1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-02 10:24:11 +01:00

RFM22B: All outgoing data to the radio is now going through the PIOS_RFM22B_Send_Packet call. Also removed all global variables with the exception of the rx buffer.

This commit is contained in:
Brian Webb 2012-09-22 20:07:50 -07:00
parent 61200f01f5
commit a46e3cdec3
4 changed files with 161 additions and 421 deletions

View File

@ -48,6 +48,7 @@
#define STATS_UPDATE_PERIOD_MS 500
#define RADIOSTATS_UPDATE_PERIOD_MS 250
#define MAX_LOST_CONTACT_TIME 4
#define PACKET_MAX_DELAY 50
#ifndef LINK_LED_ON
#define LINK_LED_ON
@ -73,7 +74,6 @@ typedef struct {
// The task handles.
xTaskHandle radioReceiveTaskHandle;
xTaskHandle radioStatusTaskHandle;
xTaskHandle sendPacketTaskHandle;
// Queue handles.
xQueueHandle radioPacketQueue;
@ -106,7 +106,6 @@ typedef struct {
static void radioReceiveTask(void *parameters);
static void radioStatusTask(void *parameters);
static void sendPacketTask(void *parameters);
static void StatusHandler(PHStatusPacketHandle p, int8_t rssi, int8_t afc);
static int32_t transmitPacket(PHPacketHandle packet);
static void PPMHandler(uint16_t *channels);
@ -137,11 +136,9 @@ static int32_t RadioStart(void)
// Start the tasks.
xTaskCreate(radioReceiveTask, (signed char *)"RadioReceive", STACK_SIZE_BYTES, NULL, TASK_PRIORITY, &(data->radioReceiveTaskHandle));
xTaskCreate(radioStatusTask, (signed char *)"RadioStatus", STACK_SIZE_BYTES * 2, NULL, TASK_PRIORITY, &(data->radioStatusTaskHandle));
xTaskCreate(sendPacketTask, (signed char *)"SendPacket", STACK_SIZE_BYTES, NULL, TASK_PRIORITY, &(data->sendPacketTaskHandle));
// Install the monitors
TaskMonitorAdd(TASKINFO_RUNNING_MODEMRX, data->radioReceiveTaskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_MODEMTX, data->sendPacketTaskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_MODEMSTAT, data->radioStatusTaskHandle);
// Register the watchdog timers.
@ -289,9 +286,6 @@ static int32_t RadioInitialize(void)
PipXSettingsPairIDGet(&(data->pairStats[0].pairID));
data->destination_id = data->pairStats[0].pairID ? data->pairStats[0].pairID : 0xffffffff;
// Create the packet queue.
data->radioPacketQueue = xQueueCreate(PACKET_QUEUE_SIZE, sizeof(PHPacketHandle));
// Register the callbacks with the packet handler
PHRegisterStatusHandler(pios_packet_handler, StatusHandler);
PHRegisterOutputStream(pios_packet_handler, transmitPacket);
@ -342,27 +336,6 @@ static void radioReceiveTask(void *parameters)
}
}
/**
* Send packets to the radio.
*/
static void sendPacketTask(void *parameters)
{
PHPacketHandle p;
// Loop forever
while (1) {
#ifdef PIOS_INCLUDE_WDG
// Update the watchdog timer.
//PIOS_WDG_UpdateFlag(PIOS_WDG_SENDPACKET);
#endif /* PIOS_INCLUDE_WDG */
// Wait for a packet on the queue.
if (xQueueReceive(data->radioPacketQueue, &p, MAX_PORT_DELAY) == pdTRUE) {
PIOS_COM_SendBuffer(PIOS_COM_RADIO, (uint8_t*)p, PH_PACKET_SIZE(p));
PHReleaseTXPacket(pios_packet_handler, p);
}
}
}
/**
* Transmit a packet to the radio port.
* \param[in] buf Data buffer to send
@ -374,7 +347,7 @@ static int32_t transmitPacket(PHPacketHandle p)
{
uint16_t len = PH_PACKET_SIZE(p);
data->txBytes += len;
if (xQueueSend(data->radioPacketQueue, &p, portMAX_DELAY) != pdTRUE)
if (!PIOS_RFM22B_Send_Packet(pios_rfm22b_id, p, PACKET_MAX_DELAY))
return -1;
return len;
}

View File

@ -71,13 +71,12 @@ TIM4 | RC In 1 | Servo 3 | Servo 2 | Servo 1
//------------------------
#define PIOS_WATCHDOG_TIMEOUT 500
#define PIOS_WDG_REGISTER BKP_DR4
#define PIOS_WDG_COMUAVTALK 0x0001
#define PIOS_WDG_RADIORECEIVE 0x0002
#define PIOS_WDG_SENDPACKET 0x0004
#define PIOS_WDG_COMGCS 0x0001
#define PIOS_WDG_COMUAVTALK 0x0002
#define PIOS_WDG_RADIORECEIVE 0x0004
#define PIOS_WDG_SENDDATA 0x0008
#define PIOS_WDG_TRANSCOMM 0x0010
#define PIOS_WDG_PPMINPUT 0x0020
#define PIOS_WDG_COMGCS 0x0040
#define PIOS_WDG_TRANSCOMM 0x0008
#define PIOS_WDG_PPMINPUT 0x0010
//------------------------
// TELEMETRY

View File

@ -76,13 +76,9 @@
// ************************************
#define TX_TEST_MODE_TIMELIMIT_MS 30000 // TX test modes time limit (in ms)
#define TX_PREAMBLE_NIBBLES 12 // 7 to 511 (number of nibbles)
#define RX_PREAMBLE_NIBBLES 6 // 5 to 31 (number of nibbles)
// the size of the rf modules internal transmit buffers.
