#define STACK_SIZE_BYTES 2048
// Private types
// Private variables
static DelayedCallbackInfo *pathFollowerCBInfo;
static uint32_t updatePeriod = PF_IDLE_UPDATE_RATE_MS;
static FrameType_t frameType = FRAME_TYPE_MULTIROTOR;
static PathStatusData pathStatus;
static PathDesiredData pathDesired;
static FixedWingPathFollowerSettingsData fixedWingPathFollowerSettings;
static GroundPathFollowerSettingsData groundPathFollowerSettings;
static VtolPathFollowerSettingsData vtolPathFollowerSettings;
static FlightStatusData flightStatus;
static PathFollowerControl *activeController = 0;
// Private functions
static void pathFollowerTask(void);
static void SettingsUpdatedCb(UAVObjEvent *ev);
static void airspeedStateUpdatedCb(UAVObjEvent *ev);
static void pathFollowerObjectiveUpdatedCb(UAVObjEvent *ev);
static void flightStatusUpdatedCb(UAVObjEvent *ev);
static void updateFixedAttitude(float *attitude);
static void pathFollowerInitializeControllersForFrameType();
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
extern "C" int32_t PathFollowerStart()
{
// Start main task
PathStatusGet(&pathStatus);
SettingsUpdatedCb(NULL);
PIOS_CALLBACKSCHEDULER_Dispatch(pathFollowerCBInfo);
return 0;
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
extern "C" int32_t PathFollowerInitialize()
{
// initialize objects
GroundPathFollowerSettingsInitialize();
FixedWingPathFollowerSettingsInitialize();
FixedWingPathFollowerStatusInitialize();
VtolPathFollowerSettingsInitialize();
FlightStatusInitialize();
FlightModeSettingsInitialize();
PathStatusInitialize();
PathSummaryInitialize();
PathDesiredInitialize();
PositionStateInitialize();
VelocityStateInitialize();
VelocityDesiredInitialize();
StabilizationDesiredInitialize();
AirspeedStateInitialize();
AttitudeStateInitialize();
TakeOffLocationInitialize();
PoiLocationInitialize();
ManualControlCommandInitialize();
SystemSettingsInitialize();
StabilizationBankInitialize();
VtolSelfTuningStatsInitialize();
PIDStatusInitialize();
StatusVtolLandInitialize();
StatusGroundDriveInitialize();
// VtolLandFSM additional objects
HomeLocationInitialize();
AccelStateInitialize();
// Init references to controllers
PathFollowerControl::Initialize(&pathDesired, &flightStatus, &pathStatus);
// Create object queue
pathFollowerCBInfo = PIOS_CALLBACKSCHEDULER_Create(&pathFollowerTask, CALLBACK_PRIORITY, CBTASK_PRIORITY, CALLBACKINFO_RUNNING_PATHFOLLOWER, STACK_SIZE_BYTES);
FixedWingPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
GroundPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
VtolPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
PathDesiredConnectCallback(&pathFollowerObjectiveUpdatedCb);
FlightStatusConnectCallback(&flightStatusUpdatedCb);
SystemSettingsConnectCallback(&SettingsUpdatedCb);
AirspeedStateConnectCallback(&airspeedStateUpdatedCb);
VtolSelfTuningStatsConnectCallback(&SettingsUpdatedCb);
return 0;
}
MODULE_INITCALL(PathFollowerInitialize, PathFollowerStart);
void pathFollowerInitializeControllersForFrameType()
{
static uint8_t multirotor_initialised = 0;
static uint8_t fixedwing_initialised = 0;
static uint8_t ground_initialised = 0;
switch (frameType) {
case FRAME_TYPE_MULTIROTOR:
case FRAME_TYPE_HELI:
if (!multirotor_initialised) {
VtolLandController::instance()->Initialize(&vtolPathFollowerSettings);
VtolVelocityController::instance()->Initialize(&vtolPathFollowerSettings);
VtolFlyController::instance()->Initialize(&vtolPathFollowerSettings);
VtolBrakeController::instance()->Initialize(&vtolPathFollowerSettings);
multirotor_initialised = 1;
}
break;
case FRAME_TYPE_FIXED_WING:
if (!fixedwing_initialised) {
FixedWingFlyController::instance()->Initialize(&fixedWingPathFollowerSettings);
fixedwing_initialised = 1;
}
break;
case FRAME_TYPE_GROUND:
if (!ground_initialised) {
GroundDriveController::instance()->Initialize(&groundPathFollowerSettings);
ground_initialised = 1;
}
break;
default:
break;
}
}
static void pathFollowerSetActiveController(void)
{
// Init controllers for the frame type
if (activeController == 0) {
// Initialise
pathFollowerInitializeControllersForFrameType();
switch (frameType) {
case FRAME_TYPE_MULTIROTOR:
case FRAME_TYPE_HELI:
switch (pathDesired.Mode) {
case PATHDESIRED_MODE_BRAKE: // brake then hold sequence controller
activeController = VtolBrakeController::instance();
activeController->Activate();
break;
case PATHDESIRED_MODE_VELOCITY: // velocity roam controller
activeController = VtolVelocityController::instance();
activeController->Activate();
break;
case PATHDESIRED_MODE_GOTOENDPOINT:
case PATHDESIRED_MODE_FOLLOWVECTOR:
case PATHDESIRED_MODE_CIRCLERIGHT:
case PATHDESIRED_MODE_CIRCLELEFT:
activeController = VtolFlyController::instance();
activeController->Activate();
break;
case PATHDESIRED_MODE_LAND: // land with optional velocity roam option
activeController = VtolLandController::instance();
activeController->Activate();
break;
default:
activeController = 0;
break;
}
break;
case FRAME_TYPE_FIXED_WING:
switch (pathDesired.Mode) {
case PATHDESIRED_MODE_GOTOENDPOINT:
case PATHDESIRED_MODE_FOLLOWVECTOR:
case PATHDESIRED_MODE_CIRCLERIGHT:
case PATHDESIRED_MODE_CIRCLELEFT:
activeController = FixedWingFlyController::instance();
activeController->Activate();
break;
default:
activeController = 0;
break;
}
break;
case FRAME_TYPE_GROUND:
switch (pathDesired.Mode) {
case PATHDESIRED_MODE_GOTOENDPOINT:
case PATHDESIRED_MODE_FOLLOWVECTOR:
case PATHDESIRED_MODE_CIRCLERIGHT:
case PATHDESIRED_MODE_CIRCLELEFT:
activeController = GroundDriveController::instance();
activeController->Activate();
break;
default:
activeController = 0;
break;
}
break;
default:
activeController = 0;
break;
}
}
}
/**
* Module thread, should not return.
*/
static void pathFollowerTask(void)
{
FlightStatusGet(&flightStatus);
if (flightStatus.ControlChain.PathFollower != FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_UNINITIALISED);
PIOS_CALLBACKSCHEDULER_Schedule(pathFollowerCBInfo, PF_IDLE_UPDATE_RATE_MS, CALLBACK_UPDATEMODE_SOONER);
return;
}
pathStatus.UID = pathDesired.UID;
pathStatus.Status = PATHSTATUS_STATUS_INPROGRESS;
pathFollowerSetActiveController();
if (activeController) {
activeController->UpdateAutoPilot();
PIOS_CALLBACKSCHEDULER_Schedule(pathFollowerCBInfo, updatePeriod, CALLBACK_UPDATEMODE_SOONER);
return;
}
switch (pathDesired.Mode) {
case PATHDESIRED_MODE_FIXEDATTITUDE:
updateFixedAttitude(pathDesired.ModeParameters);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
break;
case PATHDESIRED_MODE_DISARMALARM:
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
break;
default:
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_ERROR);
break;
}
PathStatusSet(&pathStatus);
PIOS_CALLBACKSCHEDULER_Schedule(pathFollowerCBInfo, updatePeriod, CALLBACK_UPDATEMODE_SOONER);
}
static void pathFollowerObjectiveUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
PathDesiredGet(&pathDesired);
if (activeController && pathDesired.Mode != activeController->Mode()) {
activeController->Deactivate();
activeController = 0;
}
pathFollowerSetActiveController();
if (activeController) {
activeController->ObjectiveUpdated();
}
}
// we use this to deactivate active controllers as the pathdesired
// objective never gets updated with switching to a non-pathfollower flight mode
static void flightStatusUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
if (!activeController) {
return;
}
FlightStatusControlChainData controlChain;
FlightStatusControlChainGet(&controlChain);
if (controlChain.PathFollower != FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
activeController->Deactivate();
activeController = 0;
}
}
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
VtolPathFollowerSettingsGet(&vtolPathFollowerSettings);
FrameType_t previous_frameType = frameType;
frameType = GetCurrentFrameType();
if (frameType == FRAME_TYPE_CUSTOM) {
switch (vtolPathFollowerSettings.TreatCustomCraftAs) {
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_FIXEDWING:
frameType = FRAME_TYPE_FIXED_WING;
break;
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_VTOL:
frameType = FRAME_TYPE_MULTIROTOR;
break;
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_GROUND:
frameType = FRAME_TYPE_GROUND;
break;
}
}
// If frame type changes, initialise the frame type controllers
if (frameType != previous_frameType) {
pathFollowerInitializeControllersForFrameType();
}
switch (frameType) {
case FRAME_TYPE_MULTIROTOR:
case FRAME_TYPE_HELI:
updatePeriod = vtolPathFollowerSettings.UpdatePeriod;
break;
case FRAME_TYPE_FIXED_WING:
FixedWingPathFollowerSettingsGet(&fixedWingPathFollowerSettings);
updatePeriod = fixedWingPathFollowerSettings.UpdatePeriod;
break;
case FRAME_TYPE_GROUND:
GroundPathFollowerSettingsGet(&groundPathFollowerSettings);
updatePeriod = groundPathFollowerSettings.UpdatePeriod;
break;
default:
updatePeriod = vtolPathFollowerSettings.UpdatePeriod;
break;
}
if (activeController) {
activeController->SettingsUpdated();
}
}
static void airspeedStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
FixedWingFlyController::instance()->AirspeedStateUpdatedCb(ev);
}
/**
* Compute desired attitude from a fixed preset
*
*/
static void updateFixedAttitude(float *attitude)
{
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
stabDesired.Roll = attitude[0];
stabDesired.Pitch = attitude[1];
stabDesired.Yaw = attitude[2];
stabDesired.Thrust = attitude[3];
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
}

View File

@ -0,0 +1,52 @@
/*
******************************************************************************
*
* @file PathFollowerControl.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Controller interface class implementation
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
extern "C" {
#include <openpilot.h>
#include <flightstatus.h>
#include <pathstatus.h>
#include <pathdesired.h>
}
// C++ includes
#include "pathfollowercontrol.h"
PathDesiredData *PathFollowerControl::pathDesired = 0;
FlightStatusData *PathFollowerControl::flightStatus = 0;
PathStatusData *PathFollowerControl::pathStatus = 0;
int32_t PathFollowerControl::Initialize(PathDesiredData *ptr_pathDesired,
FlightStatusData *ptr_flightStatus,
PathStatusData *ptr_pathStatus)
{
PIOS_Assert(ptr_pathDesired);
PIOS_Assert(ptr_flightStatus);
PIOS_Assert(ptr_pathStatus);
pathDesired = ptr_pathDesired;
flightStatus = ptr_flightStatus;
pathStatus = ptr_pathStatus;
return 0;
}

View File

@ -0,0 +1,375 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup PathFollower PID interface class
* @brief PID loop for down control
* @{
*
* @file pidcontroldown.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Executes PID control for down direction
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
extern "C" {
#include <openpilot.h>
#include <callbackinfo.h>
#include <math.h>
#include <pid.h>
#include <CoordinateConversions.h>
#include <sin_lookup.h>
#include <pathdesired.h>
#include <paths.h>
#include "plans.h"
#include <stabilizationdesired.h>
#include <pidstatus.h>
#include <vtolselftuningstats.h>
}
#include "pathfollowerfsm.h"
#include "pidcontroldown.h"
#define NEUTRALTHRUST_PH_POSITIONAL_ERROR_LIMIT 0.5f
#define NEUTRALTHRUST_PH_VEL_DESIRED_LIMIT 0.2f
#define NEUTRALTHRUST_PH_VEL_STATE_LIMIT 0.2f
#define NEUTRALTHRUST_PH_VEL_ERROR_LIMIT 0.1f
#define NEUTRALTHRUST_START_DELAY (2 * 20) // 2 seconds at rate of 20Hz (50ms update rate)
#define NEUTRALTHRUST_END_COUNT (NEUTRALTHRUST_START_DELAY + (4 * 20)) // 4 second sample
PIDControlDown::PIDControlDown()
: deltaTime(0.0f), mVelocitySetpointTarget(0.0f), mVelocitySetpointCurrent(0.0f), mVelocityState(0.0f), mDownCommand(0.0f),
mFSM(NULL), mNeutral(0.5f), mVelocityMax(1.0f), mPositionSetpointTarget(0.0f), mPositionState(0.0f),
mMinThrust(0.1f), mMaxThrust(0.6f), mActive(false)
{
Deactivate();
}
PIDControlDown::~PIDControlDown() {}
void PIDControlDown::Initialize(PathFollowerFSM *fsm)
{
mFSM = fsm;
}
void PIDControlDown::SetThrustLimits(float min_thrust, float max_thrust)
{
mMinThrust = min_thrust;
mMaxThrust = max_thrust;
}
void PIDControlDown::Deactivate()
{
// pid_zero(&PID);
mActive = false;
}
void PIDControlDown::Activate()
{
float currentThrust;
StabilizationDesiredThrustGet(&currentThrust);
float u0 = currentThrust - mNeutral;
pid2_transfer(&PID, u0);
mActive = true;
}
void PIDControlDown::UpdateParameters(float kp, float ki, float kd, float beta, float dT, float velocityMax)
{
// pid_configure(&PID, kp, ki, kd, ilimit);
float Ti = kp / ki;
float Td = kd / kp;
float Tt = (Ti + Td) / 2.0f;
float kt = 1.0f / Tt;
float N = 10.0f;
float Tf = Td / N;
if (ki < 1e-6f) {
// Avoid Ti being infinite
Ti = 1e6f;
// Tt antiwindup time constant - we don't need antiwindup with no I term
Tt = 1e6f;
kt = 0.0f;
}
if (kd < 1e-6f) {
// PI Controller or P Controller
Tf = Ti / N;
}
if (beta > 1.0f) {
beta = 1.0f;
} else if (beta < 0.4f) {
beta = 0.4f;
}
pid2_configure(&PID, kp, ki, kd, Tf, kt, dT, beta, mNeutral, mNeutral, -1.0f);
deltaTime = dT;
mVelocityMax = velocityMax;
}
void PIDControlDown::UpdatePositionalParameters(float kp)
{
pid_configure(&PIDpos, kp, 0.0f, 0.0f, 0.0f);
}
void PIDControlDown::UpdatePositionSetpoint(float setpointDown)
{
mPositionSetpointTarget = setpointDown;
}
void PIDControlDown::UpdatePositionState(float pvDown)
{
mPositionState = pvDown;
setup_neutralThrustCalc();
}
// This is a pure position hold position control
void PIDControlDown::ControlPosition()
{
// Current progress location relative to end
float velDown = 0.0f;
velDown = pid_apply(&PIDpos, mPositionSetpointTarget - mPositionState, deltaTime);
UpdateVelocitySetpoint(velDown);
run_neutralThrustCalc();
}
void PIDControlDown::ControlPositionWithPath(struct path_status *progress)
{
// Current progress location relative to end
float velDown = progress->path_vector[2];
velDown += pid_apply(&PIDpos, progress->correction_vector[2], deltaTime);
UpdateVelocitySetpoint(velDown);
}
void PIDControlDown::run_neutralThrustCalc(void)
{
// if auto thrust and we have not run a correction calc check for PH and stability to then run an assessment
// note that arming into this flight mode is not allowed, so assumption here is that
// we have not landed. If GPSAssist+Manual/Cruise control thrust mode is used, a user overriding the
// altitude maintaining PID will have moved the throttle state to FLIGHTSTATUS_ASSISTEDTHROTTLESTATE_MANUAL.
// In manualcontrol.c the state will stay in manual throttle until the throttle command exceeds the vtol thrust min,
// avoiding auto-takeoffs. Therefore no need to check that here.
if (neutralThrustEst.have_correction != true) {
// Make FSM specific
bool stable = (fabsf(mPositionSetpointTarget - mPositionState) < NEUTRALTHRUST_PH_POSITIONAL_ERROR_LIMIT &&
fabsf(mVelocitySetpointCurrent) < NEUTRALTHRUST_PH_VEL_DESIRED_LIMIT &&
fabsf(mVelocityState) < NEUTRALTHRUST_PH_VEL_STATE_LIMIT &&
fabsf(mVelocitySetpointCurrent - mVelocityState) < NEUTRALTHRUST_PH_VEL_ERROR_LIMIT);
if (stable) {
if (neutralThrustEst.start_sampling) {
neutralThrustEst.count++;
// delay count for 2 seconds into hold allowing for stablisation
if (neutralThrustEst.count > NEUTRALTHRUST_START_DELAY) {
neutralThrustEst.sum += PID.I;
if (PID.I < neutralThrustEst.min) {
neutralThrustEst.min = PID.I;
}
if (PID.I > neutralThrustEst.max) {
neutralThrustEst.max = PID.I;
}
}
if (neutralThrustEst.count >= NEUTRALTHRUST_END_COUNT) {
// 6 seconds have past
// lets take an average
neutralThrustEst.average = neutralThrustEst.sum / (float)(NEUTRALTHRUST_END_COUNT - NEUTRALTHRUST_START_DELAY);
neutralThrustEst.correction = neutralThrustEst.average;
PID.I -= neutralThrustEst.average;
neutralThrustEst.start_sampling = false;
neutralThrustEst.have_correction = true;
// Write a new adjustment value
// vtolSelfTuningStats.NeutralThrustOffset was incremental adjusted above
VtolSelfTuningStatsData vtolSelfTuningStats;
VtolSelfTuningStatsGet(&vtolSelfTuningStats);
// add the average remaining i value to the
vtolSelfTuningStats.NeutralThrustOffset += neutralThrustEst.correction;
vtolSelfTuningStats.NeutralThrustCorrection = neutralThrustEst.correction; // the i term thrust correction value applied
vtolSelfTuningStats.NeutralThrustAccumulator = PID.I; // the actual iaccumulator value after correction
vtolSelfTuningStats.NeutralThrustRange = neutralThrustEst.max - neutralThrustEst.min;
VtolSelfTuningStatsSet(&vtolSelfTuningStats);
}
} else {
// start a tick count
neutralThrustEst.start_sampling = true;
neutralThrustEst.count = 0;
neutralThrustEst.sum = 0.0f;
neutralThrustEst.max = 0.0f;
neutralThrustEst.min = 0.0f;
}
} else {
// reset sampling as we did't get 6 continuous seconds
neutralThrustEst.start_sampling = false;
}
} // else we already have a correction for this PH run
}
void PIDControlDown::setup_neutralThrustCalc(void)
{
// reset neutral thrust assessment.
// and do once for each position hold engagement
neutralThrustEst.start_sampling = false;
neutralThrustEst.count = 0;
neutralThrustEst.sum = 0.0f;
neutralThrustEst.have_correction = false;
neutralThrustEst.average = 0.0f;
neutralThrustEst.correction = 0.0f;
neutralThrustEst.min = 0.0f;
neutralThrustEst.max = 0.0f;
}
void PIDControlDown::UpdateNeutralThrust(float neutral)
{
if (mActive) {
// adjust neutral and achieve bumpless transfer
PID.va = neutral;
pid2_transfer(&PID, mDownCommand);
}
mNeutral = neutral;
}
void PIDControlDown::UpdateVelocitySetpoint(float setpoint)
{
mVelocitySetpointTarget = setpoint;
if (fabsf(mVelocitySetpointTarget) > mVelocityMax) {
// maintain sign but set to max
mVelocitySetpointTarget *= mVelocityMax / fabsf(mVelocitySetpointTarget);
}
}
void PIDControlDown::RateLimit(float *spDesired, float *spCurrent, float rateLimit)
{
float velocity_delta = *spDesired - *spCurrent;
if (fabsf(velocity_delta) < 1e-6f) {
*spCurrent = *spDesired;
return;
}
// Calculate the rate of change
float accelerationDesired = velocity_delta / deltaTime;
if (fabsf(accelerationDesired) > rateLimit) {
accelerationDesired *= rateLimit / accelerationDesired;
}
if (fabsf(accelerationDesired) < 0.1f) {
*spCurrent = *spDesired;
} else {
*spCurrent += accelerationDesired * deltaTime;
}
}
void PIDControlDown::UpdateBrakeVelocity(float startingVelocity, float dT, float brakeRate, float currentVelocity, float *updatedVelocity)
{
if (startingVelocity >= 0.0f) {
*updatedVelocity = startingVelocity - dT * brakeRate;
if (*updatedVelocity > currentVelocity) {
*updatedVelocity = currentVelocity;
}
if (*updatedVelocity < 0.0f) {
*updatedVelocity = 0.0f;
}
} else {
*updatedVelocity = startingVelocity + dT * brakeRate;
if (*updatedVelocity < currentVelocity) {
*updatedVelocity = currentVelocity;
}
if (*updatedVelocity > 0.0f) {
*updatedVelocity = 0.0f;
}
}
}
void PIDControlDown::UpdateVelocityStateWithBrake(float pvDown, float path_time, float brakeRate)
{
mVelocityState = pvDown;
float velocitySetpointDesired;
UpdateBrakeVelocity(mVelocitySetpointTarget, path_time, brakeRate, pvDown, &velocitySetpointDesired);
// Calculate the rate of change
// RateLimit(velocitySetpointDesired[iaxis], mVelocitySetpointCurrent[iaxis], 2.0f );
mVelocitySetpointCurrent = velocitySetpointDesired;
}
// Update velocity state called per dT. Also update current
// desired velocity
void PIDControlDown::UpdateVelocityState(float pv)
{
mVelocityState = pv;
if (mFSM) {
// The FSM controls the actual descent velocity and introduces step changes as required
float velocitySetpointDesired = mFSM->BoundVelocityDown(mVelocitySetpointTarget);
// RateLimit(velocitySetpointDesired, mVelocitySetpointCurrent, 2.0f );
mVelocitySetpointCurrent = velocitySetpointDesired;
} else {
mVelocitySetpointCurrent = mVelocitySetpointTarget;
}
}
float PIDControlDown::GetVelocityDesired(void)
{
return mVelocitySetpointCurrent;
}
float PIDControlDown::GetDownCommand(void)
{
PIDStatusData pidStatus;
float ulow = mMinThrust;
float uhigh = mMaxThrust;
if (mFSM) {
mFSM->BoundThrust(ulow, uhigh);
}
float downCommand = pid2_apply(&PID, mVelocitySetpointCurrent, mVelocityState, ulow, uhigh);
pidStatus.setpoint = mVelocitySetpointCurrent;
pidStatus.actual = mVelocityState;
pidStatus.error = mVelocitySetpointCurrent - mVelocityState;
pidStatus.setpoint = mVelocitySetpointCurrent;
pidStatus.ulow = ulow;
pidStatus.uhigh = uhigh;
pidStatus.command = downCommand;
pidStatus.P = PID.P;
pidStatus.I = PID.I;
pidStatus.D = PID.D;
PIDStatusSet(&pidStatus);
mDownCommand = downCommand;
return mDownCommand;
}

View File

@ -0,0 +1,249 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup PathFollower CONTROL interface class
* @brief PID controller for NE
* @{
*
* @file PIDControlNE.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Executes PID control loops for NE directions
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
extern "C" {
#include <openpilot.h>
#include <callbackinfo.h>
#include <math.h>
#include <pid.h>
#include <CoordinateConversions.h>
#include <sin_lookup.h>
#include <pathdesired.h>
#include <paths.h>
#include "plans.h"
#include <pidstatus.h>
}
#include "pathfollowerfsm.h"
#include "pidcontrolne.h"
PIDControlNE::PIDControlNE()
: deltaTime(0), mNECommand(0), mNeutral(0), mVelocityMax(0), mMinCommand(0), mMaxCommand(0), mVelocityFeedforward(0), mActive(false)
{}
PIDControlNE::~PIDControlNE() {}
void PIDControlNE::Initialize()
{}
void PIDControlNE::Deactivate()
{
mActive = false;
}
void PIDControlNE::Activate()
{
// Do we need to initialise any loops for smooth transition
// float currentNE;
// StabilizationDesiredNEGet(&currentNE);
// float u0 = currentNE - mNeutral;
// pid2_transfer(&PID, u0);
mActive = true;
}
void PIDControlNE::UpdateParameters(float kp, float ki, float kd, float beta, float dT, float velocityMax)
{
// pid_configure(&PID, kp, ki, kd, ilimit);
float Ti = kp / ki;
float Td = kd / kp;
float Tt = (Ti + Td) / 2.0f;
float kt = 1.0f / Tt;
float u0 = 0.0f;
float N = 10.0f;
float Tf = Td / N;
if (ki < 1e-6f) {
// Avoid Ti being infinite
Ti = 1e6f;
// Tt antiwindup time constant - we don't need antiwindup with no I term
Tt = 1e6f;
kt = 0.0f;
}
if (kd < 1e-6f) {
// PI Controller
Tf = Ti / N;
}
if (beta > 1.0f) {
beta = 1.0f;
} else if (beta < 0.4f) {
beta = 0.4f;
}
pid2_configure(&PIDvel[0], kp, ki, kd, Tf, kt, dT, beta, u0, 0.0f, 1.0f);
pid2_configure(&PIDvel[1], kp, ki, kd, Tf, kt, dT, beta, u0, 0.0f, 1.0f);
deltaTime = dT;
mVelocityMax = velocityMax;
}
void PIDControlNE::UpdatePositionalParameters(float kp)
{
pid_configure(&PIDposH[0], kp, 0.0f, 0.0f, 0.0f);
pid_configure(&PIDposH[1], kp, 0.0f, 0.0f, 0.0f);
}
void PIDControlNE::UpdatePositionSetpoint(float setpointNorth, float setpointEast)
{
mPositionSetpointTarget[0] = setpointNorth;
mPositionSetpointTarget[1] = setpointEast;
}
void PIDControlNE::UpdatePositionState(float pvNorth, float pvEast)
{
mPositionState[0] = pvNorth;
mPositionState[1] = pvEast;
}
// This is a pure position hold position control
void PIDControlNE::ControlPosition()
{
// Current progress location relative to end
float velNorth = 0.0f;
float velEast = 0.0f;
velNorth = pid_apply(&PIDposH[0], mPositionSetpointTarget[0] - mPositionState[0], deltaTime);
velEast = pid_apply(&PIDposH[1], mPositionSetpointTarget[1] - mPositionState[1], deltaTime);
UpdateVelocitySetpoint(velNorth, velEast);
}
void PIDControlNE::ControlPositionWithPath(struct path_status *progress)
{
// Current progress location relative to end
float velNorth = progress->path_vector[0];
float velEast = progress->path_vector[1];
velNorth += pid_apply(&PIDposH[0], progress->correction_vector[0], deltaTime);
velEast += pid_apply(&PIDposH[1], progress->correction_vector[1], deltaTime);
UpdateVelocitySetpoint(velNorth, velEast);
}
void PIDControlNE::UpdateVelocitySetpoint(float setpointNorth, float setpointEast)
{
// scale velocity if it is above configured maximum
// for braking, we can not help it if initial velocity was greater
float velH = sqrtf(setpointNorth * setpointNorth + setpointEast * setpointEast);
if (velH > mVelocityMax) {
setpointNorth *= mVelocityMax / velH;
setpointEast *= mVelocityMax / velH;
}
mVelocitySetpointTarget[0] = setpointNorth;
mVelocitySetpointTarget[1] = setpointEast;
}
void PIDControlNE::UpdateBrakeVelocity(float startingVelocity, float dT, float brakeRate, float currentVelocity, float *updatedVelocity)
{
if (startingVelocity >= 0.0f) {
*updatedVelocity = startingVelocity - dT * brakeRate;
if (*updatedVelocity > currentVelocity) {
*updatedVelocity = currentVelocity;
}
if (*updatedVelocity < 0.0f) {
*updatedVelocity = 0.0f;
}
} else {
*updatedVelocity = startingVelocity + dT * brakeRate;
if (*updatedVelocity < currentVelocity) {
*updatedVelocity = currentVelocity;
}
if (*updatedVelocity > 0.0f) {
*updatedVelocity = 0.0f;
}
}
}
void PIDControlNE::UpdateVelocityStateWithBrake(float pvNorth, float pvEast, float path_time, float brakeRate)
{
mVelocityState[0] = pvNorth;
mVelocityState[1] = pvEast;
float velocitySetpointDesired[2];
UpdateBrakeVelocity(mVelocitySetpointTarget[0], path_time, brakeRate, pvNorth, &velocitySetpointDesired[0]);
UpdateBrakeVelocity(mVelocitySetpointTarget[1], path_time, brakeRate, pvEast, &velocitySetpointDesired[1]);
// If rate of change limits required, add here
for (int iaxis = 0; iaxis < 2; iaxis++) {
mVelocitySetpointCurrent[iaxis] = velocitySetpointDesired[iaxis];
}
}
void PIDControlNE::UpdateVelocityState(float pvNorth, float pvEast)
{
mVelocityState[0] = pvNorth;
mVelocityState[1] = pvEast;
// The FSM controls the actual descent velocity and introduces step changes as required
float velocitySetpointDesired[2];
velocitySetpointDesired[0] = mVelocitySetpointTarget[0];
velocitySetpointDesired[1] = mVelocitySetpointTarget[1];
// If rate of change limits required, add here
for (int iaxis = 0; iaxis < 2; iaxis++) {
mVelocitySetpointCurrent[iaxis] = velocitySetpointDesired[iaxis];
}
}
void PIDControlNE::UpdateCommandParameters(float minCommand, float maxCommand, float velocityFeedforward)
{
mMinCommand = minCommand;
mMaxCommand = maxCommand;
mVelocityFeedforward = velocityFeedforward;
}
void PIDControlNE::GetNECommand(float *northCommand, float *eastCommand)
{
PIDvel[0].va = mVelocitySetpointCurrent[0] * mVelocityFeedforward;
*northCommand = pid2_apply(&(PIDvel[0]), mVelocitySetpointCurrent[0], mVelocityState[0], mMinCommand, mMaxCommand);
PIDvel[1].va = mVelocitySetpointCurrent[1] * mVelocityFeedforward;
*eastCommand = pid2_apply(&(PIDvel[1]), mVelocitySetpointCurrent[1], mVelocityState[1], mMinCommand, mMaxCommand);
PIDStatusData pidStatus;
pidStatus.setpoint = mVelocitySetpointCurrent[0];
pidStatus.actual = mVelocityState[0];
pidStatus.error = mVelocitySetpointCurrent[0] - mVelocityState[0];
pidStatus.setpoint = mVelocitySetpointCurrent[0];
pidStatus.ulow = mMinCommand;
pidStatus.uhigh = mMaxCommand;
pidStatus.command = *northCommand;
pidStatus.P = PIDvel[0].P;
pidStatus.I = PIDvel[0].I;
pidStatus.D = PIDvel[0].D;
PIDStatusSet(&pidStatus);
}
void PIDControlNE::GetVelocityDesired(float *north, float *east)
{
*north = mVelocitySetpointCurrent[0];
*east = mVelocitySetpointCurrent[1];
}

