1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-02 10:24:11 +01:00

*float sprintf

*h/v deadbands
This commit is contained in:
Sambas 2012-05-25 21:12:03 +03:00
parent a3b9451bcd
commit a9cfc4a0af
8 changed files with 897 additions and 770 deletions

View File

@ -16,15 +16,12 @@ int32_t osdgenInitialize(void);
// Size of an array (num items.) // Size of an array (num items.)
#define SIZEOF_ARRAY(x) (sizeof(x) / sizeof((x)[0])) #define SIZEOF_ARRAY(x) (sizeof(x) / sizeof((x)[0]))
#define DISP_HEIGHT GRAPHICS_HEIGHT_REAL
#define DISP_WIDTH GRAPHICS_WIDTH_REAL
#define HUD_VSCALE_FLAG_CLEAR 1 #define HUD_VSCALE_FLAG_CLEAR 1
#define HUD_VSCALE_FLAG_NO_NEGATIVE 2 #define HUD_VSCALE_FLAG_NO_NEGATIVE 2
// Macros for computing addresses and bit positions. // Macros for computing addresses and bit positions.
// NOTE: /16 in y is because we are addressing by word not byte. // NOTE: /16 in y is because we are addressing by word not byte.
#define CALC_BUFF_ADDR(x, y) (((x) / 8) + ((y) * (DISP_WIDTH / 8))) #define CALC_BUFF_ADDR(x, y) (((x) / 8) + ((y) * (GRAPHICS_WIDTH_REAL / 8)))
#define CALC_BIT_IN_WORD(x) ((x) & 7) #define CALC_BIT_IN_WORD(x) ((x) & 7)
#define DEBUG_DELAY #define DEBUG_DELAY
// Macro for writing a word with a mode (NAND = clear, OR = set, XOR = toggle) // Macro for writing a word with a mode (NAND = clear, OR = set, XOR = toggle)
@ -108,14 +105,19 @@ struct FontDimensions
#define MAX3(a, b, c) MAX(a, MAX(b, c)) #define MAX3(a, b, c) MAX(a, MAX(b, c))
#define MIN3(a, b, c) MIN(a, MIN(b, c)) #define MIN3(a, b, c) MIN(a, MIN(b, c))
// Apply DeadBand
#define APPLY_DEADBAND(x, y) { x = (x)+GRAPHICS_HDEADBAND; y=(y)+GRAPHICS_VDEADBAND; }
#define APPLY_VDEADBAND(y) ((y)+GRAPHICS_VDEADBAND)
#define APPLY_HDEADBAND(x) ((x)+GRAPHICS_HDEADBAND)
// Check if coordinates are valid. If not, return. // Check if coordinates are valid. If not, return.
#define CHECK_COORDS(x, y) if(x < 0 || x >= DISP_WIDTH || y < 0 || y >= DISP_HEIGHT) return; #define CHECK_COORDS(x, y) if(x < 0 || x >= GRAPHICS_WIDTH_REAL || y < 0 || y >= GRAPHICS_HEIGHT_REAL) return;
#define CHECK_COORD_X(x) if(x < 0 || x >= DISP_WIDTH) return; #define CHECK_COORD_X(x) if(x < 0 || x >= GRAPHICS_WIDTH_REAL) return;
#define CHECK_COORD_Y(y) if(y < 0 || y >= DISP_HEIGHT) return; #define CHECK_COORD_Y(y) if(y < 0 || y >= GRAPHICS_HEIGHT_REAL) return;
// Clip coordinates out of range. // Clip coordinates out of range.
#define CLIP_COORD_X(x) { x = MAX(0, MIN(x, DISP_WIDTH)); } #define CLIP_COORD_X(x) { x = MAX(0, MIN(x, GRAPHICS_WIDTH_REAL)); }
#define CLIP_COORD_Y(y) { y = MAX(0, MIN(y, DISP_HEIGHT)); } #define CLIP_COORD_Y(y) { y = MAX(0, MIN(y, GRAPHICS_HEIGHT_REAL)); }
#define CLIP_COORDS(x, y) { CLIP_COORD_X(x); CLIP_COORD_Y(y); } #define CLIP_COORDS(x, y) { CLIP_COORD_X(x); CLIP_COORD_Y(y); }
// Macro to swap two variables using XOR swap. // Macro to swap two variables using XOR swap.
@ -124,7 +126,6 @@ struct FontDimensions
// Line triggering // Line triggering
#define LAST_LINE 312 //625/2 //PAL #define LAST_LINE 312 //625/2 //PAL
#define UPDATE_LINE GRAPHICS_LINE+GRAPHICS_HEIGHT_REAL+1
//#define LAST_LINE 525/2 //NTSC //#define LAST_LINE 525/2 //NTSC
// Global vars // Global vars

View File

@ -63,13 +63,13 @@ static int32_t m_gpsLon=0;
static float m_gpsAlt=0; static float m_gpsAlt=0;
static float m_gpsSpd=0; static float m_gpsSpd=0;
extern uint8_t *draw_buffer_level; extern uint8_t *draw_buffer_level;
extern uint8_t *draw_buffer_mask; extern uint8_t *draw_buffer_mask;
extern uint8_t *disp_buffer_level; extern uint8_t *disp_buffer_level;
extern uint8_t *disp_buffer_mask; extern uint8_t *disp_buffer_mask;
TTime time; TTime timex;
// **************** // ****************
// Private functions // Private functions
@ -94,8 +94,8 @@ static xTaskHandle osdgenTaskHandle;
struct splashEntry struct splashEntry
{ {
unsigned int width, height; unsigned int width, height;
uint8_t *level; uint8_t *level;
uint8_t *mask; uint8_t *mask;
}; };
struct splashEntry splash[3] = { struct splashEntry splash[3] = {
@ -114,100 +114,43 @@ struct splashEntry splash[3] = {
}; };
// simple routines
/*
uint8_t getCharData(uint16_t charPos) {
if (charPos >= CHAR_ARRAY_OFFSET && charPos < CHAR_ARRAY_MAX) {
return (oem6x8[charPos - CHAR_ARRAY_OFFSET]);
}
else {
return 0x00;
}
}*/
// prints text into draw_buffer_level, 8x2
/*uint8_t printTextFB(uint16_t x, uint16_t y, const char* str) {
uint8_t length = strlen(str);
if (x + length >= TEXT_LINE_MAX_CHARS) {
length = TEXT_LINE_MAX_CHARS;
}
for(uint8_t i = 0; i < TEXT_CHAR_HEIGHT; i++)
{
uint8_t c=0;
uint16_t charPos;
for(int j=0; j<length; j+=2)
{
uint16_t word=0;
charPos = str[j] * TEXT_CHAR_HEIGHT + i;
word = getCharData(charPos)<<8;
charPos = str[j+1] * TEXT_CHAR_HEIGHT + i;
word |= getCharData(charPos);
draw_buffer_level[((y+i)*GRAPHICS_WIDTH)+(x + c)] = word;
c++;
}
}
return length;
}
uint8_t printText16(uint16_t x, uint16_t y, const char* str) {
uint8_t length = strlen(str);
for(int j=0; j<length; j++)
{
write_char16(str[j],12*j+x,y);
}
return length;
}
uint8_t printCharFB(uint16_t ch, uint16_t x, uint16_t y) {
for(uint8_t i = 0; i < 18; i++)
{
uint8_t c=0;
draw_buffer_level[((y+i)*GRAPHICS_WIDTH)+(x+c)] = font_frame16x18[ch*18+i];
draw_buffer_mask[((y+i)*GRAPHICS_WIDTH)+(x+c)] = font_mask16x18[ch*18+i];
}
return 1;
}
*/
uint16_t mirror(uint16_t source) uint16_t mirror(uint16_t source)
{ {
int result = ((source & 0x8000) >> 7) | ((source & 0x4000) >> 5) | int result = ((source & 0x8000) >> 7) | ((source & 0x4000) >> 5) |
((source & 0x2000) >> 3) | ((source & 0x1000) >> 1) | ((source & 0x2000) >> 3) | ((source & 0x1000) >> 1) |
((source & 0x0800) << 1) | ((source & 0x0400) << 3) | ((source & 0x0800) << 1) | ((source & 0x0400) << 3) |
((source & 0x0200) << 5) | ((source & 0x0100) << 7) | ((source & 0x0200) << 5) | ((source & 0x0100) << 7) |