#define TX_BUFFER_SIZE 256
// the size of the rf modules internal FIFO buffers
#define FIFO_SIZE 64
@ -163,6 +159,7 @@ enum pios_rfm22b_state {
enum pios_rfm22b_event {
RFM22B_EVENT_INITIALIZE,
RFM22B_EVENT_INITIALIZED,
RFM22B_EVENT_INT_RECEIVED,
RFM22B_EVENT_TX_MODE,
RFM22B_EVENT_RX_MODE,
@ -171,7 +168,9 @@ enum pios_rfm22b_event {
RFM22B_EVENT_RX_COMPLETE,
RFM22B_EVENT_SEND_PACKET,
RFM22B_EVENT_TX_START,
RFM22B_EVENT_TX_STARTED,
RFM22B_EVENT_TX_COMPLETE,
RFM22B_EVENT_TIMEOUT,
RFM22B_EVENT_ERROR,
RFM22B_EVENT_FATAL_ERROR,
@ -227,6 +226,23 @@ struct pios_rfm22b_dev {
// The packet queue handle
xQueueHandle packetQueue;
// The current tx packet
PHPacketHandle tx_packet;
// the tx data read index
uint16_t tx_data_rd;
// the tx data write index
uint16_t tx_data_wr;
// The frequency hopping step size
float frequency_step_size;
// current frequency hop channel
uint8_t frequency_hop_channel;
// the frequency hop step size
uint8_t frequency_hop_step_size_reg;
// afc correction reading (in Hz)
int32_t afc_correction_Hz;
int8_t rx_packet_start_afc_Hz;
};
struct pios_rfm22b_transition {
@ -311,7 +327,7 @@ const static struct pios_rfm22b_transition rfm22b_transitions[RFM22B_STATE_NUM_S
[RFM22B_STATE_INITIALIZING] = {
.entry_fn = rfm22_init,
.next_state = {
[RFM22B_EVENT_RX_MODE] = RFM22B_STATE_RX_MODE,
[RFM22B_EVENT_INITIALIZED] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
@ -327,7 +343,9 @@ const static struct pios_rfm22b_transition rfm22b_transitions[RFM22B_STATE_NUM_S
.entry_fn = rfm22_setRxMode,
.next_state = {
[RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_WAIT_PREAMBLE,
[RFM22B_EVENT_SEND_PACKET] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
@ -337,7 +355,9 @@ const static struct pios_rfm22b_transition rfm22b_transitions[RFM22B_STATE_NUM_S
.next_state = {
[RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_WAIT_PREAMBLE,
[RFM22B_EVENT_PREAMBLE_DETECTED] = RFM22B_STATE_WAIT_SYNC,
[RFM22B_EVENT_SEND_PACKET] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TX_START,
[RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR,
[RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR,
},
@ -393,34 +413,34 @@ const static struct pios_rfm22b_transition rfm22b_transitions[RFM22B_STATE_NUM_S
// xtal 10 ppm, 434MHz
#define LOOKUP_SIZE 14
const uint32_t data_rate[] = { 500, 1000, 2000, 4000, 8000, 9600, 16000, 19200, 24000, 32000, 64000, 128000, 192000, 256000};
const uint8_t modulation_index[] = { 16, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
const uint32_t freq_deviation[] = { 4000, 4000, 4000, 4000, 4000, 4800, 8000, 9600, 12000, 16000, 32000, 64000, 96000, 128000};
const uint32_t rx_bandwidth[] = { 17500, 17500, 17500, 17500, 17500, 19400, 32200, 38600, 51200, 64100, 137900, 269300, 420200, 518800};
const int8_t est_rx_sens_dBm[] = { -118, -118, -117, -116, -115, -115, -112, -112, -110, -109, -106, -103, -101, -100}; // estimated receiver sensitivity for BER = 1E-3
static const uint32_t data_rate[] = { 500, 1000, 2000, 4000, 8000, 9600, 16000, 19200, 24000, 32000, 64000, 128000, 192000, 256000};
static const uint8_t modulation_index[] = { 16, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
static const uint32_t freq_deviation[] = { 4000, 4000, 4000, 4000, 4000, 4800, 8000, 9600, 12000, 16000, 32000, 64000, 96000, 128000};
static const uint32_t rx_bandwidth[] = { 17500, 17500, 17500, 17500, 17500, 19400, 32200, 38600, 51200, 64100, 137900, 269300, 420200, 518800};
static const int8_t est_rx_sens_dBm[] = { -118, -118, -117, -116, -115, -115, -112, -112, -110, -109, -106, -103, -101, -100}; // estimated receiver sensitivity for BER = 1E-3
const uint8_t reg_1C[] = { 0x37, 0x37, 0x37, 0x37, 0x3A, 0x3B, 0x26, 0x28, 0x2E, 0x16, 0x07, 0x83, 0x8A, 0x8C}; // rfm22_if_filter_bandwidth
static const uint8_t reg_1C[] = { 0x37, 0x37, 0x37, 0x37, 0x3A, 0x3B, 0x26, 0x28, 0x2E, 0x16, 0x07, 0x83, 0x8A, 0x8C}; // rfm22_if_filter_bandwidth
const uint8_t reg_1D[] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44}; // rfm22_afc_loop_gearshift_override
const uint8_t reg_1E[] = { 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x02}; // rfm22_afc_timing_control
static const uint8_t reg_1D[] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44}; // rfm22_afc_loop_gearshift_override
static const uint8_t reg_1E[] = { 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x02}; // rfm22_afc_timing_control
const uint8_t reg_1F[] = { 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03}; // rfm22_clk_recovery_gearshift_override
const uint8_t reg_20[] = { 0xE8, 0xF4, 0xFA, 0x70, 0x3F, 0x34, 0x3F, 0x34, 0x2A, 0x3F, 0x3F, 0x5E, 0x3F, 0x2F}; // rfm22_clk_recovery_oversampling_ratio
const uint8_t reg_21[] = { 0x60, 0x20, 0x00, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x02, 0x02, 0x01, 0x02, 0x02}; // rfm22_clk_recovery_offset2
const uint8_t reg_22[] = { 0x20, 0x41, 0x83, 0x06, 0x0C, 0x75, 0x0C, 0x75, 0x12, 0x0C, 0x0C, 0x5D, 0x0C, 0xBB}; // rfm22_clk_recovery_offset1
const uint8_t reg_23[] = { 0xC5, 0x89, 0x12, 0x25, 0x4A, 0x25, 0x4A, 0x25, 0x6F, 0x4A, 0x4A, 0x86, 0x4A, 0x0D}; // rfm22_clk_recovery_offset0
const uint8_t reg_24[] = { 0x00, 0x00, 0x00, 0x02, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x05, 0x07, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
const uint8_t reg_25[] = { 0x0A, 0x23, 0x85, 0x0E, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x74, 0xFF, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
static const uint8_t reg_1F[] = { 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03}; // rfm22_clk_recovery_gearshift_override
static const uint8_t reg_20[] = { 0xE8, 0xF4, 0xFA, 0x70, 0x3F, 0x34, 0x3F, 0x34, 0x2A, 0x3F, 0x3F, 0x5E, 0x3F, 0x2F}; // rfm22_clk_recovery_oversampling_ratio
static const uint8_t reg_21[] = { 0x60, 0x20, 0x00, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x02, 0x02, 0x01, 0x02, 0x02}; // rfm22_clk_recovery_offset2