View File

@ -0,0 +1,355 @@
/*
******************************************************************************
*
* @file vtolbrakecontroller.cpp
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief This landing state machine is a helper state machine to the
* pathfollower task/thread to implement detailed landing controls.
* This is to be called only from the pathfollower task.
* Note that initiation of the land occurs in the manual control
* command thread calling plans.c plan_setup_land which writes
* the required PathDesired LAND mode.
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
extern "C" {
#include <openpilot.h>
#include <callbackinfo.h>
#include <math.h>
#include <pid.h>
#include <CoordinateConversions.h>
#include <sin_lookup.h>
#include <pathdesired.h>
#include <paths.h>
#include "plans.h"
#include <sanitycheck.h>
#include <accelstate.h>
#include <vtolpathfollowersettings.h>
#include <flightstatus.h>
#include <flightmodesettings.h>
#include <pathstatus.h>
#include <positionstate.h>
#include <velocitystate.h>
#include <velocitydesired.h>
#include <stabilizationdesired.h>
#include <attitudestate.h>
#include <takeofflocation.h>
#include <manualcontrolcommand.h>
#include <systemsettings.h>
#include <stabilizationbank.h>
#include <stabilizationdesired.h>
#include <vtolselftuningstats.h>
#include <pathsummary.h>
}
// C++ includes
#include "vtolbrakecontroller.h"
#include "pathfollowerfsm.h"
#include "vtolbrakefsm.h"
#include "pidcontroldown.h"
// Private constants
#define BRAKE_RATE_MINIMUM 0.2f
// pointer to a singleton instance
VtolBrakeController *VtolBrakeController::p_inst = 0;
VtolBrakeController::VtolBrakeController()
: fsm(0), vtolPathFollowerSettings(0), mActive(false), mHoldActive(false), mManualThrust(false)
{}
// Called when mode first engaged
void VtolBrakeController::Activate(void)
{
if (!mActive) {
mActive = true;
mHoldActive = false;
mManualThrust = false;
SettingsUpdated();
fsm->Activate();
controlDown.Activate();
controlNE.Activate();
}
}
uint8_t VtolBrakeController::IsActive(void)
{
return mActive;
}
uint8_t VtolBrakeController::Mode(void)
{
return PATHDESIRED_MODE_BRAKE;
}
// Objective updated in pathdesired
void VtolBrakeController::ObjectiveUpdated(void)
{
// Set the objective's target velocity
controlDown.UpdateVelocitySetpoint(pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_BRAKE_STARTVELOCITYVECTOR_DOWN]);
controlNE.UpdateVelocitySetpoint(pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_BRAKE_STARTVELOCITYVECTOR_NORTH],
pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_BRAKE_STARTVELOCITYVECTOR_EAST]);
if (pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_BRAKE_TIMEOUT] > 0.0f) {
pathStatus->path_time = 0.0f;
}
}
void VtolBrakeController::Deactivate(void)
{
if (mActive) {
mActive = false;
mHoldActive = false;
mManualThrust = false;
fsm->Inactive();
controlDown.Deactivate();
controlNE.Deactivate();
}
}
void VtolBrakeController::SettingsUpdated(void)
{
const float dT = vtolPathFollowerSettings->UpdatePeriod / 1000.0f;
controlNE.UpdateParameters(vtolPathFollowerSettings->BrakeHorizontalVelPID.Kp,
vtolPathFollowerSettings->BrakeHorizontalVelPID.Ki,
vtolPathFollowerSettings->BrakeHorizontalVelPID.Kd,
vtolPathFollowerSettings->BrakeHorizontalVelPID.ILimit,
dT,
10.0f * vtolPathFollowerSettings->HorizontalVelMax); // avoid constraining initial fast entry into brake
controlNE.UpdatePositionalParameters(vtolPathFollowerSettings->HorizontalPosP);
controlNE.UpdateCommandParameters(-vtolPathFollowerSettings->BrakeMaxPitch, vtolPathFollowerSettings->BrakeMaxPitch, vtolPathFollowerSettings->BrakeVelocityFeedforward);
controlDown.UpdateParameters(vtolPathFollowerSettings->LandVerticalVelPID.Kp,
vtolPathFollowerSettings->LandVerticalVelPID.Ki,
vtolPathFollowerSettings->LandVerticalVelPID.Kd,
vtolPathFollowerSettings->LandVerticalVelPID.Beta,
dT,
10.0f * vtolPathFollowerSettings->VerticalVelMax); // avoid constraining initial fast entry into brake
controlDown.UpdatePositionalParameters(vtolPathFollowerSettings->VerticalPosP);
controlDown.SetThrustLimits(vtolPathFollowerSettings->ThrustLimits.Min, vtolPathFollowerSettings->ThrustLimits.Max);
VtolSelfTuningStatsData vtolSelfTuningStats;
VtolSelfTuningStatsGet(&vtolSelfTuningStats);
controlDown.UpdateNeutralThrust(vtolSelfTuningStats.NeutralThrustOffset + vtolPathFollowerSettings->ThrustLimits.Neutral);
fsm->SettingsUpdated();
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t VtolBrakeController::Initialize(VtolPathFollowerSettingsData *ptr_vtolPathFollowerSettings)
{
PIOS_Assert(ptr_vtolPathFollowerSettings);
vtolPathFollowerSettings = ptr_vtolPathFollowerSettings;
if (fsm == 0) {
VtolBrakeFSM::instance()->Initialize(vtolPathFollowerSettings, pathDesired, flightStatus, pathStatus);
fsm = (PathFollowerFSM *)VtolBrakeFSM::instance();
controlDown.Initialize(fsm);
}
return 0;
}
void VtolBrakeController::UpdateVelocityDesired()
{
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
VelocityDesiredData velocityDesired;
float brakeRate = vtolPathFollowerSettings->BrakeRate;
if (brakeRate < BRAKE_RATE_MINIMUM) {
brakeRate = BRAKE_RATE_MINIMUM; // set a minimum to avoid a divide by zero potential below
}
if (fsm->PositionHoldState()) {
PositionStateData positionState;
PositionStateGet(&positionState);
// On first engagement set the position setpoint
if (!mHoldActive) {
mHoldActive = true;
controlNE.UpdatePositionSetpoint(positionState.North, positionState.East);
if (!mManualThrust) {
controlDown.UpdatePositionSetpoint(positionState.Down);
}
}
// Update position state and control position to create inputs to velocity control
controlNE.UpdatePositionState(positionState.North, positionState.East);
controlNE.ControlPosition();
if (!mManualThrust) {
controlDown.UpdatePositionState(positionState.Down);
controlDown.ControlPosition();
}
controlNE.UpdateVelocityState(velocityState.North, velocityState.East);
if (!mManualThrust) {
controlDown.UpdateVelocityState(velocityState.Down);
}
} else {
controlNE.UpdateVelocityStateWithBrake(velocityState.North, velocityState.East, pathStatus->path_time, brakeRate);
if (!mManualThrust) {
controlDown.UpdateVelocityStateWithBrake(velocityState.Down, pathStatus->path_time, brakeRate);
}
}
if (!mManualThrust) {
velocityDesired.Down = controlDown.GetVelocityDesired();
} else { velocityDesired.Down = 0.0f; }
float north, east;
controlNE.GetVelocityDesired(&north, &east);
velocityDesired.North = north;
velocityDesired.East = east;
VelocityDesiredSet(&velocityDesired);
// update pathstatus
float cur_velocity = velocityState.North * velocityState.North + velocityState.East * velocityState.East + velocityState.Down * velocityState.Down;
cur_velocity = sqrtf(cur_velocity);
float desired_velocity = velocityDesired.North * velocityDesired.North + velocityDesired.East * velocityDesired.East + velocityDesired.Down * velocityDesired.Down;
desired_velocity = sqrtf(desired_velocity);
pathStatus->error = cur_velocity - desired_velocity;
pathStatus->fractional_progress = 1.0f;
if (pathDesired->StartingVelocity > 0.0f) {
pathStatus->fractional_progress = (pathDesired->StartingVelocity - cur_velocity) / pathDesired->StartingVelocity;
// sometimes current velocity can exceed starting velocity due to initial acceleration
if (pathStatus->fractional_progress < 0.0f) {
pathStatus->fractional_progress = 0.0f;
}
}
pathStatus->path_direction_north = velocityDesired.North;
pathStatus->path_direction_east = velocityDesired.East;
pathStatus->path_direction_down = velocityDesired.Down;
pathStatus->correction_direction_north = velocityDesired.North - velocityState.North;
pathStatus->correction_direction_east = velocityDesired.East - velocityState.East;
}
int8_t VtolBrakeController::UpdateStabilizationDesired(void)
{
uint8_t result = 1;
StabilizationDesiredData stabDesired;
AttitudeStateData attitudeState;
StabilizationBankData stabSettings;
float northCommand;
float eastCommand;
StabilizationDesiredGet(&stabDesired);
AttitudeStateGet(&attitudeState);
StabilizationBankGet(&stabSettings);
controlNE.GetNECommand(&northCommand, &eastCommand);
float angle_radians = DEG2RAD(attitudeState.Yaw);
float cos_angle = cosf(angle_radians);
float sine_angle = sinf(angle_radians);
float maxPitch = vtolPathFollowerSettings->BrakeMaxPitch;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.Pitch = boundf(-northCommand * cos_angle - eastCommand * sine_angle, -maxPitch, maxPitch); // this should be in the controller
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.Roll = boundf(-northCommand * sine_angle + eastCommand * cos_angle, -maxPitch, maxPitch);
ManualControlCommandData manualControl;
ManualControlCommandGet(&manualControl);
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
stabDesired.Yaw = stabSettings.MaximumRate.Yaw * manualControl.Yaw;
// default thrust mode to cruise control
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_CRUISECONTROL;
// when flight mode assist is active but in primary-thrust mode, the thrust mode must be set to the same as per the primary mode.
if (flightStatus->FlightModeAssist == FLIGHTSTATUS_FLIGHTMODEASSIST_GPSASSIST_PRIMARYTHRUST) {
FlightModeSettingsData settings;
FlightModeSettingsGet(&settings);
uint8_t thrustMode = FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_CRUISECONTROL;
switch (flightStatus->FlightMode) {
case FLIGHTSTATUS_FLIGHTMODE_STABILIZED1:
thrustMode = settings.Stabilization1Settings.Thrust;
break;
case FLIGHTSTATUS_FLIGHTMODE_STABILIZED2:
thrustMode = settings.Stabilization2Settings.Thrust;
break;
case FLIGHTSTATUS_FLIGHTMODE_STABILIZED3:
thrustMode = settings.Stabilization3Settings.Thrust;
break;
case FLIGHTSTATUS_FLIGHTMODE_STABILIZED4:
thrustMode = settings.Stabilization4Settings.Thrust;
break;
case FLIGHTSTATUS_FLIGHTMODE_STABILIZED5:
thrustMode = settings.Stabilization5Settings.Thrust;
break;
case FLIGHTSTATUS_FLIGHTMODE_STABILIZED6:
thrustMode = settings.Stabilization6Settings.Thrust;
break;
case FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD:
// we hard code the "GPS Assisted" PostionHold/Roam to use alt-vario which
// is a more appropriate throttle mode. "GPSAssist" adds braking
// and a better throttle management to the standard Position Hold.
thrustMode = FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_ALTITUDEVARIO;
break;
}
stabDesired.StabilizationMode.Thrust = thrustMode;
}
// set the thrust value
if (mManualThrust) {
stabDesired.Thrust = manualControl.Thrust;
} else {
stabDesired.Thrust = controlDown.GetDownCommand();
}
StabilizationDesiredSet(&stabDesired);
return result;
}
void VtolBrakeController::UpdateAutoPilot()
{
if (pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_BRAKE_TIMEOUT] > 0.0f) {
pathStatus->path_time += vtolPathFollowerSettings->UpdatePeriod / 1000.0f;
}
if (flightStatus->FlightModeAssist && flightStatus->AssistedThrottleState == FLIGHTSTATUS_ASSISTEDTHROTTLESTATE_MANUAL) {
mManualThrust = true;
} else {
mManualThrust = false;
}
fsm->Update(); // This will run above end condition checks
UpdateVelocityDesired();
int8_t result = UpdateStabilizationDesired();
if (!result) {
fsm->Abort(); // enter PH
}
PathStatusSet(pathStatus);
}

View File

@ -0,0 +1,261 @@
/*
******************************************************************************
*
* @file vtolbrakefsm.cpp
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Vtol brake finate state machine to regulate behaviour of the
* brake controller.
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
extern "C" {
#include <openpilot.h>
#include <callbackinfo.h>
#include <math.h>
#include <pid.h>
#include <CoordinateConversions.h>
#include <sin_lookup.h>
#include <pathdesired.h>
#include <paths.h>
#include "plans.h"
#include <sanitycheck.h>
#include <vtolpathfollowersettings.h>
#include <flightstatus.h>
#include <flightmodesettings.h>
#include <pathstatus.h>
#include <positionstate.h>
#include <velocitystate.h>
#include <velocitydesired.h>
#include <stabilizationdesired.h>
#include <attitudestate.h>
#include <manualcontrolcommand.h>
#include <systemsettings.h>
#include <stabilizationbank.h>
#include <stabilizationdesired.h>
#include <vtolselftuningstats.h>
#include <pathsummary.h>
}
// C++ includes
#include <vtolbrakefsm.h>
// Private constants
#define TIMER_COUNT_PER_SECOND (1000 / vtolPathFollowerSettings->UpdatePeriod)
#define BRAKE_FRACTIONALPROGRESS_STARTVELOCITYCHECK 0.95f
#define BRAKE_EXIT_VELOCITY_LIMIT 0.2f
VtolBrakeFSM::PathFollowerFSM_BrakeStateHandler_T VtolBrakeFSM::sBrakeStateTable[BRAKE_STATE_SIZE] = {
[BRAKE_STATE_INACTIVE] = { .setup = 0, .run = 0 },
[BRAKE_STATE_BRAKE] = { .setup = &VtolBrakeFSM::setup_brake, .run = &VtolBrakeFSM::run_brake },
[BRAKE_STATE_HOLD] = { .setup = 0, .run = 0 }
};
// pointer to a singleton instance
VtolBrakeFSM *VtolBrakeFSM::p_inst = 0;
VtolBrakeFSM::VtolBrakeFSM()
: mBrakeData(0), vtolPathFollowerSettings(0), pathDesired(0), flightStatus(0)
{}
// Private types
// Private functions
// Public API methods
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t VtolBrakeFSM::Initialize(VtolPathFollowerSettingsData *ptr_vtolPathFollowerSettings,
PathDesiredData *ptr_pathDesired,
FlightStatusData *ptr_flightStatus,
PathStatusData *ptr_pathStatus)
{
PIOS_Assert(ptr_vtolPathFollowerSettings);
PIOS_Assert(ptr_pathDesired);
PIOS_Assert(ptr_flightStatus);
// allow for Initialize being called more than once.
if (!mBrakeData) {
mBrakeData = (VtolBrakeFSMData_T *)pios_malloc(sizeof(VtolBrakeFSMData_T));
PIOS_Assert(mBrakeData);
}
memset(mBrakeData, sizeof(VtolBrakeFSMData_T), 0);
vtolPathFollowerSettings = ptr_vtolPathFollowerSettings;
pathDesired = ptr_pathDesired;
flightStatus = ptr_flightStatus;
pathStatus = ptr_pathStatus;
initFSM();
return 0;
}
void VtolBrakeFSM::Inactive(void)
{
memset(mBrakeData, sizeof(VtolBrakeFSMData_T), 0);
initFSM();
}
// Initialise the FSM
void VtolBrakeFSM::initFSM(void)
{
mBrakeData->currentState = BRAKE_STATE_INACTIVE;
}
void VtolBrakeFSM::Activate()
{
memset(mBrakeData, sizeof(VtolBrakeFSMData_T), 0);
mBrakeData->currentState = BRAKE_STATE_INACTIVE;
setState(BRAKE_STATE_BRAKE, FSMBRAKESTATUS_STATEEXITREASON_NONE);
}
void VtolBrakeFSM::Abort(void)
{
setState(BRAKE_STATE_HOLD, FSMBRAKESTATUS_STATEEXITREASON_NONE);
}
PathFollowerFSMState_T VtolBrakeFSM::GetCurrentState(void)
{
switch (mBrakeData->currentState) {
case BRAKE_STATE_INACTIVE:
return PFFSM_STATE_INACTIVE;
break;
default:
return PFFSM_STATE_ACTIVE;
break;
}
}
void VtolBrakeFSM::Update()
{
runState();
}
int32_t VtolBrakeFSM::runState(void)
{
uint8_t flTimeout = false;
mBrakeData->stateRunCount++;
if (mBrakeData->stateTimeoutCount > 0 && mBrakeData->stateRunCount > mBrakeData->stateTimeoutCount) {
flTimeout = true;
}
// If the current state has a static function, call it
if (sBrakeStateTable[mBrakeData->currentState].run) {
(this->*sBrakeStateTable[mBrakeData->currentState].run)(flTimeout);
}
return 0;
}
// Set the new state and perform setup for subsequent state run calls
// This is called by state run functions on event detection that drive
// state transitions.
void VtolBrakeFSM::setState(PathFollowerFSM_BrakeState_T newState, __attribute__((unused)) VtolBrakeFSMStatusStateExitReasonOptions reason)
{
// mBrakeData->fsmBrakeStatus.StateExitReason[mBrakeData->currentState] = reason;
if (mBrakeData->currentState == newState) {
return;
}
mBrakeData->currentState = newState;
// Restart state timer counter
mBrakeData->stateRunCount = 0;
// Reset state timeout to disabled/zero
mBrakeData->stateTimeoutCount = 0;
if (sBrakeStateTable[mBrakeData->currentState].setup) {
(this->*sBrakeStateTable[mBrakeData->currentState].setup)();
}
}
// Timeout utility function for use by state init implementations
void VtolBrakeFSM::setStateTimeout(int32_t count)
{
mBrakeData->stateTimeoutCount = count;
}
// FSM Setup and Run method implementation
// State: WAITING FOR DESCENT RATE
void VtolBrakeFSM::setup_brake(void)
{
setStateTimeout(TIMER_COUNT_PER_SECOND * pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_BRAKE_TIMEOUT]);
mBrakeData->observationCount = 0;
mBrakeData->observation2Count = 0;
}
void VtolBrakeFSM::run_brake(uint8_t flTimeout)
{
// Brake mode end condition checks
bool exit_brake = false;
VelocityStateData velocityState;
PathSummaryData pathSummary;
if (flTimeout) {
pathSummary.brake_exit_reason = PATHSUMMARY_BRAKE_EXIT_REASON_TIMEOUT;
exit_brake = true;
} else if (pathStatus->fractional_progress > BRAKE_FRACTIONALPROGRESS_STARTVELOCITYCHECK) {
VelocityStateGet(&velocityState);
if (fabsf(velocityState.East) < BRAKE_EXIT_VELOCITY_LIMIT && fabsf(velocityState.North) < BRAKE_EXIT_VELOCITY_LIMIT) {
pathSummary.brake_exit_reason = PATHSUMMARY_BRAKE_EXIT_REASON_PATHCOMPLETED;
exit_brake = true;
}
}
if (exit_brake) {
// Calculate the distance error between the originally desired
// stopping point and the actual brake-exit point.
PositionStateData p;
PositionStateGet(&p);
float north_offset = pathDesired->End.North - p.North;
float east_offset = pathDesired->End.East - p.East;
float down_offset = pathDesired->End.Down - p.Down;
pathSummary.brake_distance_offset = sqrtf(north_offset * north_offset + east_offset * east_offset + down_offset * down_offset);
pathSummary.time_remaining = pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_BRAKE_TIMEOUT] - pathStatus->path_time;
pathSummary.fractional_progress = pathStatus->fractional_progress;
float cur_velocity = velocityState.North * velocityState.North + velocityState.East * velocityState.East + velocityState.Down * velocityState.Down;
cur_velocity = sqrtf(cur_velocity);
pathSummary.decelrate = (pathDesired->StartingVelocity - cur_velocity) / pathStatus->path_time;
pathSummary.brakeRateActualDesiredRatio = pathSummary.decelrate / vtolPathFollowerSettings->BrakeRate;
pathSummary.velocityIntoHold = cur_velocity;
pathSummary.Mode = PATHSUMMARY_MODE_BRAKE;
pathSummary.UID = pathStatus->UID;
PathSummarySet(&pathSummary);
setState(BRAKE_STATE_HOLD, FSMBRAKESTATUS_STATEEXITREASON_NONE);
}
}
uint8_t VtolBrakeFSM::PositionHoldState(void)
{
return mBrakeData->currentState == BRAKE_STATE_HOLD;
}

View File

@ -0,0 +1,547 @@
/*
******************************************************************************
*
* @file vtolflycontroller.cpp
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Class implements the fly controller for vtols
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
extern "C" {
#include <openpilot.h>
#include <callbackinfo.h>
#include <math.h>
#include <pid.h>
#include <CoordinateConversions.h>
#include <sin_lookup.h>
#include <pathdesired.h>
#include <paths.h>
#include "plans.h"
#include <sanitycheck.h>
#include <accelstate.h>
#include <vtolpathfollowersettings.h>
#include <flightstatus.h>
#include <flightmodesettings.h>
#include <pathstatus.h>
#include <positionstate.h>
#include <velocitystate.h>
#include <velocitydesired.h>
#include <stabilizationdesired.h>
#include <attitudestate.h>
#include <takeofflocation.h>
#include <poilocation.h>
#include <manualcontrolcommand.h>
#include <systemsettings.h>
#include <stabilizationbank.h>
#include <stabilizationdesired.h>
#include <vtolselftuningstats.h>
#include <pathsummary.h>
}
// C++ includes
#include "vtolflycontroller.h"
#include "pathfollowerfsm.h"
#include "pidcontroldown.h"
#include "pidcontrolne.h"
// Private constants
#define DEADBAND_HIGH 0.10f
#define DEADBAND_LOW -0.10f
#define RTB_LAND_FRACTIONAL_PROGRESS_START_CHECKS 0.95f
#define RTB_LAND_NE_DISTANCE_REQUIRED_TO_START_LAND_SEQUENCE 2.0f
// pointer to a singleton instance
VtolFlyController *VtolFlyController::p_inst = 0;
VtolFlyController::VtolFlyController()
: vtolPathFollowerSettings(NULL), mActive(false), mManualThrust(false), mMode(0), vtolEmergencyFallback(0.0f), vtolEmergencyFallbackSwitch(false)
{}
// Called when mode first engaged
void VtolFlyController::Activate(void)
{
if (!mActive) {
mActive = true;
mManualThrust = false;
SettingsUpdated();
controlDown.Activate();
controlNE.Activate();
mMode = pathDesired->Mode;
vtolEmergencyFallback = 0.0f;
vtolEmergencyFallbackSwitch = false;
}
}
uint8_t VtolFlyController::IsActive(void)
{
return mActive;
}
uint8_t VtolFlyController::Mode(void)
{
return mMode;
}
// Objective updated in pathdesired
void VtolFlyController::ObjectiveUpdated(void)
{}
void VtolFlyController::Deactivate(void)
{
if (mActive) {
mActive = false;
mManualThrust = false;
controlDown.Deactivate();
controlNE.Deactivate();
vtolEmergencyFallback = 0.0f;
vtolEmergencyFallbackSwitch = false;
}
}
void VtolFlyController::SettingsUpdated(void)
{
const float dT = vtolPathFollowerSettings->UpdatePeriod / 1000.0f;
controlNE.UpdateParameters(vtolPathFollowerSettings->HorizontalVelPID.Kp,
vtolPathFollowerSettings->HorizontalVelPID.Ki,
vtolPathFollowerSettings->HorizontalVelPID.Kd,
vtolPathFollowerSettings->HorizontalVelPID.ILimit,
dT,
vtolPathFollowerSettings->HorizontalVelMax);
controlNE.UpdatePositionalParameters(vtolPathFollowerSettings->HorizontalPosP);
controlNE.UpdateCommandParameters(-vtolPathFollowerSettings->MaxRollPitch, vtolPathFollowerSettings->MaxRollPitch, vtolPathFollowerSettings->VelocityFeedforward);
controlDown.UpdateParameters(vtolPathFollowerSettings->VerticalVelPID.Kp,
vtolPathFollowerSettings->VerticalVelPID.Ki,
vtolPathFollowerSettings->VerticalVelPID.Kd,
vtolPathFollowerSettings->VerticalVelPID.ILimit, // TODO Change to BETA
dT,
vtolPathFollowerSettings->VerticalVelMax);
controlDown.UpdatePositionalParameters(vtolPathFollowerSettings->VerticalPosP);
VtolSelfTuningStatsData vtolSelfTuningStats;
VtolSelfTuningStatsGet(&vtolSelfTuningStats);
controlDown.UpdateNeutralThrust(vtolSelfTuningStats.NeutralThrustOffset + vtolPathFollowerSettings->ThrustLimits.Neutral);
controlDown.SetThrustLimits(vtolPathFollowerSettings->ThrustLimits.Min, vtolPathFollowerSettings->ThrustLimits.Max);
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t VtolFlyController::Initialize(VtolPathFollowerSettingsData *ptr_vtolPathFollowerSettings)
{
PIOS_Assert(ptr_vtolPathFollowerSettings);
vtolPathFollowerSettings = ptr_vtolPathFollowerSettings;
return 0;
}
/**
* Compute desired velocity from the current position and path
*/
void VtolFlyController::UpdateVelocityDesired()
{
PositionStateData positionState;
PositionStateGet(&positionState);
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
controlNE.UpdateVelocityState(velocityState.North, velocityState.East);
controlDown.UpdateVelocityState(velocityState.Down);
VelocityDesiredData velocityDesired;
// look ahead kFF seconds
float cur[3] = { positionState.North + (velocityState.North * vtolPathFollowerSettings->CourseFeedForward),
positionState.East + (velocityState.East * vtolPathFollowerSettings->CourseFeedForward),
positionState.Down + (velocityState.Down * vtolPathFollowerSettings->CourseFeedForward) };
struct path_status progress;
path_progress(pathDesired, cur, &progress, true);
controlNE.ControlPositionWithPath(&progress);
if (!mManualThrust) {
controlDown.ControlPositionWithPath(&progress);
}
float north, east;
controlNE.GetVelocityDesired(&north, &east);
velocityDesired.North = north;
velocityDesired.East = east;
if (!mManualThrust) {
velocityDesired.Down = controlDown.GetVelocityDesired();
} else { velocityDesired.Down = 0.0f; }
// update pathstatus
pathStatus->error = progress.error;
pathStatus->fractional_progress = progress.fractional_progress;
pathStatus->path_direction_north = progress.path_vector[0];
pathStatus->path_direction_east = progress.path_vector[1];
pathStatus->path_direction_down = progress.path_vector[2];
pathStatus->correction_direction_north = progress.correction_vector[0];
pathStatus->correction_direction_east = progress.correction_vector[1];
pathStatus->correction_direction_down = progress.correction_vector[2];
VelocityDesiredSet(&velocityDesired);
}
int8_t VtolFlyController::UpdateStabilizationDesired(bool yaw_attitude, float yaw_direction)
{
uint8_t result = 1;
StabilizationDesiredData stabDesired;
AttitudeStateData attitudeState;
StabilizationBankData stabSettings;
float northCommand;
float eastCommand;
StabilizationDesiredGet(&stabDesired);
AttitudeStateGet(&attitudeState);
StabilizationBankGet(&stabSettings);
controlNE.GetNECommand(&northCommand, &eastCommand);
float angle_radians = DEG2RAD(attitudeState.Yaw);
float cos_angle = cosf(angle_radians);
float sine_angle = sinf(angle_radians);
float maxPitch = vtolPathFollowerSettings->MaxRollPitch;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.Pitch = boundf(-northCommand * cos_angle - eastCommand * sine_angle, -maxPitch, maxPitch); // this should be in the controller
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.Roll = boundf(-northCommand * sine_angle + eastCommand * cos_angle, -maxPitch, maxPitch);
ManualControlCommandData manualControl;
ManualControlCommandGet(&manualControl);
// TODO The below need to be rewritten because the PID implementation has changed.
#if 0
// DEBUG HACK: allow user to skew compass on purpose to see if emergency failsafe kicks in
if (vtolPathFollowerSettings->FlyawayEmergencyFallback == VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_DEBUGTEST) {
attitudeState.Yaw += 120.0f;
if (attitudeState.Yaw > 180.0f) {
attitudeState.Yaw -= 360.0f;
}
}
if ( // emergency flyaway detection
( // integral already at its limit
vtolPathFollowerSettings.HorizontalVelPID.ILimit - fabsf(global.PIDvel[0].iAccumulator) < 1e-6f ||
vtolPathFollowerSettings.HorizontalVelPID.ILimit - fabsf(global.PIDvel[1].iAccumulator) < 1e-6f
) &&
// angle between desired and actual velocity >90 degrees (by dot product)
(velocityDesired.North * velocityState.North + velocityDesired.East * velocityState.East < 0.0f) &&
// quad is moving at significant speed (during flyaway it would keep speeding up)
squaref(velocityState.North) + squaref(velocityState.East) > 1.0f
) {
vtolEmergencyFallback += dT;
if (vtolEmergencyFallback >= vtolPathFollowerSettings->FlyawayEmergencyFallbackTriggerTime) {
// after emergency timeout, trigger alarm - everything else is handled by callers
// (switch to emergency algorithm, switch to emergency waypoint in pathplanner, alarms, ...)
result = 0;
}
} else {
vtolEmergencyFallback = 0.0f;
}
#endif // if 0
if (yaw_attitude) {
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.Yaw = yaw_direction;
} else {
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
stabDesired.Yaw = stabSettings.MaximumRate.Yaw * manualControl.Yaw;
}
// default thrust mode to cruise control
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_CRUISECONTROL;
if (mManualThrust) {
stabDesired.Thrust = manualControl.Thrust;
} else {
stabDesired.Thrust = controlDown.GetDownCommand();
}
StabilizationDesiredSet(&stabDesired);
return result;
}
/**
* Compute desired attitude for vtols - emergency fallback
*/
void VtolFlyController::UpdateDesiredAttitudeEmergencyFallback()
{
VelocityDesiredData velocityDesired;
VelocityStateData velocityState;
StabilizationDesiredData stabDesired;
float courseError;
float courseCommand;
VelocityStateGet(&velocityState);
VelocityDesiredGet(&velocityDesired);
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
courseError = RAD2DEG(atan2f(velocityDesired.East, velocityDesired.North) - atan2f(velocityState.East, velocityState.North));
if (courseError < -180.0f) {
courseError += 360.0f;
}
if (courseError > 180.0f) {
courseError -= 360.0f;
}
courseCommand = (courseError * vtolPathFollowerSettings->EmergencyFallbackYawRate.kP);
stabDesired.Yaw = boundf(courseCommand, -vtolPathFollowerSettings->EmergencyFallbackYawRate.Max, vtolPathFollowerSettings->EmergencyFallbackYawRate.Max);
controlDown.UpdateVelocitySetpoint(velocityDesired.Down);
controlDown.UpdateVelocityState(velocityState.Down);
stabDesired.Thrust = controlDown.GetDownCommand();
stabDesired.Roll = vtolPathFollowerSettings->EmergencyFallbackAttitude.Roll;
stabDesired.Pitch = vtolPathFollowerSettings->EmergencyFallbackAttitude.Pitch;
if (vtolPathFollowerSettings->ThrustControl == VTOLPATHFOLLOWERSETTINGS_THRUSTCONTROL_MANUAL) {
stabDesired.Thrust = manualControlData.Thrust;
}
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_CRUISECONTROL;
StabilizationDesiredSet(&stabDesired);
}
void VtolFlyController::UpdateAutoPilot()
{
if (vtolPathFollowerSettings->ThrustControl == VTOLPATHFOLLOWERSETTINGS_THRUSTCONTROL_MANUAL) {
mManualThrust = true;
}
uint8_t result = RunAutoPilot();
if (result) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
} else {
pathStatus->Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
}
PathStatusSet(pathStatus);
// If rtbl, detect arrival at the endpoint and then triggers a change
// to the pathDesired to initiate a Landing sequence. This is the simpliest approach. plans.c
// can't manage this. And pathplanner whilst similar does not manage this as it is not a
// waypoint traversal and is not aware of flight modes other than path plan.
if ((uint8_t)pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_GOTOENDPOINT_NEXTCOMMAND] == FLIGHTMODESETTINGS_RETURNTOBASENEXTCOMMAND_LAND) {
if (pathStatus->fractional_progress > RTB_LAND_FRACTIONAL_PROGRESS_START_CHECKS) {
if (fabsf(pathStatus->correction_direction_north) < RTB_LAND_NE_DISTANCE_REQUIRED_TO_START_LAND_SEQUENCE && fabsf(pathStatus->correction_direction_east) < RTB_LAND_NE_DISTANCE_REQUIRED_TO_START_LAND_SEQUENCE) {
plan_setup_land();
}
}
}
}
/**
* vtol autopilot
* use hover capable algorithm with unlimeted movement calculation. if that fails (flyaway situation due to compass failure)
* fall back to emergency fallback autopilot to keep minimum amount of flight control
*/
uint8_t VtolFlyController::RunAutoPilot()
{
enum { RETURN_0 = 0, RETURN_1 = 1, RETURN_RESULT } returnmode;
enum { FOLLOWER_REGULAR, FOLLOWER_FALLBACK } followermode;
uint8_t result = 0;
// decide on behaviour based on settings and system state
if (vtolEmergencyFallbackSwitch) {
returnmode = RETURN_0;
followermode = FOLLOWER_FALLBACK;
} else {
if (vtolPathFollowerSettings->FlyawayEmergencyFallback == VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_ALWAYS) {
returnmode = RETURN_1;
followermode = FOLLOWER_FALLBACK;
} else {
returnmode = RETURN_RESULT;
followermode = FOLLOWER_REGULAR;
}
}
switch (followermode) {
case FOLLOWER_REGULAR:
{
// horizontal position control PID loop works according to settings in regular mode, allowing integral terms
UpdateVelocityDesired();
// yaw behaviour is configurable in vtolpathfollower, select yaw control algorithm
bool yaw_attitude = true;
float yaw = 0.0f;
switch (vtolPathFollowerSettings->YawControl) {
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_MANUAL:
yaw_attitude = false;
break;
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_TAILIN:
yaw = updateTailInBearing();
break;
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_MOVEMENTDIRECTION:
yaw = updateCourseBearing();
break;
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_PATHDIRECTION:
yaw = updatePathBearing();
break;
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_POI:
yaw = updatePOIBearing();
break;
}
result = UpdateStabilizationDesired(yaw_attitude, yaw);
if (!result) {
if (vtolPathFollowerSettings->FlyawayEmergencyFallback != VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_DISABLED) {
// switch to emergency follower if follower indicates problems
vtolEmergencyFallbackSwitch = true;
}
}
}
break;
case FOLLOWER_FALLBACK:
{
// fallback loop only cares about intended horizontal flight direction, simplify control behaviour accordingly
controlNE.UpdatePositionalParameters(1.0f);
UpdateVelocityDesired();
// emergency follower has no return value
UpdateDesiredAttitudeEmergencyFallback();
}
break;
}
switch (returnmode) {
case RETURN_RESULT:
return result;
default:
// returns either 0 or 1 according to enum definition above
return returnmode;
}
}
/**
* Compute bearing of current takeoff location
*/
float VtolFlyController::updateTailInBearing()
{
PositionStateData p;
PositionStateGet(&p);
TakeOffLocationData t;
TakeOffLocationGet(&t);
// atan2f always returns in between + and - 180 degrees
return RAD2DEG(atan2f(p.East - t.East, p.North - t.North));
}
/**
* Compute bearing of current movement direction
*/
float VtolFlyController::updateCourseBearing()
{
VelocityStateData v;
VelocityStateGet(&v);
// atan2f always returns in between + and - 180 degrees
return RAD2DEG(atan2f(v.East, v.North));
}
/**
* Compute bearing of current path direction
*/
float VtolFlyController::updatePathBearing()
{
PositionStateData positionState;
PositionStateGet(&positionState);
float cur[3] = { positionState.North,
positionState.East,
positionState.Down };
struct path_status progress;
path_progress(pathDesired, cur, &progress, true);
// atan2f always returns in between + and - 180 degrees
return RAD2DEG(atan2f(progress.path_vector[1], progress.path_vector[0]));
}
/**
* Compute bearing between current position and POI
*/
float VtolFlyController::updatePOIBearing()
{
PoiLocationData poi;
PoiLocationGet(&poi);
PositionStateData positionState;
PositionStateGet(&positionState);
const float dT = vtolPathFollowerSettings->UpdatePeriod / 1000.0f;
float dLoc[3];
float yaw = 0;
/*float elevation = 0;*/
dLoc[0] = positionState.North - poi.North;
dLoc[1] = positionState.East - poi.East;
dLoc[2] = positionState.Down - poi.Down;
if (dLoc[1] < 0) {
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) + 180.0f;
} else {
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) - 180.0f;
}
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
float pathAngle = 0;
if (manualControlData.Roll > DEADBAND_HIGH) {
pathAngle = -(manualControlData.Roll - DEADBAND_HIGH) * dT * 300.0f;
} else if (manualControlData.Roll < DEADBAND_LOW) {
pathAngle = -(manualControlData.Roll - DEADBAND_LOW) * dT * 300.0f;
}
return yaw + (pathAngle / 2.0f);
}