((source & 0x0080) >> 7) | ((source & 0x0040) >> 5) | ((source & 0x0080) >> 7) | ((source & 0x0040) >> 5) |
((source & 0x0020) >> 3) | ((source & 0x0010) >> 1) | ((source & 0x0020) >> 3) | ((source & 0x0010) >> 1) |
((source & 0x0008) << 1) | ((source & 0x0004) << 3) | ((source & 0x0008) << 1) | ((source & 0x0004) << 3) |
((source & 0x0002) << 5) | ((source & 0x0001) << 7); ((source & 0x0002) << 5) | ((source & 0x0001) << 7);
return result; return result;
} }
void clearGraphics() { void clearGraphics() {
memset((uint8_t *) draw_buffer_mask, 0, GRAPHICS_WIDTH * GRAPHICS_HEIGHT); memset((uint8_t *) draw_buffer_mask, 0, GRAPHICS_WIDTH * GRAPHICS_HEIGHT);
memset((uint8_t *) draw_buffer_level, 0, GRAPHICS_WIDTH * GRAPHICS_HEIGHT); memset((uint8_t *) draw_buffer_level, 0, GRAPHICS_WIDTH * GRAPHICS_HEIGHT);
} }
void copyimage(uint16_t offsetx, uint16_t offsety, int image) { void copyimage(uint16_t offsetx, uint16_t offsety, int image) {
//check top/left position
if (!validPos(offsetx, offsety)) {
return;
}
struct splashEntry splash_info; struct splashEntry splash_info;
splash_info = splash[image]; splash_info = splash[image];
offsetx=offsetx/8; offsetx=offsetx/8;
for (uint16_t y = offsety; y < ((splash_info.height)+offsety); y++) { for (uint16_t y = offsety; y < ((splash_info.height)+offsety); y++) {
for (uint16_t x = offsetx; x < (((splash_info.width)/8)+offsetx); x++) { for (uint16_t x = offsetx; x < (((splash_info.width)/8)+offsetx); x++) {
draw_buffer_level[y*GRAPHICS_WIDTH+x] = mirror(splash_info.level[(y-offsety)*((splash_info.width)/8)+(x-offsetx)]); draw_buffer_level[y*GRAPHICS_WIDTH+x] = mirror(splash_info.level[(y-offsety)*((splash_info.width)/8)+(x-offsetx)]);
draw_buffer_mask[y*GRAPHICS_WIDTH+x] = mirror(splash_info.mask[(y-offsety)*((splash_info.width)/8)+(x-offsetx)]); draw_buffer_mask[y*GRAPHICS_WIDTH+x] = mirror(splash_info.mask[(y-offsety)*((splash_info.width)/8)+(x-offsetx)]);
} }
} }
} }
uint8_t validPos(uint16_t x, uint16_t y) { uint8_t validPos(uint16_t x, uint16_t y) {
if (x >= GRAPHICS_WIDTH_REAL || y >= GRAPHICS_HEIGHT) { if ( x < GRAPHICS_HDEADBAND || x >= GRAPHICS_WIDTH_REAL || y >= GRAPHICS_HEIGHT_REAL) {
return 0; return 0;
} }
return 1; return 1;
@ -217,9 +160,9 @@ void setPixel(uint16_t x, uint16_t y, uint8_t state) {
if (!validPos(x, y)) { if (!validPos(x, y)) {
return; return;
} }
uint8_t bitPos = 7-(x%8); uint8_t bitPos = 7-(x%8);
uint16_t tempf = draw_buffer_level[y*GRAPHICS_WIDTH+x/8]; uint16_t tempf = draw_buffer_level[y*GRAPHICS_WIDTH+x/8];
uint16_t tempm = draw_buffer_mask[y*GRAPHICS_WIDTH+x/8]; uint16_t tempm = draw_buffer_mask[y*GRAPHICS_WIDTH+x/8];
if (state == 0) { if (state == 0) {
tempf &= ~(1<<bitPos); tempf &= ~(1<<bitPos);
tempm &= ~(1<<bitPos); tempm &= ~(1<<bitPos);
@ -232,8 +175,8 @@ void setPixel(uint16_t x, uint16_t y, uint8_t state) {
tempf ^= (1<<bitPos); tempf ^= (1<<bitPos);
tempm ^= (1<<bitPos); tempm ^= (1<<bitPos);
} }
draw_buffer_level[y*GRAPHICS_WIDTH+x/8] = tempf; draw_buffer_level[y*GRAPHICS_WIDTH+x/8] = tempf;
draw_buffer_mask[y*GRAPHICS_WIDTH+x/8] = tempm; draw_buffer_mask[y*GRAPHICS_WIDTH+x/8] = tempm;
} }
// Credit for this one goes to wikipedia! :-) // Credit for this one goes to wikipedia! :-)
@ -478,16 +421,16 @@ void drawBox(uint16_t x1, uint16_t y1, uint16_t x2, uint16_t y2)
* @param y y coordinate * @param y y coordinate
* @param mode 0 = clear bit, 1 = set bit, 2 = toggle bit * @param mode 0 = clear bit, 1 = set bit, 2 = toggle bit
*/ */
void write_pixel(uint8_t *buff, unsigned int x, unsigned int y, int mode) void write_pixel(uint8_t *buff, unsigned int x, unsigned int y, int mode)
{ {
CHECK_COORDS(x, y); CHECK_COORDS(x, y);
// Determine the bit in the word to be set and the word // Determine the bit in the word to be set and the word
// index to set it in. // index to set it in.
int bitnum = CALC_BIT_IN_WORD(x); int bitnum = CALC_BIT_IN_WORD(x);
int wordnum = CALC_BUFF_ADDR(x, y); int wordnum = CALC_BUFF_ADDR(x, y);
// Apply a mask. // Apply a mask.
uint16_t mask = 1 << (7 - bitnum); uint16_t mask = 1 << (7 - bitnum);
WRITE_WORD_MODE(buff, wordnum, mask, mode); WRITE_WORD_MODE(buff, wordnum, mask, mode);
} }
/** /**
@ -501,15 +444,15 @@ void write_pixel(uint8_t *buff, unsigned int x, unsigned int y, int mode)
*/ */
void write_pixel_lm(unsigned int x, unsigned int y, int mmode, int lmode) void write_pixel_lm(unsigned int x, unsigned int y, int mmode, int lmode)
{ {
CHECK_COORDS(x, y); CHECK_COORDS(x, y);
// Determine the bit in the word to be set and the word // Determine the bit in the word to be set and the word
// index to set it in. // index to set it in.
int bitnum = CALC_BIT_IN_WORD(x); int bitnum = CALC_BIT_IN_WORD(x);
int wordnum = CALC_BUFF_ADDR(x, y); int wordnum = CALC_BUFF_ADDR(x, y);
// Apply the masks. // Apply the masks.
uint16_t mask = 1 << (7 - bitnum); uint16_t mask = 1 << (7 - bitnum);
WRITE_WORD_MODE(draw_buffer_mask, wordnum, mask, mmode); WRITE_WORD_MODE(draw_buffer_mask, wordnum, mask, mmode);
WRITE_WORD_MODE(draw_buffer_level, wordnum, mask, lmode); WRITE_WORD_MODE(draw_buffer_level, wordnum, mask, lmode);
} }
@ -522,42 +465,42 @@ void write_pixel_lm(unsigned int x, unsigned int y, int mmode, int lmode)
* @param y y coordinate * @param y y coordinate
* @param mode 0 = clear, 1 = set, 2 = toggle * @param mode 0 = clear, 1 = set, 2 = toggle
*/ */
void write_hline(uint8_t *buff, unsigned int x0, unsigned int x1, unsigned int y, int mode) void write_hline(uint8_t *buff, unsigned int x0, unsigned int x1, unsigned int y, int mode)
{ {
CLIP_COORDS(x0, y); CLIP_COORDS(x0, y);
CLIP_COORDS(x1, y); CLIP_COORDS(x1, y);
if(x0 > x1) if(x0 > x1)
{ {
SWAP(x0, x1); SWAP(x0, x1);
} }
if(x0 == x1) return; if(x0 == x1) return;
/* This is an optimised algorithm for writing horizontal lines. /* This is an optimised algorithm for writing horizontal lines.