static const uint8_t reg_22[] = { 0x20, 0x41, 0x83, 0x06, 0x0C, 0x75, 0x0C, 0x75, 0x12, 0x0C, 0x0C, 0x5D, 0x0C, 0xBB}; // rfm22_clk_recovery_offset1
static const uint8_t reg_23[] = { 0xC5, 0x89, 0x12, 0x25, 0x4A, 0x25, 0x4A, 0x25, 0x6F, 0x4A, 0x4A, 0x86, 0x4A, 0x0D}; // rfm22_clk_recovery_offset0
static const uint8_t reg_24[] = { 0x00, 0x00, 0x00, 0x02, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x05, 0x07, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
static const uint8_t reg_25[] = { 0x0A, 0x23, 0x85, 0x0E, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x74, 0xFF, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
const uint8_t reg_2A[] = { 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0D, 0x0D, 0x0E, 0x12, 0x17, 0x31, 0x50, 0x50, 0x50}; // rfm22_afc_limiter .. AFC_pull_in_range = ±AFCLimiter[7:0] x (hbsel+1) x 625 Hz
static const uint8_t reg_2A[] = { 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0D, 0x0D, 0x0E, 0x12, 0x17, 0x31, 0x50, 0x50, 0x50}; // rfm22_afc_limiter .. AFC_pull_in_range = ±AFCLimiter[7:0] x (hbsel+1) x 625 Hz
const uint8_t reg_6E[] = { 0x04, 0x08, 0x10, 0x20, 0x41, 0x4E, 0x83, 0x9D, 0xC4, 0x08, 0x10, 0x20, 0x31, 0x41}; // rfm22_tx_data_rate1
const uint8_t reg_6F[] = { 0x19, 0x31, 0x62, 0xC5, 0x89, 0xA5, 0x12, 0x49, 0x9C, 0x31, 0x62, 0xC5, 0x27, 0x89}; // rfm22_tx_data_rate0
static const uint8_t reg_6E[] = { 0x04, 0x08, 0x10, 0x20, 0x41, 0x4E, 0x83, 0x9D, 0xC4, 0x08, 0x10, 0x20, 0x31, 0x41}; // rfm22_tx_data_rate1
static const uint8_t reg_6F[] = { 0x19, 0x31, 0x62, 0xC5, 0x89, 0xA5, 0x12, 0x49, 0x9C, 0x31, 0x62, 0xC5, 0x27, 0x89}; // rfm22_tx_data_rate0
const uint8_t reg_70[] = { 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D}; // rfm22_modulation_mode_control1
const uint8_t reg_71[] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23}; // rfm22_modulation_mode_control2
static const uint8_t reg_70[] = { 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D}; // rfm22_modulation_mode_control1
static const uint8_t reg_71[] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23}; // rfm22_modulation_mode_control2
const uint8_t reg_72[] = { 0x06, 0x06, 0x06, 0x06, 0x06, 0x08, 0x0D, 0x0F, 0x13, 0x1A, 0x33, 0x66, 0x9A, 0xCD}; // rfm22_frequency_deviation
static const uint8_t reg_72[] = { 0x06, 0x06, 0x06, 0x06, 0x06, 0x08, 0x0D, 0x0F, 0x13, 0x1A, 0x33, 0x66, 0x9A, 0xCD}; // rfm22_frequency_deviation
// ************************************
// Scan Spectrum settings
@ -433,87 +453,29 @@ const uint8_t reg_72[] = { 0x06, 0x06, 0x06, 0x06, 0x06, 0x
#define SS_LOOKUP_SIZE 2
// xtal 1 ppm, 434MHz
const uint32_t ss_rx_bandwidth[] = { 2600, 10600};
static const uint32_t ss_rx_bandwidth[] = { 2600, 10600};
const uint8_t ss_reg_1C[] = { 0x51, 0x32}; // rfm22_if_filter_bandwidth
const uint8_t ss_reg_1D[] = { 0x00, 0x00}; // rfm22_afc_loop_gearshift_override
static const uint8_t ss_reg_1C[] = { 0x51, 0x32}; // rfm22_if_filter_bandwidth
static const uint8_t ss_reg_1D[] = { 0x00, 0x00}; // rfm22_afc_loop_gearshift_override
const uint8_t ss_reg_20[] = { 0xE8, 0x38}; // rfm22_clk_recovery_oversampling_ratio
const uint8_t ss_reg_21[] = { 0x60, 0x02}; // rfm22_clk_recovery_offset2
const uint8_t ss_reg_22[] = { 0x20, 0x4D}; // rfm22_clk_recovery_offset1
const uint8_t ss_reg_23[] = { 0xC5, 0xD3}; // rfm22_clk_recovery_offset0
const uint8_t ss_reg_24[] = { 0x00, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
const uint8_t ss_reg_25[] = { 0x0F, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
static const uint8_t ss_reg_20[] = { 0xE8, 0x38}; // rfm22_clk_recovery_oversampling_ratio
static const uint8_t ss_reg_21[] = { 0x60, 0x02}; // rfm22_clk_recovery_offset2
static const uint8_t ss_reg_22[] = { 0x20, 0x4D}; // rfm22_clk_recovery_offset1
static const uint8_t ss_reg_23[] = { 0xC5, 0xD3}; // rfm22_clk_recovery_offset0
static const uint8_t ss_reg_24[] = { 0x00, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
static const uint8_t ss_reg_25[] = { 0x0F, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
const uint8_t ss_reg_2A[] = { 0xFF, 0xFF}; // rfm22_afc_limiter .. AFC_pull_in_range = ±AFCLimiter[7:0] x (hbsel+1) x 625 Hz
static const uint8_t ss_reg_2A[] = { 0xFF, 0xFF}; // rfm22_afc_limiter .. AFC_pull_in_range = ±AFCLimiter[7:0] x (hbsel+1) x 625 Hz
const uint8_t ss_reg_70[] = { 0x24, 0x2D}; // rfm22_modulation_mode_control1
const uint8_t ss_reg_71[] = { 0x2B, 0x23}; // rfm22_modulation_mode_control2
// ************************************
volatile bool initialized = false;
#if defined(RFM22_EXT_INT_USE)
volatile bool exec_using_spi; // set this if you want to access the SPI bus outside of the interrupt
#endif
uint8_t device_type; // the RF chips device ID number
uint8_t device_version; // the RF chips revision number
uint32_t lower_carrier_frequency_limit_Hz; // the minimum RF frequency we can use
uint32_t upper_carrier_frequency_limit_Hz; // the maximum RF frequency we can use
uint32_t carrier_frequency_hz; // the current RF frequency we are on
uint32_t carrier_datarate_bps; // the RF data rate we are using
uint32_t rf_bandwidth_used; // the RF bandwidth currently used
uint32_t ss_rf_bandwidth_used; // the RF bandwidth currently used
uint8_t hbsel; // holds the hbsel (1 or 2)
float frequency_step_size; // holds the minimum frequency step size
uint8_t frequency_hop_channel; // current frequency hop channel
uint8_t frequency_hop_step_size_reg; //
uint8_t adc_config; // holds the adc config reg value
volatile int16_t afc_correction; // afc correction reading
volatile int32_t afc_correction_Hz; // afc correction reading (in Hz)
volatile int16_t temperature_reg; // the temperature sensor reading
volatile uint8_t osc_load_cap; // xtal frequency calibration value
// The transmit buffer. Holds data that is being transmitted.