View File

@ -0,0 +1,283 @@
/*
******************************************************************************
*
* @file vtollandcontroller.cpp
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Vtol landing controller loop
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
extern "C" {
#include <openpilot.h>
#include <callbackinfo.h>
#include <math.h>
#include <pid.h>
#include <CoordinateConversions.h>
#include <sin_lookup.h>
#include <pathdesired.h>
#include <paths.h>
#include "plans.h"
#include <sanitycheck.h>
#include <accelstate.h>
#include <vtolpathfollowersettings.h>
#include <flightstatus.h>
#include <flightmodesettings.h>
#include <pathstatus.h>
#include <positionstate.h>
#include <velocitystate.h>
#include <velocitydesired.h>
#include <stabilizationdesired.h>
#include <attitudestate.h>
#include <takeofflocation.h>
#include <manualcontrolcommand.h>
#include <systemsettings.h>
#include <stabilizationbank.h>
#include <stabilizationdesired.h>
#include <vtolselftuningstats.h>
#include <pathsummary.h>
}
// C++ includes
#include "vtollandcontroller.h"
#include "pathfollowerfsm.h"
#include "vtollandfsm.h"
#include "pidcontroldown.h"
// Private constants
// pointer to a singleton instance
VtolLandController *VtolLandController::p_inst = 0;
VtolLandController::VtolLandController()
: fsm(NULL), vtolPathFollowerSettings(NULL), mActive(false)
{}
// Called when mode first engaged
void VtolLandController::Activate(void)
{
if (!mActive) {
mActive = true;
SettingsUpdated();
fsm->Activate();
controlDown.Activate();
controlNE.Activate();
}
}
uint8_t VtolLandController::IsActive(void)
{
return mActive;
}
uint8_t VtolLandController::Mode(void)
{
return PATHDESIRED_MODE_LAND;
}
// Objective updated in pathdesired, e.g. same flight mode but new target velocity
void VtolLandController::ObjectiveUpdated(void)
{
// Set the objective's target velocity
controlDown.UpdateVelocitySetpoint(pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_VELOCITY_VELOCITYVECTOR_DOWN]);
controlNE.UpdateVelocitySetpoint(pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_VELOCITY_VELOCITYVECTOR_NORTH],
pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_VELOCITY_VELOCITYVECTOR_EAST]);
controlNE.UpdatePositionSetpoint(pathDesired->End.North, pathDesired->End.East);
}
void VtolLandController::Deactivate(void)
{
if (mActive) {
mActive = false;
fsm->Inactive();
controlDown.Deactivate();
controlNE.Deactivate();
}
}
void VtolLandController::SettingsUpdated(void)
{
const float dT = vtolPathFollowerSettings->UpdatePeriod / 1000.0f;
controlNE.UpdateParameters(vtolPathFollowerSettings->HorizontalVelPID.Kp,
vtolPathFollowerSettings->HorizontalVelPID.Ki,
vtolPathFollowerSettings->HorizontalVelPID.Kd,
vtolPathFollowerSettings->HorizontalVelPID.ILimit,
dT,
vtolPathFollowerSettings->HorizontalVelMax);
controlNE.UpdatePositionalParameters(vtolPathFollowerSettings->HorizontalPosP);
controlNE.UpdateCommandParameters(-vtolPathFollowerSettings->MaxRollPitch, vtolPathFollowerSettings->MaxRollPitch, vtolPathFollowerSettings->VelocityFeedforward);
controlDown.UpdateParameters(vtolPathFollowerSettings->LandVerticalVelPID.Kp,
vtolPathFollowerSettings->LandVerticalVelPID.Ki,
vtolPathFollowerSettings->LandVerticalVelPID.Kd,
vtolPathFollowerSettings->LandVerticalVelPID.Beta,
dT,
vtolPathFollowerSettings->VerticalVelMax);
// The following is not currently used in the landing control.
controlDown.UpdatePositionalParameters(vtolPathFollowerSettings->VerticalPosP);
VtolSelfTuningStatsData vtolSelfTuningStats;
VtolSelfTuningStatsGet(&vtolSelfTuningStats);
controlDown.UpdateNeutralThrust(vtolSelfTuningStats.NeutralThrustOffset + vtolPathFollowerSettings->ThrustLimits.Neutral);
// initialise limits on thrust but note the FSM can override.
controlDown.SetThrustLimits(vtolPathFollowerSettings->ThrustLimits.Min, vtolPathFollowerSettings->ThrustLimits.Max);
fsm->SettingsUpdated();
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t VtolLandController::Initialize(VtolPathFollowerSettingsData *ptr_vtolPathFollowerSettings)
{
PIOS_Assert(ptr_vtolPathFollowerSettings);
if (fsm == 0) {
fsm = (PathFollowerFSM *)VtolLandFSM::instance();
VtolLandFSM::instance()->Initialize(ptr_vtolPathFollowerSettings, pathDesired, flightStatus);
vtolPathFollowerSettings = ptr_vtolPathFollowerSettings;
controlDown.Initialize(fsm);
}
return 0;
}
void VtolLandController::UpdateVelocityDesired()
{
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
VelocityDesiredData velocityDesired;
controlDown.UpdateVelocityState(velocityState.Down);
controlNE.UpdateVelocityState(velocityState.North, velocityState.East);
// Implement optional horizontal position hold.
if (((uint8_t)pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_LAND_OPTIONS]) == PATHDESIRED_MODEPARAMETER_LAND_OPTION_HORIZONTAL_PH) {
// landing flight mode has stored original horizontal position in pathdesired
PositionStateData positionState;
PositionStateGet(&positionState);
controlNE.UpdatePositionState(positionState.North, positionState.East);
controlNE.ControlPosition();
}
velocityDesired.Down = controlDown.GetVelocityDesired();
float north, east;
controlNE.GetVelocityDesired(&north, &east);
velocityDesired.North = north;
velocityDesired.East = east;
// update pathstatus
pathStatus->error = 0.0f;
pathStatus->fractional_progress = 0.0f;
pathStatus->path_direction_north = velocityDesired.North;
pathStatus->path_direction_east = velocityDesired.East;
pathStatus->path_direction_down = velocityDesired.Down;
pathStatus->correction_direction_north = velocityDesired.North - velocityState.North;
pathStatus->correction_direction_east = velocityDesired.East - velocityState.East;
pathStatus->correction_direction_down = velocityDesired.Down - velocityState.Down;
VelocityDesiredSet(&velocityDesired);
}
int8_t VtolLandController::UpdateStabilizationDesired(bool yaw_attitude, float yaw_direction)
{
uint8_t result = 1;
StabilizationDesiredData stabDesired;
AttitudeStateData attitudeState;
StabilizationBankData stabSettings;
float northCommand;
float eastCommand;
StabilizationDesiredGet(&stabDesired);
AttitudeStateGet(&attitudeState);
StabilizationBankGet(&stabSettings);
controlNE.GetNECommand(&northCommand, &eastCommand);
stabDesired.Thrust = controlDown.GetDownCommand();
float angle_radians = DEG2RAD(attitudeState.Yaw);
float cos_angle = cosf(angle_radians);
float sine_angle = sinf(angle_radians);
float maxPitch = vtolPathFollowerSettings->MaxRollPitch;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.Pitch = boundf(-northCommand * cos_angle - eastCommand * sine_angle, -maxPitch, maxPitch);
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.Roll = boundf(-northCommand * sine_angle + eastCommand * cos_angle, -maxPitch, maxPitch);
ManualControlCommandData manualControl;
ManualControlCommandGet(&manualControl);
if (yaw_attitude) {
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.Yaw = yaw_direction;
} else {
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
stabDesired.Yaw = stabSettings.MaximumRate.Yaw * manualControl.Yaw;
}
// default thrust mode to cruise control
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_CRUISECONTROL;
fsm->ConstrainStabiDesired(&stabDesired); // excludes thrust
StabilizationDesiredSet(&stabDesired);
return result;
}
void VtolLandController::UpdateAutoPilot()
{
fsm->Update();
UpdateVelocityDesired();
// yaw behaviour is configurable in vtolpathfollower, select yaw control algorithm
bool yaw_attitude = false;
float yaw = 0.0f;
fsm->GetYaw(yaw_attitude, yaw);
int8_t result = UpdateStabilizationDesired(yaw_attitude, yaw);
if (!result) {
fsm->Abort();
}
if (fsm->GetCurrentState() == PFFSM_STATE_DISARMED) {
setArmedIfChanged(FLIGHTSTATUS_ARMED_DISARMED);
}
PathStatusSet(pathStatus);
}
void VtolLandController::setArmedIfChanged(uint8_t val)
{
if (flightStatus->Armed != val) {
flightStatus->Armed = val;
FlightStatusSet(flightStatus);
}
}

View File

@ -0,0 +1,703 @@
/*
******************************************************************************
*
* @file vtollandfsm.cpp
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief This landing state machine is a helper state machine to the
* VtolLandController.
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
extern "C" {
#include <openpilot.h>
#include <callbackinfo.h>
#include <math.h>
#include <pid.h>
#include <CoordinateConversions.h>
#include <sin_lookup.h>
#include <pathdesired.h>
#include <paths.h>
#include "plans.h"
#include <sanitycheck.h>
#include <homelocation.h>
#include <accelstate.h>
#include <fixedwingpathfollowersettings.h>
#include <fixedwingpathfollowerstatus.h>
#include <vtolpathfollowersettings.h>
#include <flightstatus.h>
#include <flightmodesettings.h>
#include <pathstatus.h>
#include <positionstate.h>
#include <velocitystate.h>
#include <velocitydesired.h>
#include <stabilizationdesired.h>
#include <airspeedstate.h>
#include <attitudestate.h>
#include <takeofflocation.h>
#include <poilocation.h>
#include <manualcontrolcommand.h>
#include <systemsettings.h>
#include <stabilizationbank.h>
#include <stabilizationdesired.h>
#include <vtolselftuningstats.h>
#include <statusvtolland.h>
#include <pathsummary.h>
}
// C++ includes
#include <vtollandfsm.h>
// Private constants
#define TIMER_COUNT_PER_SECOND (1000 / vtolPathFollowerSettings->UpdatePeriod)
#define MIN_LANDRATE 0.1f
#define MAX_LANDRATE 0.6f
#define LOW_ALT_DESCENT_REDUCTION_FACTOR 0.7f // TODO Need to make the transition smooth
#define LANDRATE_LOWLIMIT_FACTOR 0.5f
#define LANDRATE_HILIMIT_FACTOR 1.5f
#define TIMEOUT_INIT_ALTHOLD (3 * TIMER_COUNT_PER_SECOND)
#define TIMEOUT_WTG_FOR_DESCENTRATE (10 * TIMER_COUNT_PER_SECOND)
#define WTG_FOR_DESCENTRATE_COUNT_LIMIT 10
#define TIMEOUT_AT_DESCENTRATE 10
#define TIMEOUT_GROUNDEFFECT (1 * TIMER_COUNT_PER_SECOND)
#define TIMEOUT_THRUSTDOWN (2 * TIMER_COUNT_PER_SECOND)
#define LANDING_PID_SCALAR_P 2.0f
#define LANDING_PID_SCALAR_I 10.0f
#define LANDING_SLOWDOWN_HEIGHT -5.0f
#define BOUNCE_VELOCITY_TRIGGER_LIMIT -0.3f
#define BOUNCE_ACCELERATION_TRIGGER_LIMIT -6.0f
#define BOUNCE_TRIGGER_COUNT 4
#define GROUNDEFFECT_SLOWDOWN_FACTOR 0.3f
#define GROUNDEFFECT_SLOWDOWN_COUNT 4
VtolLandFSM::PathFollowerFSM_LandStateHandler_T VtolLandFSM::sLandStateTable[LAND_STATE_SIZE] = {
[LAND_STATE_INACTIVE] = { .setup = &VtolLandFSM::setup_inactive, .run = 0 },
[LAND_STATE_INIT_ALTHOLD] = { .setup = &VtolLandFSM::setup_init_althold, .run = &VtolLandFSM::run_init_althold },
[LAND_STATE_WTG_FOR_DESCENTRATE] = { .setup = &VtolLandFSM::setup_wtg_for_descentrate, .run = &VtolLandFSM::run_wtg_for_descentrate },
[LAND_STATE_AT_DESCENTRATE] = { .setup = &VtolLandFSM::setup_at_descentrate, .run = &VtolLandFSM::run_at_descentrate },
[LAND_STATE_WTG_FOR_GROUNDEFFECT] = { .setup = &VtolLandFSM::setup_wtg_for_groundeffect, .run = &VtolLandFSM::run_wtg_for_groundeffect },
[LAND_STATE_GROUNDEFFECT] = { .setup = &VtolLandFSM::setup_groundeffect, .run = &VtolLandFSM::run_groundeffect },
[LAND_STATE_THRUSTDOWN] = { .setup = &VtolLandFSM::setup_thrustdown, .run = &VtolLandFSM::run_thrustdown },
[LAND_STATE_THRUSTOFF] = { .setup = &VtolLandFSM::setup_thrustoff, .run = &VtolLandFSM::run_thrustoff },
[LAND_STATE_DISARMED] = { .setup = &VtolLandFSM::setup_disarmed, .run = &VtolLandFSM::run_disarmed },
[LAND_STATE_ABORT] = { .setup = &VtolLandFSM::setup_abort, .run = &VtolLandFSM::run_abort }
};
// pointer to a singleton instance
VtolLandFSM *VtolLandFSM::p_inst = 0;
VtolLandFSM::VtolLandFSM()
: mLandData(0), vtolPathFollowerSettings(0), pathDesired(0), flightStatus(0)
{}
// Private types
// Private functions
// Public API methods
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t VtolLandFSM::Initialize(VtolPathFollowerSettingsData *ptr_vtolPathFollowerSettings,
PathDesiredData *ptr_pathDesired,
FlightStatusData *ptr_flightStatus)
{
PIOS_Assert(ptr_vtolPathFollowerSettings);
PIOS_Assert(ptr_pathDesired);
PIOS_Assert(ptr_flightStatus);
if (mLandData == 0) {
mLandData = (VtolLandFSMData_T *)pios_malloc(sizeof(VtolLandFSMData_T));
PIOS_Assert(mLandData);
}
memset(mLandData, sizeof(VtolLandFSMData_T), 0);
vtolPathFollowerSettings = ptr_vtolPathFollowerSettings;
pathDesired = ptr_pathDesired;
flightStatus = ptr_flightStatus;
initFSM();
return 0;
}
void VtolLandFSM::Inactive(void)
{
memset(mLandData, sizeof(VtolLandFSMData_T), 0);
initFSM();
}
// Initialise the FSM
void VtolLandFSM::initFSM(void)
{
if (vtolPathFollowerSettings != 0) {
setState(LAND_STATE_INACTIVE, STATUSVTOLLAND_STATEEXITREASON_NONE);
} else {
mLandData->currentState = LAND_STATE_INACTIVE;
}
}
void VtolLandFSM::Activate()
{
memset(mLandData, sizeof(VtolLandFSMData_T), 0);
mLandData->currentState = LAND_STATE_INACTIVE;
mLandData->flLowAltitude = false;
mLandData->flAltitudeHold = false;
mLandData->fsmLandStatus.averageDescentRate = MIN_LANDRATE;
mLandData->fsmLandStatus.averageDescentThrust = vtolPathFollowerSettings->ThrustLimits.Neutral;
mLandData->fsmLandStatus.calculatedNeutralThrust = vtolPathFollowerSettings->ThrustLimits.Neutral;
mLandData->boundThrustMin = vtolPathFollowerSettings->ThrustLimits.Min;
mLandData->boundThrustMax = vtolPathFollowerSettings->ThrustLimits.Max;
TakeOffLocationGet(&(mLandData->takeOffLocation));
mLandData->fsmLandStatus.AltitudeAtState[LAND_STATE_INACTIVE] = 0.0f;
assessAltitude();
if (pathDesired->Mode == PATHDESIRED_MODE_LAND) {
#ifndef DEBUG_GROUNDIMPACT
setState(LAND_STATE_INIT_ALTHOLD, STATUSVTOLLAND_STATEEXITREASON_NONE);
#else
setState(LAND_STATE_WTG_FOR_GROUNDEFFECT, STATUSVTOLLAND_STATEEXITREASON_NONE);
#endif
} else {
// move to error state and callback to position hold
setState(LAND_STATE_ABORT, STATUSVTOLLAND_STATEEXITREASON_NONE);
}
}
void VtolLandFSM::Abort(void)
{
setState(LAND_STATE_ABORT, STATUSVTOLLAND_STATEEXITREASON_NONE);
}
PathFollowerFSMState_T VtolLandFSM::GetCurrentState(void)
{
switch (mLandData->currentState) {
case LAND_STATE_INACTIVE:
return PFFSM_STATE_INACTIVE;
break;
case LAND_STATE_ABORT:
return PFFSM_STATE_ABORT;
break;
case LAND_STATE_DISARMED:
return PFFSM_STATE_DISARMED;
break;
default:
return PFFSM_STATE_ACTIVE;
break;
}
}
void VtolLandFSM::Update()
{
runState();
if (GetCurrentState() != PFFSM_STATE_INACTIVE) {
runAlways();
}
}
int32_t VtolLandFSM::runState(void)
{
uint8_t flTimeout = false;
mLandData->stateRunCount++;
if (mLandData->stateTimeoutCount > 0 && mLandData->stateRunCount > mLandData->stateTimeoutCount) {
flTimeout = true;
}
// If the current state has a static function, call it
if (sLandStateTable[mLandData->currentState].run) {
(this->*sLandStateTable[mLandData->currentState].run)(flTimeout);
}
return 0;
}
int32_t VtolLandFSM::runAlways(void)
{
void assessAltitude(void);
return 0;
}
// PathFollower implements the PID scheme and has a objective
// set by a PathDesired object. Based on the mode, pathfollower
// uses FSM's as helper functions that manage state and event detection.
// PathFollower calls into FSM methods to alter its commands.
void VtolLandFSM::BoundThrust(float &ulow, float &uhigh)
{
ulow = mLandData->boundThrustMin;
uhigh = mLandData->boundThrustMax;
if (mLandData->flConstrainThrust) {
uhigh = mLandData->thrustLimit;
}
}
void VtolLandFSM::ConstrainStabiDesired(StabilizationDesiredData *stabDesired)
{
if (mLandData->flZeroStabiHorizontal && stabDesired) {
stabDesired->Pitch = 0.0f;
stabDesired->Roll = 0.0f;
stabDesired->Yaw = 0.0f;
}
}
void VtolLandFSM::CheckPidScaler(pid_scaler *local_scaler)
{
if (mLandData->flLowAltitude) {
local_scaler->p = LANDING_PID_SCALAR_P;
local_scaler->i = LANDING_PID_SCALAR_I;
}
}
// Set the new state and perform setup for subsequent state run calls
// This is called by state run functions on event detection that drive
// state transitions.
void VtolLandFSM::setState(PathFollowerFSM_LandState_T newState, StatusVtolLandStateExitReasonOptions reason)
{
mLandData->fsmLandStatus.StateExitReason[mLandData->currentState] = reason;
if (mLandData->currentState == newState) {
return;
}
mLandData->currentState = newState;
if (newState != LAND_STATE_INACTIVE) {
PositionStateData positionState;
PositionStateGet(&positionState);
float takeOffDown = 0.0f;
if (mLandData->takeOffLocation.Status == TAKEOFFLOCATION_STATUS_VALID) {
takeOffDown = mLandData->takeOffLocation.Down;
}
mLandData->fsmLandStatus.AltitudeAtState[newState] = positionState.Down - takeOffDown;
assessAltitude();
}
// Restart state timer counter
mLandData->stateRunCount = 0;
// Reset state timeout to disabled/zero
mLandData->stateTimeoutCount = 0;
if (sLandStateTable[mLandData->currentState].setup) {
(this->*sLandStateTable[mLandData->currentState].setup)();
}
updateVtolLandFSMStatus();
}
// Timeout utility function for use by state init implementations
void VtolLandFSM::setStateTimeout(int32_t count)
{
mLandData->stateTimeoutCount = count;
}
void VtolLandFSM::updateVtolLandFSMStatus()
{
mLandData->fsmLandStatus.State = mLandData->currentState;
if (mLandData->flLowAltitude) {
mLandData->fsmLandStatus.AltitudeState = STATUSVTOLLAND_ALTITUDESTATE_LOW;
} else {
mLandData->fsmLandStatus.AltitudeState = STATUSVTOLLAND_ALTITUDESTATE_HIGH;
}
StatusVtolLandSet(&mLandData->fsmLandStatus);
}
float VtolLandFSM::BoundVelocityDown(float velocity_down)
{
velocity_down = boundf(velocity_down, MIN_LANDRATE, MAX_LANDRATE);
if (mLandData->flLowAltitude) {
velocity_down *= LOW_ALT_DESCENT_REDUCTION_FACTOR;
}
mLandData->fsmLandStatus.targetDescentRate = velocity_down;
if (mLandData->flAltitudeHold) {
return 0.0f;
} else {
return velocity_down;
}
}
void VtolLandFSM::assessAltitude(void)
{
float positionDown;
PositionStateDownGet(&positionDown);
float takeOffDown = 0.0f;
if (mLandData->takeOffLocation.Status == TAKEOFFLOCATION_STATUS_VALID) {
takeOffDown = mLandData->takeOffLocation.Down;
}
float positionDownRelativeToTakeoff = positionDown - takeOffDown;
if (positionDownRelativeToTakeoff < LANDING_SLOWDOWN_HEIGHT) {
mLandData->flLowAltitude = false;
} else {
mLandData->flLowAltitude = true;
}
}
// FSM Setup and Run method implementation
// State: INACTIVE
void VtolLandFSM::setup_inactive(void)
{
// Re-initialise local variables
mLandData->flZeroStabiHorizontal = false;
mLandData->flConstrainThrust = false;
}
// State: INIT ALTHOLD
void VtolLandFSM::setup_init_althold(void)
{
setStateTimeout(TIMEOUT_INIT_ALTHOLD);
// get target descent velocity
mLandData->flZeroStabiHorizontal = false;
mLandData->fsmLandStatus.targetDescentRate = BoundVelocityDown(pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_LAND_VELOCITYVECTOR_DOWN]);
mLandData->flConstrainThrust = false;
mLandData->flAltitudeHold = true;
mLandData->boundThrustMin = vtolPathFollowerSettings->ThrustLimits.Min;
mLandData->boundThrustMax = vtolPathFollowerSettings->ThrustLimits.Max;
}
void VtolLandFSM::run_init_althold(uint8_t flTimeout)
{
if (flTimeout) {
mLandData->flAltitudeHold = false;
setState(LAND_STATE_WTG_FOR_DESCENTRATE, STATUSVTOLLAND_STATEEXITREASON_TIMEOUT);
}
}
// State: WAITING FOR DESCENT RATE
void VtolLandFSM::setup_wtg_for_descentrate(void)
{
setStateTimeout(TIMEOUT_WTG_FOR_DESCENTRATE);
// get target descent velocity
mLandData->flZeroStabiHorizontal = false;
mLandData->observationCount = 0;
mLandData->observation2Count = 0;
mLandData->flConstrainThrust = false;
mLandData->flAltitudeHold = false;
mLandData->boundThrustMin = vtolPathFollowerSettings->ThrustLimits.Min;
mLandData->boundThrustMax = vtolPathFollowerSettings->ThrustLimits.Max;
}
void VtolLandFSM::run_wtg_for_descentrate(uint8_t flTimeout)
{
// Look at current actual thrust...are we already shutdown??
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
// We don't expect PID to get exactly the target descent rate, so have a lower
// water mark but need to see 5 observations to be confident that we have semi-stable
// descent achieved
// we need to see velocity down within a range of control before we proceed, without which we
// really don't have confidence to allow later states to run.
if (velocityState.Down > (LANDRATE_LOWLIMIT_FACTOR * mLandData->fsmLandStatus.targetDescentRate) &&
velocityState.Down < (LANDRATE_HILIMIT_FACTOR * mLandData->fsmLandStatus.targetDescentRate)) {
if (mLandData->observationCount++ > WTG_FOR_DESCENTRATE_COUNT_LIMIT) {
setState(LAND_STATE_AT_DESCENTRATE, STATUSVTOLLAND_STATEEXITREASON_DESCENTRATEOK);
return;
}
}
if (flTimeout) {
setState(LAND_STATE_ABORT, STATUSVTOLLAND_STATEEXITREASON_TIMEOUT);
}
}
// State: AT DESCENT RATE
void VtolLandFSM::setup_at_descentrate(void)
{
setStateTimeout(TIMEOUT_AT_DESCENTRATE);
mLandData->flZeroStabiHorizontal = false;
mLandData->observationCount = 0;
mLandData->sum1 = 0.0f;
mLandData->sum2 = 0.0f;
mLandData->flConstrainThrust = false;
mLandData->fsmLandStatus.averageDescentRate = MIN_LANDRATE;
mLandData->fsmLandStatus.averageDescentThrust = vtolPathFollowerSettings->ThrustLimits.Neutral;
mLandData->boundThrustMin = vtolPathFollowerSettings->ThrustLimits.Min;
mLandData->boundThrustMax = vtolPathFollowerSettings->ThrustLimits.Max;
}
void VtolLandFSM::run_at_descentrate(uint8_t flTimeout)
{
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
mLandData->sum1 += velocityState.Down;
mLandData->sum2 += stabDesired.Thrust;
mLandData->observationCount++;
if (flTimeout) {
mLandData->fsmLandStatus.averageDescentRate = boundf((mLandData->sum1 / (float)(mLandData->observationCount)), 0.5f * MIN_LANDRATE, 1.5f * MAX_LANDRATE);
mLandData->fsmLandStatus.averageDescentThrust = boundf((mLandData->sum2 / (float)(mLandData->observationCount)), vtolPathFollowerSettings->ThrustLimits.Min, vtolPathFollowerSettings->ThrustLimits.Max);
// We need to calculate a neutral limit to use later to constrain upper thrust range during states where we are close to the ground
// As our battery gets flat, ThrustLimits.Neutral needs to constrain us too much and we get too fast a descent rate. We can
// detect this by the fact that the descent rate will exceed the target and the required thrust will exceed the neutral value
mLandData->fsmLandStatus.calculatedNeutralThrust = mLandData->fsmLandStatus.averageDescentRate / mLandData->fsmLandStatus.targetDescentRate * mLandData->fsmLandStatus.averageDescentThrust;
mLandData->fsmLandStatus.calculatedNeutralThrust = boundf(mLandData->fsmLandStatus.calculatedNeutralThrust, vtolPathFollowerSettings->ThrustLimits.Neutral, vtolPathFollowerSettings->ThrustLimits.Max);
setState(LAND_STATE_WTG_FOR_GROUNDEFFECT, STATUSVTOLLAND_STATEEXITREASON_DESCENTRATEOK);
}
}
// State: WAITING FOR GROUND EFFECT
void VtolLandFSM::setup_wtg_for_groundeffect(void)
{
// No timeout
mLandData->flZeroStabiHorizontal = false;
mLandData->observationCount = 0;
mLandData->observation2Count = 0;
mLandData->sum1 = 0.0f;
mLandData->sum2 = 0.0f;
mLandData->flConstrainThrust = false;
mLandData->fsmLandStatus.WtgForGroundEffect.BounceVelocity = 0.0f;
mLandData->fsmLandStatus.WtgForGroundEffect.BounceAccel = 0.0f;
mLandData->boundThrustMin = vtolPathFollowerSettings->ThrustLimits.Min;
mLandData->boundThrustMax = vtolPathFollowerSettings->ThrustLimits.Max;
}
void VtolLandFSM::run_wtg_for_groundeffect(__attribute__((unused)) uint8_t flTimeout)
{
// detect material downrating in thrust for 1 second.
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
AccelStateData accelState;
AccelStateGet(&accelState);
// +ve 9.8 expected
float g_e;
HomeLocationg_eGet(&g_e);
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
// detect bounce
uint8_t flBounce = (velocityState.Down < BOUNCE_VELOCITY_TRIGGER_LIMIT);
if (flBounce) {
mLandData->fsmLandStatus.WtgForGroundEffect.BounceVelocity = velocityState.Down;
} else {
mLandData->fsmLandStatus.WtgForGroundEffect.BounceVelocity = 0.0f;
}
// invert sign of accel to the standard convention of down is +ve and subtract the gravity to get
// a relative acceleration term.
float bounceAccel = -accelState.z - g_e;
uint8_t flBounceAccel = (bounceAccel < BOUNCE_ACCELERATION_TRIGGER_LIMIT);
if (flBounceAccel) {
mLandData->fsmLandStatus.WtgForGroundEffect.BounceAccel = bounceAccel;
} else {
mLandData->fsmLandStatus.WtgForGroundEffect.BounceAccel = 0.0f;
}
if (flBounce || flBounceAccel) {
mLandData->observation2Count++;
if (mLandData->observation2Count > BOUNCE_TRIGGER_COUNT) {
setState(LAND_STATE_GROUNDEFFECT, (flBounce ? STATUSVTOLLAND_STATEEXITREASON_BOUNCEVELOCITY : STATUSVTOLLAND_STATEEXITREASON_BOUNCEACCEL));
return;
}
} else {
mLandData->observation2Count = 0;
}
// detect low descent rate
uint8_t flDescentRateLow = (velocityState.Down < (GROUNDEFFECT_SLOWDOWN_FACTOR * mLandData->fsmLandStatus.averageDescentRate));
if (flDescentRateLow) {
mLandData->boundThrustMax = mLandData->fsmLandStatus.calculatedNeutralThrust;
mLandData->observationCount++;
if (mLandData->observationCount > GROUNDEFFECT_SLOWDOWN_COUNT) {
#ifndef DEBUG_GROUNDIMPACT
setState(LAND_STATE_GROUNDEFFECT, STATUSVTOLLAND_STATEEXITREASON_LOWDESCENTRATE);
#endif
return;
}
} else {
mLandData->observationCount = 0;
}
updateVtolLandFSMStatus();
}
// STATE: GROUNDEFFET
void VtolLandFSM::setup_groundeffect(void)
{
setStateTimeout(TIMEOUT_GROUNDEFFECT);
mLandData->flZeroStabiHorizontal = true;
PositionStateData positionState;
PositionStateGet(&positionState);
mLandData->expectedLandPositionNorth = positionState.North;
mLandData->expectedLandPositionEast = positionState.East;
mLandData->flConstrainThrust = false;
// now that we have ground effect limit max thrust to neutral
mLandData->boundThrustMin = -0.1f;
mLandData->boundThrustMax = mLandData->fsmLandStatus.calculatedNeutralThrust;
}
void VtolLandFSM::run_groundeffect(__attribute__((unused)) uint8_t flTimeout)
{
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
if (stabDesired.Thrust < 0.0f) {
setState(LAND_STATE_THRUSTOFF, STATUSVTOLLAND_STATEEXITREASON_ZEROTHRUST);
return;
}
// Stay in this state until we get a low altitude flag.
if (mLandData->flLowAltitude == false) {
// worst case scenario is that we land and the pid brings thrust down to zero.
return;
}
// detect broad sideways drift. If for some reason we have a hard landing that the bounce detection misses, this will kick in
PositionStateData positionState;
PositionStateGet(&positionState);
float north_error = mLandData->expectedLandPositionNorth - positionState.North;
float east_error = mLandData->expectedLandPositionEast - positionState.East;
float positionError = sqrtf(north_error * north_error + east_error * east_error);
if (positionError > 0.3f) {
setState(LAND_STATE_THRUSTDOWN, STATUSVTOLLAND_STATEEXITREASON_POSITIONERROR);
return;
}
if (flTimeout) {
setState(LAND_STATE_THRUSTDOWN, STATUSVTOLLAND_STATEEXITREASON_TIMEOUT);
}
}
// STATE: THRUSTDOWN
void VtolLandFSM::setup_thrustdown(void)
{
setStateTimeout(TIMEOUT_THRUSTDOWN);
mLandData->flZeroStabiHorizontal = true;
mLandData->flConstrainThrust = true;
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
mLandData->thrustLimit = stabDesired.Thrust;
mLandData->sum1 = stabDesired.Thrust / (float)TIMEOUT_THRUSTDOWN;
mLandData->boundThrustMin = -0.1f;
mLandData->boundThrustMax = mLandData->fsmLandStatus.calculatedNeutralThrust;
}
void VtolLandFSM::run_thrustdown(__attribute__((unused)) uint8_t flTimeout)
{
// reduce thrust setpoint step by step
mLandData->thrustLimit -= mLandData->sum1;
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
if (stabDesired.Thrust < 0.0f || mLandData->thrustLimit < 0.0f) {
setState(LAND_STATE_THRUSTOFF, STATUSVTOLLAND_STATEEXITREASON_ZEROTHRUST);
}
if (flTimeout) {
setState(LAND_STATE_THRUSTOFF, STATUSVTOLLAND_STATEEXITREASON_TIMEOUT);
}
}
// STATE: THRUSTOFF
void VtolLandFSM::setup_thrustoff(void)
{
mLandData->thrustLimit = -1.0f;
mLandData->flConstrainThrust = true;
mLandData->boundThrustMin = -0.1f;
mLandData->boundThrustMax = 0.0f;
}
void VtolLandFSM::run_thrustoff(__attribute__((unused)) uint8_t flTimeout)
{
setState(LAND_STATE_DISARMED, STATUSVTOLLAND_STATEEXITREASON_NONE);
}
// STATE: DISARMED
void VtolLandFSM::setup_disarmed(void)
{
// nothing to do
mLandData->flConstrainThrust = false;
mLandData->flZeroStabiHorizontal = false;
mLandData->observationCount = 0;
mLandData->boundThrustMin = -0.1f;
mLandData->boundThrustMax = 0.0f;
}
void VtolLandFSM::run_disarmed(__attribute__((unused)) uint8_t flTimeout)
{
#ifdef DEBUG_GROUNDIMPACT
if (mLandData->observationCount++ > 100) {
setState(LAND_STATE_WTG_FOR_GROUNDEFFECT, STATUSVTOLLAND_STATEEXITREASON_NONE);
}
#endif
}
void VtolLandFSM::fallback_to_hold(void)
{
PositionStateData positionState;
PositionStateGet(&positionState);
pathDesired->End.North = positionState.North;
pathDesired->End.East = positionState.East;
pathDesired->End.Down = positionState.Down;
pathDesired->Start.North = positionState.North;
pathDesired->Start.East = positionState.East;
pathDesired->Start.Down = positionState.Down;
pathDesired->StartingVelocity = 0.0f;
pathDesired->EndingVelocity = 0.0f;
pathDesired->Mode = PATHDESIRED_MODE_GOTOENDPOINT;
PathDesiredSet(pathDesired);
}
// abort repeatedly overwrites pathfollower's objective on a landing abort and
// continues to do so until a flight mode change.
void VtolLandFSM::setup_abort(void)
{
mLandData->boundThrustMin = vtolPathFollowerSettings->ThrustLimits.Min;
mLandData->boundThrustMax = vtolPathFollowerSettings->ThrustLimits.Max;
mLandData->flConstrainThrust = false;
mLandData->flZeroStabiHorizontal = false;
fallback_to_hold();
}
void VtolLandFSM::run_abort(__attribute__((unused)) uint8_t flTimeout)
{}