* We begin by finding the addresses of the x0 and x1 points. */ * We begin by finding the addresses of the x0 and x1 points. */
int addr0 = CALC_BUFF_ADDR(x0, y); int addr0 = CALC_BUFF_ADDR(x0, y);
int addr1 = CALC_BUFF_ADDR(x1, y); int addr1 = CALC_BUFF_ADDR(x1, y);
int addr0_bit = CALC_BIT_IN_WORD(x0); int addr0_bit = CALC_BIT_IN_WORD(x0);
int addr1_bit = CALC_BIT_IN_WORD(x1); int addr1_bit = CALC_BIT_IN_WORD(x1);
int mask, mask_l, mask_r, i; int mask, mask_l, mask_r, i;
/* If the addresses are equal, we only need to write one word /* If the addresses are equal, we only need to write one word
* which is an island. */ * which is an island. */
if(addr0 == addr1) if(addr0 == addr1)
{ {
mask = COMPUTE_HLINE_ISLAND_MASK(addr0_bit, addr1_bit); mask = COMPUTE_HLINE_ISLAND_MASK(addr0_bit, addr1_bit);
WRITE_WORD_MODE(buff, addr0, mask, mode); WRITE_WORD_MODE(buff, addr0, mask, mode);
} }
/* Otherwise we need to write the edges and then the middle. */ /* Otherwise we need to write the edges and then the middle. */
else else
{ {
mask_l = COMPUTE_HLINE_EDGE_L_MASK(addr0_bit); mask_l = COMPUTE_HLINE_EDGE_L_MASK(addr0_bit);
mask_r = COMPUTE_HLINE_EDGE_R_MASK(addr1_bit); mask_r = COMPUTE_HLINE_EDGE_R_MASK(addr1_bit);
WRITE_WORD_MODE(buff, addr0, mask_l, mode); WRITE_WORD_MODE(buff, addr0, mask_l, mode);
WRITE_WORD_MODE(buff, addr1, mask_r, mode); WRITE_WORD_MODE(buff, addr1, mask_r, mode);
// Now write 0xffff words from start+1 to end-1. // Now write 0xffff words from start+1 to end-1.
for(i = addr0 + 1; i <= addr1 - 1; i++) for(i = addr0 + 1; i <= addr1 - 1; i++)
{ {
WRITE_WORD_MODE(buff, i, 0xff, mode); WRITE_WORD_MODE(buff, i, 0xff, mode);
} }
} }
} }
/** /**
@ -571,10 +514,10 @@ void write_hline(uint8_t *buff, unsigned int x0, unsigned int x1, unsigned int y
*/ */
void write_hline_lm(unsigned int x0, unsigned int x1, unsigned int y, int lmode, int mmode) void write_hline_lm(unsigned int x0, unsigned int x1, unsigned int y, int lmode, int mmode)
{ {
// TODO: an optimisation would compute the masks and apply to // TODO: an optimisation would compute the masks and apply to
// both buffers simultaneously. // both buffers simultaneously.
write_hline(draw_buffer_level, x0, x1, y, lmode); write_hline(draw_buffer_level, x0, x1, y, lmode);
write_hline(draw_buffer_mask, x0, x1, y, mmode); write_hline(draw_buffer_mask, x0, x1, y, mmode);
} }
/** /**
@ -591,19 +534,19 @@ void write_hline_lm(unsigned int x0, unsigned int x1, unsigned int y, int lmode,
*/ */
void write_hline_outlined(unsigned int x0, unsigned int x1, unsigned int y, int endcap0, int endcap1, int mode, int mmode) void write_hline_outlined(unsigned int x0, unsigned int x1, unsigned int y, int endcap0, int endcap1, int mode, int mmode)
{ {
int stroke, fill; int stroke, fill;
SETUP_STROKE_FILL(stroke, fill, mode) SETUP_STROKE_FILL(stroke, fill, mode)
if(x0 > x1) if(x0 > x1)
{ {
SWAP(x0, x1); SWAP(x0, x1);
} }
// Draw the main body of the line. // Draw the main body of the line.
write_hline_lm(x0 + 1, x1 - 1, y - 1, stroke, mmode); write_hline_lm(x0 + 1, x1 - 1, y - 1, stroke, mmode);
write_hline_lm(x0 + 1, x1 - 1, y + 1, stroke, mmode); write_hline_lm(x0 + 1, x1 - 1, y + 1, stroke, mmode);
write_hline_lm(x0 + 1, x1 - 1, y, fill, mmode); write_hline_lm(x0 + 1, x1 - 1, y, fill, mmode);
// Draw the endcaps, if any. // Draw the endcaps, if any.
DRAW_ENDCAP_HLINE(endcap0, x0, y, stroke, fill, mmode); DRAW_ENDCAP_HLINE(endcap0, x0, y, stroke, fill, mmode);
DRAW_ENDCAP_HLINE(endcap1, x1, y, stroke, fill, mmode); DRAW_ENDCAP_HLINE(endcap1, x1, y, stroke, fill, mmode);
} }
/** /**
@ -615,29 +558,29 @@ void write_hline_outlined(unsigned int x0, unsigned int x1, unsigned int y, int
* @param y1 y1 coordinate * @param y1 y1 coordinate
* @param mode 0 = clear, 1 = set, 2 = toggle * @param mode 0 = clear, 1 = set, 2 = toggle
*/ */
void write_vline(uint8_t *buff, unsigned int x, unsigned int y0, unsigned int y1, int mode) void write_vline(uint8_t *buff, unsigned int x, unsigned int y0, unsigned int y1, int mode)
{ {
unsigned int a; unsigned int a;
CLIP_COORDS(x, y0); CLIP_COORDS(x, y0);
CLIP_COORDS(x, y1); CLIP_COORDS(x, y1);
if(y0 > y1) if(y0 > y1)
{ {
SWAP(y0, y1); SWAP(y0, y1);
} }
if(y0 == y1) return; if(y0 == y1) return;
/* This is an optimised algorithm for writing vertical lines. /* This is an optimised algorithm for writing vertical lines.
* We begin by finding the addresses of the x,y0 and x,y1 points. */ * We begin by finding the addresses of the x,y0 and x,y1 points. */
int addr0 = CALC_BUFF_ADDR(x, y0); int addr0 = CALC_BUFF_ADDR(x, y0);
int addr1 = CALC_BUFF_ADDR(x, y1); int addr1 = CALC_BUFF_ADDR(x, y1);
/* Then we calculate the pixel data to be written. */ /* Then we calculate the pixel data to be written. */
int bitnum = CALC_BIT_IN_WORD(x); int bitnum = CALC_BIT_IN_WORD(x);
uint16_t mask = 1 << (7 - bitnum); uint16_t mask = 1 << (7 - bitnum);
/* Run from addr0 to addr1 placing pixels. Increment by the number /* Run from addr0 to addr1 placing pixels. Increment by the number
* of words n each graphics line. */ * of words n each graphics line. */
for(a = addr0; a <= addr1; a += DISP_WIDTH / 8) for(a = addr0; a <= addr1; a += GRAPHICS_WIDTH_REAL / 8)
{ {
WRITE_WORD_MODE(buff, a, mask, mode); WRITE_WORD_MODE(buff, a, mask, mode);
} }
} }
/** /**
@ -651,10 +594,10 @@ void write_vline(uint8_t *buff, unsigned int x, unsigned int y0, unsigned int y1
*/ */
void write_vline_lm(unsigned int x, unsigned int y0, unsigned int y1, int lmode, int mmode) void write_vline_lm(unsigned int x, unsigned int y0, unsigned int y1, int lmode, int mmode)
{ {
// TODO: an optimisation would compute the masks and apply to // TODO: an optimisation would compute the masks and apply to
// both buffers simultaneously. // both buffers simultaneously.