uint8_t tx_buffer[TX_BUFFER_SIZE] __attribute__ ((aligned(4)));
// The transmit buffer. Hosts data that is wating to be transmitted.
uint8_t tx_pre_buffer[TX_BUFFER_SIZE] __attribute__ ((aligned(4)));
// The tx pre-buffer write index.
uint16_t tx_pre_buffer_size;
// the tx data read index
volatile uint16_t tx_data_rd;
// the tx data write index
volatile uint16_t tx_data_wr;
static const uint8_t ss_reg_70[] = { 0x24, 0x2D}; // rfm22_modulation_mode_control1
static const uint8_t ss_reg_71[] = { 0x2B, 0x23}; // rfm22_modulation_mode_control2
// the current receive buffer in use (double buffer)
volatile uint8_t rx_buffer_current;
// the receive buffer .. received packet data is saved here
volatile uint8_t rx_buffer[258] __attribute__ ((aligned(4)));
// the receive buffer write index
volatile uint16_t rx_buffer_wr;
// the received packet
volatile int8_t rx_packet_start_afc_Hz; //
volatile int8_t rx_packet_afc_Hz; // the receive packet frequency offset
int lookup_index;
int ss_lookup_index;
uint16_t timeout_ms = 20000; //
uint16_t timeout_sync_ms = 3; //
uint16_t timeout_data_ms = 20; //
volatile uint16_t rx_buffer_wr;
static bool PIOS_RFM22B_validate(struct pios_rfm22b_dev * rfm22b_dev)
@ -596,9 +558,6 @@ int32_t PIOS_RFM22B_Init(uint32_t *rfm22b_id, uint32_t spi_id, uint32_t slave_nu
// Create a semaphore to know if an ISR needs responding to
vSemaphoreCreateBinary( rfm22b_dev->isrPending );
// Initialize the TX pre-buffer pointer.
tx_pre_buffer_size = 0;
// Create the packet queue.
rfm22b_dev->packetQueue = xQueueCreate(PACKET_QUEUE_SIZE, sizeof(PHPacketHandle));
@ -804,6 +763,13 @@ static void PIOS_RFM22B_Task(void *parameters)
// Clear the event queue.
while (xQueueReceive(rfm22b_dev->eventQueue, &event, 0) == pdTRUE)
;
lastEventTime = xTaskGetTickCount();
}
else
{
enum pios_rfm22b_event event = RFM22B_EVENT_TIMEOUT;
while(event != RFM22B_EVENT_NUM_EVENTS)
event = rfm22_process_state_transition(rfm22b_dev, event);
}
}
}
@ -815,6 +781,7 @@ static void PIOS_RFM22B_TxStart(uint32_t rfm22b_id, uint16_t tx_bytes_avail)
bool valid = PIOS_RFM22B_validate(rfm22b_dev);
PIOS_Assert(valid);
#ifdef NEVER
// Get some data to send
bool need_yield = false;
if(tx_pre_buffer_size == 0)
@ -823,6 +790,7 @@ static void PIOS_RFM22B_TxStart(uint32_t rfm22b_id, uint16_t tx_bytes_avail)
// Inject a send packet event
PIOS_RFM22B_InjectEvent(g_rfm22b_dev, RFM22B_EVENT_TX_START, false);
#endif
}
/**
@ -1006,27 +974,17 @@ static enum pios_rfm22b_event rfm22_process_state_transition(struct pios_rfm22b_
// ************************************
uint32_t rfm22_minFrequency(void)
static void rfm22_setNominalCarrierFrequency(struct pios_rfm22b_dev *rfm22b_dev, uint32_t frequency_hz)
{
return lower_carrier_frequency_limit_Hz;
}
uint32_t rfm22_maxFrequency(void)
{
return upper_carrier_frequency_limit_Hz;
}
void rfm22_setNominalCarrierFrequency(uint32_t frequency_hz)
{
exec_using_spi = true;
// *******
if (frequency_hz < lower_carrier_frequency_limit_Hz)
frequency_hz = lower_carrier_frequency_limit_Hz;
else if (frequency_hz > upper_carrier_frequency_limit_Hz)
frequency_hz = upper_carrier_frequency_limit_Hz;
uint32_t min_frequency_hz = rfm22b_dev->cfg.minFrequencyHz;
uint32_t max_frequency_hz = rfm22b_dev->cfg.maxFrequencyHz;
if (frequency_hz < min_frequency_hz)
frequency_hz = min_frequency_hz;
else if (frequency_hz > max_frequency_hz)
frequency_hz = max_frequency_hz;
// holds the hbsel (1 or 2)
uint8_t hbsel;
if (frequency_hz < 480000000)
hbsel = 1;
else
@ -1038,59 +996,37 @@ void rfm22_setNominalCarrierFrequency(uint32_t frequency_hz)
fc = (fc * 64u) / (10000ul * hbsel);
fb -= 24;
// carrier_frequency_hz = frequency_hz;
carrier_frequency_hz = ((uint32_t)fb + 24 + ((float)fc / 64000)) * 10000000 * hbsel;
if (hbsel > 1)
fb |= RFM22_fbs_hbsel;
fb |= RFM22_fbs_sbse; // is this the RX LO polarity?