View File

@ -0,0 +1,227 @@
/*
******************************************************************************
*
* @file VtolVelocityController.cpp
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Velocity roam controller for vtols
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
extern "C" {
#include <openpilot.h>
#include <callbackinfo.h>
#include <math.h>
#include <pid.h>
#include <CoordinateConversions.h>
#include <sin_lookup.h>
#include <pathdesired.h>
#include <paths.h>
#include "plans.h"
#include <sanitycheck.h>
#include <vtolpathfollowersettings.h>
#include <flightmodesettings.h>
#include <pathstatus.h>
#include <positionstate.h>
#include <velocitystate.h>
#include <velocitydesired.h>
#include <stabilizationdesired.h>
#include <attitudestate.h>
#include <flightstatus.h>
#include <manualcontrolcommand.h>
#include <systemsettings.h>
#include <stabilizationbank.h>
#include <stabilizationdesired.h>
#include <pathsummary.h>
}
// C++ includes
#include "vtolvelocitycontroller.h"
#include "pidcontrolne.h"
// Private constants
// pointer to a singleton instance
VtolVelocityController *VtolVelocityController::p_inst = 0;
VtolVelocityController::VtolVelocityController()
: vtolPathFollowerSettings(0), mActive(false)
{}
// Called when mode first engaged
void VtolVelocityController::Activate(void)
{
if (!mActive) {
mActive = true;
SettingsUpdated();
controlNE.Activate();
}
}
uint8_t VtolVelocityController::IsActive(void)
{
return mActive;
}
uint8_t VtolVelocityController::Mode(void)
{
return PATHDESIRED_MODE_VELOCITY;
}
void VtolVelocityController::ObjectiveUpdated(void)
{
controlNE.UpdateVelocitySetpoint(pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_VELOCITY_VELOCITYVECTOR_NORTH],
pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_VELOCITY_VELOCITYVECTOR_EAST]);
}
void VtolVelocityController::Deactivate(void)
{
if (mActive) {
mActive = false;
controlNE.Deactivate();
}
}
void VtolVelocityController::SettingsUpdated(void)
{
const float dT = vtolPathFollowerSettings->UpdatePeriod / 1000.0f;
controlNE.UpdateParameters(vtolPathFollowerSettings->HorizontalVelPID.Kp,
vtolPathFollowerSettings->HorizontalVelPID.Ki,
vtolPathFollowerSettings->HorizontalVelPID.Kd,
vtolPathFollowerSettings->HorizontalVelPID.ILimit,
dT,
vtolPathFollowerSettings->HorizontalVelMax);
controlNE.UpdatePositionalParameters(vtolPathFollowerSettings->HorizontalPosP);
controlNE.UpdateCommandParameters(-vtolPathFollowerSettings->MaxRollPitch, vtolPathFollowerSettings->MaxRollPitch, vtolPathFollowerSettings->VelocityFeedforward);
}
int32_t VtolVelocityController::Initialize(VtolPathFollowerSettingsData *ptr_vtolPathFollowerSettings)
{
PIOS_Assert(ptr_vtolPathFollowerSettings);
vtolPathFollowerSettings = ptr_vtolPathFollowerSettings;
return 0;
}
void VtolVelocityController::UpdateVelocityDesired()
{
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
VelocityDesiredData velocityDesired;
controlNE.UpdateVelocityState(velocityState.North, velocityState.East);
velocityDesired.Down = 0.0f;
float north, east;
controlNE.GetVelocityDesired(&north, &east);
velocityDesired.North = north;
velocityDesired.East = east;
// update pathstatus
pathStatus->error = 0.0f;
pathStatus->fractional_progress = 0.0f;
pathStatus->path_direction_north = velocityDesired.North;
pathStatus->path_direction_east = velocityDesired.East;
pathStatus->path_direction_down = velocityDesired.Down;
pathStatus->correction_direction_north = velocityDesired.North - velocityState.North;
pathStatus->correction_direction_east = velocityDesired.East - velocityState.East;
pathStatus->correction_direction_down = 0.0f;
VelocityDesiredSet(&velocityDesired);
}
int8_t VtolVelocityController::UpdateStabilizationDesired(__attribute__((unused)) bool yaw_attitude, __attribute__((unused)) float yaw_direction)
{
uint8_t result = 1;
StabilizationDesiredData stabDesired;
AttitudeStateData attitudeState;
StabilizationBankData stabSettings;
float northCommand;
float eastCommand;
StabilizationDesiredGet(&stabDesired);
AttitudeStateGet(&attitudeState);
StabilizationBankGet(&stabSettings);
controlNE.GetNECommand(&northCommand, &eastCommand);
float angle_radians = DEG2RAD(attitudeState.Yaw);
float cos_angle = cosf(angle_radians);
float sine_angle = sinf(angle_radians);
float maxPitch = vtolPathFollowerSettings->MaxRollPitch;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.Pitch = boundf(-northCommand * cos_angle - eastCommand * sine_angle, -maxPitch, maxPitch);
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.Roll = boundf(-northCommand * sine_angle + eastCommand * cos_angle, -maxPitch, maxPitch);
ManualControlCommandData manualControl;
ManualControlCommandGet(&manualControl);
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
stabDesired.Yaw = stabSettings.MaximumRate.Yaw * manualControl.Yaw;
// default thrust mode to altvario
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_ALTITUDEVARIO;
StabilizationDesiredSet(&stabDesired);
return result;
}
void VtolVelocityController::UpdateAutoPilot()
{
UpdateVelocityDesired();
bool yaw_attitude = false;
float yaw = 0.0f;
int8_t result = UpdateStabilizationDesired(yaw_attitude, yaw);
if (!result) {
fallback_to_hold();
}
PathStatusSet(pathStatus);
}
void VtolVelocityController::fallback_to_hold(void)
{
PositionStateData positionState;
PositionStateGet(&positionState);
pathDesired->End.North = positionState.North;
pathDesired->End.East = positionState.East;
pathDesired->End.Down = positionState.Down;
pathDesired->Start.North = positionState.North;
pathDesired->Start.East = positionState.East;
pathDesired->Start.Down = positionState.Down;
pathDesired->StartingVelocity = 0.0f;
pathDesired->EndingVelocity = 0.0f;
pathDesired->Mode = PATHDESIRED_MODE_GOTOENDPOINT;
PathDesiredSet(pathDesired);
}

View File

@ -43,8 +43,11 @@
#include "waypoint.h"
#include "waypointactive.h"
#include "flightmodesettings.h"
#include <systemsettings.h>
#include "paths.h"
#include "plans.h"
#include <sanitycheck.h>
#include <vtolpathfollowersettings.h>
// Private constants
#define STACK_SIZE_BYTES 1024
@ -73,6 +76,7 @@ static uint8_t conditionAboveSpeed();
static uint8_t conditionPointingTowardsNext();
static uint8_t conditionPythonScript();
static uint8_t conditionImmediate();
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev);
// Private variables
@ -82,7 +86,10 @@ static WaypointActiveData waypointActive;
static WaypointData waypoint;
static PathActionData pathAction;
static bool pathplanner_active = false;
static FrameType_t frameType;
static bool mode3D;
extern FrameType_t GetCurrentFrameType();
/**
* Module initialization
@ -95,6 +102,9 @@ int32_t PathPlannerStart()
WaypointActiveConnectCallback(commandUpdated);
PathActionConnectCallback(commandUpdated);
PathStatusConnectCallback(statusUpdated);
SettingsUpdatedCb(NULL);
SystemSettingsConnectCallback(&SettingsUpdatedCb);
VtolPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
// Start main task callback
PIOS_CALLBACKSCHEDULER_Dispatch(pathPlannerHandle);
@ -125,6 +135,34 @@ int32_t PathPlannerInitialize()
MODULE_INITCALL(PathPlannerInitialize, PathPlannerStart);
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
uint8_t TreatCustomCraftAs;
VtolPathFollowerSettingsTreatCustomCraftAsGet(&TreatCustomCraftAs);
frameType = GetCurrentFrameType();
if (frameType == FRAME_TYPE_CUSTOM) {
switch (TreatCustomCraftAs) {
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_FIXEDWING:
frameType = FRAME_TYPE_FIXED_WING;
mode3D = true;
break;
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_VTOL:
frameType = FRAME_TYPE_MULTIROTOR;
mode3D = true;
break;
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_GROUND:
frameType = FRAME_TYPE_GROUND;
mode3D = false;
break;
}
}
}
/**
* Module task
*/
@ -160,22 +198,17 @@ static void pathPlannerTask()
static uint8_t failsafeRTHset = 0;
if (!validPathPlan) {
// At this point the craft is in PathPlanner mode, so pilot has no manual control capability.
// Failsafe: behave as if in return to base mode
// what to do in this case is debatable, it might be better to just
// make a forced disarming but rth has a higher chance of survival when
// in flight.
pathplanner_active = false;
if (!failsafeRTHset) {
failsafeRTHset = 1;
// copy pasta: same calculation as in manualcontrol, set return to home coordinates
plan_setup_positionHold();
}
AlarmsSet(SYSTEMALARMS_ALARM_PATHPLAN, SYSTEMALARMS_ALARM_CRITICAL);
return;
}
failsafeRTHset = 0;
AlarmsClear(SYSTEMALARMS_ALARM_PATHPLAN);
@ -525,7 +558,7 @@ static uint8_t conditionLegRemaining()
struct path_status progress;
path_progress(&pathDesired,
cur, &progress);
cur, &progress, mode3D);
if (progress.fractional_progress >= 1.0f - pathAction.ConditionParameters[0]) {
return true;
}
@ -549,7 +582,7 @@ static uint8_t conditionBelowError()
struct path_status progress;
path_progress(&pathDesired,
cur, &progress);
cur, &progress, mode3D);
if (progress.error <= pathAction.ConditionParameters[0]) {
return true;
}

View File

@ -108,8 +108,8 @@ static void radioRxTask(void *parameters);
static void PPMInputTask(void *parameters);
static int32_t UAVTalkSendHandler(uint8_t *buf, int32_t length);
static int32_t RadioSendHandler(uint8_t *buf, int32_t length);
static void ProcessTelemetryStream(UAVTalkConnection inConnectionHandle, UAVTalkConnection outConnectionHandle, uint8_t rxbyte);
static void ProcessRadioStream(UAVTalkConnection inConnectionHandle, UAVTalkConnection outConnectionHandle, uint8_t rxbyte);
static void ProcessTelemetryStream(UAVTalkConnection inConnectionHandle, UAVTalkConnection outConnectionHandle, uint8_t *rxbuffer, uint8_t count);
static void ProcessRadioStream(UAVTalkConnection inConnectionHandle, UAVTalkConnection outConnectionHandle, uint8_t *rxbuffer, uint8_t count);
static void objectPersistenceUpdatedCb(UAVObjEvent *objEv);
static void registerObject(UAVObjHandle obj);
@ -403,14 +403,12 @@ static void radioRxTask(__attribute__((unused)) void *parameters)
PIOS_WDG_UpdateFlag(PIOS_WDG_RADIORX);
#endif
if (PIOS_COM_RADIO) {
uint8_t serial_data[1];
uint8_t serial_data[16];
uint16_t bytes_to_process = PIOS_COM_ReceiveBuffer(PIOS_COM_RADIO, serial_data, sizeof(serial_data), MAX_PORT_DELAY);
if (bytes_to_process > 0) {
if (data->parseUAVTalk) {
// Pass the data through the UAVTalk parser.
for (uint8_t i = 0; i < bytes_to_process; i++) {
ProcessRadioStream(data->radioUAVTalkCon, data->telemUAVTalkCon, serial_data[i]);
}
ProcessRadioStream(data->radioUAVTalkCon, data->telemUAVTalkCon, serial_data, bytes_to_process);
} else if (PIOS_COM_TELEMETRY) {
// Send the data straight to the telemetry port.
// Following call can fail with -2 error code (buffer full) or -3 error code (could not acquire send mutex)
@ -448,12 +446,10 @@ static void telemetryRxTask(__attribute__((unused)) void *parameters)
}
#endif /* PIOS_INCLUDE_USB */
if (inputPort) {
uint8_t serial_data[1];
uint8_t serial_data[16];
uint16_t bytes_to_process = PIOS_COM_ReceiveBuffer(inputPort, serial_data, sizeof(serial_data), MAX_PORT_DELAY);
if (bytes_to_process > 0) {
for (uint8_t i = 0; i < bytes_to_process; i++) {
ProcessTelemetryStream(data->telemUAVTalkCon, data->radioUAVTalkCon, serial_data[i]);
}
ProcessTelemetryStream(data->telemUAVTalkCon, data->radioUAVTalkCon, serial_data, bytes_to_process);
}
} else {
vTaskDelay(5);
@ -597,42 +593,45 @@ static int32_t RadioSendHandler(uint8_t *buf, int32_t length)
* @param[in] outConnectionHandle The UAVTalk connection handle on the radio port.
* @param[in] rxbyte The received byte.
*/
static void ProcessTelemetryStream(UAVTalkConnection inConnectionHandle, UAVTalkConnection outConnectionHandle, uint8_t rxbyte)
static void ProcessTelemetryStream(UAVTalkConnection inConnectionHandle, UAVTalkConnection outConnectionHandle, uint8_t *rxbuffer, uint8_t length)
{
// Keep reading until we receive a completed packet.
UAVTalkRxState state = UAVTalkProcessInputStreamQuiet(inConnectionHandle, rxbyte);
uint8_t position = 0;
if (state == UAVTALK_STATE_COMPLETE) {
// We only want to unpack certain telemetry objects
uint32_t objId = UAVTalkGetPacketObjId(inConnectionHandle);
switch (objId) {
case OPLINKSTATUS_OBJID:
case OPLINKSETTINGS_OBJID:
case OPLINKRECEIVER_OBJID:
case MetaObjectId(OPLINKSTATUS_OBJID):
case MetaObjectId(OPLINKSETTINGS_OBJID):
case MetaObjectId(OPLINKRECEIVER_OBJID):
UAVTalkReceiveObject(inConnectionHandle);
break;
case OBJECTPERSISTENCE_OBJID:
case MetaObjectId(OBJECTPERSISTENCE_OBJID):
// receive object locally
// some objects will send back a response to telemetry
// FIXME:
// OPLM will ack or nack all objects requests and acked object sends
// Receiver will probably also ack / nack the same messages
// This has some consequences like :
// Second ack/nack will not match an open transaction or will apply to wrong transaction
// Question : how does GCS handle receiving the same object twice
// The OBJECTPERSISTENCE logic can be broken too if for example OPLM nacks and then REVO acks...
UAVTalkReceiveObject(inConnectionHandle);
// relay packet to remote modem
UAVTalkRelayPacket(inConnectionHandle, outConnectionHandle);
break;
default:
// all other packets are relayed to the remote modem
UAVTalkRelayPacket(inConnectionHandle, outConnectionHandle);
break;
// Keep reading until we receive a completed packet.
while (position < length) {
UAVTalkRxState state = UAVTalkProcessInputStreamQuiet(inConnectionHandle, rxbuffer, length, &position);
if (state == UAVTALK_STATE_COMPLETE) {
// We only want to unpack certain telemetry objects
uint32_t objId = UAVTalkGetPacketObjId(inConnectionHandle);
switch (objId) {
case OPLINKSTATUS_OBJID:
case OPLINKSETTINGS_OBJID:
case OPLINKRECEIVER_OBJID:
case MetaObjectId(OPLINKSTATUS_OBJID):
case MetaObjectId(OPLINKSETTINGS_OBJID):
case MetaObjectId(OPLINKRECEIVER_OBJID):
UAVTalkReceiveObject(inConnectionHandle);
break;
case OBJECTPERSISTENCE_OBJID:
case MetaObjectId(OBJECTPERSISTENCE_OBJID):
// receive object locally
// some objects will send back a response to telemetry
// FIXME:
// OPLM will ack or nack all objects requests and acked object sends
// Receiver will probably also ack / nack the same messages
// This has some consequences like :
// Second ack/nack will not match an open transaction or will apply to wrong transaction
// Question : how does GCS handle receiving the same object twice
// The OBJECTPERSISTENCE logic can be broken too if for example OPLM nacks and then REVO acks...
UAVTalkReceiveObject(inConnectionHandle);
// relay packet to remote modem
UAVTalkRelayPacket(inConnectionHandle, outConnectionHandle);
break;
default:
// all other packets are relayed to the remote modem
UAVTalkRelayPacket(inConnectionHandle, outConnectionHandle);
break;
}
}
}
}
@ -642,39 +641,43 @@ static void ProcessTelemetryStream(UAVTalkConnection inConnectionHandle, UAVTalk
*
* @param[in] inConnectionHandle The UAVTalk connection handle on the radio port.
* @param[in] outConnectionHandle The UAVTalk connection handle on the telemetry port.
* @param[in] rxbyte The received byte.
* @param[in] rxbuffer The received buffer.
* @param[in] length buffer length
*/
static void ProcessRadioStream(UAVTalkConnection inConnectionHandle, UAVTalkConnection outConnectionHandle, uint8_t rxbyte)
static void ProcessRadioStream(UAVTalkConnection inConnectionHandle, UAVTalkConnection outConnectionHandle, uint8_t *rxbuffer, uint8_t length)
{
// Keep reading until we receive a completed packet.
UAVTalkRxState state = UAVTalkProcessInputStreamQuiet(inConnectionHandle, rxbyte);
uint8_t position = 0;
if (state == UAVTALK_STATE_COMPLETE) {
// We only want to unpack certain objects from the remote modem
// Similarly we only want to relay certain objects to the telemetry port
uint32_t objId = UAVTalkGetPacketObjId(inConnectionHandle);
switch (objId) {
case OPLINKSTATUS_OBJID:
case OPLINKSETTINGS_OBJID:
case MetaObjectId(OPLINKSTATUS_OBJID):
case MetaObjectId(OPLINKSETTINGS_OBJID):
// Ignore object...
// These objects are shadowed by the modem and are not transmitted to the telemetry port
// - OPLINKSTATUS_OBJID : ground station will receive the OPLM link status instead
// - OPLINKSETTINGS_OBJID : ground station will read and write the OPLM settings instead
break;
case OPLINKRECEIVER_OBJID:
case MetaObjectId(OPLINKRECEIVER_OBJID):
// Receive object locally
// These objects are received by the modem and are not transmitted to the telemetry port
// - OPLINKRECEIVER_OBJID : not sure why
// some objects will send back a response to the remote modem
UAVTalkReceiveObject(inConnectionHandle);
break;
default:
// all other packets are relayed to the telemetry port
UAVTalkRelayPacket(inConnectionHandle, outConnectionHandle);
break;
// Keep reading until we receive a completed packet.
while (position < length) {
UAVTalkRxState state = UAVTalkProcessInputStreamQuiet(inConnectionHandle, rxbuffer, length, &position);
if (state == UAVTALK_STATE_COMPLETE) {
// We only want to unpack certain objects from the remote modem
// Similarly we only want to relay certain objects to the telemetry port
uint32_t objId = UAVTalkGetPacketObjId(inConnectionHandle);
switch (objId) {
case OPLINKSTATUS_OBJID:
case OPLINKSETTINGS_OBJID:
case MetaObjectId(OPLINKSTATUS_OBJID):
case MetaObjectId(OPLINKSETTINGS_OBJID):
// Ignore object...
// These objects are shadowed by the modem and are not transmitted to the telemetry port
// - OPLINKSTATUS_OBJID : ground station will receive the OPLM link status instead
// - OPLINKSETTINGS_OBJID : ground station will read and write the OPLM settings instead
break;
case OPLINKRECEIVER_OBJID:
case MetaObjectId(OPLINKRECEIVER_OBJID):
// Receive object locally
// These objects are received by the modem and are not transmitted to the telemetry port
// - OPLINKRECEIVER_OBJID : not sure why
// some objects will send back a response to the remote modem
UAVTalkReceiveObject(inConnectionHandle);
break;
default:
// all other packets are relayed to the telemetry port
UAVTalkRelayPacket(inConnectionHandle, outConnectionHandle);
break;
}
}
}
}

View File

@ -41,10 +41,12 @@
#include <flighttelemetrystats.h>
#ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
#include <stabilizationsettings.h>
#include <vtolpathfollowersettings.h>
#endif
#include <flightmodesettings.h>
#include <systemsettings.h>
#include <taskinfo.h>
#include <sanitycheck.h>
#if defined(PIOS_INCLUDE_USB_RCTX)
@ -72,6 +74,7 @@
// Private variables
static xTaskHandle taskHandle;
static portTickType lastSysTime;
static FrameType_t frameType = FRAME_TYPE_MULTIROTOR;
#ifdef USE_INPUT_LPF
static portTickType lastSysTimeLPF;
@ -84,6 +87,7 @@ static float scaleChannel(int16_t value, int16_t max, int16_t min, int16_t neutr
static uint32_t timeDifferenceMs(portTickType start_time, portTickType end_time);
static bool validInputRange(int16_t min, int16_t max, uint16_t value);
static void applyDeadband(float *value, float deadband);
static void SettingsUpdatedCb(UAVObjEvent *ev);
#ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
static uint8_t isAssistedFlightMode(uint8_t position);
@ -124,6 +128,7 @@ int32_t ReceiverStart()
#ifdef PIOS_INCLUDE_WDG
PIOS_WDG_RegisterFlag(PIOS_WDG_MANUAL);
#endif
SettingsUpdatedCb(NULL);
return 0;
}
@ -141,13 +146,43 @@ int32_t ReceiverInitialize()
ManualControlSettingsInitialize();
#ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
StabilizationSettingsInitialize();
VtolPathFollowerSettingsInitialize();
VtolPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
#endif
SystemSettingsInitialize();
SystemSettingsConnectCallback(&SettingsUpdatedCb);
return 0;
}
MODULE_INITCALL(ReceiverInitialize, ReceiverStart);
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
frameType = GetCurrentFrameType();
#ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
uint8_t TreatCustomCraftAs;
VtolPathFollowerSettingsTreatCustomCraftAsGet(&TreatCustomCraftAs);
if (frameType == FRAME_TYPE_CUSTOM) {
switch (TreatCustomCraftAs) {
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_FIXEDWING:
frameType = FRAME_TYPE_FIXED_WING;
break;
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_VTOL:
frameType = FRAME_TYPE_MULTIROTOR;
break;
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_GROUND:
frameType = FRAME_TYPE_GROUND;
break;
}
}
#endif
}
/**
* Module task
*/
@ -243,22 +278,16 @@ static void receiverTask(__attribute__((unused)) void *parameters)
}
}
// Check settings, if error raise alarm
if (settings.ChannelGroups.Roll >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE
|| settings.ChannelGroups.Pitch >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE
|| settings.ChannelGroups.Yaw >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE
// Sanity Check Throttle and Yaw
if (settings.ChannelGroups.Yaw >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE
|| settings.ChannelGroups.Throttle >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE
||
// Check all channel mappings are valid
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL] == (uint16_t)PIOS_RCVR_INVALID
|| cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH] == (uint16_t)PIOS_RCVR_INVALID
|| cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW] == (uint16_t)PIOS_RCVR_INVALID
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW] == (uint16_t)PIOS_RCVR_INVALID
|| cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE] == (uint16_t)PIOS_RCVR_INVALID
||
// Check the driver exists
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL] == (uint16_t)PIOS_RCVR_NODRIVER
|| cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH] == (uint16_t)PIOS_RCVR_NODRIVER
|| cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW] == (uint16_t)PIOS_RCVR_NODRIVER
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW] == (uint16_t)PIOS_RCVR_NODRIVER
|| cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE] == (uint16_t)PIOS_RCVR_NODRIVER
||
// Check collective if required
@ -282,15 +311,39 @@ static void receiverTask(__attribute__((unused)) void *parameters)
continue;
}
if (frameType != FRAME_TYPE_GROUND) {
// Sanity Check Pitch and Roll
if (settings.ChannelGroups.Roll >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE
|| settings.ChannelGroups.Pitch >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE
||
// Check all channel mappings are valid
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL] == (uint16_t)PIOS_RCVR_INVALID
|| cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH] == (uint16_t)PIOS_RCVR_INVALID
||
// Check the driver exists
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL] == (uint16_t)PIOS_RCVR_NODRIVER
|| cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH] == (uint16_t)PIOS_RCVR_NODRIVER) {
AlarmsSet(SYSTEMALARMS_ALARM_RECEIVER, SYSTEMALARMS_ALARM_CRITICAL);
cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_FALSE;
ManualControlCommandSet(&cmd);
continue;
}
}
// decide if we have valid manual input or not
valid_input_detected &= validInputRange(settings.ChannelMin.Throttle,
settings.ChannelMax.Throttle, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE])
&& validInputRange(settings.ChannelMin.Roll,
settings.ChannelMax.Roll, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL])
&& validInputRange(settings.ChannelMin.Yaw,
settings.ChannelMax.Yaw, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW])
&& validInputRange(settings.ChannelMin.Pitch,
settings.ChannelMax.Pitch, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH]);
settings.ChannelMax.Yaw, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW]);
if (frameType != FRAME_TYPE_GROUND) {
valid_input_detected &= validInputRange(settings.ChannelMin.Roll,
settings.ChannelMax.Roll, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL])
&& validInputRange(settings.ChannelMin.Pitch,
settings.ChannelMax.Pitch, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH]);
}
if (settings.ChannelGroups.Collective != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
valid_input_detected &= validInputRange(settings.ChannelMin.Collective,
@ -321,10 +374,14 @@ static void receiverTask(__attribute__((unused)) void *parameters)
}
if (cmd.Connected == MANUALCONTROLCOMMAND_CONNECTED_FALSE) {
cmd.Throttle = settings.FailsafeChannel.Throttle;
cmd.Roll = settings.FailsafeChannel.Roll;
cmd.Pitch = settings.FailsafeChannel.Pitch;
cmd.Yaw = settings.FailsafeChannel.Yaw;
if (frameType != FRAME_TYPE_GROUND) {
cmd.Throttle = settings.FailsafeChannel.Throttle;
} else {
cmd.Throttle = 0.0f;
}
cmd.Roll = settings.FailsafeChannel.Roll;
cmd.Pitch = settings.FailsafeChannel.Pitch;
cmd.Yaw = settings.FailsafeChannel.Yaw;
cmd.Collective = settings.FailsafeChannel.Collective;
switch (thrustType) {
case SYSTEMSETTINGS_THRUSTCONTROL_THROTTLE:
@ -401,6 +458,9 @@ static void receiverTask(__attribute__((unused)) void *parameters)
applyDeadband(&cmd.Roll, deadband_checked);
applyDeadband(&cmd.Pitch, deadband_checked);
applyDeadband(&cmd.Yaw, deadband_checked);
if (frameType == FRAME_TYPE_GROUND) { // assumes reversible motors
applyDeadband(&cmd.Throttle, deadband_checked);
}
}
#ifdef USE_INPUT_LPF
// Apply Low Pass Filter to input channels, time delta between calls in ms

View File

@ -411,9 +411,9 @@ static void handleAccel(float *samples, float temperature)
AccelSensorData accelSensorData;
updateAccelTempBias(temperature);
float accels_out[3] = { samples[0] * agcal.accel_scale.X - agcal.accel_bias.X - accel_temp_bias[0],
samples[1] * agcal.accel_scale.Y - agcal.accel_bias.Y - accel_temp_bias[1],
samples[2] * agcal.accel_scale.Z - agcal.accel_bias.Z - accel_temp_bias[2] };
float accels_out[3] = { (samples[0] - agcal.accel_bias.X) * agcal.accel_scale.X - accel_temp_bias[0],
(samples[1] - agcal.accel_bias.Y) * agcal.accel_scale.Y - accel_temp_bias[1],
(samples[2] - agcal.accel_bias.Z) * agcal.accel_scale.Z - accel_temp_bias[2] };
rot_mult(R, accels_out, samples);
accelSensorData.x = samples[0];
@ -485,7 +485,10 @@ static void updateAccelTempBias(float temperature)
if ((accel_temp_calibrated) && !accel_temp_calibration_count) {
accel_temp_calibration_count = TEMP_CALIB_INTERVAL;
if (accel_temp_calibrated) {
float ctemp = boundf(accel_temperature, agcal.temp_calibrated_extent.max, agcal.temp_calibrated_extent.min);
float ctemp = boundf(accel_temperature,
agcal.temp_calibrated_extent.max,
agcal.temp_calibrated_extent.min);
accel_temp_bias[0] = agcal.accel_temp_coeff.X * ctemp;
accel_temp_bias[1] = agcal.accel_temp_coeff.Y * ctemp;
accel_temp_bias[2] = agcal.accel_temp_coeff.Z * ctemp;
@ -588,8 +591,12 @@ static void settingsUpdatedCb(__attribute__((unused)) UAVObjEvent *objEv)
RevoSettingsBaroTempCorrectionPolynomialGet(&baroCorrection);
RevoSettingsBaroTempCorrectionExtentGet(&baroCorrectionExtent);
baro_temp_correction_enabled = !(baroCorrectionExtent.max - baroCorrectionExtent.min < 0.1f ||
(baroCorrection.a < 1e-9f && baroCorrection.b < 1e-9f && baroCorrection.c < 1e-9f && baroCorrection.d < 1e-9f));
baro_temp_correction_enabled =
(baroCorrectionExtent.max - baroCorrectionExtent.min > 0.1f &&
(fabsf(baroCorrection.a) > 1e-9f ||
fabsf(baroCorrection.b) > 1e-9f ||
fabsf(baroCorrection.c) > 1e-9f ||
fabsf(baroCorrection.d) > 1e-9f));
}
/**
* @}