write_vline(draw_buffer_level, x, y0, y1, lmode); write_vline(draw_buffer_level, x, y0, y1, lmode);
write_vline(draw_buffer_mask, x, y0, y1, mmode); write_vline(draw_buffer_mask, x, y0, y1, mmode);
} }
/** /**
@ -671,19 +614,19 @@ void write_vline_lm(unsigned int x, unsigned int y0, unsigned int y1, int lmode,
*/ */
void write_vline_outlined(unsigned int x, unsigned int y0, unsigned int y1, int endcap0, int endcap1, int mode, int mmode) void write_vline_outlined(unsigned int x, unsigned int y0, unsigned int y1, int endcap0, int endcap1, int mode, int mmode)
{ {
int stroke, fill; int stroke, fill;
if(y0 > y1) if(y0 > y1)
{ {
SWAP(y0, y1); SWAP(y0, y1);
} }
SETUP_STROKE_FILL(stroke, fill, mode); SETUP_STROKE_FILL(stroke, fill, mode);
// Draw the main body of the line. // Draw the main body of the line.
write_vline_lm(x - 1, y0 + 1, y1 - 1, stroke, mmode); write_vline_lm(x - 1, y0 + 1, y1 - 1, stroke, mmode);
write_vline_lm(x + 1, y0 + 1, y1 - 1, stroke, mmode); write_vline_lm(x + 1, y0 + 1, y1 - 1, stroke, mmode);
write_vline_lm(x, y0 + 1, y1 - 1, fill, mmode); write_vline_lm(x, y0 + 1, y1 - 1, fill, mmode);
// Draw the endcaps, if any. // Draw the endcaps, if any.
DRAW_ENDCAP_VLINE(endcap0, x, y0, stroke, fill, mmode); DRAW_ENDCAP_VLINE(endcap0, x, y0, stroke, fill, mmode);
DRAW_ENDCAP_VLINE(endcap1, x, y1, stroke, fill, mmode); DRAW_ENDCAP_VLINE(endcap1, x, y1, stroke, fill, mmode);
} }
/** /**
@ -700,7 +643,7 @@ void write_vline_outlined(unsigned int x, unsigned int y0, unsigned int y1, int
* @param height rectangle height * @param height rectangle height
* @param mode 0 = clear, 1 = set, 2 = toggle * @param mode 0 = clear, 1 = set, 2 = toggle
*/ */
void write_filled_rectangle(uint8_t *buff, unsigned int x, unsigned int y, unsigned int width, unsigned int height, int mode) void write_filled_rectangle(uint8_t *buff, unsigned int x, unsigned int y, unsigned int width, unsigned int height, int mode)
{ {
int yy, addr0_old, addr1_old; int yy, addr0_old, addr1_old;
CHECK_COORDS(x, y); CHECK_COORDS(x, y);
@ -721,7 +664,7 @@ void write_filled_rectangle(uint8_t *buff, unsigned int x, unsigned int y, unsig
while(height--) while(height--)
{ {
WRITE_WORD_MODE(buff, addr0, mask, mode); WRITE_WORD_MODE(buff, addr0, mask, mode);
addr0 += DISP_WIDTH / 8; addr0 += GRAPHICS_WIDTH_REAL / 8;
} }
} }
// Otherwise we need to write the edges and then the middle repeatedly. // Otherwise we need to write the edges and then the middle repeatedly.
@ -737,8 +680,8 @@ void write_filled_rectangle(uint8_t *buff, unsigned int x, unsigned int y, unsig
{ {
WRITE_WORD_MODE(buff, addr0, mask_l, mode); WRITE_WORD_MODE(buff, addr0, mask_l, mode);
WRITE_WORD_MODE(buff, addr1, mask_r, mode); WRITE_WORD_MODE(buff, addr1, mask_r, mode);
addr0 += DISP_WIDTH / 8; addr0 += GRAPHICS_WIDTH_REAL / 8;
addr1 += DISP_WIDTH / 8; addr1 += GRAPHICS_WIDTH_REAL / 8;
yy++; yy++;
} }
// Now write 0xffff words from start+1 to end-1 for each row. // Now write 0xffff words from start+1 to end-1 for each row.
@ -749,10 +692,10 @@ void write_filled_rectangle(uint8_t *buff, unsigned int x, unsigned int y, unsig
{ {
for(i = addr0 + 1; i <= addr1 - 1; i++) for(i = addr0 + 1; i <= addr1 - 1; i++)
{ {
WRITE_WORD_MODE(buff, i, 0xff, mode); WRITE_WORD_MODE(buff, i, 0xff, mode);
} }
addr0 += DISP_WIDTH / 8; addr0 += GRAPHICS_WIDTH_REAL / 8;
addr1 += DISP_WIDTH / 8; addr1 += GRAPHICS_WIDTH_REAL / 8;
yy++; yy++;
} }
} }
@ -787,14 +730,14 @@ void write_filled_rectangle_lm(unsigned int x, unsigned int y, unsigned int widt
*/ */
void write_rectangle_outlined(unsigned int x, unsigned int y, int width, int height, int mode, int mmode) void write_rectangle_outlined(unsigned int x, unsigned int y, int width, int height, int mode, int mmode)
{ {
//CHECK_COORDS(x, y); //CHECK_COORDS(x, y);
//CHECK_COORDS(x + width, y + height); //CHECK_COORDS(x + width, y + height);
//if((x + width) > DISP_WIDTH) width = DISP_WIDTH - x; //if((x + width) > DISP_WIDTH) width = DISP_WIDTH - x;
//if((y + height) > DISP_HEIGHT) height = DISP_HEIGHT - y; //if((y + height) > DISP_HEIGHT) height = DISP_HEIGHT - y;
write_hline_outlined(x, x + width, y, ENDCAP_ROUND, ENDCAP_ROUND, mode, mmode); write_hline_outlined(x, x + width, y, ENDCAP_ROUND, ENDCAP_ROUND, mode, mmode);
write_hline_outlined(x, x + width, y + height, ENDCAP_ROUND, ENDCAP_ROUND, mode, mmode); write_hline_outlined(x, x + width, y + height, ENDCAP_ROUND, ENDCAP_ROUND, mode, mmode);
write_vline_outlined(x, y, y + height, ENDCAP_ROUND, ENDCAP_ROUND, mode, mmode); write_vline_outlined(x, y, y + height, ENDCAP_ROUND, ENDCAP_ROUND, mode, mmode);
write_vline_outlined(x + width, y, y + height, ENDCAP_ROUND, ENDCAP_ROUND, mode, mmode); write_vline_outlined(x + width, y, y + height, ENDCAP_ROUND, ENDCAP_ROUND, mode, mmode);
} }
/** /**
@ -808,24 +751,24 @@ void write_rectangle_outlined(unsigned int x, unsigned int y, int width, int hei
* @param dashp dash period (pixels) - zero for no dash * @param dashp dash period (pixels) - zero for no dash
* @param mode 0 = clear, 1 = set, 2 = toggle * @param mode 0 = clear, 1 = set, 2 = toggle
*/ */
void write_circle(uint8_t *buff, unsigned int cx, unsigned int cy, unsigned int r, unsigned int dashp, int mode) void write_circle(uint8_t *buff, unsigned int cx, unsigned int cy, unsigned int r, unsigned int dashp, int mode)
{ {
CHECK_COORDS(cx, cy); CHECK_COORDS(cx, cy);
int error = -r, x = r, y = 0; int error = -r, x = r, y = 0;
while(x >= y) while(x >= y)
{ {
if(dashp == 0 || (y % dashp) < (dashp / 2)) if(dashp == 0 || (y % dashp) < (dashp / 2))
{ {
CIRCLE_PLOT_8(buff, cx, cy, x, y, mode); CIRCLE_PLOT_8(buff, cx, cy, x, y, mode);
} }
error += (y * 2) + 1; error += (y * 2) + 1;
y++; y++;
if(error >= 0) if(error >= 0)
{ {
--x; --x;
error -= x * 2; error -= x * 2;
} }
} }
} }
/** /**
@ -841,58 +784,58 @@ void write_circle(uint8_t *buff, unsigned int cx, unsigned int cy, unsigned int
*/ */
void write_circle_outlined(unsigned int cx, unsigned int cy, unsigned int r, unsigned int dashp, int bmode, int mode, int mmode) void write_circle_outlined(unsigned int cx, unsigned int cy, unsigned int r, unsigned int dashp, int bmode, int mode, int mmode)
{ {
int stroke, fill; int stroke, fill;
CHECK_COORDS(cx, cy); CHECK_COORDS(cx, cy);
SETUP_STROKE_FILL(stroke, fill, mode); SETUP_STROKE_FILL(stroke, fill, mode);
// This is a two step procedure. First, we draw the outline of the // This is a two step procedure. First, we draw the outline of the
// circle, then we draw the inner part. // circle, then we draw the inner part.