frequency_step_size = 156.25f * hbsel;
// frequency hopping channel (0-255)
rfm22b_dev->frequency_step_size = 156.25f * hbsel;
rfm22_write(RFM22_frequency_hopping_channel_select, frequency_hop_channel); // frequency hopping channel (0-255)
// frequency hopping channel (0-255)
rfm22_write(RFM22_frequency_hopping_channel_select, rfm22b_dev->frequency_hop_channel);
rfm22_write(RFM22_frequency_offset1, 0); // no frequency offset
rfm22_write(RFM22_frequency_offset2, 0); // no frequency offset
// no frequency offset
rfm22_write(RFM22_frequency_offset1, 0);
// no frequency offset
rfm22_write(RFM22_frequency_offset2, 0);
rfm22_write(RFM22_frequency_band_select, fb); // set the carrier frequency
rfm22_write(RFM22_nominal_carrier_frequency1, fc >> 8); // " "
rfm22_write(RFM22_nominal_carrier_frequency0, fc & 0xff); // " "
// *******
#if defined(RFM22_DEBUG)
//DEBUG_PRINTF(2, "rf setFreq: %u\n\r", carrier_frequency_hz);
// DEBUG_PRINTF(2, "rf setFreq frequency_step_size: %0.2f\n\r", frequency_step_size);
#endif
exec_using_spi = false;
}
uint32_t rfm22_getNominalCarrierFrequency(void)
{
return carrier_frequency_hz;
}
float rfm22_getFrequencyStepSize(void)
{
return frequency_step_size;
// set the carrier frequency
rfm22_write(RFM22_frequency_band_select, fb);
rfm22_write(RFM22_nominal_carrier_frequency1, fc >> 8);
rfm22_write(RFM22_nominal_carrier_frequency0, fc & 0xff);
}
void rfm22_setFreqHopChannel(uint8_t channel)
{ // set the frequency hopping channel
frequency_hop_channel = channel;
rfm22_write(RFM22_frequency_hopping_channel_select, frequency_hop_channel);
}
uint8_t rfm22_freqHopChannel(void)
{ // return the current frequency hopping channel
return frequency_hop_channel;
g_rfm22b_dev->frequency_hop_channel = channel;
rfm22_write(RFM22_frequency_hopping_channel_select, channel);
}
uint32_t rfm22_freqHopSize(void)
{ // return the frequency hopping step size
return ((uint32_t)frequency_hop_step_size_reg * 10000);
return ((uint32_t)g_rfm22b_dev->frequency_hop_step_size_reg * 10000);
}
// ************************************
@ -1109,15 +1045,12 @@ uint32_t rfm22_freqHopSize(void)
void rfm22_setDatarate(uint32_t datarate_bps, bool data_whitening)
{
exec_using_spi = true;
lookup_index = 0;
// Find the closest data rate that is >= the value passed in
int lookup_index = 0;
while (lookup_index < (LOOKUP_SIZE - 1) && data_rate[lookup_index] < datarate_bps)
lookup_index++;
carrier_datarate_bps = datarate_bps = data_rate[lookup_index];
rf_bandwidth_used = rx_bandwidth[lookup_index];
datarate_bps = data_rate[lookup_index];
// rfm22_if_filter_bandwidth
rfm22_write(0x1C, reg_1C[lookup_index]);
@ -1145,7 +1078,7 @@ void rfm22_setDatarate(uint32_t datarate_bps, bool data_whitening)
// rfm22_afc_limiter
rfm22_write(0x2A, reg_2A[lookup_index]);
if (carrier_datarate_bps < 100000)
if (datarate_bps < 100000)
// rfm22_chargepump_current_trimming_override
rfm22_write(0x58, 0x80);
else
@ -1176,84 +1109,12 @@ void rfm22_setDatarate(uint32_t datarate_bps, bool data_whitening)
rfm22_write(RFM22_ook_counter_value1, 0x00);
rfm22_write(RFM22_ook_counter_value2, 0x00);
// ********************************
// calculate the TX register values
/*
uint16_t fd = frequency_deviation / 625;
uint8_t mmc1 = RFM22_mmc1_enphpwdn | RFM22_mmc1_manppol;
uint16_t txdr;
if (datarate_bps < 30000)
{
txdr = (datarate_bps * 20972) / 10000;
mmc1 |= RFM22_mmc1_txdtrtscale;
}
else
txdr = (datarate_bps * 6553) / 100000;
uint8_t mmc2 = RFM22_mmc2_dtmod_fifo | RFM22_mmc2_modtyp_gfsk; // FIFO mode, GFSK
// uint8_t mmc2 = RFM22_mmc2_dtmod_pn9 | RFM22_mmc2_modtyp_gfsk; // PN9 mode, GFSK .. TX TEST MODE
if (fd & 0x100) mmc2 |= RFM22_mmc2_fd;
rfm22_write(RFM22_frequency_deviation, fd); // set the TX peak frequency deviation
rfm22_write(RFM22_modulation_mode_control1, mmc1);
rfm22_write(RFM22_modulation_mode_control2, mmc2);
rfm22_write(RFM22_tx_data_rate1, txdr >> 8); // set the TX data rate
rfm22_write(RFM22_tx_data_rate0, txdr); // " "
*/
// ********************************
// determine a clear channel time
// initialise the stopwatch with a suitable resolution for the datarate
//STOPWATCH_init(4000000ul / carrier_datarate_bps); // set resolution to the time for 1 nibble (4-bits) at rf datarate
// ********************************
// determine suitable time-out periods
// milliseconds
timeout_sync_ms = (8000ul * 16) / carrier_datarate_bps;
if (timeout_sync_ms < 3)
// because out timer resolution is only 1ms
timeout_sync_ms = 3;
// milliseconds
timeout_data_ms = (8000ul * 100) / carrier_datarate_bps;
if (timeout_data_ms < 3)
// because out timer resolution is only 1ms
timeout_data_ms = 3;
// ********************************
#if defined(RFM22_DEBUG)
/*
DEBUG_PRINTF(2, "rf datarate_bps: %d\n\r", datarate_bps);
DEBUG_PRINTF(2, "rf frequency_deviation: %d\n\r", frequency_deviation);
uint32_t frequency_deviation = freq_deviation[lookup_index]; // Hz
uint32_t modulation_bandwidth = datarate_bps + (2 * frequency_deviation);
DEBUG_PRINTF(2, "rf modulation_bandwidth: %u\n\r", modulation_bandwidth);
DEBUG_PRINTF(2, "rf_rx_bandwidth[%u]: %u\n\r", lookup_index, rx_bandwidth[lookup_index]);
DEBUG_PRINTF(2, "rf est rx sensitivity[%u]: %ddBm\n\r", lookup_index, est_rx_sens_dBm[lookup_index]);
*/
#endif
// *******
exec_using_spi = false;
}
uint32_t rfm22_getDatarate(void)
{
return carrier_datarate_bps;
}
// ************************************
static enum pios_rfm22b_event rfm22_setRxMode(struct pios_rfm22b_dev *rfm22b_dev)
{
exec_using_spi = true;
// disable interrupts
rfm22_write(RFM22_interrupt_enable1, 0x00);
@ -1269,7 +1130,7 @@ static enum pios_rfm22b_event rfm22_setRxMode(struct pios_rfm22b_dev *rfm22b_dev
rx_buffer_wr = 0;
// Clear the TX buffer.
tx_data_rd = tx_data_wr = 0;
rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0;
// clear FIFOs
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
@ -1284,8 +1145,6 @@ static enum pios_rfm22b_event rfm22_setRxMode(struct pios_rfm22b_dev *rfm22b_dev
// enable the receiver
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_rxon);
exec_using_spi = false;
// No event generated
return RFM22B_EVENT_NUM_EVENTS;
}
@ -1294,14 +1153,15 @@ static enum pios_rfm22b_event rfm22_setRxMode(struct pios_rfm22b_dev *rfm22b_dev
static enum pios_rfm22b_event rfm22_txStart(struct pios_rfm22b_dev *rfm22b_dev)
{
if((tx_pre_buffer_size == 0) || (exec_using_spi == true))
// See if there's a packet on the packet queue.