View File

@ -345,7 +345,6 @@ MODULE_INITCALL(StateEstimationInitialize, StateEstimationStart);
*/
static void StateEstimationCb(void)
{
static enum { RUNSTATE_LOAD = 0, RUNSTATE_FILTER = 1, RUNSTATE_SAVE = 2 } runState = RUNSTATE_LOAD;
static filterResult alarm = FILTERRESULT_OK;
static filterResult lastAlarm = FILTERRESULT_UNINITIALISED;
static uint16_t alarmcounter = 0;
@ -361,193 +360,171 @@ static void StateEstimationCb(void)
return;
}
switch (runState) {
case RUNSTATE_LOAD:
alarm = FILTERRESULT_OK;
alarm = FILTERRESULT_OK;
// set alarm to warning if called through timeout
if (updatedSensors == 0) {
if (PIOS_DELAY_DiffuS(last_time) > 1000 * TIMEOUT_MS) {
alarm = FILTERRESULT_WARNING;
}
} else {
last_time = PIOS_DELAY_GetRaw();
// set alarm to warning if called through timeout
if (updatedSensors == 0) {
if (PIOS_DELAY_DiffuS(last_time) > 1000 * TIMEOUT_MS) {
alarm = FILTERRESULT_WARNING;
}
} else {
last_time = PIOS_DELAY_GetRaw();
}
// check if a new filter chain should be initialized
if (fusionAlgorithm != revoSettings.FusionAlgorithm) {
FlightStatusData fs;
FlightStatusGet(&fs);
if (fs.Armed == FLIGHTSTATUS_ARMED_DISARMED || fusionAlgorithm == FILTER_INIT_FORCE) {
const filterPipeline *newFilterChain;
switch (revoSettings.FusionAlgorithm) {
case REVOSETTINGS_FUSIONALGORITHM_BASICCOMPLEMENTARY:
newFilterChain = cfQueue;
break;
case REVOSETTINGS_FUSIONALGORITHM_COMPLEMENTARYMAG:
newFilterChain = cfmiQueue;
break;
case REVOSETTINGS_FUSIONALGORITHM_COMPLEMENTARYMAGGPSOUTDOOR:
newFilterChain = cfmQueue;
break;
case REVOSETTINGS_FUSIONALGORITHM_INS13INDOOR:
newFilterChain = ekf13iQueue;
break;
case REVOSETTINGS_FUSIONALGORITHM_GPSNAVIGATIONINS13:
newFilterChain = ekf13Queue;
break;
default:
newFilterChain = NULL;
}
// initialize filters in chain
current = newFilterChain;
bool error = 0;
while (current != NULL) {
int32_t result = current->filter->init((stateFilter *)current->filter);
if (result != 0) {
error = 1;
break;
}
current = current->next;
}
if (error) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
return;
} else {
// set new fusion algortithm
filterChain = newFilterChain;
fusionAlgorithm = revoSettings.FusionAlgorithm;
}
}
}
// read updated sensor UAVObjects and set initial state
states.updated = updatedSensors;
updatedSensors = 0;
// fetch sensors, check values, and load into state struct
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(GyroSensor, gyro, x, y, z);
if (IS_SET(states.updated, SENSORUPDATES_gyro)) {
gyroRaw[0] = states.gyro[0];
gyroRaw[1] = states.gyro[1];
gyroRaw[2] = states.gyro[2];
}
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(AccelSensor, accel, x, y, z);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(MagSensor, boardMag, x, y, z);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(AuxMagSensor, auxMag, x, y, z);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(GPSVelocitySensor, vel, North, East, Down);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_1_DIMENSION_WITH_CUSTOM_EXTRA_CHECK(BaroSensor, baro, Altitude, true);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_2_DIMENSION_WITH_CUSTOM_EXTRA_CHECK(AirspeedSensor, airspeed, CalibratedAirspeed, TrueAirspeed, s.SensorConnected == AIRSPEEDSENSOR_SENSORCONNECTED_TRUE);
// GPS position data (LLA) is not fetched here since it does not contain floats. The filter must do all checks itself
// at this point sensor state is stored in "states" with some rudimentary filtering applied
// apply all filters in the current filter chain
current = filterChain;
// we are not done, re-dispatch self execution
runState = RUNSTATE_FILTER;
PIOS_CALLBACKSCHEDULER_Dispatch(stateEstimationCallback);
break;
case RUNSTATE_FILTER:
if (current != NULL) {
filterResult result = current->filter->filter((stateFilter *)current->filter, &states);
if (result > alarm) {
alarm = result;
}
current = current->next;
}
// we are not done, re-dispatch self execution
if (!current) {
runState = RUNSTATE_SAVE;
}
PIOS_CALLBACKSCHEDULER_Dispatch(stateEstimationCallback);
break;
case RUNSTATE_SAVE:
// the final output of filters is saved in state variables
// EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(GyroState, gyro, x, y, z) // replaced by performance shortcut
if (IS_SET(states.updated, SENSORUPDATES_gyro)) {
gyroDelta[0] = states.gyro[0] - gyroRaw[0];
gyroDelta[1] = states.gyro[1] - gyroRaw[1];
gyroDelta[2] = states.gyro[2] - gyroRaw[2];
}
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(AccelState, accel, x, y, z);
if (IS_SET(states.updated, SENSORUPDATES_mag)) {
MagStateData s;
MagStateGet(&s);
s.x = states.mag[0];
s.y = states.mag[1];
s.z = states.mag[2];
switch (states.magStatus) {
case MAGSTATUS_OK:
s.Source = MAGSTATE_SOURCE_ONBOARD;
// check if a new filter chain should be initialized
if (fusionAlgorithm != revoSettings.FusionAlgorithm) {
FlightStatusData fs;
FlightStatusGet(&fs);
if (fs.Armed == FLIGHTSTATUS_ARMED_DISARMED || fusionAlgorithm == FILTER_INIT_FORCE) {
const filterPipeline *newFilterChain;
switch ((RevoSettingsFusionAlgorithmOptions)revoSettings.FusionAlgorithm) {
case REVOSETTINGS_FUSIONALGORITHM_BASICCOMPLEMENTARY:
newFilterChain = cfQueue;
break;
case MAGSTATUS_AUX:
s.Source = MAGSTATE_SOURCE_AUX;
case REVOSETTINGS_FUSIONALGORITHM_COMPLEMENTARYMAG:
newFilterChain = cfmiQueue;
break;
case REVOSETTINGS_FUSIONALGORITHM_COMPLEMENTARYMAGGPSOUTDOOR:
newFilterChain = cfmQueue;
break;
case REVOSETTINGS_FUSIONALGORITHM_INS13INDOOR:
newFilterChain = ekf13iQueue;
break;
case REVOSETTINGS_FUSIONALGORITHM_GPSNAVIGATIONINS13:
newFilterChain = ekf13Queue;
break;
default:
s.Source = MAGSTATE_SOURCE_INVALID;
newFilterChain = NULL;
}
// initialize filters in chain
current = newFilterChain;
bool error = 0;
while (current != NULL) {
int32_t result = current->filter->init((stateFilter *)current->filter);
if (result != 0) {
error = 1;
break;
}
current = current->next;
}
if (error) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
return;
} else {
// set new fusion algortithm
filterChain = newFilterChain;
fusionAlgorithm = revoSettings.FusionAlgorithm;
}
MagStateSet(&s);
}
}
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(PositionState, pos, North, East, Down);
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(VelocityState, vel, North, East, Down);
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_2_DIMENSIONS(AirspeedState, airspeed, CalibratedAirspeed, TrueAirspeed);
// attitude nees manual conversion from quaternion to euler
if (IS_SET(states.updated, SENSORUPDATES_attitude)) { \
AttitudeStateData s;
AttitudeStateGet(&s);
s.q1 = states.attitude[0];
s.q2 = states.attitude[1];
s.q3 = states.attitude[2];
s.q4 = states.attitude[3];
Quaternion2RPY(&s.q1, &s.Roll);
AttitudeStateSet(&s);
// read updated sensor UAVObjects and set initial state
states.updated = updatedSensors;
updatedSensors = 0;
// fetch sensors, check values, and load into state struct
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(GyroSensor, gyro, x, y, z);
if (IS_SET(states.updated, SENSORUPDATES_gyro)) {
gyroRaw[0] = states.gyro[0];
gyroRaw[1] = states.gyro[1];
gyroRaw[2] = states.gyro[2];
}
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(AccelSensor, accel, x, y, z);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(MagSensor, boardMag, x, y, z);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(AuxMagSensor, auxMag, x, y, z);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(GPSVelocitySensor, vel, North, East, Down);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_1_DIMENSION_WITH_CUSTOM_EXTRA_CHECK(BaroSensor, baro, Altitude, true);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_2_DIMENSION_WITH_CUSTOM_EXTRA_CHECK(AirspeedSensor, airspeed, CalibratedAirspeed, TrueAirspeed, s.SensorConnected == AIRSPEEDSENSOR_SENSORCONNECTED_TRUE);
// GPS position data (LLA) is not fetched here since it does not contain floats. The filter must do all checks itself
// at this point sensor state is stored in "states" with some rudimentary filtering applied
// apply all filters in the current filter chain
current = filterChain;
// we are not done, re-dispatch self execution
while (current) {
filterResult result = current->filter->filter((stateFilter *)current->filter, &states);
if (result > alarm) {
alarm = result;
}
current = current->next;
}
// throttle alarms, raise alarm flags immediately
// but require system to run for a while before decreasing
// to prevent alarm flapping
if (alarm >= lastAlarm) {
// the final output of filters is saved in state variables
// EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(GyroState, gyro, x, y, z) // replaced by performance shortcut
if (IS_SET(states.updated, SENSORUPDATES_gyro)) {
gyroDelta[0] = states.gyro[0] - gyroRaw[0];
gyroDelta[1] = states.gyro[1] - gyroRaw[1];
gyroDelta[2] = states.gyro[2] - gyroRaw[2];
}
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(AccelState, accel, x, y, z);
if (IS_SET(states.updated, SENSORUPDATES_mag)) {
MagStateData s;
MagStateGet(&s);
s.x = states.mag[0];
s.y = states.mag[1];
s.z = states.mag[2];
switch (states.magStatus) {
case MAGSTATUS_OK:
s.Source = MAGSTATE_SOURCE_ONBOARD;
break;
case MAGSTATUS_AUX:
s.Source = MAGSTATE_SOURCE_AUX;
break;
default:
s.Source = MAGSTATE_SOURCE_INVALID;
}
MagStateSet(&s);
}
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(PositionState, pos, North, East, Down);
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(VelocityState, vel, North, East, Down);
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_2_DIMENSIONS(AirspeedState, airspeed, CalibratedAirspeed, TrueAirspeed);
// attitude nees manual conversion from quaternion to euler
if (IS_SET(states.updated, SENSORUPDATES_attitude)) { \
AttitudeStateData s;
AttitudeStateGet(&s);
s.q1 = states.attitude[0];
s.q2 = states.attitude[1];
s.q3 = states.attitude[2];
s.q4 = states.attitude[3];
Quaternion2RPY(&s.q1, &s.Roll);
AttitudeStateSet(&s);
}
// throttle alarms, raise alarm flags immediately
// but require system to run for a while before decreasing
// to prevent alarm flapping
if (alarm >= lastAlarm) {
lastAlarm = alarm;
alarmcounter = 0;
} else {
if (alarmcounter < 100) {
alarmcounter++;
} else {
lastAlarm = alarm;
alarmcounter = 0;
} else {
if (alarmcounter < 100) {
alarmcounter++;
} else {
lastAlarm = alarm;
alarmcounter = 0;
}
}
}
// clear alarms if everything is alright, then schedule callback execution after timeout
if (lastAlarm == FILTERRESULT_WARNING) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_WARNING);
} else if (lastAlarm == FILTERRESULT_CRITICAL) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_CRITICAL);
} else if (lastAlarm >= FILTERRESULT_ERROR) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
}
// clear alarms if everything is alright, then schedule callback execution after timeout
if (lastAlarm == FILTERRESULT_WARNING) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_WARNING);
} else if (lastAlarm == FILTERRESULT_CRITICAL) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_CRITICAL);
} else if (lastAlarm >= FILTERRESULT_ERROR) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
}
// we are done, re-schedule next self execution
runState = RUNSTATE_LOAD;
if (updatedSensors) {
PIOS_CALLBACKSCHEDULER_Dispatch(stateEstimationCallback);
} else {
PIOS_CALLBACKSCHEDULER_Schedule(stateEstimationCallback, TIMEOUT_MS, CALLBACK_UPDATEMODE_SOONER);
}
break;
if (updatedSensors) {
PIOS_CALLBACKSCHEDULER_Dispatch(stateEstimationCallback);
} else {
PIOS_CALLBACKSCHEDULER_Schedule(stateEstimationCallback, TIMEOUT_MS, CALLBACK_UPDATEMODE_SOONER);
}
}

View File

@ -130,8 +130,10 @@ int32_t TelemetryStart(void)
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_TELEMETRYRX, telemetryRxTaskHandle);
#ifdef PIOS_INCLUDE_RFM22B
xTaskCreate(radioRxTask, "RadioRx", STACK_SIZE_RADIO_RX_BYTES / 4, NULL, TASK_PRIORITY_RADRX, &radioRxTaskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_RADIORX, radioRxTaskHandle);
if (radioPort) {
xTaskCreate(radioRxTask, "RadioRx", STACK_SIZE_RADIO_RX_BYTES / 4, NULL, TASK_PRIORITY_RADRX, &radioRxTaskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_RADIORX, radioRxTaskHandle);
}
#endif
return 0;
@ -432,14 +434,12 @@ static void telemetryRxTask(__attribute__((unused)) void *parameters)
if (inputPort) {
// Block until data are available
uint8_t serial_data[1];
uint8_t serial_data[16];
uint16_t bytes_to_process;
bytes_to_process = PIOS_COM_ReceiveBuffer(inputPort, serial_data, sizeof(serial_data), 500);
if (bytes_to_process > 0) {
for (uint8_t i = 0; i < bytes_to_process; i++) {
UAVTalkProcessInputStream(uavTalkCon, serial_data[i]);
}
UAVTalkProcessInputStream(uavTalkCon, serial_data, bytes_to_process);
}
} else {
vTaskDelay(5);
@ -457,14 +457,12 @@ static void radioRxTask(__attribute__((unused)) void *parameters)
while (1) {
if (radioPort) {
// Block until data are available
uint8_t serial_data[1];
uint8_t serial_data[16];
uint16_t bytes_to_process;
bytes_to_process = PIOS_COM_ReceiveBuffer(radioPort, serial_data, sizeof(serial_data), 500);
if (bytes_to_process > 0) {
for (uint8_t i = 0; i < bytes_to_process; i++) {
UAVTalkProcessInputStream(radioUavTalkCon, serial_data[i]);
}
UAVTalkProcessInputStream(radioUavTalkCon, serial_data, bytes_to_process);
}
} else {
vTaskDelay(5);

View File

@ -42,7 +42,9 @@
#ifndef PIOS_MS5611_SLOW_TEMP_RATE
#define PIOS_MS5611_SLOW_TEMP_RATE 1
#endif
// Running moving average smoothing factor
#define PIOS_MS5611_TEMP_SMOOTHING 10
//
/* Local Types */
typedef struct {
uint16_t C[6];
@ -72,6 +74,7 @@ static uint32_t RawTemperature;
static uint32_t RawPressure;
static int64_t Pressure;
static int64_t Temperature;
static int64_t FilteredTemperature = INT32_MIN;
static int32_t lastConversionStart;
static uint32_t conversionDelayMs;
@ -247,6 +250,12 @@ int32_t PIOS_MS5611_ReadADC(void)
// Actual temperature (-40…85°C with 0.01°C resolution)
// TEMP = 20°C + dT * TEMPSENS = 2000 + dT * C6 / 2^23
Temperature = 2000l + ((deltaTemp * CalibData.C[5]) / POW2(23));
if (FilteredTemperature != INT32_MIN) {
FilteredTemperature = (FilteredTemperature * (PIOS_MS5611_TEMP_SMOOTHING - 1)
+ Temperature) / PIOS_MS5611_TEMP_SMOOTHING;
} else {
FilteredTemperature = Temperature;
}
} else {
int64_t Offset;
int64_t Sens;
@ -259,21 +268,21 @@ int32_t PIOS_MS5611_ReadADC(void)
return -2;
}
// check if temperature is less than 20°C
if (Temperature < 2000) {
if (FilteredTemperature < 2000) {
// Apply compensation
// T2 = dT^2 / 2^31
// OFF2 = 5 ⋅ (TEMP 2000)^2/2
// SENS2 = 5 ⋅ (TEMP 2000)^2/2^2
int64_t tcorr = (Temperature - 2000) * (Temperature - 2000);
int64_t tcorr = (FilteredTemperature - 2000) * (FilteredTemperature - 2000);
Offset2 = (5 * tcorr) / 2;
Sens2 = (5 * tcorr) / 4;
compensation_t2 = (deltaTemp * deltaTemp) >> 31;
// Apply the "Very low temperature compensation" when temp is less than -15°C
if (Temperature < -1500) {
if (FilteredTemperature < -1500) {
// OFF2 = OFF2 + 7 ⋅ (TEMP + 1500)^2
// SENS2 = SENS2 + 11 ⋅ (TEMP + 1500)^2 / 2
int64_t tcorr2 = (Temperature + 1500) * (Temperature + 1500);
int64_t tcorr2 = (FilteredTemperature + 1500) * (FilteredTemperature + 1500);
Offset2 += 7 * tcorr2;
Sens2 += (11 * tcorr2) / 2;
}
@ -302,7 +311,7 @@ int32_t PIOS_MS5611_ReadADC(void)
static float PIOS_MS5611_GetTemperature(void)
{
// Apply the second order low and very low temperature compensation offset
return ((float)(Temperature - compensation_t2)) / 100.0f;
return ((float)(FilteredTemperature - compensation_t2)) / 100.0f;
}
/**

View File

@ -28,7 +28,9 @@
#include <stdint.h>
#ifndef __cplusplus
typedef enum { FALSE = 0, TRUE = !FALSE } bool;
#endif
#ifndef false
#define false FALSE

View File

@ -19,6 +19,7 @@
# These are the UAVObjects supposed to be build as part of the OpenPilot target
# (all architectures)
UAVOBJSRCFILENAMES =
UAVOBJSRCFILENAMES += statusvtolland
UAVOBJSRCFILENAMES += vtolselftuningstats
UAVOBJSRCFILENAMES += accelgyrosettings
UAVOBJSRCFILENAMES += accessorydesired
@ -61,6 +62,7 @@ UAVOBJSRCFILENAMES += gpsextendedstatus
UAVOBJSRCFILENAMES += fixedwingpathfollowersettings
UAVOBJSRCFILENAMES += fixedwingpathfollowerstatus
UAVOBJSRCFILENAMES += vtolpathfollowersettings
UAVOBJSRCFILENAMES += groundpathfollowersettings
UAVOBJSRCFILENAMES += homelocation
UAVOBJSRCFILENAMES += i2cstats
UAVOBJSRCFILENAMES += manualcontrolcommand

View File

@ -19,6 +19,9 @@
# These are the UAVObjects supposed to be build as part of the OpenPilot target
# (all architectures)
UAVOBJSRCFILENAMES =
UAVOBJSRCFILENAMES += statusgrounddrive
UAVOBJSRCFILENAMES += pidstatus
UAVOBJSRCFILENAMES += statusvtolland
UAVOBJSRCFILENAMES += vtolselftuningstats
UAVOBJSRCFILENAMES += accelgyrosettings
UAVOBJSRCFILENAMES += accessorydesired
@ -61,6 +64,7 @@ UAVOBJSRCFILENAMES += gpsextendedstatus
UAVOBJSRCFILENAMES += fixedwingpathfollowersettings
UAVOBJSRCFILENAMES += fixedwingpathfollowerstatus
UAVOBJSRCFILENAMES += vtolpathfollowersettings
UAVOBJSRCFILENAMES += groundpathfollowersettings
UAVOBJSRCFILENAMES += homelocation
UAVOBJSRCFILENAMES += i2cstats
UAVOBJSRCFILENAMES += manualcontrolcommand

View File

@ -19,6 +19,9 @@
# These are the UAVObjects supposed to be build as part of the OpenPilot target
# (all architectures)
UAVOBJSRCFILENAMES =
UAVOBJSRCFILENAMES += statusgrounddrive
UAVOBJSRCFILENAMES += pidstatus
UAVOBJSRCFILENAMES += statusvtolland
UAVOBJSRCFILENAMES += vtolselftuningstats
UAVOBJSRCFILENAMES += accelgyrosettings
UAVOBJSRCFILENAMES += accessorydesired
@ -61,6 +64,7 @@ UAVOBJSRCFILENAMES += gpsextendedstatus
UAVOBJSRCFILENAMES += fixedwingpathfollowersettings
UAVOBJSRCFILENAMES += fixedwingpathfollowerstatus
UAVOBJSRCFILENAMES += vtolpathfollowersettings
UAVOBJSRCFILENAMES += groundpathfollowersettings
UAVOBJSRCFILENAMES += homelocation
UAVOBJSRCFILENAMES += i2cstats
UAVOBJSRCFILENAMES += manualcontrolcommand

View File

@ -20,6 +20,9 @@
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#####
# REVO C++ support
USE_CXX = YES
override ARM_SDK_PREFIX :=
override THUMB :=
@ -83,10 +86,11 @@ endif
## MODULES
SRC += ${foreach MOD, ${MODULES}, ${wildcard ${OPMODULEDIR}/${MOD}/*.c}}
CPPSRC += ${foreach MOD, ${MODULES}, ${wildcard ${OPMODULEDIR}/${MOD}/*.cpp}}
SRC += ${OUTDIR}/InitMods.c
## OPENPILOT CORE:
SRC += ${OPMODULEDIR}/System/systemmod.c
SRC += $(OPSYSTEM)/simposix.c
CPPSRC += $(OPSYSTEM)/simposix.cpp
SRC += $(OPSYSTEM)/pios_board.c
SRC += $(FLIGHTLIB)/alarms.c
SRC += $(OPUAVTALK)/uavtalk.c
@ -124,6 +128,7 @@ SRC += $(PIOSCORECOMMON)/pios_mem.c
## PIOS Hardware
include $(PIOS)/posix/library.mk
include ./UAVObjects.inc
SRC += $(UAVOBJSRC)
@ -315,7 +320,7 @@ endif
# Link: create ELF output file from object files.
$(eval $(call LINK_TEMPLATE, $(OUTDIR)/$(TARGET).elf, $(ALLOBJ)))
$(eval $(call LINK_CXX_TEMPLATE, $(OUTDIR)/$(TARGET).elf, $(ALLOBJ)))
# Assemble: create object files from assembler source files.
$(foreach src, $(ASRC), $(eval $(call ASSEMBLE_TEMPLATE, $(src))))
@ -330,7 +335,7 @@ $(foreach src, $(SRC), $(eval $(call COMPILE_C_TEMPLATE, $(src))))
$(foreach src, $(SRCARM), $(eval $(call COMPILE_C_ARM_TEMPLATE, $(src))))
# Compile: create object files from C++ source files.
$(foreach src, $(CPPSRC), $(eval $(call COMPILE_CPP_TEMPLATE, $(src))))
$(foreach src, $(CPPSRC), $(eval $(call COMPILE_CXX_TEMPLATE, $(src))))
# Compile: create object files from C++ source files. ARM-only
$(foreach src, $(CPPSRCARM), $(eval $(call COMPILE_CPP_ARM_TEMPLATE, $(src))))

View File

@ -24,6 +24,9 @@
# (all architectures)
UAVOBJSRCFILENAMES =
UAVOBJSRCFILENAMES += statusgrounddrive
UAVOBJSRCFILENAMES += pidstatus
UAVOBJSRCFILENAMES += statusvtolland
UAVOBJSRCFILENAMES += vtolselftuningstats
UAVOBJSRCFILENAMES += accessorydesired
UAVOBJSRCFILENAMES += actuatorcommand
@ -62,6 +65,7 @@ UAVOBJSRCFILENAMES += gpstime
UAVOBJSRCFILENAMES += gpsvelocitysensor
UAVOBJSRCFILENAMES += gpssettings
UAVOBJSRCFILENAMES += vtolpathfollowersettings
UAVOBJSRCFILENAMES += groundpathfollowersettings
UAVOBJSRCFILENAMES += fixedwingpathfollowersettings
UAVOBJSRCFILENAMES += fixedwingpathfollowerstatus
UAVOBJSRCFILENAMES += homelocation

View File

@ -31,6 +31,7 @@
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
extern "C" {
#include "inc/openpilot.h"
#include <systemmod.h>
#include <uavobjectsinit.h>
@ -74,6 +75,7 @@ static void initTask(void *parameters);
/* Prototype of generated InitModules() function */
extern void InitModules(void);
}
/**
* OpenPilot Main function:

View File

@ -57,8 +57,8 @@ UAVTalkOutputStream UAVTalkGetOutputStream(UAVTalkConnection connection);
int32_t UAVTalkSendObject(UAVTalkConnection connection, UAVObjHandle obj, uint16_t instId, uint8_t acked, int32_t timeoutMs);
int32_t UAVTalkSendObjectTimestamped(UAVTalkConnection connectionHandle, UAVObjHandle obj, uint16_t instId, uint8_t acked, int32_t timeoutMs);
int32_t UAVTalkSendObjectRequest(UAVTalkConnection connection, UAVObjHandle obj, uint16_t instId, int32_t timeoutMs);
UAVTalkRxState UAVTalkProcessInputStream(UAVTalkConnection connection, uint8_t rxbyte);
UAVTalkRxState UAVTalkProcessInputStreamQuiet(UAVTalkConnection connection, uint8_t rxbyte);
UAVTalkRxState UAVTalkProcessInputStream(UAVTalkConnection connectionHandle, uint8_t *rxbuffer, uint8_t length);
UAVTalkRxState UAVTalkProcessInputStreamQuiet(UAVTalkConnection connectionHandle, uint8_t *rxbuffer, uint8_t length, uint8_t *position);
int32_t UAVTalkRelayPacket(UAVTalkConnection inConnectionHandle, UAVTalkConnection outConnectionHandle);
int32_t UAVTalkReceiveObject(UAVTalkConnection connectionHandle);
void UAVTalkGetStats(UAVTalkConnection connection, UAVTalkStats *stats, bool reset);

View File

@ -53,7 +53,15 @@ static int32_t sendObject(UAVTalkConnectionData *connection, uint8_t type, uint3
static int32_t sendSingleObject(UAVTalkConnectionData *connection, uint8_t type, uint32_t objId, uint16_t instId, UAVObjHandle obj);
static int32_t receiveObject(UAVTalkConnectionData *connection, uint8_t type, uint32_t objId, uint16_t instId, uint8_t *data);
static void updateAck(UAVTalkConnectionData *connection, uint8_t type, uint32_t objId, uint16_t instId);
// UavTalk Process FSM functions
static bool UAVTalkProcess_SYNC(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position);
static bool UAVTalkProcess_TYPE(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position);
static bool UAVTalkProcess_OBJID(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position);
static bool UAVTalkProcess_INSTID(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position);
static bool UAVTalkProcess_SIZE(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position);
static bool UAVTalkProcess_TIMESTAMP(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position);
static bool UAVTalkProcess_DATA(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position);
static bool UAVTalkProcess_CS(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position);
/**
* Initialize the UAVTalk library
* \param[in] connection UAVTalkConnection to be used
@ -350,10 +358,12 @@ static int32_t objectTransaction(UAVTalkConnectionData *connection, uint8_t type
/**
* Process an byte from the telemetry stream.
* \param[in] connectionHandle UAVTalkConnection to be used
* \param[in] rxbyte Received byte
* \param[in] rxbuffer Received buffer
* \param[in/out] Length in bytes of received buffer
* \param[in/out] position Next item to be read inside rxbuffer
* \return UAVTalkRxState
*/
UAVTalkRxState UAVTalkProcessInputStreamQuiet(UAVTalkConnection connectionHandle, uint8_t rxbyte)
UAVTalkRxState UAVTalkProcessInputStreamQuiet(UAVTalkConnection connectionHandle, uint8_t *rxbuffer, uint8_t length, uint8_t *position)
{
UAVTalkConnectionData *connection;
@ -361,231 +371,83 @@ UAVTalkRxState UAVTalkProcessInputStreamQuiet(UAVTalkConnection connectionHandle
UAVTalkInputProcessor *iproc = &connection->iproc;
++connection->stats.rxBytes;
if (iproc->state == UAVTALK_STATE_ERROR || iproc->state == UAVTALK_STATE_COMPLETE) {
iproc->state = UAVTALK_STATE_SYNC;
}
if (iproc->rxPacketLength < 0xffff) {
// update packet byte count
iproc->rxPacketLength++;
}
uint8_t processedBytes = (*position);
uint8_t count = 0;
// Receive state machine
switch (iproc->state) {
case UAVTALK_STATE_SYNC:
if (rxbyte != UAVTALK_SYNC_VAL) {
connection->stats.rxSyncErrors++;
// stop processing as soon as a complete packet is received, error is encountered or buffer is processed entirely
while ((count = length - (*position)) > 0
&& iproc->state != UAVTALK_STATE_COMPLETE
&& iproc->state != UAVTALK_STATE_ERROR) {
// Receive state machine
if (iproc->state == UAVTALK_STATE_SYNC &&
!UAVTalkProcess_SYNC(connection, iproc, rxbuffer, length, position)) {
break;
}
// Initialize and update the CRC
iproc->cs = PIOS_CRC_updateByte(0, rxbyte);
iproc->rxPacketLength = 1;
iproc->rxCount = 0;
iproc->type = 0;
iproc->state = UAVTALK_STATE_TYPE;
break;
case UAVTALK_STATE_TYPE:
if ((rxbyte & UAVTALK_TYPE_MASK) != UAVTALK_TYPE_VER) {
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_SYNC;
if (iproc->state == UAVTALK_STATE_TYPE &&
!UAVTalkProcess_TYPE(connection, iproc, rxbuffer, length, position)) {
break;
}
// update the CRC
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
iproc->type = rxbyte;
iproc->packet_size = 0;
iproc->state = UAVTALK_STATE_SIZE;
break;
case UAVTALK_STATE_SIZE:
// update the CRC
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
if (iproc->rxCount == 0) {
iproc->packet_size += rxbyte;
iproc->rxCount++;
break;
}
iproc->packet_size += rxbyte << 8;
iproc->rxCount = 0;
if (iproc->packet_size < UAVTALK_MIN_HEADER_LENGTH || iproc->packet_size > UAVTALK_MAX_HEADER_LENGTH + UAVTALK_MAX_PAYLOAD_LENGTH) {
// incorrect packet size
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
if (iproc->state == UAVTALK_STATE_SIZE &&
!UAVTalkProcess_SIZE(connection, iproc, rxbuffer, length, position)) {
break;
}
iproc->objId = 0;
iproc->state = UAVTALK_STATE_OBJID;
break;
case UAVTALK_STATE_OBJID:
// update the CRC
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
iproc->objId += rxbyte << (8 * (iproc->rxCount++));
if (iproc->rxCount < 4) {
break;
}
iproc->rxCount = 0;
iproc->instId = 0;
iproc->state = UAVTALK_STATE_INSTID;
break;
case UAVTALK_STATE_INSTID:
// update the CRC
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
iproc->instId += rxbyte << (8 * (iproc->rxCount++));
if (iproc->rxCount < 2) {
break;
}
iproc->rxCount = 0;
UAVObjHandle obj = UAVObjGetByID(iproc->objId);
// Determine data length
if (iproc->type == UAVTALK_TYPE_OBJ_REQ || iproc->type == UAVTALK_TYPE_ACK || iproc->type == UAVTALK_TYPE_NACK) {
iproc->length = 0;
iproc->timestampLength = 0;
} else {
iproc->timestampLength = (iproc->type & UAVTALK_TIMESTAMPED) ? 2 : 0;
if (obj) {
iproc->length = UAVObjGetNumBytes(obj);
} else {
iproc->length = iproc->packet_size - iproc->rxPacketLength - iproc->timestampLength;
}
}
// Check length
if (iproc->length >= UAVTALK_MAX_PAYLOAD_LENGTH) {
// packet error - exceeded payload max length
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
if (iproc->state == UAVTALK_STATE_OBJID &&
!UAVTalkProcess_OBJID(connection, iproc, rxbuffer, length, position)) {
break;
}
// Check the lengths match
if ((iproc->rxPacketLength + iproc->timestampLength + iproc->length) != iproc->packet_size) {
// packet error - mismatched packet size
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
if (iproc->state == UAVTALK_STATE_INSTID &&
!UAVTalkProcess_INSTID(connection, iproc, rxbuffer, length, position)) {
break;
}
// Determine next state
if (iproc->type & UAVTALK_TIMESTAMPED) {
// If there is a timestamp get it
iproc->timestamp = 0;
iproc->state = UAVTALK_STATE_TIMESTAMP;
} else {
// If there is a payload get it, otherwise receive checksum
if (iproc->length > 0) {
iproc->state = UAVTALK_STATE_DATA;
} else {
iproc->state = UAVTALK_STATE_CS;
}
}
break;
case UAVTALK_STATE_TIMESTAMP:
// update the CRC
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
iproc->timestamp += rxbyte << (8 * (iproc->rxCount++));
if (iproc->rxCount < 2) {
break;
}
iproc->rxCount = 0;
// If there is a payload get it, otherwise receive checksum
if (iproc->length > 0) {
iproc->state = UAVTALK_STATE_DATA;
} else {
iproc->state = UAVTALK_STATE_CS;
}
break;
case UAVTALK_STATE_DATA:
// update the CRC
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
connection->rxBuffer[iproc->rxCount++] = rxbyte;
if (iproc->rxCount < iproc->length) {
break;
}
iproc->rxCount = 0;
iproc->state = UAVTALK_STATE_CS;
break;
case UAVTALK_STATE_CS:
// Check the CRC byte
if (rxbyte != iproc->cs) {
// packet error - faulty CRC
UAVT_DEBUGLOG_PRINTF("BAD CRC");
connection->stats.rxCrcErrors++;
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
if (iproc->state == UAVTALK_STATE_TIMESTAMP &&
!UAVTalkProcess_TIMESTAMP(connection, iproc, rxbuffer, length, position)) {
break;
}
if (iproc->rxPacketLength != (iproc->packet_size + UAVTALK_CHECKSUM_LENGTH)) {
// packet error - mismatched packet size
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
if (iproc->state == UAVTALK_STATE_DATA &&
!UAVTalkProcess_DATA(connection, iproc, rxbuffer, length, position)) {
break;
}
connection->stats.rxObjects++;
connection->stats.rxObjectBytes += iproc->length;
iproc->state = UAVTALK_STATE_COMPLETE;
break;
default:
iproc->state = UAVTALK_STATE_ERROR;
break;
if (iproc->state == UAVTALK_STATE_CS &&
!UAVTalkProcess_CS(connection, iproc, rxbuffer, length, position)) {
break;
}
}
// Done
processedBytes = (*position) - processedBytes;
connection->stats.rxBytes += processedBytes;
return iproc->state;
}
/**
* Process an byte from the telemetry stream.
* Process a buffer from the telemetry stream.
* \param[in] connection UAVTalkConnection to be used
* \param[in] rxbyte Received byte
* \param[in] rxbuffer Received buffer
* \param[in] count bytes inside rxbuffer
* \return UAVTalkRxState
*/
UAVTalkRxState UAVTalkProcessInputStream(UAVTalkConnection connectionHandle, uint8_t rxbyte)
UAVTalkRxState UAVTalkProcessInputStream(UAVTalkConnection connectionHandle, uint8_t *rxbuffer, uint8_t length)
{
UAVTalkRxState state = UAVTalkProcessInputStreamQuiet(connectionHandle, rxbyte);
uint8_t position = 0;
UAVTalkRxState state = UAVTALK_STATE_ERROR;
if (state == UAVTALK_STATE_COMPLETE) {
UAVTalkReceiveObject(connectionHandle);
while (position < length) {
state = UAVTalkProcessInputStreamQuiet(connectionHandle, rxbuffer, length, &position);
if (state == UAVTALK_STATE_COMPLETE) {
UAVTalkReceiveObject(connectionHandle);
}
}
return state;
}
@ -1000,6 +862,236 @@ static int32_t sendSingleObject(UAVTalkConnectionData *connection, uint8_t type,
return 0;
}
/*
* Functions that implements the UAVTalk Process FSM. return false to break out of current cycle
*/
static bool UAVTalkProcess_SYNC(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, __attribute__((unused)) uint8_t length, uint8_t *position)
{
uint8_t rxbyte = rxbuffer[(*position)++];
if (rxbyte != UAVTALK_SYNC_VAL) {
connection->stats.rxSyncErrors++;
return false;
}
// Initialize and update the CRC
iproc->cs = PIOS_CRC_updateByte(0, rxbyte);
iproc->rxPacketLength = 1;
iproc->rxCount = 0;
iproc->type = 0;
iproc->state = UAVTALK_STATE_TYPE;
return true;
}
static bool UAVTalkProcess_TYPE(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, __attribute__((unused)) uint8_t length, uint8_t *position)
{
uint8_t rxbyte = rxbuffer[(*position)++];
if ((rxbyte & UAVTALK_TYPE_MASK) != UAVTALK_TYPE_VER) {
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_SYNC;
return false;
}
// update the CRC
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
iproc->type = rxbyte;
iproc->rxPacketLength++;
iproc->packet_size = 0;
iproc->state = UAVTALK_STATE_SIZE;
return true;
}
static bool UAVTalkProcess_SIZE(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position)
{
while (iproc->rxCount < 2 && length > (*position)) {
uint8_t rxbyte = rxbuffer[(*position)++];
// update the CRC
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
iproc->packet_size += rxbyte << 8 * iproc->rxCount;
iproc->rxCount++;
}
if (iproc->rxCount < 2) {
return false;;
}
iproc->rxCount = 0;
if (iproc->packet_size < UAVTALK_MIN_HEADER_LENGTH || iproc->packet_size > UAVTALK_MAX_HEADER_LENGTH + UAVTALK_MAX_PAYLOAD_LENGTH) {
// incorrect packet size
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
return false;
}
iproc->rxPacketLength += 2;
iproc->objId = 0;
iproc->state = UAVTALK_STATE_OBJID;
return true;
}
static bool UAVTalkProcess_OBJID(__attribute__((unused)) UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position)
{
while (iproc->rxCount < 4 && length > (*position)) {
uint8_t rxbyte = rxbuffer[(*position)++];
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
iproc->objId += rxbyte << (8 * (iproc->rxCount++));
}
if (iproc->rxCount < 4) {
return false;
}
iproc->rxCount = 0;
iproc->rxPacketLength += 4;
iproc->instId = 0;
iproc->state = UAVTALK_STATE_INSTID;
return true;
}
static bool UAVTalkProcess_INSTID(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position)
{
while (iproc->rxCount < 2 && length > (*position)) {
uint8_t rxbyte = rxbuffer[(*position)++];
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
iproc->instId += rxbyte << (8 * (iproc->rxCount++));
}
if (iproc->rxCount < 2) {
return false;
}
iproc->rxPacketLength += 2;
iproc->rxCount = 0;
UAVObjHandle obj = UAVObjGetByID(iproc->objId);
// Determine data length
if (iproc->type == UAVTALK_TYPE_OBJ_REQ || iproc->type == UAVTALK_TYPE_ACK || iproc->type == UAVTALK_TYPE_NACK) {
iproc->length = 0;
iproc->timestampLength = 0;
} else {
iproc->timestampLength = (iproc->type & UAVTALK_TIMESTAMPED) ? 2 : 0;
if (obj) {
iproc->length = UAVObjGetNumBytes(obj);
} else {
iproc->length = iproc->packet_size - iproc->rxPacketLength - iproc->timestampLength;
}
}
// Check length
if (iproc->length >= UAVTALK_MAX_PAYLOAD_LENGTH) {
// packet error - exceeded payload max length
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
return false;
}
// Check the lengths match
if ((iproc->rxPacketLength + iproc->timestampLength + iproc->length) != iproc->packet_size) {
// packet error - mismatched packet size
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
return false;
}
// Determine next state
if (iproc->type & UAVTALK_TIMESTAMPED) {
// If there is a timestamp get it
iproc->timestamp = 0;
iproc->state = UAVTALK_STATE_TIMESTAMP;
} else {
// If there is a payload get it, otherwise receive checksum
if (iproc->length > 0) {
iproc->state = UAVTALK_STATE_DATA;
} else {
iproc->state = UAVTALK_STATE_CS;
}
}
return true;
}
static bool UAVTalkProcess_TIMESTAMP(__attribute__((unused)) UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position)
{
while (iproc->rxCount < 2 && length > (*position)) {
uint8_t rxbyte = rxbuffer[(*position)++];
iproc->cs = PIOS_CRC_updateByte(iproc->cs, rxbyte);
iproc->timestamp += rxbyte << (8 * (iproc->rxCount++));
}
if (iproc->rxCount < 2) {
return false;;
}
iproc->rxCount = 0;
iproc->rxPacketLength += 2;
// If there is a payload get it, otherwise receive checksum
if (iproc->length > 0) {
iproc->state = UAVTALK_STATE_DATA;
} else {
iproc->state = UAVTALK_STATE_CS;
}
return true;
}
static bool UAVTalkProcess_DATA(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, uint8_t length, uint8_t *position)
{
uint8_t toCopy = iproc->length - iproc->rxCount;
if (toCopy > length - (*position)) {
toCopy = length - (*position);
}
memcpy(&connection->rxBuffer[iproc->rxCount], &rxbuffer[(*position)], toCopy);
(*position) += toCopy;
// update the CRC
iproc->cs = PIOS_CRC_updateCRC(iproc->cs, &connection->rxBuffer[iproc->rxCount], toCopy);
iproc->rxCount += toCopy;
iproc->rxPacketLength += toCopy;
if (iproc->rxCount < iproc->length) {
return false;
}
iproc->rxCount = 0;
iproc->state = UAVTALK_STATE_CS;
return true;
}
static bool UAVTalkProcess_CS(UAVTalkConnectionData *connection, UAVTalkInputProcessor *iproc, uint8_t *rxbuffer, __attribute__((unused)) uint8_t length, uint8_t *position)
{
// Check the CRC byte
uint8_t rxbyte = rxbuffer[(*position)++];
if (rxbyte != iproc->cs) {
// packet error - faulty CRC
UAVT_DEBUGLOG_PRINTF("BAD CRC");
connection->stats.rxCrcErrors++;
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
return false;;
}
iproc->rxPacketLength++;
if (iproc->rxPacketLength != (iproc->packet_size + UAVTALK_CHECKSUM_LENGTH)) {
// packet error - mismatched packet size
connection->stats.rxErrors++;
iproc->state = UAVTALK_STATE_ERROR;
return false;;
}
connection->stats.rxObjects++;
connection->stats.rxObjectBytes += iproc->length;
iproc->state = UAVTALK_STATE_COMPLETE;
return true;
}
/**
* @}
* @}