int error = -r, x = r, y = 0; int error = -r, x = r, y = 0;
while(x >= y) while(x >= y)
{ {
if(dashp == 0 || (y % dashp) < (dashp / 2)) if(dashp == 0 || (y % dashp) < (dashp / 2))
{ {
CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x + 1, y, mmode); CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x + 1, y, mmode);
CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x + 1, y, stroke); CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x + 1, y, stroke);
CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x, y + 1, mmode); CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x, y + 1, mmode);
CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x, y + 1, stroke); CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x, y + 1, stroke);
CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x - 1, y, mmode); CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x - 1, y, mmode);
CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x - 1, y, stroke); CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x - 1, y, stroke);
CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x, y - 1, mmode); CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x, y - 1, mmode);
CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x, y - 1, stroke); CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x, y - 1, stroke);
if(bmode == 1) if(bmode == 1)
{ {
CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x + 1, y + 1, mmode); CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x + 1, y + 1, mmode);
CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x + 1, y + 1, stroke); CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x + 1, y + 1, stroke);
CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x - 1, y - 1, mmode); CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x - 1, y - 1, mmode);
CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x - 1, y - 1, stroke); CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x - 1, y - 1, stroke);
} }
} }
error += (y * 2) + 1; error += (y * 2) + 1;
y++; y++;
if(error >= 0) if(error >= 0)
{ {
--x; --x;
error -= x * 2; error -= x * 2;
} }
} }
error = -r; error = -r;
x = r; x = r;
y = 0; y = 0;
while(x >= y) while(x >= y)
{ {
if(dashp == 0 || (y % dashp) < (dashp / 2)) if(dashp == 0 || (y % dashp) < (dashp / 2))
{ {
CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x, y, mmode); CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x, y, mmode);
CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x, y, fill); CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x, y, fill);
} }
error += (y * 2) + 1; error += (y * 2) + 1;
y++; y++;
if(error >= 0) if(error >= 0)
{ {
--x; --x;
error -= x * 2; error -= x * 2;
} }
} }
} }
/** /**
@ -904,44 +847,44 @@ void write_circle_outlined(unsigned int cx, unsigned int cy, unsigned int r, uns
* @param r radius * @param r radius
* @param mode 0 = clear, 1 = set, 2 = toggle * @param mode 0 = clear, 1 = set, 2 = toggle
*/ */
void write_circle_filled(uint8_t *buff, unsigned int cx, unsigned int cy, unsigned int r, int mode) void write_circle_filled(uint8_t *buff, unsigned int cx, unsigned int cy, unsigned int r, int mode)
{ {
CHECK_COORDS(cx, cy); CHECK_COORDS(cx, cy);
int error = -r, x = r, y = 0, xch = 0; int error = -r, x = r, y = 0, xch = 0;
// It turns out that filled circles can take advantage of the midpoint // It turns out that filled circles can take advantage of the midpoint
// circle algorithm. We simply draw very fast horizontal lines across each // circle algorithm. We simply draw very fast horizontal lines across each
// pair of X,Y coordinates. In some cases, this can even be faster than // pair of X,Y coordinates. In some cases, this can even be faster than
// drawing an outlined circle! // drawing an outlined circle!
// //
// Due to multiple writes to each set of pixels, we have a special exception // Due to multiple writes to each set of pixels, we have a special exception
// for when using the toggling draw mode. // for when using the toggling draw mode.
while(x >= y) while(x >= y)
{ {
if(y != 0) if(y != 0)
{ {
write_hline(buff, cx - x, cx + x, cy + y, mode); write_hline(buff, cx - x, cx + x, cy + y, mode);
write_hline(buff, cx - x, cx + x, cy - y, mode); write_hline(buff, cx - x, cx + x, cy - y, mode);
if(mode != 2 || (mode == 2 && xch && (cx - x) != (cx - y))) if(mode != 2 || (mode == 2 && xch && (cx - x) != (cx - y)))
{ {
write_hline(buff, cx - y, cx + y, cy + x, mode); write_hline(buff, cx - y, cx + y, cy + x, mode);
write_hline(buff, cx - y, cx + y, cy - x, mode); write_hline(buff, cx - y, cx + y, cy - x, mode);
xch = 0; xch = 0;
} }
} }
error += (y * 2) + 1; error += (y * 2) + 1;
y++; y++;
if(error >= 0) if(error >= 0)
{ {
--x; --x;
xch = 1; xch = 1;
error -= x * 2; error -= x * 2;
} }
} }
// Handle toggle mode. // Handle toggle mode.
if(mode == 2) if(mode == 2)
{ {
write_hline(buff, cx - r, cx + r, cy, mode); write_hline(buff, cx - r, cx + r, cy, mode);
} }
} }
/** /**
@ -954,66 +897,66 @@ void write_circle_filled(uint8_t *buff, unsigned int cx, unsigned int cy, unsign
* @param y1 second y coordinate * @param y1 second y coordinate
* @param mode 0 = clear, 1 = set, 2 = toggle * @param mode 0 = clear, 1 = set, 2 = toggle
*/ */
void write_line(uint8_t *buff, unsigned int x0, unsigned int y0, unsigned int x1, unsigned int y1, int mode) void write_line(uint8_t *buff, unsigned int x0, unsigned int y0, unsigned int x1, unsigned int y1, int mode)
{ {
// Based on http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm // Based on http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
int steep = abs(y1 - y0) > abs(x1 - x0); int steep = abs(y1 - y0) > abs(x1 - x0);
if(steep) if(steep)
{ {
SWAP(x0, y0); SWAP(x0, y0);
SWAP(x1, y1); SWAP(x1, y1);
} }
if(x0 > x1) if(x0 > x1)
{ {
SWAP(x0, x1); SWAP(x0, x1);
SWAP(y0, y1); SWAP(y0, y1);
} }
int deltax = x1 - x0; int deltax = x1 - x0;
int deltay = abs(y1 - y0); int deltay = abs(y1 - y0);
int error = deltax / 2; int error = deltax / 2;
int ystep; int ystep;
int y = y0; int y = y0;
int x, lasty = y, stox = 0; int x, lasty = y, stox = 0;
if(y0 < y1) if(y0 < y1)
ystep = 1; ystep = 1;
else else
ystep = -1; ystep = -1;
for(x = x0; x < x1; x++) for(x = x0; x < x1; x++)
{ {
if(steep) if(steep)
{ {
if(lasty != y) if(lasty != y)
{ {
if(x > lasty) if(x > lasty)
write_vline(buff, stox, y, lasty, mode); write_vline(buff, stox, y, lasty, mode);
else else
write_vline(buff, stox, lasty, y, mode); write_vline(buff, stox, lasty, y, mode);
lasty = y; lasty = y;
stox = x; stox = x;
} }
} }
else else
{ {
//write_pixel(buff, x, y, mode); //write_pixel(buff, x, y, mode);
/* /*
if(lasty != y) if(lasty != y)
{ {
if(y > lasty) if(y > lasty)
write_vline(buff, stox, y, lasty, mode); write_vline(buff, stox, y, lasty, mode);
else else
write_vline(buff, stox, lasty, y, mode); write_vline(buff, stox, lasty, y, mode);
lasty = y; lasty = y;
stox = x; stox = x;
} }
*/ */
} }
error -= deltay; error -= deltay;
if(error < 0) if(error < 0)
{ {
y += ystep; y += ystep;
error += deltax; error += deltax;
} }
} }
} }
/** /**
@ -1028,8 +971,8 @@ void write_line(uint8_t *buff, unsigned int x0, unsigned int y0, unsigned int x1
*/ */
void write_line_lm(unsigned int x0, unsigned int y0, unsigned int x1, unsigned int y1, int mmode, int lmode) void write_line_lm(unsigned int x0, unsigned int y0, unsigned int x1, unsigned int y1, int mmode, int lmode)
{ {
write_line(draw_buffer_mask, x0, y0, x1, y1, mmode); write_line(draw_buffer_mask, x0, y0, x1, y1, mmode);
write_line(draw_buffer_level, x0, y0, x1, y1, lmode); write_line(draw_buffer_level, x0, y0, x1, y1, lmode);
} }
/** /**
@ -1047,84 +990,84 @@ void write_line_lm(unsigned int x0, unsigned int y0, unsigned int x1, unsigned i
*/ */
void write_line_outlined(unsigned int x0, unsigned int y0, unsigned int x1, unsigned int y1, int endcap0, int endcap1, int mode, int mmode) void write_line_outlined(unsigned int x0, unsigned int y0, unsigned int x1, unsigned int y1, int endcap0, int endcap1, int mode, int mmode)
{ {
// Based on http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm // Based on http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
// This could be improved for speed. // This could be improved for speed.