PHPacketHandle p;
if (xQueueReceive(rfm22b_dev->packetQueue, &p, 0) != pdTRUE)
{
// Clear the TX buffer.
tx_data_rd = tx_data_wr = 0;
rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0;
return RFM22B_EVENT_RX_MODE;
}
exec_using_spi = true;
rfm22b_dev->tx_packet = p;
// disable interrupts
rfm22_write(RFM22_interrupt_enable1, 0x00);
@ -1311,15 +1171,13 @@ static enum pios_rfm22b_event rfm22_txStart(struct pios_rfm22b_dev *rfm22b_dev)
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon);
// Queue the data up for sending
memcpy(tx_buffer, tx_pre_buffer, tx_pre_buffer_size);
tx_data_rd = 0;
tx_data_wr = tx_pre_buffer_size;
tx_pre_buffer_size = 0;
rfm22b_dev->tx_data_wr = PH_PACKET_SIZE(rfm22b_dev->tx_packet);
RX_LED_OFF;
// Set the destination address in the transmit header.
// The destination address is the first 4 bytes of the message.
uint8_t *tx_buffer = (uint8_t*)(rfm22b_dev->tx_packet);
rfm22_write(RFM22_transmit_header0, tx_buffer[0]);
rfm22_write(RFM22_transmit_header1, tx_buffer[1]);
rfm22_write(RFM22_transmit_header2, tx_buffer[2]);
@ -1342,16 +1200,16 @@ static enum pios_rfm22b_event rfm22_txStart(struct pios_rfm22b_dev *rfm22b_dev)
// add some data to the chips TX FIFO before enabling the transmitter
// set the total number of data bytes we are going to transmit
rfm22_write(RFM22_transmit_packet_length, tx_data_wr);
rfm22_write(RFM22_transmit_packet_length, rfm22b_dev->tx_data_wr);
// add some data
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferByte(g_rfm22b_dev->spi_id, RFM22_fifo_access | 0x80);
int bytes_to_write = (tx_data_wr - tx_data_rd);
int bytes_to_write = (rfm22b_dev->tx_data_wr - rfm22b_dev->tx_data_rd);
bytes_to_write = (bytes_to_write > FIFO_SIZE) ? FIFO_SIZE: bytes_to_write;
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, &tx_buffer[tx_data_rd], NULL, bytes_to_write, NULL);
tx_data_rd += bytes_to_write;
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, &tx_buffer[rfm22b_dev->tx_data_rd], NULL, bytes_to_write, NULL);
rfm22b_dev->tx_data_rd += bytes_to_write;
rfm22_deassertCs();
rfm22_releaseBus();
@ -1363,8 +1221,7 @@ static enum pios_rfm22b_event rfm22_txStart(struct pios_rfm22b_dev *rfm22b_dev)
TX_LED_ON;
exec_using_spi = false;
return RFM22B_EVENT_NUM_EVENTS;
return RFM22B_EVENT_TX_STARTED;
}
// ************************************
@ -1375,7 +1232,6 @@ static enum pios_rfm22b_event rfm22_txStart(struct pios_rfm22b_dev *rfm22b_dev)
*/
static bool rfm22_readStatus(struct pios_rfm22b_dev *rfm22b_dev)
{
exec_using_spi = true;
// 1. Read the interrupt statuses with burst read
rfm22_claimBus(); // Set RC and the semaphore
@ -1398,12 +1254,8 @@ static bool rfm22_readStatus(struct pios_rfm22b_dev *rfm22b_dev)
// the RF module has gone and done a reset - we need to re-initialize the rf module
if (rfm22b_dev->int_status2 & RFM22_is2_ipor)
{
exec_using_spi = false;
return false;
}
exec_using_spi = false;
return true;
}
@ -1438,12 +1290,12 @@ static enum pios_rfm22b_event rfm22_detectSync(struct pios_rfm22b_dev *rfm22b_de
// read the 10-bit signed afc correction value
// bits 9 to 2
afc_correction = (uint16_t)rfm22_read(RFM22_afc_correction_read) << 8;
uint16_t afc_correction = (uint16_t)rfm22_read(RFM22_afc_correction_read) << 8;
// bits 1 & 0
afc_correction |= (uint16_t)rfm22_read(RFM22_ook_counter_value1) & 0x00c0;
afc_correction >>= 6;
// convert the afc value to Hz
afc_correction_Hz = (int32_t)(frequency_step_size * afc_correction + 0.5f);
rfm22b_dev->afc_correction_Hz = (int32_t)(rfm22b_dev->frequency_step_size * afc_correction + 0.5f);
// read rx signal strength .. 45 = -100dBm, 205 = -20dBm
rfm22b_dev->rssi = rfm22_read(RFM22_rssi);
@ -1451,7 +1303,7 @@ static enum pios_rfm22b_event rfm22_detectSync(struct pios_rfm22b_dev *rfm22b_de
rfm22b_dev->rssi_dBm = (int8_t)(rfm22b_dev->rssi >> 1) - 122;
// remember the afc value for this packet
rx_packet_start_afc_Hz = afc_correction_Hz;
rfm22b_dev->rx_packet_start_afc_Hz = rfm22b_dev->afc_correction_Hz;
return RFM22B_EVENT_SYNC_DETECTED;
}
@ -1470,8 +1322,6 @@ static enum pios_rfm22b_event rfm22_rxData(struct pios_rfm22b_dev *rfm22b_dev)
if (rfm22b_dev->device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl))
return RFM22B_EVENT_ERROR;
exec_using_spi = true;
// RX FIFO almost full, it needs emptying
if (rfm22b_dev->int_status1 & RFM22_is1_irxffafull)
{
@ -1525,10 +1375,7 @@ static enum pios_rfm22b_event rfm22_rxData(struct pios_rfm22b_dev *rfm22b_dev)
}
if (rx_buffer_wr != len)
{
exec_using_spi = false;
return RFM22B_EVENT_ERROR;
}
// we have a valid received packet
@ -1536,7 +1383,7 @@ static enum pios_rfm22b_event rfm22_rxData(struct pios_rfm22b_dev *rfm22b_dev)
{
// Add the rssi and afc to the end of the packet.