View File

@ -116,7 +116,6 @@ void ConfigGroundVehicleWidget::setupUI(QString frameType)
m_aircraft->gvThrottleCurve1GroupBox->setEnabled(true);
m_aircraft->gvThrottleCurve2GroupBox->setEnabled(true);
// Default Curve2 range -1 -> +1, allow forward/reverse (Car and Tank)
m_aircraft->groundVehicleThrottle1->setMixerType(MixerCurve::MIXERCURVE_THROTTLE);
m_aircraft->groundVehicleThrottle2->setMixerType(MixerCurve::MIXERCURVE_PITCH);
@ -145,8 +144,8 @@ void ConfigGroundVehicleWidget::setupUI(QString frameType)
m_aircraft->differentialSteeringSlider1->setEnabled(true);
m_aircraft->differentialSteeringSlider2->setEnabled(true);
m_aircraft->gvThrottleCurve1GroupBox->setTitle("");
m_aircraft->gvThrottleCurve2GroupBox->setTitle("Throttle curve");
m_aircraft->gvThrottleCurve1GroupBox->setTitle("Throttle curve1");
m_aircraft->gvThrottleCurve2GroupBox->setTitle("Throttle curve2 ");
m_aircraft->groundVehicleThrottle2->setMixerType(MixerCurve::MIXERCURVE_PITCH);
m_aircraft->groundVehicleThrottle1->setMixerType(MixerCurve::MIXERCURVE_THROTTLE);
@ -154,13 +153,11 @@ void ConfigGroundVehicleWidget::setupUI(QString frameType)
initMixerCurves(frameType);
// If new setup, set sliders to defaults and set curves values
// Allow forward/reverse 0.8 / -0.8 for Throttle, keep some room
// to allow rotate at full throttle and heading stabilization
if (frameTypeSaved->getValue().toString() != "GroundVehicleDifferential") {
m_aircraft->differentialSteeringSlider1->setValue(100);
m_aircraft->differentialSteeringSlider2->setValue(100);
m_aircraft->groundVehicleThrottle1->initLinearCurve(5, 1.0);
m_aircraft->groundVehicleThrottle2->initLinearCurve(5, 0.8, -0.8);
m_aircraft->groundVehicleThrottle1->initLinearCurve(5, 1.0, 0.0);
m_aircraft->groundVehicleThrottle2->initLinearCurve(5, 1.0, 0.0);
}
} else if (frameType == "GroundVehicleMotorcycle" || frameType == "Motorcycle") {
// Motorcycle
@ -179,12 +176,11 @@ void ConfigGroundVehicleWidget::setupUI(QString frameType)
m_aircraft->gvSteering2Label->setText("Balancing");
// Curve1 for Motorcyle
m_aircraft->gvThrottleCurve1GroupBox->setTitle("Rear throttle curve");
m_aircraft->gvThrottleCurve1GroupBox->setTitle("Throttle curve1");
m_aircraft->gvThrottleCurve1GroupBox->setEnabled(true);
m_aircraft->gvThrottleCurve2GroupBox->setTitle("");
m_aircraft->gvThrottleCurve2GroupBox->setEnabled(false);
m_aircraft->gvThrottleCurve2GroupBox->setTitle("Throttle curve2");
m_aircraft->gvThrottleCurve2GroupBox->setEnabled(true);
// Curve range 0 -> +1 (no reverse)
m_aircraft->groundVehicleThrottle2->setMixerType(MixerCurve::MIXERCURVE_THROTTLE);
m_aircraft->groundVehicleThrottle1->setMixerType(MixerCurve::MIXERCURVE_THROTTLE);
@ -192,8 +188,8 @@ void ConfigGroundVehicleWidget::setupUI(QString frameType)
// If new setup, set curves values
if (frameTypeSaved->getValue().toString() != "GroundVehicleMotorCycle") {
m_aircraft->groundVehicleThrottle2->initLinearCurve(5, 1.0);
m_aircraft->groundVehicleThrottle1->initLinearCurve(5, 1.0);
m_aircraft->groundVehicleThrottle2->initLinearCurve(5, 1.0, 0.0);
m_aircraft->groundVehicleThrottle1->initLinearCurve(5, 1.0, 0.0);
}
} else {
// Car
@ -212,11 +208,10 @@ void ConfigGroundVehicleWidget::setupUI(QString frameType)
m_aircraft->gvSteering1Label->setText("Front steering");
m_aircraft->gvSteering2Label->setText("Rear steering");
// Curve2 for Car
m_aircraft->gvThrottleCurve2GroupBox->setTitle("Throttle curve");
m_aircraft->gvThrottleCurve2GroupBox->setTitle("Throttle curve2");
m_aircraft->gvThrottleCurve2GroupBox->setEnabled(true);
m_aircraft->gvThrottleCurve1GroupBox->setTitle("");
m_aircraft->gvThrottleCurve1GroupBox->setEnabled(false);
m_aircraft->gvThrottleCurve1GroupBox->setTitle("Throttle curve1");
m_aircraft->gvThrottleCurve1GroupBox->setEnabled(true);
m_aircraft->groundVehicleThrottle2->setMixerType(MixerCurve::MIXERCURVE_PITCH);
m_aircraft->groundVehicleThrottle1->setMixerType(MixerCurve::MIXERCURVE_THROTTLE);
@ -225,11 +220,8 @@ void ConfigGroundVehicleWidget::setupUI(QString frameType)
// If new setup, set curves values
if (frameTypeSaved->getValue().toString() != "GroundVehicleCar") {
m_aircraft->groundVehicleThrottle1->initLinearCurve(5, 1.0);
// Set curve2 range from -0.926 to 1 (forward / reverse)
// Take in account 4% offset in Throttle input after calibration
// 0.5 / 0.54 = 0.926
m_aircraft->groundVehicleThrottle2->initLinearCurve(5, 1.0, -0.926);
m_aircraft->groundVehicleThrottle1->initLinearCurve(5, 1.0, 0.0);
m_aircraft->groundVehicleThrottle2->initLinearCurve(5, 1.0, 0.0);
}
}
@ -325,7 +317,13 @@ void ConfigGroundVehicleWidget::initMixerCurves(QString frameType)
m_aircraft->groundVehicleThrottle1->initCurve(&curveValues);
} else {
// no, init a straight curve
m_aircraft->groundVehicleThrottle1->initLinearCurve(curveValues.count(), 1.0);
if (frameType == "GroundVehicleDifferential") {
m_aircraft->groundVehicleThrottle1->initLinearCurve(curveValues.count(), 0.8, 0.0);
} else if (frameType == "GroundVehicleCar") {
m_aircraft->groundVehicleThrottle1->initLinearCurve(curveValues.count(), 1.0, 0.0);
} else {
m_aircraft->groundVehicleThrottle1->initLinearCurve(curveValues.count(), 1.0, 0.0);
}
}
// Setup all Throttle2 curves for all types of airframes
@ -336,11 +334,11 @@ void ConfigGroundVehicleWidget::initMixerCurves(QString frameType)
} else {
// no, init a straight curve
if (frameType == "GroundVehicleDifferential") {
m_aircraft->groundVehicleThrottle2->initLinearCurve(curveValues.count(), 0.8, -0.8);
m_aircraft->groundVehicleThrottle2->initLinearCurve(curveValues.count(), 0.8, 0.0);
} else if (frameType == "GroundVehicleCar") {
m_aircraft->groundVehicleThrottle2->initLinearCurve(curveValues.count(), 1.0, -1.0);
m_aircraft->groundVehicleThrottle2->initLinearCurve(curveValues.count(), 1.0, 0.0);
} else {
m_aircraft->groundVehicleThrottle2->initLinearCurve(curveValues.count(), 1.0);
m_aircraft->groundVehicleThrottle2->initLinearCurve(curveValues.count(), 1.0, 0.0);
}
}
}
@ -513,11 +511,11 @@ bool ConfigGroundVehicleWidget::setupGroundVehicleCar(QString airframeType)
channel = m_aircraft->gvMotor1ChannelBox->currentIndex() - 1;
setMixerType(mixer, channel, VehicleConfig::MIXERTYPE_REVERSABLEMOTOR);
setMixerVectorValue(mixer, channel, VehicleConfig::MIXERVECTOR_THROTTLECURVE2, 127);
setMixerVectorValue(mixer, channel, VehicleConfig::MIXERVECTOR_THROTTLECURVE1, 127);
channel = m_aircraft->gvMotor2ChannelBox->currentIndex() - 1;
setMixerType(mixer, channel, VehicleConfig::MIXERTYPE_REVERSABLEMOTOR);
setMixerVectorValue(mixer, channel, VehicleConfig::MIXERVECTOR_THROTTLECURVE2, 127);
setMixerVectorValue(mixer, channel, VehicleConfig::MIXERVECTOR_THROTTLECURVE1, 127);
// Output success message
m_aircraft->gvStatusLabel->setText("Mixer generated");

View File

@ -138,7 +138,7 @@ void MagicWaypointGadgetWidget::positionSelected(double north, double east)
pathDesired.End[PathDesired::END_NORTH] = north * scale;
pathDesired.End[PathDesired::END_EAST] = east * scale;
pathDesired.Mode = PathDesired::MODE_FLYENDPOINT;
pathDesired.Mode = PathDesired::MODE_GOTOENDPOINT;
getPathDesired()->setData(pathDesired);
}

View File

@ -86,18 +86,17 @@ void modelMapProxy::selectedWPChanged(QList<WayPointItem *> list)
modelMapProxy::overlayType modelMapProxy::overlayTranslate(int type)
{
switch (type) {
case MapDataDelegate::MODE_FLYENDPOINT:
case MapDataDelegate::MODE_FLYVECTOR:
case MapDataDelegate::MODE_DRIVEENDPOINT:
case MapDataDelegate::MODE_DRIVEVECTOR:
case MapDataDelegate::MODE_GOTOENDPOINT:
case MapDataDelegate::MODE_FOLLOWVECTOR:
case MapDataDelegate::MODE_VELOCITY:
case MapDataDelegate::MODE_LAND:
case MapDataDelegate::MODE_BRAKE:
return OVERLAY_LINE;
case MapDataDelegate::MODE_FLYCIRCLERIGHT:
case MapDataDelegate::MODE_DRIVECIRCLERIGHT:
case MapDataDelegate::MODE_CIRCLERIGHT:
return OVERLAY_CIRCLE_RIGHT;
case MapDataDelegate::MODE_FLYCIRCLELEFT:
case MapDataDelegate::MODE_DRIVECIRCLELEFT:
case MapDataDelegate::MODE_CIRCLELEFT:
default:
return OVERLAY_CIRCLE_LEFT;
}

View File

@ -104,15 +104,13 @@ void opmap_edit_waypoint_dialog::setupModeWidgets()
MapDataDelegate::ModeOptions mode = (MapDataDelegate::ModeOptions)ui->cbMode->itemData(ui->cbMode->currentIndex()).toInt();
switch (mode) {
case MapDataDelegate::MODE_FLYENDPOINT:
case MapDataDelegate::MODE_FLYVECTOR:
case MapDataDelegate::MODE_FLYCIRCLERIGHT:
case MapDataDelegate::MODE_FLYCIRCLELEFT:
case MapDataDelegate::MODE_DRIVEENDPOINT:
case MapDataDelegate::MODE_DRIVEVECTOR:
case MapDataDelegate::MODE_DRIVECIRCLELEFT:
case MapDataDelegate::MODE_DRIVECIRCLERIGHT:
case MapDataDelegate::MODE_GOTOENDPOINT:
case MapDataDelegate::MODE_FOLLOWVECTOR:
case MapDataDelegate::MODE_CIRCLERIGHT:
case MapDataDelegate::MODE_CIRCLELEFT:
case MapDataDelegate::MODE_DISARMALARM:
case MapDataDelegate::MODE_LAND:
case MapDataDelegate::MODE_BRAKE:
ui->modeParam1->setVisible(false);
ui->modeParam2->setVisible(false);
ui->modeParam3->setVisible(false);
@ -122,6 +120,16 @@ void opmap_edit_waypoint_dialog::setupModeWidgets()
ui->dsb_modeParam3->setVisible(false);
ui->dsb_modeParam4->setVisible(false);
break;
case MapDataDelegate::MODE_VELOCITY:
ui->modeParam1->setVisible(true);
ui->modeParam2->setVisible(true);
ui->modeParam3->setVisible(true);
ui->modeParam4->setVisible(false);
ui->dsb_modeParam1->setVisible(true);
ui->dsb_modeParam2->setVisible(true);
ui->dsb_modeParam3->setVisible(true);
ui->dsb_modeParam4->setVisible(false);
break;
case MapDataDelegate::MODE_FIXEDATTITUDE:
ui->modeParam1->setText("pitch");
ui->modeParam2->setText("roll");

View File

@ -106,19 +106,17 @@ void MapDataDelegate::loadComboBox(QComboBox *combo, flightDataModel::pathPlanDa
{
switch (type) {
case flightDataModel::MODE:
combo->addItem("Fly Direct", MODE_FLYENDPOINT);
combo->addItem("Fly Vector", MODE_FLYVECTOR);
combo->addItem("Fly Circle Right", MODE_FLYCIRCLERIGHT);
combo->addItem("Fly Circle Left", MODE_FLYCIRCLELEFT);
combo->addItem("Drive Direct", MODE_DRIVEENDPOINT);
combo->addItem("Drive Vector", MODE_DRIVEVECTOR);
combo->addItem("Drive Circle Right", MODE_DRIVECIRCLELEFT);
combo->addItem("Drive Circle Left", MODE_DRIVECIRCLERIGHT);
combo->addItem("Goto Endpoint", MODE_GOTOENDPOINT);
combo->addItem("Follow Vector", MODE_FOLLOWVECTOR);
combo->addItem("Circle Right", MODE_CIRCLERIGHT);
combo->addItem("Circle Left", MODE_CIRCLELEFT);
combo->addItem("Fixed Attitude", MODE_FIXEDATTITUDE);
combo->addItem("Set Accessory", MODE_SETACCESSORY);
combo->addItem("Disarm Alarm", MODE_DISARMALARM);
combo->addItem("Land", MODE_LAND);
combo->addItem("Brake", MODE_BRAKE);
combo->addItem("Velocity", MODE_VELOCITY);
break;
case flightDataModel::CONDITION:
combo->addItem("None", ENDCONDITION_NONE);

View File

@ -36,9 +36,10 @@ class MapDataDelegate : public QItemDelegate {
Q_OBJECT
public:
typedef enum { MODE_FLYENDPOINT = 0, MODE_FLYVECTOR = 1, MODE_FLYCIRCLERIGHT = 2, MODE_FLYCIRCLELEFT = 3,
MODE_DRIVEENDPOINT = 4, MODE_DRIVEVECTOR = 5, MODE_DRIVECIRCLELEFT = 6, MODE_DRIVECIRCLERIGHT = 7,
MODE_FIXEDATTITUDE = 8, MODE_SETACCESSORY = 9, MODE_DISARMALARM = 10 } ModeOptions;
typedef enum { MODE_GOTOENDPOINT = 0, MODE_FOLLOWVECTOR = 1, MODE_CIRCLERIGHT = 2, MODE_CIRCLELEFT = 3,
MODE_FIXEDATTITUDE = 8, MODE_SETACCESSORY = 9, MODE_DISARMALARM = 10, MODE_LAND = 11,
MODE_BRAKE = 12, MODE_VELOCITY = 13 } ModeOptions;
typedef enum { ENDCONDITION_NONE = 0, ENDCONDITION_TIMEOUT = 1, ENDCONDITION_DISTANCETOTARGET = 2,
ENDCONDITION_LEGREMAINING = 3, ENDCONDITION_BELOWERROR = 4, ENDCONDITION_ABOVEALTITUDE = 5,
ENDCONDITION_ABOVESPEED = 6, ENDCONDITION_POINTINGTOWARDSNEXT = 7, ENDCONDITION_PYTHONSCRIPT = 8,

View File

@ -779,17 +779,15 @@ void VehicleConfigurationHelper::applyMixerConfiguration(mixerChannelSettings ch
mSettings->setMixerValueRoll(100);
mSettings->setMixerValuePitch(100);
mSettings->setMixerValueYaw(100);
// Set curve2 range from -0.926 to 1 : take in account 4% offset in Throttle input
// 0.5 / 0.54 = 0.926
maxThrottle = 1;
minThrottle = -0.926;
minThrottle = 0;
break;
case VehicleConfigurationSource::GROUNDVEHICLE_DIFFERENTIAL:
mSettings->setMixerValueRoll(100);
mSettings->setMixerValuePitch(100);
mSettings->setMixerValueYaw(100);
maxThrottle = 0.8;
minThrottle = -0.8;
minThrottle = 0;
break;
default:
break;
@ -2076,8 +2074,8 @@ void VehicleConfigurationHelper::setupCar()
// Motor (Chan 2)
channels[1].type = MIXER_TYPE_REVERSABLEMOTOR;
channels[1].throttle1 = 0;
channels[1].throttle2 = 100;
channels[1].throttle1 = 100;
channels[1].throttle2 = 0;
channels[1].roll = 0;
channels[1].pitch = 0;
channels[1].yaw = 0;
@ -2101,16 +2099,16 @@ void VehicleConfigurationHelper::setupTank()
// Left Motor (Chan 1)
channels[0].type = MIXER_TYPE_REVERSABLEMOTOR;
channels[0].throttle1 = 0;
channels[0].throttle2 = 100;
channels[0].throttle1 = 100;
channels[0].throttle2 = 0;
channels[0].roll = 0;
channels[0].pitch = 0;
channels[0].yaw = 100;
// Right Motor (Chan 2)
channels[1].type = MIXER_TYPE_REVERSABLEMOTOR;
channels[1].throttle1 = 0;
channels[1].throttle2 = 100;
channels[1].throttle1 = 100;
channels[1].throttle2 = 0;
channels[1].roll = 0;
channels[1].pitch = 0;
channels[1].yaw = -100;
@ -2140,7 +2138,7 @@ void VehicleConfigurationHelper::setupMotorcycle()
channels[0].pitch = 0;
channels[0].yaw = 100;
// Motor (Chan 2) : Curve1, no reverse
// Motor (Chan 2)
channels[1].type = MIXER_TYPE_MOTOR;
channels[1].throttle1 = 100;
channels[1].throttle2 = 0;

View File

@ -27,6 +27,9 @@ OTHER_FILES += UAVObjects.pluginspec
# Add in all of the synthetic/generated uavobject files
HEADERS += \
$$UAVOBJECT_SYNTHETICS/statusgrounddrive.h \
$$UAVOBJECT_SYNTHETICS/pidstatus.h \
$$UAVOBJECT_SYNTHETICS/statusvtolland.h \
$$UAVOBJECT_SYNTHETICS/vtolselftuningstats.h \
$$UAVOBJECT_SYNTHETICS/accelgyrosettings.h \
$$UAVOBJECT_SYNTHETICS/accessorydesired.h \
@ -96,6 +99,7 @@ HEADERS += \
$$UAVOBJECT_SYNTHETICS/fixedwingpathfollowersettings.h \
$$UAVOBJECT_SYNTHETICS/fixedwingpathfollowerstatus.h \
$$UAVOBJECT_SYNTHETICS/vtolpathfollowersettings.h \
$$UAVOBJECT_SYNTHETICS/groundpathfollowersettings.h \
$$UAVOBJECT_SYNTHETICS/ratedesired.h \
$$UAVOBJECT_SYNTHETICS/firmwareiapobj.h \
$$UAVOBJECT_SYNTHETICS/i2cstats.h \
@ -133,6 +137,9 @@ HEADERS += \
$$UAVOBJECT_SYNTHETICS/perfcounter.h
SOURCES += \
$$UAVOBJECT_SYNTHETICS/statusgrounddrive.cpp \
$$UAVOBJECT_SYNTHETICS/pidstatus.cpp \
$$UAVOBJECT_SYNTHETICS/statusvtolland.cpp \
$$UAVOBJECT_SYNTHETICS/vtolselftuningstats.cpp \
$$UAVOBJECT_SYNTHETICS/accelgyrosettings.cpp \
$$UAVOBJECT_SYNTHETICS/accessorydesired.cpp \
@ -202,6 +209,7 @@ SOURCES += \
$$UAVOBJECT_SYNTHETICS/fixedwingpathfollowersettings.cpp \
$$UAVOBJECT_SYNTHETICS/fixedwingpathfollowerstatus.cpp \
$$UAVOBJECT_SYNTHETICS/vtolpathfollowersettings.cpp \
$$UAVOBJECT_SYNTHETICS/groundpathfollowersettings.cpp \
$$UAVOBJECT_SYNTHETICS/ratedesired.cpp \
$$UAVOBJECT_SYNTHETICS/firmwareiapobj.cpp \
$$UAVOBJECT_SYNTHETICS/i2cstats.cpp \

View File

@ -0,0 +1,176 @@
[OutputJobFile]
Version=1.0
[OutputGroup1]
Name=Assembly.OutJob
Description=
TargetOutputMedium=PDF
VariantName=[No Variations]
VariantScope=1
CurrentConfigurationName=
TargetPrinter=Brother HL-2170W
PrinterOptions=Record=PrinterOptions|Copies=1|Duplex=1|TrueTypeOptions=3|Collate=1|PrintWhat=1
OutputMedium1=Print Job
OutputMedium1_Type=Printer
OutputMedium1_Printer=
OutputMedium1_PrinterOptions=Record=PrinterOptions|Copies=1|Duplex=1|TrueTypeOptions=3|Collate=1|PrintWhat=1
OutputMedium2=PDF
OutputMedium2_Type=Publish
OutputMedium3=Folder Structure
OutputMedium3_Type=GeneratedFiles
OutputMedium4=Video
OutputMedium4_Type=Multimedia
OutputType1=Assembly
OutputName1=Assembly Drawings
OutputCategory1=Assembly
OutputDocumentPath1=
OutputVariantName1=
OutputEnabled1=1
OutputEnabled1_OutputMedium1=0
OutputEnabled1_OutputMedium2=1
OutputEnabled1_OutputMedium3=0
OutputEnabled1_OutputMedium4=0
OutputDefault1=0
PageOptions1=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=9.24|XCorrection=1.00|YCorrection=1.00|PrintKind=0|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PaperKind=A4|PrintScaleMode=1
Configuration1_Name1=OutputConfigurationParameter1
Configuration1_Item1=DesignatorDisplayMode=Physical|PrintArea=DesignExtent|PrintAreaLowerLeftCornerX=0|PrintAreaLowerLeftCornerY=0|PrintAreaUpperRightCornerX=0|PrintAreaUpperRightCornerY=0|Record=PcbPrintView
Configuration1_Name2=OutputConfigurationParameter2
Configuration1_Item2=IncludeBottomLayerComponents=False|IncludeMultiLayerComponents=True|IncludeTopLayerComponents=True|Index=0|Mirror=False|Name=Top Assembly Drawing|PadNumberFontSize=14|Record=PcbPrintOut|ShowHoles=False|ShowPadNets=False|ShowPadNumbers=False|SubstituteFonts=True
Configuration1_Name3=OutputConfigurationParameter3
Configuration1_Item3=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical6|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration1_Name4=OutputConfigurationParameter4
Configuration1_Item4=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Hidden|FFill=Hidden|FPad=Hidden|FRegion=Hidden|FText=Hidden|FTrack=Hidden|FVia=Hidden|Layer=TopLayer|Polygon=Hidden|PrintOutIndex=0|Record=PcbPrintLayer
Configuration1_Name5=OutputConfigurationParameter5
Configuration1_Item5=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=TopOverlay|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration1_Name6=OutputConfigurationParameter6
Configuration1_Item6=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Hidden|Layer=MultiLayer|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration1_Name7=OutputConfigurationParameter7
Configuration1_Item7=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical1|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration1_Name8=OutputConfigurationParameter8
Configuration1_Item8=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical5|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration1_Name9=OutputConfigurationParameter9
Configuration1_Item9=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical13|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration1_Name10=OutputConfigurationParameter10
Configuration1_Item10=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical14|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration1_Name11=OutputConfigurationParameter11
Configuration1_Item11=IncludeBottomLayerComponents=True|IncludeMultiLayerComponents=True|IncludeTopLayerComponents=False|Index=1|Mirror=True|Name=Bottom Assembly Drawing|PadNumberFontSize=14|Record=PcbPrintOut|ShowHoles=False|ShowPadNets=False|ShowPadNumbers=False|SubstituteFonts=True
Configuration1_Name12=OutputConfigurationParameter12
Configuration1_Item12=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical7|Polygon=Full|PrintOutIndex=1|Record=PcbPrintLayer
Configuration1_Name13=OutputConfigurationParameter13
Configuration1_Item13=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Hidden|FFill=Hidden|FPad=Hidden|FRegion=Hidden|FText=Hidden|FTrack=Hidden|FVia=Hidden|Layer=BottomLayer|Polygon=Hidden|PrintOutIndex=1|Record=PcbPrintLayer
Configuration1_Name14=OutputConfigurationParameter14
Configuration1_Item14=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=BottomOverlay|Polygon=Full|PrintOutIndex=1|Record=PcbPrintLayer
Configuration1_Name15=OutputConfigurationParameter15
Configuration1_Item15=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Hidden|Layer=MultiLayer|Polygon=Full|PrintOutIndex=1|Record=PcbPrintLayer
Configuration1_Name16=OutputConfigurationParameter16
Configuration1_Item16=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical1|Polygon=Full|PrintOutIndex=1|Record=PcbPrintLayer
Configuration1_Name17=OutputConfigurationParameter17
Configuration1_Item17=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical5|Polygon=Full|PrintOutIndex=1|Record=PcbPrintLayer
Configuration1_Name18=OutputConfigurationParameter18
Configuration1_Item18=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical13|Polygon=Full|PrintOutIndex=1|Record=PcbPrintLayer
Configuration1_Name19=OutputConfigurationParameter19
Configuration1_Item19=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical14|Polygon=Full|PrintOutIndex=1|Record=PcbPrintLayer
Configuration1_Name20=OutputConfigurationParameter20
Configuration1_Item20=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical16|Polygon=Full|PrintOutIndex=1|Record=PcbPrintLayer
OutputType2=PCB 3D Print
OutputName2=PCB 3D Top
OutputCategory2=Documentation
OutputDocumentPath2=
OutputVariantName2=
OutputEnabled2=1
OutputEnabled2_OutputMedium1=0
OutputEnabled2_OutputMedium2=2
OutputEnabled2_OutputMedium3=0
OutputEnabled2_OutputMedium4=0
OutputDefault2=0
PageOptions2=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=9.57|XCorrection=1.00|YCorrection=1.00|PrintKind=0|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PaperKind=A4|PrintScaleMode=1
Configuration2_Name1=OutputConfigurationParameter1
Configuration2_Item1=Record=Pcb3DPrintView|ResX=300|ResY=300|ViewX=14173229|ViewY=14173230|LookAtX=31403926|LookAtY=26533924|LookAtZ=-1000|QuatX=0|QuatY=0|QuatZ=0|QuatW=1|Zoom=4.90361053902321E-5|UnitsPercent=True|UnitsDPI=True|LockResAspect=True|ViewConfigType=.config_3d|CustomCamera=False|ViewFromTop=True|ViewConfig=RECORD\3Board\2CFGALL.CONFIGURATIONKIND\33\2CFGALL.CONFIGURATIONDESC\3Altium%203D%20NB%20Black%20Configuration\2CFG3D.POSITIVETOPSOLDERMASK\3TRUE\2CFG3D.POSITIVEBOTTOMSOLDERMASK\3TRUE\2CFG3D.SHOWCOMPONENTBODIES\3SYSTEM\2CFG3D.SHOWCOMPONENTSTEPMODELS\3SYSTEM\2CFG3D.COMPONENTMODELPREFERENCE\30\2CFG3D.SHOWCOMPONENTSNAPMARKERS\3TRUE\2CFG3D.SHOWCOMPONENTAXES\3TRUE\2CFG3D.SHOWBOARDCORE\3TRUE\2CFG3D.SHOWBOARDPREPREG\3TRUE\2CFG3D.SHOWTOPSILKSCREEN\3TRUE\2CFG3D.SHOWBOTSILKSCREEN\3TRUE\2CFG3D.SHOWORIGINMARKER\3TRUE\2CFG3D.EYEDIST\32000\2CFG3D.SHOWCUTOUTS\3TRUE\2CFG3D.SHOWROUTETOOLPATH\3TRUE\2CFG3D.SHOWROOMS3D\3FALSE\2CFG3D.USESYSCOLORSFOR3D\3FALSE\2CFG3D.WORKSPACECOLOR\311840160\2CFG3D.BOARDCORECOLOR\313491161\2CFG3D.BOARDPREPREGCOLOR\30\2CFG3D.TOPSOLDERMASKCOLOR\30\2CFG3D.BOTSOLDERMASKCOLOR\30\2CFG3D.COPPERCOLOR\33323360\2CFG3D.TOPSILKSCREENCOLOR\315461355\2CFG3D.BOTSILKSCREENCOLOR\315461355\2CFG3D.WORKSPACELUMINANCEVARIATION\330\2CFG3D.WORKSPACECOLOROPACITY\31.000000\2CFG3D.BOARDCORECOLOROPACITY\30.820000\2CFG3D.BOARDPREPREGCOLOROPACITY\30.500000\2CFG3D.TOPSOLDERMASKCOLOROPACITY\30.900000\2CFG3D.BOTSOLDERMASKCOLOROPACITY\30.900000\2CFG3D.COPPERCOLOROPACITY\31.000000\2CFG3D.TOPSILKSCREENCOLOROPACITY\31.000000\2CFG3D.BOTSILKSCREENCOLOROPACITY\31.000000\2CFG3D.BOARDTHICKNESSSCALING\31.000000\2CFG3D.SHOWMECHANICALLAYERS\3FALSE\2CFG3D.MECHANICALLAYERSOPACITY\31.000000
OutputType3=PCB 3D Print
OutputName3=PCB 3D Bottom
OutputCategory3=Documentation
OutputDocumentPath3=
OutputVariantName3=
OutputEnabled3=1
OutputEnabled3_OutputMedium1=0
OutputEnabled3_OutputMedium2=3
OutputEnabled3_OutputMedium3=0
OutputEnabled3_OutputMedium4=0
OutputDefault3=0
PageOptions3=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=9.57|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PaperKind=A4|PrintScaleMode=1
Configuration3_Name1=OutputConfigurationParameter1
Configuration3_Item1=Record=Pcb3DPrintView|ResX=300|ResY=300|ViewX=14173229|ViewY=14173230|LookAtX=31403926|LookAtY=26533924|LookAtZ=-1000|QuatX=0|QuatY=0|QuatZ=0|QuatW=1|Zoom=4.90361053902321E-5|UnitsPercent=True|UnitsDPI=True|LockResAspect=True|ViewConfigType=.config_3d|CustomCamera=False|ViewFromTop=False|ViewConfig=RECORD\3Board\2CFGALL.CONFIGURATIONKIND\33\2CFGALL.CONFIGURATIONDESC\3Altium%203D%20NB%20Black%20Configuration\2CFG3D.POSITIVETOPSOLDERMASK\3TRUE\2CFG3D.POSITIVEBOTTOMSOLDERMASK\3TRUE\2CFG3D.SHOWCOMPONENTBODIES\3SYSTEM\2CFG3D.SHOWCOMPONENTSTEPMODELS\3SYSTEM\2CFG3D.COMPONENTMODELPREFERENCE\30\2CFG3D.SHOWCOMPONENTSNAPMARKERS\3TRUE\2CFG3D.SHOWCOMPONENTAXES\3TRUE\2CFG3D.SHOWBOARDCORE\3TRUE\2CFG3D.SHOWBOARDPREPREG\3TRUE\2CFG3D.SHOWTOPSILKSCREEN\3TRUE\2CFG3D.SHOWBOTSILKSCREEN\3TRUE\2CFG3D.SHOWORIGINMARKER\3TRUE\2CFG3D.EYEDIST\32000\2CFG3D.SHOWCUTOUTS\3TRUE\2CFG3D.SHOWROUTETOOLPATH\3TRUE\2CFG3D.SHOWROOMS3D\3FALSE\2CFG3D.USESYSCOLORSFOR3D\3FALSE\2CFG3D.WORKSPACECOLOR\311840160\2CFG3D.BOARDCORECOLOR\313491161\2CFG3D.BOARDPREPREGCOLOR\30\2CFG3D.TOPSOLDERMASKCOLOR\30\2CFG3D.BOTSOLDERMASKCOLOR\30\2CFG3D.COPPERCOLOR\33323360\2CFG3D.TOPSILKSCREENCOLOR\315461355\2CFG3D.BOTSILKSCREENCOLOR\315461355\2CFG3D.WORKSPACELUMINANCEVARIATION\330\2CFG3D.WORKSPACECOLOROPACITY\31.000000\2CFG3D.BOARDCORECOLOROPACITY\30.820000\2CFG3D.BOARDPREPREGCOLOROPACITY\30.500000\2CFG3D.TOPSOLDERMASKCOLOROPACITY\30.900000\2CFG3D.BOTSOLDERMASKCOLOROPACITY\30.900000\2CFG3D.COPPERCOLOROPACITY\31.000000\2CFG3D.TOPSILKSCREENCOLOROPACITY\31.000000\2CFG3D.BOTSILKSCREENCOLOROPACITY\31.000000\2CFG3D.BOARDTHICKNESSSCALING\31.000000\2CFG3D.SHOWMECHANICALLAYERS\3FALSE\2CFG3D.MECHANICALLAYERSOPACITY\31.000000
[PublishSettings]
OutputFilePath2=C:\Users\David\Documents\OP-WIP\trunk\hardware\production\OpenPilot Atom\Project Outputs for OpenPilot Atom\..\Assembly\OpenPilot Atom Assembly.PDF
ReleaseManaged2=1
OutputBasePath2=Project Outputs for OpenPilot Atom
OutputPathMedia2=..\Assembly
OutputPathOutputer2=[Output Type]
OutputFileName2=OpenPilot Atom Assembly.PDF
OpenOutput2=1
PromptOverwrite2=1
PublishMethod2=0
ZoomLevel2=50
FitSCHPrintSizeToDoc2=1
FitPCBPrintSizeToDoc2=1
GenerateNetsInfo2=1
MarkPins2=1
MarkNetLabels2=1
MarkPortsId2=1
GenerateTOC=1
OutputFilePath3=C:\Users\David\Documents\OP-WIP\trunk\hardware\production\OpenPilot Atom\Project Outputs for OpenPilot Atom\
ReleaseManaged3=1
OutputBasePath3=Project Outputs for OpenPilot Atom
OutputPathMedia3=
OutputPathOutputer3=[Output Type]
OutputFileName3=
OpenOutput3=1
OutputFilePath4=C:\Users\David\Documents\OP-WIP\trunk\hardware\production\OpenPilot Atom\Project Outputs for OpenPilot Atom\
ReleaseManaged4=1
OutputBasePath4=Project Outputs for OpenPilot Atom
OutputPathMedia4=
OutputPathOutputer4=[Output Type]
OutputFileName4=
OpenOutput4=1
PromptOverwrite4=1
PublishMethod4=5
ZoomLevel4=50
FitSCHPrintSizeToDoc4=1
FitPCBPrintSizeToDoc4=1
GenerateNetsInfo4=1
MarkPins4=1
MarkNetLabels4=1
MarkPortsId4=1
MediaFormat4=Windows Media file (*.wmv,*.wma,*.asf)
FixedDimensions4=1
Width4=352
Height4=288
MultiFile4=0
FramesPerSecond4=25
FramesPerSecondDenom4=1
AviPixelFormat4=7
AviCompression4=MP42 MS-MPEG4 V2
AviQuality4=100
FFmpegVideoCodecId4=13
FFmpegPixelFormat4=0
FFmpegQuality4=80
WmvVideoCodecName4=Windows Media Video V7
WmvQuality4=80
[GeneratedFilesSettings]
RelativeOutputPath2=C:\Users\David\Documents\OP-WIP\trunk\hardware\production\OpenPilot Atom\Project Outputs for OpenPilot Atom\..\Assembly\OpenPilot Atom Assembly.PDF
OpenOutputs2=1
RelativeOutputPath3=C:\Users\David\Documents\OP-WIP\trunk\hardware\production\OpenPilot Atom\Project Outputs for OpenPilot Atom\
OpenOutputs3=1
AddToProject3=1
TimestampFolder3=0
UseOutputName3=0
OpenODBOutput3=0
OpenGerberOutput3=0
OpenNCDrillOutput3=0
OpenIPCOutput3=0
EnableReload3=0
RelativeOutputPath4=C:\Users\David\Documents\OP-WIP\trunk\hardware\production\OpenPilot Atom\Project Outputs for OpenPilot Atom\
OpenOutputs4=1