int omode, imode; int omode, imode;
if(mode == 0) if(mode == 0)
{ {
omode = 0; omode = 0;
imode = 1; imode = 1;
} }
else else
{ {
omode = 1; omode = 1;
imode = 0; imode = 0;
} }
int steep = abs(y1 - y0) > abs(x1 - x0); int steep = abs(y1 - y0) > abs(x1 - x0);
if(steep) if(steep)
{ {
SWAP(x0, y0); SWAP(x0, y0);
SWAP(x1, y1); SWAP(x1, y1);
} }
if(x0 > x1) if(x0 > x1)
{ {
SWAP(x0, x1); SWAP(x0, x1);
SWAP(y0, y1); SWAP(y0, y1);
} }
int deltax = x1 - x0; int deltax = x1 - x0;
int deltay = abs(y1 - y0); int deltay = abs(y1 - y0);
int error = deltax / 2; int error = deltax / 2;
int ystep; int ystep;
int y = y0; int y = y0;
int x; int x;
if(y0 < y1) if(y0 < y1)
ystep = 1; ystep = 1;
else else
ystep = -1; ystep = -1;
// Draw the outline. // Draw the outline.
for(x = x0; x < x1; x++) for(x = x0; x < x1; x++)
{ {
if(steep) if(steep)
{ {
write_pixel_lm(y - 1, x, mmode, omode); write_pixel_lm(y - 1, x, mmode, omode);
write_pixel_lm(y + 1, x, mmode, omode); write_pixel_lm(y + 1, x, mmode, omode);
write_pixel_lm(y, x - 1, mmode, omode); write_pixel_lm(y, x - 1, mmode, omode);
write_pixel_lm(y, x + 1, mmode, omode); write_pixel_lm(y, x + 1, mmode, omode);
} }
else else
{ {
write_pixel_lm(x - 1, y, mmode, omode); write_pixel_lm(x - 1, y, mmode, omode);
write_pixel_lm(x + 1, y, mmode, omode); write_pixel_lm(x + 1, y, mmode, omode);
write_pixel_lm(x, y - 1, mmode, omode); write_pixel_lm(x, y - 1, mmode, omode);
write_pixel_lm(x, y + 1, mmode, omode); write_pixel_lm(x, y + 1, mmode, omode);
} }
error -= deltay; error -= deltay;
if(error < 0) if(error < 0)
{ {
y += ystep; y += ystep;
error += deltax; error += deltax;
} }
} }
// Now draw the innards. // Now draw the innards.
error = deltax / 2; error = deltax / 2;
y = y0; y = y0;
for(x = x0; x < x1; x++) for(x = x0; x < x1; x++)
{ {
if(steep) if(steep)
{ {
write_pixel_lm(y, x, mmode, imode); write_pixel_lm(y, x, mmode, imode);
} }
else else
{ {
write_pixel_lm(x, y, mmode, imode); write_pixel_lm(x, y, mmode, imode);
} }
error -= deltay; error -= deltay;
if(error < 0) if(error < 0)
{ {
y += ystep; y += ystep;
error += deltax; error += deltax;
} }
} }
} }
/** /**
@ -1139,16 +1082,16 @@ void write_line_outlined(unsigned int x0, unsigned int y0, unsigned int x1, unsi
* @param xoff x offset (0-15) * @param xoff x offset (0-15)
* @param mode 0 = clear, 1 = set, 2 = toggle * @param mode 0 = clear, 1 = set, 2 = toggle
*/ */
void write_word_misaligned(uint8_t *buff, uint16_t word, unsigned int addr, unsigned int xoff, int mode) void write_word_misaligned(uint8_t *buff, uint16_t word, unsigned int addr, unsigned int xoff, int mode)
{ {
uint16_t firstmask = word >> xoff; uint16_t firstmask = word >> xoff;
uint16_t lastmask = word << (16 - xoff); uint16_t lastmask = word << (16 - xoff);
WRITE_WORD_MODE(buff, addr+1, firstmask && 0x00ff, mode); WRITE_WORD_MODE(buff, addr+1, firstmask && 0x00ff, mode);
WRITE_WORD_MODE(buff, addr, (firstmask & 0xff00) >> 8, mode); WRITE_WORD_MODE(buff, addr, (firstmask & 0xff00) >> 8, mode);
if(xoff > 0) if(xoff > 0)
WRITE_WORD_MODE(buff, addr+3, lastmask & 0x00ff, mode); WRITE_WORD_MODE(buff, addr+3, lastmask & 0x00ff, mode);
if(xoff > 8) if(xoff > 8)
WRITE_WORD_MODE(buff, addr+2, (lastmask & 0xff00) >> 8, mode); WRITE_WORD_MODE(buff, addr+2, (lastmask & 0xff00) >> 8, mode);
} }
/** /**
@ -1166,16 +1109,16 @@ void write_word_misaligned(uint8_t *buff, uint16_t word, unsigned int addr, unsi
* it doesn't go through a lot of switch logic which slows down text writing * it doesn't go through a lot of switch logic which slows down text writing
* a lot. * a lot.
*/ */
void write_word_misaligned_NAND(uint8_t *buff, uint16_t word, unsigned int addr, unsigned int xoff) void write_word_misaligned_NAND(uint8_t *buff, uint16_t word, unsigned int addr, unsigned int xoff)
{ {
uint16_t firstmask = word >> xoff; uint16_t firstmask = word >> xoff;
uint16_t lastmask = word << (16 - xoff); uint16_t lastmask = word << (16 - xoff);
WRITE_WORD_NAND(buff, addr+1, firstmask & 0x00ff); WRITE_WORD_NAND(buff, addr+1, firstmask & 0x00ff);
WRITE_WORD_NAND(buff, addr, (firstmask & 0xff00) >> 8); WRITE_WORD_NAND(buff, addr, (firstmask & 0xff00) >> 8);
if(xoff > 0) if(xoff > 0)
WRITE_WORD_NAND(buff, addr+3, (lastmask & 0x00ff)); WRITE_WORD_NAND(buff, addr+3, (lastmask & 0x00ff));
if (xoff > 8) if (xoff > 8)
WRITE_WORD_NAND(buff, addr+2, (lastmask & 0xff00) >> 8); WRITE_WORD_NAND(buff, addr+2, (lastmask & 0xff00) >> 8);
} }
/** /**
@ -1193,17 +1136,17 @@ void write_word_misaligned_NAND(uint8_t *buff, uint16_t word, unsigned int addr,
* it doesn't go through a lot of switch logic which slows down text writing * it doesn't go through a lot of switch logic which slows down text writing
* a lot. * a lot.