rx_buffer[rx_buffer_wr++] = rfm22b_dev->rssi_dBm;
rx_buffer[rx_buffer_wr++] = rx_packet_start_afc_Hz;
rx_buffer[rx_buffer_wr++] = rfm22b_dev->rx_packet_start_afc_Hz;
// Pass this packet on
bool need_yield = false;
if (rfm22b_dev->rx_in_cb)
@ -1546,11 +1393,9 @@ static enum pios_rfm22b_event rfm22_rxData(struct pios_rfm22b_dev *rfm22b_dev)
}
// Start a new transaction
exec_using_spi = false;
return RFM22B_EVENT_RX_COMPLETE;
}
exec_using_spi = false;
return RFM22B_EVENT_NUM_EVENTS;
}
@ -1559,12 +1404,21 @@ static enum pios_rfm22b_event rfm22_txData(struct pios_rfm22b_dev *rfm22b_dev)
// Read the device status registers
if (!rfm22_readStatus(rfm22b_dev))
{
// Free the tx packet
PHReleaseTXPacket(pios_packet_handler, rfm22b_dev->tx_packet);
rfm22b_dev->tx_packet = 0;
rfm22b_dev->tx_data_wr = rfm22b_dev->tx_data_rd = 0;
return RFM22B_EVENT_ERROR;
}
// FIFO under/over flow error. Back to RX mode.
if (rfm22b_dev->device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl))
{
exec_using_spi = false;
// Free the tx packet
PHReleaseTXPacket(pios_packet_handler, rfm22b_dev->tx_packet);
rfm22b_dev->tx_packet = 0;
rfm22b_dev->tx_data_wr = rfm22b_dev->tx_data_rd = 0;
return RFM22B_EVENT_ERROR;
}
@ -1572,14 +1426,15 @@ static enum pios_rfm22b_event rfm22_txData(struct pios_rfm22b_dev *rfm22b_dev)
if (rfm22b_dev->int_status1 & RFM22_is1_ixtffaem)
{
// top-up the rf chips TX FIFO buffer
uint8_t *tx_buffer = (uint8_t*)(rfm22b_dev->tx_packet);
uint16_t max_bytes = FIFO_SIZE - TX_FIFO_LO_WATERMARK - 1;
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferByte(g_rfm22b_dev->spi_id, RFM22_fifo_access | 0x80);
int bytes_to_write = (tx_data_wr - tx_data_rd);
int bytes_to_write = (rfm22b_dev->tx_data_wr - rfm22b_dev->tx_data_rd);
bytes_to_write = (bytes_to_write > max_bytes) ? max_bytes: bytes_to_write;
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, &tx_buffer[tx_data_rd], NULL, bytes_to_write, NULL);
tx_data_rd += bytes_to_write;
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, &tx_buffer[rfm22b_dev->tx_data_rd], NULL, bytes_to_write, NULL);
rfm22b_dev->tx_data_rd += bytes_to_write;
rfm22_deassertCs();
rfm22_releaseBus();
}
@ -1587,12 +1442,14 @@ static enum pios_rfm22b_event rfm22_txData(struct pios_rfm22b_dev *rfm22b_dev)
// Packet has been sent
if (rfm22b_dev->int_status1 & RFM22_is1_ipksent)
{
exec_using_spi = false;
// Free the tx packet
PHReleaseTXPacket(pios_packet_handler, rfm22b_dev->tx_packet);
rfm22b_dev->tx_packet = 0;
rfm22b_dev->tx_data_wr = rfm22b_dev->tx_data_rd = 0;
// Start a new transaction
return RFM22B_EVENT_TX_COMPLETE;
}
exec_using_spi = false;
return RFM22B_EVENT_NUM_EVENTS;
}
@ -1613,10 +1470,6 @@ bool rfm22_transmitting(void)
// return true if the channel is clear to transmit on
bool rfm22_channelIsClear(void)
{
if (!initialized)
// we haven't yet been initialized
return false;
if (g_rfm22b_dev->state != RFM22B_STATE_RX_MODE && g_rfm22b_dev->state != RFM22B_STATE_WAIT_PREAMBLE && g_rfm22b_dev->state != RFM22B_STATE_WAIT_SYNC)
// we are receiving something or we are transmitting or we are scanning the spectrum
return false;
@ -1624,29 +1477,12 @@ bool rfm22_channelIsClear(void)
return true;
}
// return true if the transmiter is ready for use
bool rfm22_txReady(void)
{
return (tx_data_rd == 0 && tx_data_wr == 0 && g_rfm22b_dev->state != RFM22B_STATE_TX_DATA);
}
// ************************************
// set/get the frequency calibration value
void rfm22_setFreqCalibration(uint8_t value)
{
osc_load_cap = value;
exec_using_spi = true;
rfm22_write(RFM22_xtal_osc_load_cap, osc_load_cap);
exec_using_spi = false;
}
uint8_t rfm22_getFreqCalibration(void)
{
return osc_load_cap;
rfm22_write(RFM22_xtal_osc_load_cap, value);
}
// ************************************
@ -1659,9 +1495,6 @@ static enum pios_rfm22b_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev)
uint32_t max_frequency_hz = rfm22b_dev->cfg.maxFrequencyHz;
uint32_t freq_hop_step_size = 50000;
initialized = false;
exec_using_spi = true;
// software reset the RF chip .. following procedure according to Si4x3x Errata (rev. B)
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_swres);
@ -1693,39 +1526,25 @@ static enum pios_rfm22b_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev)
// ****************
exec_using_spi = false;
// ****************
rfm22b_dev->device_status = rfm22b_dev->int_status1 = rfm22b_dev->int_status2 = rfm22b_dev->ezmac_status = 0;
rx_buffer_current = 0;
rx_buffer_wr = 0;
rx_packet_afc_Hz = 0;
tx_data_rd = tx_data_wr = 0;
rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0;
rfm22b_dev->tx_packet = NULL;
lookup_index = 0;
ss_lookup_index = 0;
rfm22b_dev->frequency_hop_channel = 0;
rf_bandwidth_used = 0;
ss_rf_bandwidth_used = 0;
hbsel = 0;
frequency_step_size = 0.0f;
frequency_hop_channel = 0;
afc_correction = 0;
afc_correction_Hz = 0;
temperature_reg = 0;
rfm22b_dev->afc_correction_Hz = 0;
// ****************
// read the RF chip ID bytes
device_type = rfm22_read(RFM22_DEVICE_TYPE) & RFM22_DT_MASK; // read the device type
device_version = rfm22_read(RFM22_DEVICE_VERSION) & RFM22_DV_MASK; // read the device version
// read the device type
uint8_t device_type = rfm22_read(RFM22_DEVICE_TYPE) & RFM22_DT_MASK;
// read the device version
uint8_t device_version = rfm22_read(RFM22_DEVICE_VERSION) & RFM22_DV_MASK;
#if defined(RFM22_DEBUG)
DEBUG_PRINTF(2, "rf device type: %d\n\r", device_type);