View File

@ -0,0 +1,1160 @@
[Design]
Version=1.0
HierarchyMode=0
ChannelRoomNamingStyle=0
ReleasesFolder=
ReleaseVaultGUID=
ReleaseVaultName=
ChannelDesignatorFormatString=$Component_$RoomName
ChannelRoomLevelSeperator=_
OpenOutputs=1
ArchiveProject=0
TimestampOutput=0
SeparateFolders=0
TemplateLocationPath=
PinSwapBy_Netlabel=1
PinSwapBy_Pin=1
AllowPortNetNames=0
AllowSheetEntryNetNames=1
AppendSheetNumberToLocalNets=0
NetlistSinglePinNets=0
DefaultConfiguration=Default Configuration
UserID=0xFFFFFFFF
DefaultPcbProtel=1
DefaultPcbPcad=0
ReorderDocumentsOnCompile=1
NameNetsHierarchically=0
PowerPortNamesTakePriority=0
PushECOToAnnotationFile=1
DItemRevisionGUID=
ReportSuppressedErrorsInMessages=0
OutputPath=
LogFolderPath=
ManagedProjectGUID=
[Preferences]
PrefsVaultGUID=
PrefsRevisionGUID=
[Document1]
DocumentPath=OpenPilot Atom.SchDoc
AnnotationEnabled=1
AnnotateStartValue=1
AnnotationIndexControlEnabled=0
AnnotateSuffix=
AnnotateScope=All
AnnotateOrder=0
DoLibraryUpdate=1
DoDatabaseUpdate=1
ClassGenCCAutoEnabled=1
ClassGenCCAutoRoomEnabled=0
ClassGenNCAutoScope=None
DItemRevisionGUID=
GenerateClassCluster=0
DocumentUniqueId=FWUXSAGW
[Document2]
DocumentPath=OpenPilot Atom.PcbDoc
AnnotationEnabled=1
AnnotateStartValue=1
AnnotationIndexControlEnabled=0
AnnotateSuffix=
AnnotateScope=All
AnnotateOrder=-1
DoLibraryUpdate=1
DoDatabaseUpdate=1
ClassGenCCAutoEnabled=1
ClassGenCCAutoRoomEnabled=1
ClassGenNCAutoScope=None
DItemRevisionGUID=
GenerateClassCluster=0
DocumentUniqueId=CPDAMJJA
[Document3]
DocumentPath=Assembly.OutJob
AnnotationEnabled=1
AnnotateStartValue=1
AnnotationIndexControlEnabled=0
AnnotateSuffix=
AnnotateScope=All
AnnotateOrder=-1
DoLibraryUpdate=1
DoDatabaseUpdate=1
ClassGenCCAutoEnabled=1
ClassGenCCAutoRoomEnabled=1
ClassGenNCAutoScope=None
DItemRevisionGUID=
GenerateClassCluster=0
DocumentUniqueId=
[SearchPath1]
Path=..\..\..\..\Program Files (x86)\Altium Designer Summer 09\Library\*.*
IncludeSubFolders=1
[Configuration1]
Name=Default Configuration
ParameterCount=0
ConstraintFileCount=0
ReleaseItemId=
CurrentRevision=
Variant=[No Variations]
GenerateBOM=0
OutputJobsCount=0
[Generic_SmartPDF]
AutoOpenFile=-1
AutoOpenOutJob=-1
[Generic_SmartPDFSettings]
ProjectMode=0
ZoomPrecision=50
AddNetsInformation=-1
AddNetPins=-1
AddNetNetLabels=-1
AddNetPorts=-1
ExportBOM=0
TemplateFilename=
TemplateStoreRelative=-1
PCB_PrintColor=0
SCH_PrintColor=0
SCH_ShowNoErc=0
SCH_ShowParameter=0
SCH_ShowProbes=0
SCH_ShowBlankets=0
OutputFileName=CopterControl.SchDoc=C:\Users\David\Documents\SVN\WIP\trunk\hardware\production\CopterControl\CopterControl Schematic.pdf
SCH_ExpandLogicalToPhysical=0
SCH_VariantName=[No Variations]
SCH_ExpandComponentDesignators=-1
SCH_ExpandNetlabels=0
SCH_ExpandPorts=0
SCH_ExpandSheetNumber=0
SCH_ExpandDocumentNumber=0
SCH_HasExpandLogicalToPhysicalSheets=-1
SaveSettingsToOutJob=0
SCH_NoERCSymbolsToShow="Thin Cross","Thick Cross","Small Cross",Checkbox,Triangle
SCH_ShowNote=-1
SCH_ShowNoteCollapsed=-1
[Generic_EDE]
OutputDir=
[OutputGroup1]
Name=Netlist Outputs
Description=
TargetPrinter=Microsoft XPS Document Writer
PrinterOptions=Record=PrinterOptions|Copies=1|Duplex=1|TrueTypeOptions=3|Collate=1|PrintJobKind=1|PrintWhat=1
OutputType1=SIMetrixNetlist
OutputName1=SIMetrix
OutputDocumentPath1=
OutputVariantName1=
OutputDefault1=0
OutputType2=SIMPLISNetlist
OutputName2=SIMPLIS
OutputDocumentPath2=
OutputVariantName2=
OutputDefault2=0
OutputType3=XSpiceNetlist
OutputName3=XSpice Netlist
OutputDocumentPath3=
OutputVariantName3=
OutputDefault3=0
OutputType4=PCADNetlist
OutputName4=PCAD Netlist
OutputDocumentPath4=
OutputVariantName4=
OutputDefault4=0
OutputType5=Verilog
OutputName5=Verilog File
OutputDocumentPath5=
OutputVariantName5=
OutputDefault5=0
OutputType6=VHDL
OutputName6=VHDL File
OutputDocumentPath6=
OutputVariantName6=
OutputDefault6=0
[OutputGroup2]
Name=Simulator Outputs
Description=
TargetPrinter=Microsoft XPS Document Writer
PrinterOptions=Record=PrinterOptions|Copies=1|Duplex=1|TrueTypeOptions=3|Collate=1|PrintJobKind=1|PrintWhat=1
OutputType1=AdvSimNetlist
OutputName1=Mixed Sim
OutputDocumentPath1=
OutputVariantName1=
OutputDefault1=0
OutputType2=SIMetrixSimulation
OutputName2=SIMetrix
OutputDocumentPath2=
OutputVariantName2=
OutputDefault2=0
OutputType3=SIMPLISSimulation
OutputName3=SIMPLIS
OutputDocumentPath3=
OutputVariantName3=
OutputDefault3=0
[OutputGroup3]
Name=Documentation Outputs
Description=
TargetPrinter=Virtual Printer
PrinterOptions=Record=PrinterOptions|Copies=1|Duplex=1|TrueTypeOptions=3|Collate=1|PrintJobKind=1|PrintWhat=1
OutputType1=Composite
OutputName1=Composite Drawing
OutputDocumentPath1=C:\Users\David\Documents\SVN\OP-WIP\trunk\hardware\production\CopterControl\CopterControl.PcbDoc
OutputVariantName1=
OutputDefault1=0
PageOptions1=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=0|PaperKind=A4
Configuration1_Name1=OutputConfigurationParameter1
Configuration1_Item1=PrintArea=DesignExtent|PrintAreaLowerLeftCornerX=0|PrintAreaLowerLeftCornerY=0|PrintAreaUpperRightCornerX=0|PrintAreaUpperRightCornerY=0|Record=PcbPrintView
Configuration1_Name2=OutputConfigurationParameter2
Configuration1_Item2=IncludeBottomLayerComponents=True|IncludeMultiLayerComponents=True|IncludeTopLayerComponents=True|Index=0|Mirror=False|Name=Multilayer Composite Print|PadNumberFontSize=14|Record=PcbPrintOut|ShowHoles=False|ShowPadNets=False|ShowPadNumbers=False|SubstituteFonts=False
Configuration1_Name3=OutputConfigurationParameter3
Configuration1_Item3=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=TopOverlay|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration1_Name4=OutputConfigurationParameter4
Configuration1_Item4=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=BottomOverlay|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration1_Name5=OutputConfigurationParameter5
Configuration1_Item5=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=TopLayer|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration1_Name6=OutputConfigurationParameter6
Configuration1_Item6=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=MidLayer1|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration1_Name7=OutputConfigurationParameter7
Configuration1_Item7=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=BottomLayer|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration1_Name8=OutputConfigurationParameter8
Configuration1_Item8=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical1|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration1_Name9=OutputConfigurationParameter9
Configuration1_Item9=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical5|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration1_Name10=OutputConfigurationParameter10
Configuration1_Item10=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical6|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration1_Name11=OutputConfigurationParameter11
Configuration1_Item11=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical7|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration1_Name12=OutputConfigurationParameter12
Configuration1_Item12=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical13|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration1_Name13=OutputConfigurationParameter13
Configuration1_Item13=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical15|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration1_Name14=OutputConfigurationParameter14
Configuration1_Item14=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=MultiLayer|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
OutputType2=PCB 3D Print
OutputName2=PCB 3D Prints
OutputDocumentPath2=
OutputVariantName2=[No Variations]
OutputDefault2=0
PageOptions2=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
OutputType3=PCB Print
OutputName3=PCB Prints
OutputDocumentPath3=
OutputVariantName3=
OutputDefault3=0
PageOptions3=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
OutputType4=Schematic Print
OutputName4=Schematic Prints
OutputDocumentPath4=
OutputVariantName4=
OutputDefault4=0
PageOptions4=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
OutputType5=SimView Print
OutputName5=SimView Prints
OutputDocumentPath5=
OutputVariantName5=
OutputDefault5=0
PageOptions5=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
OutputType6=Wave Print
OutputName6=Wave Prints
OutputDocumentPath6=
OutputVariantName6=
OutputDefault6=0
PageOptions6=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
OutputType7=WaveSim Print
OutputName7=WaveSim Prints
OutputDocumentPath7=
OutputVariantName7=
OutputDefault7=0
PageOptions7=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
OutputType8=PCB 3D Video
OutputName8=PCB 3D Video
OutputDocumentPath8=
OutputVariantName8=[No Variations]
OutputDefault8=0
PageOptions8=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
OutputType9=Report Print
OutputName9=Report Prints
OutputDocumentPath9=
OutputVariantName9=
OutputDefault9=0
PageOptions9=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
OutputType10=PCBLIB Print
OutputName10=PCBLIB Prints
OutputDocumentPath10=
OutputVariantName10=
OutputDefault10=0
PageOptions10=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
OutputType11=Assembler Source Print
OutputName11=Assembler Source Prints
OutputDocumentPath11=
OutputVariantName11=
OutputDefault11=0
PageOptions11=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType12=C Source Print
OutputName12=C Source Prints
OutputDocumentPath12=
OutputVariantName12=
OutputDefault12=0
PageOptions12=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType13=C/C++ Header Print
OutputName13=C/C++ Header Prints
OutputDocumentPath13=
OutputVariantName13=
OutputDefault13=0
PageOptions13=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType14=C++ Source Print
OutputName14=C++ Source Prints
OutputDocumentPath14=
OutputVariantName14=
OutputDefault14=0
PageOptions14=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType15=FSM Print
OutputName15=FSM Prints
OutputDocumentPath15=
OutputVariantName15=
OutputDefault15=0
PageOptions15=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType16=OpenBus Print
OutputName16=OpenBus Prints
OutputDocumentPath16=
OutputVariantName16=
OutputDefault16=0
PageOptions16=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType17=VHDL Print
OutputName17=VHDL Prints
OutputDocumentPath17=
OutputVariantName17=
OutputDefault17=0
PageOptions17=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
[OutputGroup4]
Name=Assembly Outputs
Description=
TargetPrinter=Microsoft XPS Document Writer
PrinterOptions=Record=PrinterOptions|Copies=1|Duplex=1|TrueTypeOptions=3|Collate=1|PrintJobKind=1|PrintWhat=1
OutputType1=Test Points For Assembly
OutputName1=Test Point Report
OutputDocumentPath1=
OutputVariantName1=[No Variations]
OutputDefault1=0
OutputType2=Pick Place
OutputName2=Generates pick and place files
OutputDocumentPath2=
OutputVariantName2=[No Variations]
OutputDefault2=0
Configuration2_Name1=OutputConfigurationParameter1
Configuration2_Item1=Record=PickPlaceView|Units=Imperial|GenerateCSVFormat=True|GenerateTextFormat=False
OutputType3=Assembly
OutputName3=Assembly Drawings
OutputDocumentPath3=
OutputVariantName3=[No Variations]
OutputDefault3=0
PageOptions3=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
[OutputGroup5]
Name=Fabrication Outputs
Description=
TargetPrinter=Microsoft XPS Document Writer
PrinterOptions=Record=PrinterOptions|Copies=1|Duplex=1|TrueTypeOptions=3|Collate=1|PrintJobKind=1|PrintWhat=1
OutputType1=ODB
OutputName1=ODB++ Files
OutputDocumentPath1=
OutputVariantName1=[No Variations]
OutputDefault1=0
OutputType2=NC Drill
OutputName2=NC Drill Files
OutputDocumentPath2=
OutputVariantName2=
OutputDefault2=0
Configuration2_Name1=OutputConfigurationParameter1
Configuration2_Item1=BoardEdgeRoutToolDia=2000000|GenerateBoardEdgeRout=False|GenerateDrilledSlotsG85=False|GenerateEIADrillFile=False|GenerateSeparatePlatedNonPlatedFiles=False|NumberOfDecimals=5|NumberOfUnits=2|OptimizeChangeLocationCommands=True|OriginPosition=Relative|Record=DrillView|Units=Imperial|ZeroesMode=SuppressTrailingZeroes
OutputType3=Plane
OutputName3=Power-Plane Prints
OutputDocumentPath3=
OutputVariantName3=
OutputDefault3=0
PageOptions3=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
OutputType4=Mask
OutputName4=Solder/Paste Mask Prints
OutputDocumentPath4=
OutputVariantName4=
OutputDefault4=0
PageOptions4=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
OutputType5=Drill
OutputName5=Drill Drawing/Guides
OutputDocumentPath5=
OutputVariantName5=
OutputDefault5=0
PageOptions5=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=9.20|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
Configuration5_Name1=OutputConfigurationParameter1
Configuration5_Item1=PrintArea=DesignExtent|PrintAreaLowerLeftCornerX=0|PrintAreaLowerLeftCornerY=0|PrintAreaUpperRightCornerX=0|PrintAreaUpperRightCornerY=0|Record=PcbPrintView
Configuration5_Name2=OutputConfigurationParameter2
Configuration5_Item2=IncludeBottomLayerComponents=True|IncludeMultiLayerComponents=True|IncludeTopLayerComponents=True|Index=0|Mirror=False|Name=Drill Drawing For (Bottom Layer,Top Layer)|PadNumberFontSize=14|Record=PcbPrintOut|ShowHoles=False|ShowPadNets=False|ShowPadNumbers=False|SubstituteFonts=False
Configuration5_Name3=OutputConfigurationParameter3
Configuration5_Item3=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=BottomLayer|DLayer2=TopLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=DrillDrawing|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration5_Name4=OutputConfigurationParameter4
Configuration5_Item4=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical1|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration5_Name5=OutputConfigurationParameter5
Configuration5_Item5=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical5|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration5_Name6=OutputConfigurationParameter6
Configuration5_Item6=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical6|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration5_Name7=OutputConfigurationParameter7
Configuration5_Item7=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical7|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration5_Name8=OutputConfigurationParameter8
Configuration5_Item8=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical13|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration5_Name9=OutputConfigurationParameter9
Configuration5_Item9=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical15|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration5_Name10=OutputConfigurationParameter10
Configuration5_Item10=IncludeBottomLayerComponents=True|IncludeMultiLayerComponents=True|IncludeTopLayerComponents=True|Index=1|Mirror=False|Name=Drill Guide For (Bottom Layer,Top Layer)|PadNumberFontSize=14|Record=PcbPrintOut|ShowHoles=False|ShowPadNets=False|ShowPadNumbers=False|SubstituteFonts=False
Configuration5_Name11=OutputConfigurationParameter11
Configuration5_Item11=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=BottomLayer|DLayer2=TopLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=DrillGuide|Polygon=Full|PrintOutIndex=1|Record=PcbPrintLayer
Configuration5_Name12=OutputConfigurationParameter12
Configuration5_Item12=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical1|Polygon=Full|PrintOutIndex=1|Record=PcbPrintLayer
Configuration5_Name13=OutputConfigurationParameter13
Configuration5_Item13=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical5|Polygon=Full|PrintOutIndex=1|Record=PcbPrintLayer
Configuration5_Name14=OutputConfigurationParameter14
Configuration5_Item14=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical6|Polygon=Full|PrintOutIndex=1|Record=PcbPrintLayer
Configuration5_Name15=OutputConfigurationParameter15
Configuration5_Item15=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical7|Polygon=Full|PrintOutIndex=1|Record=PcbPrintLayer
Configuration5_Name16=OutputConfigurationParameter16
Configuration5_Item16=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical13|Polygon=Full|PrintOutIndex=1|Record=PcbPrintLayer
Configuration5_Name17=OutputConfigurationParameter17
Configuration5_Item17=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical15|Polygon=Full|PrintOutIndex=1|Record=PcbPrintLayer
OutputType6=CompositeDrill
OutputName6=Composite Drill Drawing
OutputDocumentPath6=
OutputVariantName6=
OutputDefault6=0
PageOptions6=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
OutputType7=Final
OutputName7=Final Artwork Prints
OutputDocumentPath7=
OutputVariantName7=[No Variations]
OutputDefault7=0
PageOptions7=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
OutputType8=Test Points
OutputName8=Test Point Report
OutputDocumentPath8=
OutputVariantName8=
OutputDefault8=0
OutputType9=Gerber
OutputName9=Gerber Files
OutputDocumentPath9=
OutputVariantName9=[No Variations]
OutputDefault9=0
Configuration9_Name1=OutputConfigurationParameter1
Configuration9_Item1=AddToAllPlots.Set=SerializeLayerHash.Version~2,ClassName~TLayerToBoolean|CentrePlots=False|DrillDrawingSymbol=GraphicsSymbol|DrillDrawingSymbolSize=500000|EmbeddedApertures=True|FilmBorderSize=10000000|FilmXSize=200000000|FilmYSize=160000000|FlashAllFills=False|FlashPadShapes=True|G54OnApertureChange=False|GenerateDRCRulesFile=True|GenerateReliefShapes=True|GerberUnit=Imperial|IncludeUnconnectedMidLayerPads=False|LeadingAndTrailingZeroesMode=SuppressLeadingZeroes|MaxApertureSize=2500000|MinusApertureTolerance=50|Mirror.Set=SerializeLayerHash.Version~2,ClassName~TLayerToBoolean|MirrorDrillDrawingPlots=False|MirrorDrillGuidePlots=False|NumberOfDecimals=5|OptimizeChangeLocationCommands=True|OriginPosition=Relative|Panelize=False|Plot.Set=SerializeLayerHash.Version~2,ClassName~TLayerToBoolean,16973830~1,16973832~1,16973834~1,16777217~1,16777218~1,16777219~1,16842751~1,16973835~1,16973833~1,16973831~1,16908294~1,16908295~1,16973837~1,16973848~1,16973849~1|PlotPositivePlaneLayers=False|PlotUsedDrillDrawingLayerPairs=True|PlotUsedDrillGuideLayerPairs=True|PlusApertureTolerance=50|Record=GerberView|SoftwareArcs=False|Sorted=False
OutputType10=Board Stack Report
OutputName10=Report Board Stack
OutputDocumentPath10=
OutputVariantName10=
OutputDefault10=0
PageOptions10=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType11=Gerber X2
OutputName11=Gerber X2 Files
OutputDocumentPath11=
OutputVariantName11=
OutputDefault11=0
OutputType12=IPC2581
OutputName12=IPC-2581 Files
OutputDocumentPath12=
OutputVariantName12=
OutputDefault12=0
[OutputGroup6]
Name=Report Outputs
Description=
TargetPrinter=Microsoft XPS Document Writer
PrinterOptions=Record=PrinterOptions|Copies=1|Duplex=1|TrueTypeOptions=3|Collate=1|PrintJobKind=1|PrintWhat=1
OutputType1=ComponentCrossReference
OutputName1=Component Cross Reference Report
OutputDocumentPath1=
OutputVariantName1=[No Variations]
OutputDefault1=0
OutputType2=ReportHierarchy
OutputName2=Report Project Hierarchy
OutputDocumentPath2=
OutputVariantName2=[No Variations]
OutputDefault2=0
OutputType3=SinglePinNetReporter
OutputName3=Report Single Pin Nets
OutputDocumentPath3=
OutputVariantName3=[No Variations]
OutputDefault3=0
OutputType4=SimpleBOM
OutputName4=Simple BOM
OutputDocumentPath4=
OutputVariantName4=[No Variations]
OutputDefault4=0
OutputType5=Script
OutputName5=Script Output
OutputDocumentPath5=
OutputVariantName5=[No Variations]
OutputDefault5=0
OutputType6=BOM_PartType
OutputName6=Bill of Materials
OutputDocumentPath6=
OutputVariantName6=[No Variations]
OutputDefault6=0
PageOptions6=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
Configuration6_Name1=Filter
Configuration6_Item1=545046300E5446696C74657257726170706572000D46696C7465722E416374697665090F46696C7465722E43726974657269610A04000000000000000000
Configuration6_Name2=General
Configuration6_Item2=OpenExported=True|AddToProject=False|ForceFit=False|NotFitted=False|Database=False|IncludePCBData=False|IncludeVaultData=False|ShowExportOptions=True|TemplateFilename=..\Altium\BOM OpenPilot.xlt|BatchMode=5|FormWidth=1401|FormHeight=754|SupplierProdQty=1|SupplierAutoQty=True|SupplierUseCachedPricing=True|SupplierCurrency=<none>
Configuration6_Name3=GroupOrder
Configuration6_Item3=Supplier Part Number 1=True
Configuration6_Name4=OutputConfigurationParameter1
Configuration6_Item4=Record=BOMPrintView|ShowNoERC=True|ShowParamSet=True|ShowProbe=True|ShowBlanket=True|ExpandDesignator=True|ExpandNetLabel=False|ExpandPort=False|ExpandSheetNum=False|ExpandDocNum=False
Configuration6_Name5=PCBDocument
Configuration6_Item5=
Configuration6_Name6=SortOrder
Configuration6_Item6=Description=Up
Configuration6_Name7=VisibleOrder
Configuration6_Item7=Description=113|Comment=77|Footprint=59|Value=40|Designator=56|Quantity=37|Supplier Part Number 1=174|Supplier Order Qty 1=30|Supplier Stock 1=38|Supplier Unit Price 1=29|Supplier Subtotal 1=30|Supplier 1=23|Manufacturer 1=32|Manufacturer Part Number 1=20
[OutputGroup7]
Name=Other Outputs
Description=
TargetPrinter=Microsoft XPS Document Writer
PrinterOptions=Record=PrinterOptions|Copies=1|Duplex=1|TrueTypeOptions=3|Collate=1|PrintJobKind=1|PrintWhat=1
OutputType1=Text Print
OutputName1=Text Print
OutputDocumentPath1=
OutputVariantName1=
OutputDefault1=0
PageOptions1=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
OutputType2=Text Print
OutputName2=Text Print
OutputDocumentPath2=
OutputVariantName2=
OutputDefault2=0
PageOptions2=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType3=Text Print
OutputName3=Text Print
OutputDocumentPath3=
OutputVariantName3=
OutputDefault3=0
PageOptions3=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType4=Text Print
OutputName4=Text Print
OutputDocumentPath4=
OutputVariantName4=
OutputDefault4=0
PageOptions4=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType5=Text Print
OutputName5=Text Print
OutputDocumentPath5=
OutputVariantName5=
OutputDefault5=0
PageOptions5=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType6=Text Print
OutputName6=Text Print
OutputDocumentPath6=
OutputVariantName6=
OutputDefault6=0
PageOptions6=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType7=Text Print
OutputName7=Text Print
OutputDocumentPath7=
OutputVariantName7=
OutputDefault7=0
PageOptions7=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType8=Text Print
OutputName8=Text Print
OutputDocumentPath8=
OutputVariantName8=
OutputDefault8=0
PageOptions8=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType9=Text Print
OutputName9=Text Print
OutputDocumentPath9=
OutputVariantName9=
OutputDefault9=0
PageOptions9=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType10=Text Print
OutputName10=Text Print
OutputDocumentPath10=
OutputVariantName10=
OutputDefault10=0
PageOptions10=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType11=Text Print
OutputName11=Text Print
OutputDocumentPath11=
OutputVariantName11=
OutputDefault11=0
PageOptions11=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType12=Text Print
OutputName12=Text Print
OutputDocumentPath12=
OutputVariantName12=
OutputDefault12=0
PageOptions12=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType13=Text Print
OutputName13=Text Print
OutputDocumentPath13=
OutputVariantName13=
OutputDefault13=0
PageOptions13=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType14=Text Print
OutputName14=Text Print
OutputDocumentPath14=
OutputVariantName14=
OutputDefault14=0
PageOptions14=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType15=Text Print
OutputName15=Text Print
OutputDocumentPath15=
OutputVariantName15=
OutputDefault15=0
PageOptions15=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType16=Text Print
OutputName16=Text Print
OutputDocumentPath16=
OutputVariantName16=
OutputDefault16=0
PageOptions16=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType17=Text Print
OutputName17=Text Print
OutputDocumentPath17=
OutputVariantName17=
OutputDefault17=0
PageOptions17=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType18=Text Print
OutputName18=Text Print
OutputDocumentPath18=
OutputVariantName18=
OutputDefault18=0
PageOptions18=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType19=Text Print
OutputName19=Text Print
OutputDocumentPath19=
OutputVariantName19=
OutputDefault19=0
PageOptions19=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType20=Text Print
OutputName20=Text Print
OutputDocumentPath20=
OutputVariantName20=
OutputDefault20=0
PageOptions20=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType21=Text Print
OutputName21=Text Print
OutputDocumentPath21=
OutputVariantName21=
OutputDefault21=0
PageOptions21=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType22=Text Print
OutputName22=Text Print
OutputDocumentPath22=
OutputVariantName22=
OutputDefault22=0
PageOptions22=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType23=Text Print
OutputName23=Text Print
OutputDocumentPath23=
OutputVariantName23=
OutputDefault23=0
PageOptions23=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType24=Text Print
OutputName24=Text Print
OutputDocumentPath24=
OutputVariantName24=
OutputDefault24=0
PageOptions24=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType25=Text Print
OutputName25=Text Print
OutputDocumentPath25=
OutputVariantName25=
OutputDefault25=0
PageOptions25=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType26=Text Print
OutputName26=Text Print
OutputDocumentPath26=
OutputVariantName26=
OutputDefault26=0
PageOptions26=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType27=Text Print
OutputName27=Text Print
OutputDocumentPath27=
OutputVariantName27=
OutputDefault27=0
PageOptions27=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType28=Text Print
OutputName28=Text Print
OutputDocumentPath28=
OutputVariantName28=
OutputDefault28=0
PageOptions28=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
OutputType29=Text Print
OutputName29=Text Print
OutputDocumentPath29=
OutputVariantName29=
OutputDefault29=0
PageOptions29=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-3|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4|PaperIndex=9
[OutputGroup8]
Name=Validation Outputs
Description=
TargetPrinter=Microsoft XPS Document Writer
PrinterOptions=Record=PrinterOptions|Copies=1|Duplex=1|TrueTypeOptions=3|Collate=1|PrintJobKind=1|PrintWhat=1
OutputType1=Design Rules Check
OutputName1=Design Rules Check
OutputDocumentPath1=
OutputVariantName1=
OutputDefault1=0
PageOptions1=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
OutputType2=Electrical Rules Check
OutputName2=Electrical Rules Check
OutputDocumentPath2=
OutputVariantName2=
OutputDefault2=0
PageOptions2=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
OutputType3=Differences Report
OutputName3=Differences Report
OutputDocumentPath3=
OutputVariantName3=
OutputDefault3=0
PageOptions3=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
OutputType4=Footprint Comparison Report
OutputName4=Footprint Comparison Report
OutputDocumentPath4=
OutputVariantName4=
OutputDefault4=0
OutputType5=Configuration compliance
OutputName5=Environment configuration compliance check
OutputDocumentPath5=
OutputVariantName5=
OutputDefault5=0
[OutputGroup9]
Name=Export Outputs
Description=
TargetPrinter=Microsoft XPS Document Writer
PrinterOptions=Record=PrinterOptions|Copies=1|Duplex=1|TrueTypeOptions=3|Collate=1|PrintJobKind=1|PrintWhat=1
OutputType1=ExportSTEP
OutputName1=Export STEP
OutputDocumentPath1=
OutputVariantName1=[No Variations]
OutputDefault1=0
OutputType2=AutoCAD dwg/dxf PCB
OutputName2=AutoCAD dwg/dxf File PCB
OutputDocumentPath2=
OutputVariantName2=
OutputDefault2=0
OutputType3=ExportIDF
OutputName3=Export IDF
OutputDocumentPath3=
OutputVariantName3=
OutputDefault3=0
OutputType4=AutoCAD dwg/dxf Schematic
OutputName4=AutoCAD dwg/dxf File Schematic
OutputDocumentPath4=
OutputVariantName4=
OutputDefault4=0
[Modification Levels]
Type1=1
Type2=1
Type3=1
Type4=1
Type5=1
Type6=1
Type7=1
Type8=1
Type9=1
Type10=1
Type11=1
Type12=1
Type13=1
Type14=1
Type15=1
Type16=1
Type17=1
Type18=1
Type19=1
Type20=1
Type21=1
Type22=1
Type23=1
Type24=1
Type25=1
Type26=1
Type27=1
Type28=1
Type29=1
Type30=1
Type31=1
Type32=1
Type33=1
Type34=1
Type35=1
Type36=1
Type37=1
Type38=1
Type39=1
Type40=1
Type41=1
Type42=1
Type43=1
Type44=1
Type45=1
Type46=1
Type47=1
Type48=1
Type49=1
Type50=1
Type51=1
Type52=1
Type53=1
Type54=1
Type55=1
Type56=1
Type57=1
Type58=1
Type59=1
Type60=1
Type61=1
Type62=1
Type63=1
Type64=1
Type65=1
Type66=1
Type67=1
Type68=1
Type69=1
Type70=1
Type71=1
Type72=1
Type73=1
Type74=1
Type75=1
Type76=1
Type77=1
Type78=1
[Difference Levels]
Type1=1
Type2=1
Type3=1
Type4=1
Type5=1
Type6=1
Type7=1
Type8=1
Type9=1
Type10=1
Type11=1
Type12=1
Type13=1
Type14=1
Type15=1
Type16=1
Type17=1
Type18=1
Type19=1
Type20=1
Type21=1
Type22=1
Type23=1
Type24=1
Type25=1
Type26=1
Type27=1
Type28=1
Type29=1
Type30=1
Type31=1
Type32=1
Type33=1
Type34=1
Type35=1
Type36=1
Type37=1
Type38=1
Type39=1
Type40=1
Type41=1
Type42=1
Type43=1
[Electrical Rules Check]
Type1=1
Type2=1
Type3=2
Type4=1
Type5=2
Type6=2
Type7=1
Type8=1
Type9=1
Type10=1
Type11=2
Type12=2
Type13=2
Type14=1
Type15=1
Type16=1
Type17=1
Type18=1
Type19=1
Type20=1
Type21=1
Type22=1
Type23=1
Type24=1
Type25=2
Type26=2
Type27=2
Type28=1
Type29=1
Type30=1
Type31=1
Type32=2
Type33=2
Type34=2
Type35=1
Type36=2
Type37=1
Type38=2
Type39=2
Type40=2
Type41=0
Type42=2
Type43=1
Type44=1
Type45=2
Type46=1
Type47=2
Type48=2
Type49=1
Type50=2
Type51=1
Type52=1
Type53=1
Type54=1
Type55=1
Type56=2
Type57=1
Type58=1
Type59=0
Type60=1
Type61=2
Type62=2
Type63=1
Type64=0
Type65=2
Type66=3
Type67=2
Type68=2
Type69=1
Type70=2
Type71=2
Type72=2
Type73=2
Type74=1
Type75=2
Type76=1
Type77=1
Type78=1
Type79=1
Type80=2
Type81=3
Type82=3
Type83=3
Type84=3
Type85=3
Type86=2
Type87=2
Type88=2
Type89=1
Type90=1
Type91=3
Type92=3
Type93=2
Type94=2
Type95=2
Type96=2
Type97=2
Type98=0
Type99=1
Type100=2
Type101=1
Type102=2
Type103=2
Type104=1
Type105=2
Type106=2
Type107=2
Type108=2
Type109=1
Type110=0
[ERC Connection Matrix]
L1=NNNNNNNNNNNWNNNWW
L2=NNWNNNNWWWNWNWNWN
L3=NWEENEEEENEWNEEWN
L4=NNENNNWEENNWNENWN
L5=NNNNNNNNNNNNNNNNN
L6=NNENNNNEENNWNENWN
L7=NNEWNNWEENNWNENWN
L8=NWEENEENEEENNEENN
L9=NWEENEEEENEWNEEWW
L10=NWNNNNNENNEWNNEWN
L11=NNENNNNEEENWNENWN
L12=WWWWNWWNWWWNWWWNN
L13=NNNNNNNNNNNWNNNWW
L14=NWEENEEEENEWNEEWW
L15=NNENNNNEEENWNENWW
L16=WWWWNWWNWWWNWWWNW
L17=WNNNNNNNWNNNWWWWN
[Annotate]
SortOrder=3
SortLocation=0
MatchParameter1=Comment
MatchStrictly1=1
MatchParameter2=Library Reference
MatchStrictly2=1
PhysicalNamingFormat=$Component_$RoomName
GlobalIndexSortOrder=3
GlobalIndexSortLocation=0
[PrjClassGen]
CompClassManualEnabled=0
CompClassManualRoomEnabled=0
NetClassAutoBusEnabled=1
NetClassAutoCompEnabled=0
NetClassAutoNamedHarnessEnabled=0
NetClassManualEnabled=1
[LibraryUpdateOptions]
SelectedOnly=0
UpdateVariants=1
PartTypes=0
ComponentLibIdentifierKind0=Library Name And Type
ComponentLibraryIdentifier0=CopterControl.SchLib
ComponentDesignItemID0=CC-STM32F103CBT6
ComponentSymbolReference0=CC-STM32F103CBT6
ComponentUpdate0=1
ComponentIsDeviceSheet0=0
FullReplace=1
UpdateDesignatorLock=1
UpdatePartIDLock=1
PreserveParameterLocations=1
PreserveParameterVisibility=1
DoGraphics=1
DoParameters=1
DoModels=1
AddParameters=0
RemoveParameters=0
AddModels=1
RemoveModels=1
UpdateCurrentModels=1
ParameterName0=Comment
ParameterUpdate0=1
ParameterName1=Component Kind
ParameterUpdate1=1
ParameterName2=ComponentLink1Description
ParameterUpdate2=1
ParameterName3=ComponentLink1URL
ParameterUpdate3=1
ParameterName4=ComponentLink2Description
ParameterUpdate4=1
ParameterName5=ComponentLink2URL
ParameterUpdate5=1
ParameterName6=DatasheetVersion
ParameterUpdate6=1
ParameterName7=Description
ParameterUpdate7=1
ParameterName8=Library Reference
ParameterUpdate8=1
ParameterName9=PackageDescription
ParameterUpdate9=1
ParameterName10=PackageReference
ParameterUpdate10=1
ParameterName11=PackageVersion
ParameterUpdate11=1
ParameterName12=Published
ParameterUpdate12=1
ParameterName13=Publisher
ParameterUpdate13=1
ParameterName14=Supplier 1
ParameterUpdate14=1
ParameterName15=Supplier Part Number 1
ParameterUpdate15=1
ModelTypeGroup0=PCBLIB
ModelTypeUpdate0=1
ModelType0=PCBLIB
ModelName0=LQFP48_L
ModelUpdate0=1
ModelType1=PCBLIB
ModelName1=LQFP48_M
ModelUpdate1=1
ModelType2=PCBLIB
ModelName2=LQFP48_N
ModelUpdate2=1
[DatabaseUpdateOptions]
SelectedOnly=0
UpdateVariants=1
PartTypes=0
[Comparison Options]
ComparisonOptions0=Kind=Net|MinPercent=75|MinMatch=3|ShowMatch=-1|Confirm=-1|UseName=-1|InclAllRules=0
ComparisonOptions1=Kind=Net Class|MinPercent=75|MinMatch=3|ShowMatch=-1|Confirm=-1|UseName=-1|InclAllRules=0
ComparisonOptions2=Kind=Component Class|MinPercent=75|MinMatch=3|ShowMatch=-1|Confirm=-1|UseName=-1|InclAllRules=0
ComparisonOptions3=Kind=Rule|MinPercent=75|MinMatch=3|ShowMatch=-1|Confirm=-1|UseName=-1|InclAllRules=0
ComparisonOptions4=Kind=Differential Pair|MinPercent=50|MinMatch=1|ShowMatch=0|Confirm=0|UseName=0|InclAllRules=0
ComparisonOptions5=Kind=Code Memory|MinPercent=75|MinMatch=3|ShowMatch=-1|Confirm=-1|UseName=-1|InclAllRules=0
[SmartPDF]
PageOptions=Record=PageOptions|CenterHorizontal=True|CenterVertical=True|PrintScale=1.00|XCorrection=1.00|YCorrection=1.00|PrintKind=1|BorderSize=5000000|LeftOffset=0|BottomOffset=0|Orientation=2|PaperLength=1000|PaperWidth=1000|Scale=100|PaperSource=7|PrintQuality=-4|MediaType=1|DitherType=10|PrintScaleMode=1|PaperKind=A4
Configuration_Name1=OutputConfigurationParameter1
Configuration_Item1=PrintArea=DesignExtent|PrintAreaLowerLeftCornerX=0|PrintAreaLowerLeftCornerY=0|PrintAreaUpperRightCornerX=0|PrintAreaUpperRightCornerY=0|Record=PcbPrintView
Configuration_Name2=OutputConfigurationParameter2
Configuration_Item2=IncludeBottomLayerComponents=False|IncludeMultiLayerComponents=False|IncludeTopLayerComponents=False|Index=0|Mirror=False|Name=Panel Details|PadNumberFontSize=14|Record=PcbPrintOut|ShowHoles=False|ShowPadNets=False|ShowPadNumbers=False|SubstituteFonts=False
Configuration_Name3=OutputConfigurationParameter3
Configuration_Item3=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical16|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration_Name4=OutputConfigurationParameter4
Configuration_Item4=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical1|Polygon=Full|PrintOutIndex=0|Record=PcbPrintLayer
Configuration_Name5=OutputConfigurationParameter5
Configuration_Item5=IncludeBottomLayerComponents=False|IncludeMultiLayerComponents=False|IncludeTopLayerComponents=False|Index=1|Mirror=False|Name=Top SilkScreen|PadNumberFontSize=14|Record=PcbPrintOut|ShowHoles=False|ShowPadNets=False|ShowPadNumbers=False|SubstituteFonts=False
Configuration_Name6=OutputConfigurationParameter6
Configuration_Item6=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=TopOverlay|Polygon=Full|PrintOutIndex=1|Record=PcbPrintLayer
Configuration_Name7=OutputConfigurationParameter7
Configuration_Item7=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical16|Polygon=Full|PrintOutIndex=1|Record=PcbPrintLayer
Configuration_Name8=OutputConfigurationParameter8
Configuration_Item8=IncludeBottomLayerComponents=False|IncludeMultiLayerComponents=False|IncludeTopLayerComponents=False|Index=2|Mirror=False|Name=Top Copper|PadNumberFontSize=14|Record=PcbPrintOut|ShowHoles=False|ShowPadNets=False|ShowPadNumbers=False|SubstituteFonts=False
Configuration_Name9=OutputConfigurationParameter9
Configuration_Item9=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=TopLayer|Polygon=Full|PrintOutIndex=2|Record=PcbPrintLayer
Configuration_Name10=OutputConfigurationParameter10
Configuration_Item10=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical16|Polygon=Full|PrintOutIndex=2|Record=PcbPrintLayer
Configuration_Name11=OutputConfigurationParameter11
Configuration_Item11=IncludeBottomLayerComponents=False|IncludeMultiLayerComponents=False|IncludeTopLayerComponents=False|Index=3|Mirror=False|Name=Groud Copper|PadNumberFontSize=14|Record=PcbPrintOut|ShowHoles=False|ShowPadNets=False|ShowPadNumbers=False|SubstituteFonts=False
Configuration_Name12=OutputConfigurationParameter12
Configuration_Item12=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=MidLayer1|Polygon=Full|PrintOutIndex=3|Record=PcbPrintLayer
Configuration_Name13=OutputConfigurationParameter13
Configuration_Item13=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical16|Polygon=Full|PrintOutIndex=3|Record=PcbPrintLayer
Configuration_Name14=OutputConfigurationParameter14
Configuration_Item14=IncludeBottomLayerComponents=False|IncludeMultiLayerComponents=False|IncludeTopLayerComponents=False|Index=4|Mirror=False|Name=Power Layer|PadNumberFontSize=14|Record=PcbPrintOut|ShowHoles=False|ShowPadNets=False|ShowPadNumbers=False|SubstituteFonts=False
Configuration_Name15=OutputConfigurationParameter15
Configuration_Item15=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=MidLayer2|Polygon=Full|PrintOutIndex=4|Record=PcbPrintLayer
Configuration_Name16=OutputConfigurationParameter16
Configuration_Item16=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical16|Polygon=Full|PrintOutIndex=4|Record=PcbPrintLayer
Configuration_Name17=OutputConfigurationParameter17
Configuration_Item17=IncludeBottomLayerComponents=False|IncludeMultiLayerComponents=False|IncludeTopLayerComponents=False|Index=5|Mirror=False|Name=Bottom Copper|PadNumberFontSize=14|Record=PcbPrintOut|ShowHoles=False|ShowPadNets=False|ShowPadNumbers=False|SubstituteFonts=False
Configuration_Name18=OutputConfigurationParameter18
Configuration_Item18=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=BottomLayer|Polygon=Full|PrintOutIndex=5|Record=PcbPrintLayer
Configuration_Name19=OutputConfigurationParameter19
Configuration_Item19=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical16|Polygon=Full|PrintOutIndex=5|Record=PcbPrintLayer
Configuration_Name20=OutputConfigurationParameter20
Configuration_Item20=IncludeBottomLayerComponents=False|IncludeMultiLayerComponents=False|IncludeTopLayerComponents=False|Index=6|Mirror=False|Name=Bottom Silk Screen|PadNumberFontSize=14|Record=PcbPrintOut|ShowHoles=False|ShowPadNets=False|ShowPadNumbers=False|SubstituteFonts=False
Configuration_Name21=OutputConfigurationParameter21
Configuration_Item21=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=BottomOverlay|Polygon=Full|PrintOutIndex=6|Record=PcbPrintLayer
Configuration_Name22=OutputConfigurationParameter22
Configuration_Item22=CArc=Full|CFill=Full|Comment=Full|Coordinate=Full|CPad=Full|CRegion=Full|CText=Full|CTrack=Full|CVia=Full|DDSymbolKind=0|DDSymbolSize=500000|DDSymbolSortKind=0|Designator=Full|Dimension=Full|DLayer1=TopLayer|DLayer2=BottomLayer|FArc=Full|FFill=Full|FPad=Full|FRegion=Full|FText=Full|FTrack=Full|FVia=Full|Layer=Mechanical16|Polygon=Full|PrintOutIndex=6|Record=PcbPrintLayer