*/ */
void write_word_misaligned_OR(uint8_t *buff, uint16_t word, unsigned int addr, unsigned int xoff) void write_word_misaligned_OR(uint8_t *buff, uint16_t word, unsigned int addr, unsigned int xoff)
{ {
uint16_t firstmask = word >> xoff; uint16_t firstmask = word >> xoff;
uint16_t lastmask = word << (16 - xoff); uint16_t lastmask = word << (16 - xoff);
WRITE_WORD_OR(buff, addr+1, firstmask & 0x00ff); WRITE_WORD_OR(buff, addr+1, firstmask & 0x00ff);
WRITE_WORD_OR(buff, addr, (firstmask & 0xff00) >> 8); WRITE_WORD_OR(buff, addr, (firstmask & 0xff00) >> 8);
if(xoff > 0) if(xoff > 0)
WRITE_WORD_OR(buff, addr + 3, lastmask & 0x00ff); WRITE_WORD_OR(buff, addr + 3, lastmask & 0x00ff);
if(xoff > 8) if(xoff > 8)
WRITE_WORD_OR(buff, addr + 2, (lastmask & 0xff00) >> 8); WRITE_WORD_OR(buff, addr + 2, (lastmask & 0xff00) >> 8);
} }
/** /**
@ -1220,8 +1163,8 @@ void write_word_misaligned_OR(uint8_t *buff, uint16_t word, unsigned int addr, u
*/ */
void write_word_misaligned_lm(uint16_t wordl, uint16_t wordm, unsigned int addr, unsigned int xoff, int lmode, int mmode) void write_word_misaligned_lm(uint16_t wordl, uint16_t wordm, unsigned int addr, unsigned int xoff, int lmode, int mmode)
{ {
write_word_misaligned(draw_buffer_level, wordl, addr, xoff, lmode); write_word_misaligned(draw_buffer_level, wordl, addr, xoff, lmode);
write_word_misaligned(draw_buffer_mask, wordm, addr, xoff, mmode); write_word_misaligned(draw_buffer_mask, wordm, addr, xoff, mmode);
} }
/** /**
@ -1232,19 +1175,19 @@ void write_word_misaligned_lm(uint16_t wordl, uint16_t wordm, unsigned int addr,
*/ */
int fetch_font_info(char ch, int font, struct FontEntry *font_info, char *lookup) int fetch_font_info(char ch, int font, struct FontEntry *font_info, char *lookup)
{ {
// First locate the font struct. // First locate the font struct.
if(font > SIZEOF_ARRAY(fonts)) if(font > SIZEOF_ARRAY(fonts))
return 0; // font does not exist, exit.*/ return 0; // font does not exist, exit.*/
// Load the font info; IDs are always sequential. // Load the font info; IDs are always sequential.
*font_info = fonts[font]; *font_info = fonts[font];
// Locate character in font lookup table. (If required.) // Locate character in font lookup table. (If required.)
if(lookup != NULL) if(lookup != NULL)
{ {
*lookup = font_info->lookup[ch]; *lookup = font_info->lookup[ch];
if(*lookup == 0xff) if(*lookup == 0xff)
return 0; // character doesn't exist, don't bother writing it. return 0; // character doesn't exist, don't bother writing it.
} }
return 1; return 1;
} }
@ -1266,7 +1209,7 @@ void write_char16(char ch, unsigned int x, unsigned int y, int font)
struct FontEntry font_info; struct FontEntry font_info;
char lookup = 0; char lookup = 0;
fetch_font_info(0, font, &font_info, NULL); fetch_font_info(0, font, &font_info, NULL);
// Compute starting address (for x,y) of character. // Compute starting address (for x,y) of character.
int addr = CALC_BUFF_ADDR(x, y); int addr = CALC_BUFF_ADDR(x, y);
int wbit = CALC_BIT_IN_WORD(x); int wbit = CALC_BIT_IN_WORD(x);
@ -1275,53 +1218,53 @@ void write_char16(char ch, unsigned int x, unsigned int y, int font)
// How big is the character? We handle characters up to 8 pixels // How big is the character? We handle characters up to 8 pixels
// wide for now. Support for large characters may be added in future. // wide for now. Support for large characters may be added in future.
{ {
// Ensure we don't overflow. // Ensure we don't overflow.
if(x + wbit > DISP_WIDTH) if(x + wbit > GRAPHICS_WIDTH_REAL)
return; return;
// Load data pointer. // Load data pointer.
row = ch * font_info.height; row = ch * font_info.height;
row_temp = row; row_temp = row;
addr_temp = addr; addr_temp = addr;
xshift = 16 - font_info.width; xshift = 16 - font_info.width;
// We can write mask words easily. // We can write mask words easily.
for(yy = y; yy < y + font_info.height; yy++) for(yy = y; yy < y + font_info.height; yy++)
{ {
if(font==3) if(font==3)
write_word_misaligned_OR(draw_buffer_mask, font_mask12x18[row] << xshift, addr, wbit); write_word_misaligned_OR(draw_buffer_mask, font_mask12x18[row] << xshift, addr, wbit);
else else
write_word_misaligned_OR(draw_buffer_mask, font_mask8x10[row] << xshift, addr, wbit); write_word_misaligned_OR(draw_buffer_mask, font_mask8x10[row] << xshift, addr, wbit);
addr += DISP_WIDTH / 8; addr += GRAPHICS_WIDTH_REAL / 8;
row++; row++;
} }
// Level bits are more complicated. We need to set or clear // Level bits are more complicated. We need to set or clear
// level bits, but only where the mask bit is set; otherwise, // level bits, but only where the mask bit is set; otherwise,
// we need to leave them alone. To do this, for each word, we // we need to leave them alone. To do this, for each word, we
// construct an AND mask and an OR mask, and apply each individually. // construct an AND mask and an OR mask, and apply each individually.
row = row_temp; row = row_temp;
addr = addr_temp; addr = addr_temp;
for(yy = y; yy < y + font_info.height; yy++) for(yy = y; yy < y + font_info.height; yy++)
{ {
if(font==3) if(font==3)
{ {
level_bits = font_frame12x18[row]; level_bits = font_frame12x18[row];
//if(!(flags & FONT_INVERT)) // data is normally inverted //if(!(flags & FONT_INVERT)) // data is normally inverted
level_bits = ~level_bits; level_bits = ~level_bits;
or_mask = font_mask12x18[row] << xshift; or_mask = font_mask12x18[row] << xshift;
and_mask = (font_mask12x18[row] & level_bits) << xshift; and_mask = (font_mask12x18[row] & level_bits) << xshift;
} else { } else {
level_bits = font_frame8x10[row]; level_bits = font_frame8x10[row];
//if(!(flags & FONT_INVERT)) // data is normally inverted //if(!(flags & FONT_INVERT)) // data is normally inverted
level_bits = ~level_bits; level_bits = ~level_bits;
or_mask = font_mask8x10[row] << xshift; or_mask = font_mask8x10[row] << xshift;
and_mask = (font_mask8x10[row] & level_bits) << xshift; and_mask = (font_mask8x10[row] & level_bits) << xshift;
} }
write_word_misaligned_OR(draw_buffer_level, or_mask, addr, wbit); write_word_misaligned_OR(draw_buffer_level, or_mask, addr, wbit);
// If we're not bold write the AND mask. // If we're not bold write the AND mask.