@ -1767,27 +1586,24 @@ static enum pios_rfm22b_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev)
max_frequency_hz = tmp;
}
lower_carrier_frequency_limit_Hz = min_frequency_hz;
upper_carrier_frequency_limit_Hz = max_frequency_hz;
// ****************
// calibrate our RF module to be exactly on frequency .. different for every module
osc_load_cap = OSC_LOAD_CAP; // default
rfm22_write(RFM22_xtal_osc_load_cap, osc_load_cap);
rfm22_write(RFM22_xtal_osc_load_cap, OSC_LOAD_CAP);
// ****************
// disable Low Duty Cycle Mode
rfm22_write(RFM22_op_and_func_ctrl2, 0x00);
rfm22_write(RFM22_cpu_output_clk, RFM22_coc_1MHz); // 1MHz clock output
// 1MHz clock output
rfm22_write(RFM22_cpu_output_clk, RFM22_coc_1MHz);
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton); // READY mode
// rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon); // TUNE mode
// READY mode
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton);
// choose the 3 GPIO pin functions
rfm22_write(RFM22_io_port_config, RFM22_io_port_default); // GPIO port use default value
// GPIO port use default value
rfm22_write(RFM22_io_port_config, RFM22_io_port_default);
if (rfm22b_dev->cfg.gpio_direction == GPIO0_TX_GPIO1_RX) {
rfm22_write(RFM22_gpio0_config, RFM22_gpio0_config_drv3 | RFM22_gpio0_config_txstate); // GPIO0 = TX State (to control RF Switch)
rfm22_write(RFM22_gpio1_config, RFM22_gpio1_config_drv3 | RFM22_gpio1_config_rxstate); // GPIO1 = RX State (to control RF Switch)
@ -1802,7 +1618,7 @@ static enum pios_rfm22b_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev)
// initialize the frequency hopping step size
freq_hop_step_size /= 10000; // in 10kHz increments
if (freq_hop_step_size > 255) freq_hop_step_size = 255;
frequency_hop_step_size_reg = freq_hop_step_size;
rfm22b_dev->frequency_hop_step_size_reg = freq_hop_step_size;
// set the RF datarate
rfm22_setDatarate(RFM22_DEFAULT_RF_DATARATE, true);
@ -1814,7 +1630,7 @@ static enum pios_rfm22b_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev)
// setup to read the internal temperature sensor
// ADC used to sample the temperature sensor
adc_config = RFM22_ac_adcsel_temp_sensor | RFM22_ac_adcref_bg;
uint8_t adc_config = RFM22_ac_adcsel_temp_sensor | RFM22_ac_adcref_bg;
rfm22_write(RFM22_adc_config, adc_config);
// adc offset
@ -1875,7 +1691,7 @@ static enum pios_rfm22b_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev)
((TX_PREAMBLE_NIBBLES >> 8) & 0x01));
#endif
// sync word
// sync word
rfm22_write(RFM22_sync_word3, SYNC_BYTE_1);
rfm22_write(RFM22_sync_word2, SYNC_BYTE_2);
rfm22_write(RFM22_sync_word1, SYNC_BYTE_3);
@ -1884,10 +1700,10 @@ static enum pios_rfm22b_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev)
rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_agcen);
// set frequency hopping channel step size (multiples of 10kHz)
rfm22_write(RFM22_frequency_hopping_step_size, frequency_hop_step_size_reg);
rfm22_write(RFM22_frequency_hopping_step_size, rfm22b_dev->frequency_hop_step_size_reg);
// set our nominal carrier frequency
rfm22_setNominalCarrierFrequency((min_frequency_hz + max_frequency_hz) / 2);
rfm22_setNominalCarrierFrequency(rfm22b_dev, (min_frequency_hz + max_frequency_hz) / 2);
// set the tx power
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | rfm22b_dev->tx_power);
@ -1901,21 +1717,11 @@ static enum pios_rfm22b_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev)
// RX FIFO Almost Full Threshold (0 - 63)
rfm22_write(RFM22_rx_fifo_control, RX_FIFO_HI_WATERMARK);
//rfm22_setRxMode(rfm22b_dev);
rfm22_setFreqCalibration(rfm22b_dev->cfg.RFXtalCap);
rfm22_setNominalCarrierFrequency(rfm22b_dev->cfg.frequencyHz);
rfm22_setNominalCarrierFrequency(rfm22b_dev, rfm22b_dev->cfg.frequencyHz);
rfm22_setDatarate(rfm22b_dev->cfg.maxRFBandwidth, true);
DEBUG_PRINTF(2, "\n\r");
DEBUG_PRINTF(2, "RF device ID: %x\n\r", rfm22b_dev->deviceID);
DEBUG_PRINTF(2, "RF datarate: %dbps\n\r", rfm22_getDatarate());
DEBUG_PRINTF(2, "RF frequency: %dHz\n\r", rfm22_getNominalCarrierFrequency());
DEBUG_PRINTF(2, "RF TX power: %d\n\r", rfm22b_dev->tx_power);
initialized = true;
return RFM22B_EVENT_RX_MODE;
return RFM22B_EVENT_INITIALIZED;
}
static enum pios_rfm22b_event rfm22_error(struct pios_rfm22b_dev *rfm22b_dev)

View File

@ -582,44 +582,6 @@ typedef bool ( *t_rfm22_RxDataCallback ) (void *data, uint8_t len);
void PIOS_RFM22_EXT_Int(void);
uint32_t rfm22_minFrequency(void);
uint32_t rfm22_maxFrequency(void);
void rfm22_setNominalCarrierFrequency(uint32_t frequency_hz);
uint32_t rfm22_getNominalCarrierFrequency(void);
float rfm22_getFrequencyStepSize(void);
void rfm22_setFreqHopChannel(uint8_t channel);
uint8_t rfm22_freqHopChannel(void);
uint32_t rfm22_freqHopSize(void);
void rfm22_setDatarate(uint32_t datarate_bps, bool data_whitening);
uint32_t rfm22_getDatarate(void);
void rfm22_setFreqCalibration(uint8_t value);
uint8_t rfm22_getFreqCalibration(void);
void rfm22_setTxPower(uint8_t tx_pwr);
uint8_t rfm22_getTxPower(void);
void rfm22_setTxStream(void); // TEST ONLY
void rfm22_setTxNormal(void);
void rfm22_setTxCarrierMode(void);
void rfm22_setTxPNMode(void);
int8_t rfm22_currentMode(void);
bool rfm22_transmitting(void);
bool rfm22_channelIsClear(void);
bool rfm22_txReady(void);
void rfm22_TxDataByte_SetCallback(t_rfm22_TxDataByteCallback new_function);
void rfm22_RxData_SetCallback(t_rfm22_RxDataCallback new_function);
#endif /* PIOS_RFM22B_PRIV_H */
/**