View File

@ -164,7 +164,6 @@ ifeq ($(USE_CXX), YES)
CPPFLAGS += -DPIOS_ENABLE_CXX
endif
# Compiler flags to generate dependency files
CFLAGS += -MD -MP -MF $(OUTDIR)/dep/$(@F).d

View File

@ -2,7 +2,7 @@
<object name="AltitudeHoldSettings" singleinstance="true" settings="true" category="Control">
<description>Settings for the @ref AltitudeHold module</description>
<field name="AltitudePI" units="(m/s)/m" type="float" elementnames="Kp,Ki,Ilimit" defaultvalue="0.8,0,0" />
<field name="VelocityPI" units="(m/s^2)/(m/s)" type="float" elementnames="Kp,Ki,Ilimit" defaultvalue="0.2,0.0002,2.0" />
<field name="VelocityPI" units="(m/s^2)/(m/s)" type="float" elementnames="Kp,Ki,Ilimit" defaultvalue="0.3,0.3,2.0" />
<field name="CutThrustWhenZero" units="bool" type="enum" elements="1" options="False,True" defaultvalue="True" />
<field name="ThrustExp" units="" type="uint8" elements="1" defaultvalue="128" />
<field name="ThrustRate" units="m/s" type="float" elements="1" defaultvalue="5" />

View File

@ -83,34 +83,35 @@
limits="\
%0401NE:PositionHold:CourseLock:PositionRoam:HomeLeash:AbsolutePosition:ReturnToBase:Land:PathPlanner:POI:AutoCruise,\
%0402NE:PositionHold:CourseLock:PositionRoam:HomeLeash:AbsolutePosition:ReturnToBase:Land:PathPlanner:POI:AutoCruise,\
%0903NE:POI:PathPlanner:AutoCruise:Land;\
%0903NE:POI:PathPlanner:AutoCruise;\
\
%0401NE:PositionHold:CourseLock:PositionRoam:HomeLeash:AbsolutePosition:ReturnToBase:Land:PathPlanner:POI:AutoCruise,\
%0402NE:PositionHold:CourseLock:PositionRoam:HomeLeash:AbsolutePosition:ReturnToBase:Land:PathPlanner:POI:AutoCruise,\
%0903NE:POI:PathPlanner:AutoCruise:Land;\
%0903NE:POI:PathPlanner:AutoCruise;\
\
%0401NE:PositionHold:CourseLock:PositionRoam:HomeLeash:AbsolutePosition:ReturnToBase:Land:PathPlanner:POI:AutoCruise,\
%0402NE:PositionHold:CourseLock:PositionRoam:HomeLeash:AbsolutePosition:ReturnToBase:Land:PathPlanner:POI:AutoCruise,\
%0903NE:POI:PathPlanner:AutoCruise:Land;\
%0903NE:POI:PathPlanner:AutoCruise;\
\
%0401NE:PositionHold:CourseLock:PositionRoam:HomeLeash:AbsolutePosition:ReturnToBase:Land:PathPlanner:POI:AutoCruise,\
%0402NE:PositionHold:CourseLock:PositionRoam:HomeLeash:AbsolutePosition:ReturnToBase:Land:PathPlanner:POI:AutoCruise,\
%0903NE:POI:PathPlanner:AutoCruise:Land;\
%0903NE:POI:PathPlanner:AutoCruise;\
\
%0401NE:PositionHold:CourseLock:PositionRoam:HomeLeash:AbsolutePosition:ReturnToBase:Land:PathPlanner:POI:AutoCruise,\
%0402NE:PositionHold:CourseLock:PositionRoam:HomeLeash:AbsolutePosition:ReturnToBase:Land:PathPlanner:POI:AutoCruise,\
%0903NE:POI:PathPlanner:AutoCruise:Land;\
%0903NE:POI:PathPlanner:AutoCruise;\
\
%0401NE:PositionHold:CourseLock:PositionRoam:HomeLeash:AbsolutePosition:ReturnToBase:Land:PathPlanner:POI:AutoCruise,\
%0402NE:PositionHold:CourseLock:PositionRoam:HomeLeash:AbsolutePosition:ReturnToBase:Land:PathPlanner:POI:AutoCruise,\
%0903NE:POI:PathPlanner:AutoCruise:Land;"/>
%0903NE:POI:PathPlanner:AutoCruise;"/>
<field name="ArmedTimeout" units="ms" type="uint16" elements="1" defaultvalue="30000"/>
<field name="ArmingSequenceTime" units="ms" type="uint16" elements="1" defaultvalue="1000"/>
<field name="DisarmingSequenceTime" units="ms" type="uint16" elements="1" defaultvalue="1000"/>
<field name="DisableSanityChecks" units="" type="enum" elements="1" options="FALSE,TRUE" defaultvalue="FALSE"/>
<field name="ReturnToBaseAltitudeOffset" units="m" type="float" elements="1" defaultvalue="10"/>
<field name="LandingVelocity" units="m" type="float" elements="1" defaultvalue="0.4"/>
<field name="ReturnToBaseNextCommand" units="" type="enum" elements="1" options="Hold,Land" defaultvalue="Hold"/>
<field name="LandingVelocity" units="m" type="float" elements="1" defaultvalue="0.6"/>
<field name="PositionHoldOffset" units="m" type="float" elementnames="Horizontal,Vertical" defaultvalue="30,15" description="stick sensitivity for position roam modes"/>
<field name="VarioControlLowPassAlpha" units="" type="float" elements="1" defaultvalue="0.98" description="stick low pass filter for position roam modes"/>
<access gcs="readwrite" flight="readwrite"/>

View File

@ -0,0 +1,30 @@
<xml>
<object name="GroundPathFollowerSettings" singleinstance="true" settings="true" category="Control">
<description>Settings for the @ref GroundPathFollowerModule</description>
<!-- these coefficients control desired movement in airspace -->
<field name="HorizontalVelMax" units="m/s" type="float" elements="1" defaultvalue="2"/>
<!-- Maximum speed the autopilot will try to achieve, usually for long distances -->
<field name="HorizontalVelMin" units="m/s" type="float" elements="1" defaultvalue="0"/>
<!-- V_y, Minimum speed the autopilot will try to fly, for example when loitering -->
<field name="CourseFeedForward" units="s" type="float" elements="1" defaultvalue="3.0"/>
<field name="VelocityFeedForward" units="s" type="float" elements="1" defaultvalue="0.1"/>
<!-- how many seconds to plan the flight vector ahead when initiating necessary heading changes - increase for planes with sluggish response -->
<field name="HorizontalPosP" units="(m/s)/m" type="float" elements="1" defaultvalue="0.2"/>
<!-- proportional coefficient for correction vector in path vector field to get back on course - reduce for fast planes to prevent course oscillations -->
<!-- these coefficients control actual control outputs -->
<field name="SpeedPI" units="deg / (m/s)" type="float" elements="4" elementnames="Kp,Ki,Kd,Beta" defaultvalue="0.1, .1, 0.001, 0.8"/>
<!-- coefficients for desired pitch
in relation to speed error IASerror -->
<field name="ThrustLimit" units="" type="float" elements="2" elementnames="Min,SlowForward, Max" defaultvalue="-0.3,0.15,0.3" />
<!-- minimum and maximum allowed thrust and setpoint for cruise speed -->
<field name="UpdatePeriod" units="ms" type="int32" elements="1" defaultvalue="100"/>
<access gcs="readwrite" flight="readwrite"/>
<telemetrygcs acked="true" updatemode="onchange" period="0"/>
<telemetryflight acked="true" updatemode="onchange" period="0"/>
<logging updatemode="manual" period="0"/>
</object>
</xml>

View File

@ -6,7 +6,7 @@
<field name="Down" units="m/s^2" type="float" elements="1"/>
<access gcs="readwrite" flight="readwrite"/>
<telemetrygcs acked="false" updatemode="manual" period="0"/>
<telemetryflight acked="false" updatemode="periodic" period="10001"/>
<telemetryflight acked="false" updatemode="periodic" period="1000"/>
<logging updatemode="manual" period="0"/>
</object>
</xml>

View File

@ -2,9 +2,10 @@
<object name="PathAction" singleinstance="false" settings="false" category="Navigation">
<description>A waypoint command the pathplanner is to use at a certain waypoint</description>
<field name="Mode" units="" type="enum" elements="1" options="FlyEndpoint,FlyVector,FlyCircleRight,FlyCircleLeft,
DriveEndpoint,DriveVector,DriveCircleLeft,DriveCircleRight,
FixedAttitude, SetAccessory, DisarmAlarm" default="Endpoint" />
<!-- ensure the following Mode options are exactly the same as in pathdesired mode -->
<field name="Mode" units="" type="enum" elements="1" options="GoToEndpoint,FollowVector,CircleRight,CircleLeft,
FixedAttitude,SetAccessory,DisarmAlarm,Land,Brake,Velocity" default="GoToEndpoint" />
<field name="ModeParameters" units="" type="float" elements="4" default="0"/>
<field name="EndCondition" units="" type="enum" elements="1" options="None,TimeOut,
DistanceToTarget,LegRemaining,BelowError,AboveAltitude,AboveSpeed,PointingTowardsNext,

View File

@ -3,16 +3,14 @@
<description>The endpoint or path the craft is trying to achieve. Can come from @ref ManualControl or @ref PathPlanner </description>
<field name="Start" units="m" type="float" elementnames="North,East,Down" default="0"/>
<field name="End" units="m" type="float" elementnames="North,East,Down" default="0"/>
<field name="End" units="m" type="float" elementnames="North,East,Down" default="0"/>
<field name="StartingVelocity" units="m/s" type="float" elements="1" default="0"/>
<field name="EndingVelocity" units="m/s" type="float" elements="1" default="0"/>
<field name="Mode" units="" type="enum" elements="1" options="FlyEndpoint,FlyVector,FlyCircleRight,FlyCircleLeft,
DriveEndpoint,DriveVector,DriveCircleLeft,DriveCircleRight,
FixedAttitude,
SetAccessory,
Land,
DisarmAlarm,Brake" default="0"/>
<!-- ensure the following Mode options are exactly the same as in pathaction mode -->
<field name="Mode" units="" type="enum" elements="1" options="GoToEndpoint,FollowVector,CircleRight,CircleLeft,
FixedAttitude,SetAccessory,DisarmAlarm,Land,Brake,Velocity" default="GoToEndpoint" />
<!-- Endpoint mode - move directly towards endpoint regardless of position -->
<!-- Straight Mode - move across linear path through Start towards the waypoint end, adjusting velocity - continue straight -->
<!-- Circle Mode - move a circular pattern around End with radius End-Start (straight line in the vertical)-->

View File

@ -11,6 +11,8 @@
<field name="decelrate" units="m/s2" type="float" elements="1"/>
<field name="brakeRateActualDesiredRatio" units="" type="float" elements="1"/>
<field name="velocityIntoHold" units="m/s" type="float" elements="1"/>
<field name="Mode" units="" type="enum" elements="1" options="GoToEndpoint,FollowVector,CircleRight,CircleLeft,
FixedAttitude,SetAccessory,DisarmAlarm,Land,Brake,Velocity" default="GoToEndpoint" />
<access gcs="readwrite" flight="readwrite"/>
<telemetrygcs acked="false" updatemode="manual" period="0"/>
<telemetryflight acked="false" updatemode="periodic" period="1000"/>

View File

@ -0,0 +1,18 @@
<xml>
<object name="PIDStatus" singleinstance="true" settings="false" category="Navigation">
<description>Status of a PID loop for debugging</description>
<field name="setpoint" units="m" type="float" elements="1"/>
<field name="actual" units="m" type="float" elements="1"/>
<field name="error" units="m" type="float" elements="1"/>
<field name="ulow" units="m" type="float" elements="1"/>
<field name="uhigh" units="m" type="float" elements="1"/>
<field name="command" units="m" type="float" elements="1"/>
<field name="P" units="m" type="float" elements="1"/>
<field name="I" units="m" type="float" elements="1"/>
<field name="D" units="m" type="float" elements="1"/>
<access gcs="readwrite" flight="readwrite"/>
<telemetrygcs acked="false" updatemode="manual" period="0"/>
<telemetryflight acked="false" updatemode="periodic" period="1000"/>
<logging updatemode="manual" period="0"/>
</object>
</xml>

View File

@ -0,0 +1,14 @@
<xml>
<object name="StatusGroundDrive" singleinstance="true" settings="false" category="Navigation">
<description>Status of a Ground drive sequence</description>
<field name="ControlState" units="" type="enum" elements="1" options="Inactive,OnTrack,TurnAroundRight,TurnAroundLeft,Brake" default="0"/>
<field name="NECommand" units="" type="float" elementnames="North,East" defaultvalue="0.0, 0.0"/>
<field name="State" units="" type="float" elementnames="Yaw,Velocity,Thrust" defaultvalue="0.0"/>
<field name="BodyCommand" units="" type="float" elementnames="Forward,Right" defaultvalue="0.0, 0.0"/>
<field name="ControlCommand" units="" type="float" elementnames="Speed,Course" defaultvalue="0.0, 0.0"/>
<access gcs="readwrite" flight="readwrite"/>
<telemetrygcs acked="false" updatemode="manual" period="0"/>
<telemetryflight acked="false" updatemode="onchange" period="100"/>
<logging updatemode="manual" period="0"/>
</object>
</xml>

View File

@ -0,0 +1,19 @@
<xml>
<object name="StatusVtolLand" singleinstance="true" settings="false" category="Navigation">
<description>Status of a Vtol landing sequence</description>
<field name="State" units="" type="enum" elements="1" options="Inactive,InitAltHold,WtgForDescentRate,AtDescentRate,WtgForGroundEffect,
GroundEffect,ThrustDown,ThrustOff,Disarmed, Abort" default="0"/>
<field name="AltitudeAtState" units="m" type="float" elements="10" default="0"/>
<field name="StateExitReason" units="" type="enum" elements="10" options="None,DescentRateOk,OnGround,BounceVelocity,BounceAccel,LowDescentRate,ZeroThrust,PositionError,Timeout" default="0"/>
<field name="targetDescentRate" units="m" type="float" elements="1"/>
<field name="averageDescentRate" units="m" type="float" elements="1"/>
<field name="averageDescentThrust" units="m" type="float" elements="1"/>
<field name="calculatedNeutralThrust" units="m" type="float" elements="1"/>
<field name="AltitudeState" units="" type="enum" elements="1" options="High,Low" default="0"/>
<field name="WtgForGroundEffect" units="" type="float" elementnames="BounceVelocity,BounceAccel" defaultvalue="0.0, 0.0"/>
<access gcs="readwrite" flight="readwrite"/>
<telemetrygcs acked="false" updatemode="manual" period="0"/>
<telemetryflight acked="false" updatemode="onchange" period="100"/>
<logging updatemode="manual" period="0"/>
</object>
</xml>

View File

@ -1,14 +1,14 @@
<xml>
<object name="VtolPathFollowerSettings" singleinstance="true" settings="true" category="Control">
<description>Settings for the @ref VtolPathFollowerModule</description>
<field name="TreatCustomCraftAs" units="switch" type="enum" elements="1" options="FixedWing,VTOL" defaultvalue="FixedWing"/>
<field name="TreatCustomCraftAs" units="switch" type="enum" elements="1" options="FixedWing,VTOL,Ground" defaultvalue="FixedWing"/>
<field name="HorizontalVelMax" units="m/s" type="float" elements="1" defaultvalue="10.0" description="maximum allowed horizontal movement velocity"/>
<field name="VerticalVelMax" units="m/s" type="float" elements="1" defaultvalue="4.0" description="maximum allowed climb/dive velocity"/>
<field name="CourseFeedForward" units="s" type="float" elements="1" defaultvalue="1.0"/>
<field name="HorizontalPosP" units="(m/s)/m" type="float" elements="1" defaultvalue="0.25"/>
<field name="VerticalPosP" units="" type="float" elements="1" defaultvalue="0.4"/>
<field name="HorizontalVelPID" units="deg/(m/s)" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="8.0, 0.5, 0.0, 15"/>
<field name="VerticalVelPID" units="" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="0.1, 0.01, 0.0, 1.0"/>
<field name="VerticalVelPID" units="" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="0.3, 0.3, 0.0, 1.0"/>
<field name="ThrustLimits" units="" type="float" elementnames="Min,Neutral,Max" defaultvalue="0.2, 0.5, 0.9"/>
<field name="VelocityFeedforward" units="deg/(m/s)" type="float" elements="1" defaultvalue="2"/>
<field name="ThrustControl" units="" type="enum" elements="1" options="manual,auto" defaultvalue="manual"/>
@ -23,6 +23,7 @@
<field name="BrakeMaxPitch" units="deg" type="float" elements="1" defaultvalue="25"/>
<field name="BrakeHorizontalVelPID" units="deg/(m/s)" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="12.0, 0.0, 0.03, 15"/>
<field name="BrakeVelocityFeedforward" units="deg/(m/s)" type="float" elements="1" defaultvalue="0"/>
<field name="LandVerticalVelPID" units="" type="float" elementnames="Kp,Ki,Kd,Beta" defaultvalue="0.35, 3.0, 0.05, 0.9"/>
<access gcs="readwrite" flight="readwrite"/>
<telemetrygcs acked="true" updatemode="onchange" period="0"/>
<telemetryflight acked="true" updatemode="onchange" period="0"/>