//if(!(flags & FONT_BOLD)) //if(!(flags & FONT_BOLD))
write_word_misaligned_NAND(draw_buffer_level, and_mask, addr, wbit); write_word_misaligned_NAND(draw_buffer_level, and_mask, addr, wbit);
addr += DISP_WIDTH / 8; addr += GRAPHICS_WIDTH_REAL / 8;
row++; row++;
} }
} }
} }
@ -1351,49 +1294,49 @@ void write_char(char ch, unsigned int x, unsigned int y, int flags, int font)
// If font only supports lowercase or uppercase, make the letter // If font only supports lowercase or uppercase, make the letter
// lowercase or uppercase. // lowercase or uppercase.
if(font_info.flags & FONT_LOWERCASE_ONLY) if(font_info.flags & FONT_LOWERCASE_ONLY)
ch = tolower(ch); ch = tolower(ch);
if(font_info.flags & FONT_UPPERCASE_ONLY) if(font_info.flags & FONT_UPPERCASE_ONLY)
ch = toupper(ch); ch = toupper(ch);
fetch_font_info(ch, font, &font_info, &lookup); fetch_font_info(ch, font, &font_info, &lookup);
// How big is the character? We handle characters up to 8 pixels // How big is the character? We handle characters up to 8 pixels
// wide for now. Support for large characters may be added in future. // wide for now. Support for large characters may be added in future.
if(font_info.width <= 8) if(font_info.width <= 8)
{ {
// Ensure we don't overflow. // Ensure we don't overflow.
if(x + wbit > DISP_WIDTH) if(x + wbit > GRAPHICS_WIDTH_REAL)
return; return;
// Load data pointer. // Load data pointer.
row = lookup * font_info.height * 2; row = lookup * font_info.height * 2;
row_temp = row; row_temp = row;
addr_temp = addr; addr_temp = addr;
xshift = 16 - font_info.width; xshift = 16 - font_info.width;
// We can write mask words easily. // We can write mask words easily.
for(yy = y; yy < y + font_info.height; yy++) for(yy = y; yy < y + font_info.height; yy++)
{ {
write_word_misaligned_OR(draw_buffer_mask, font_info.data[row] << xshift, addr, wbit); write_word_misaligned_OR(draw_buffer_mask, font_info.data[row] << xshift, addr, wbit);
addr += DISP_WIDTH / 8; addr += GRAPHICS_WIDTH_REAL / 8;
row++; row++;
} }
// Level bits are more complicated. We need to set or clear // Level bits are more complicated. We need to set or clear
// level bits, but only where the mask bit is set; otherwise, // level bits, but only where the mask bit is set; otherwise,
// we need to leave them alone. To do this, for each word, we // we need to leave them alone. To do this, for each word, we
// construct an AND mask and an OR mask, and apply each individually. // construct an AND mask and an OR mask, and apply each individually.
row = row_temp; row = row_temp;
addr = addr_temp; addr = addr_temp;
for(yy = y; yy < y + font_info.height; yy++) for(yy = y; yy < y + font_info.height; yy++)
{ {
level_bits = font_info.data[row + font_info.height]; level_bits = font_info.data[row + font_info.height];
if(!(flags & FONT_INVERT)) // data is normally inverted if(!(flags & FONT_INVERT)) // data is normally inverted
level_bits = ~level_bits; level_bits = ~level_bits;
or_mask = font_info.data[row] << xshift; or_mask = font_info.data[row] << xshift;
and_mask = (font_info.data[row] & level_bits) << xshift; and_mask = (font_info.data[row] & level_bits) << xshift;
write_word_misaligned_OR(draw_buffer_level, or_mask, addr, wbit); write_word_misaligned_OR(draw_buffer_level, or_mask, addr, wbit);
// If we're not bold write the AND mask. // If we're not bold write the AND mask.
//if(!(flags & FONT_BOLD)) //if(!(flags & FONT_BOLD))
write_word_misaligned_NAND(draw_buffer_level, and_mask, addr, wbit); write_word_misaligned_NAND(draw_buffer_level, and_mask, addr, wbit);
addr += DISP_WIDTH / 8; addr += GRAPHICS_WIDTH_REAL / 8;
row++; row++;
} }
} }
} }
@ -1413,18 +1356,18 @@ void calc_text_dimensions(char *str, struct FontEntry font, int xs, int ys, stru
int max_length = 0, line_length = 0, lines = 1; int max_length = 0, line_length = 0, lines = 1;
while(*str != 0) while(*str != 0)
{ {
line_length++; line_length++;
if(*str == '\n' || *str == '\r') if(*str == '\n' || *str == '\r')
{ {
if(line_length > max_length) if(line_length > max_length)
max_length = line_length; max_length = line_length;
line_length = 0; line_length = 0;
lines++; lines++;
} }
str++; str++;
} }
if(line_length > max_length) if(line_length > max_length)
max_length = line_length; max_length = line_length;
dim->width = max_length * (font.width + xs); dim->width = max_length * (font.width + xs);
dim->height = lines * (font.height + ys); dim->height = lines * (font.height + ys);
} }
@ -1453,37 +1396,37 @@ void write_string(char *str, unsigned int x, unsigned int y, unsigned int xs, un
calc_text_dimensions(str, font_info, xs, ys, &dim); calc_text_dimensions(str, font_info, xs, ys, &dim);
switch(va) switch(va)
{ {
case TEXT_VA_TOP: yy = y; break; case TEXT_VA_TOP: yy = y; break;
case TEXT_VA_MIDDLE: yy = y - (dim.height / 2); break; case TEXT_VA_MIDDLE: yy = y - (dim.height / 2); break;
case TEXT_VA_BOTTOM: yy = y - dim.height; break; case TEXT_VA_BOTTOM: yy = y - dim.height; break;
} }
switch(ha) switch(ha)
{ {
case TEXT_HA_LEFT: xx = x; break; case TEXT_HA_LEFT: xx = x; break;
case TEXT_HA_CENTER: xx = x - (dim.width / 2); break; case TEXT_HA_CENTER: xx = x - (dim.width / 2); break;
case TEXT_HA_RIGHT: xx = x - dim.width; break; case TEXT_HA_RIGHT: xx = x - dim.width; break;
} }
// Then write each character. // Then write each character.
xx_original = xx; xx_original = xx;
while(*str != 0) while(*str != 0)
{ {
if(*str == '\n' || *str == '\r') if(*str == '\n' || *str == '\r')
{ {
yy += ys + font_info.height; yy += ys + font_info.height;
xx = xx_original; xx = xx_original;
} }
else else
{ {
if(xx >= 0 && xx < DISP_WIDTH) if(xx >= 0 && xx < GRAPHICS_WIDTH_REAL)
{ {
if(font_info.id<2) if(font_info.id<2)
write_char(*str, xx, yy, flags, font); write_char(*str, xx, yy, flags, font);
else else
write_char16(*str, xx, yy, font); write_char16(*str, xx, yy, font);
} }
xx += font_info.width + xs; xx += font_info.width + xs;
} }
str++; str++;
} }
} }
@ -1773,44 +1716,11 @@ void drawBattery(uint16_t x, uint16_t y, uint8_t battery, uint16_t size)
void printTime(uint16_t x, uint16_t y) { void printTime(uint16_t x, uint16_t y) {
char temp[9]={0}; char temp[9]={0};
sprintf(temp,"%02d:%02d:%02d",time.hour,time.min,time.sec); sprintf(temp,"%02d:%02d:%02d",timex.hour,timex.min,timex.sec);
//printTextFB(x,y,temp); //printTextFB(x,y,temp);
write_string(temp, x, y, 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 3); write_string(temp, x, y, 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 3);
} }
void setAttitudeOsd(int16_t pitch, int16_t roll, int16_t yaw)
{
m_pitch=pitch;
m_roll=roll;
m_yaw=yaw;
}
void setGpsOsd(uint8_t status, int32_t lat, int32_t lon, float alt, float spd)
{
m_gpsStatus=status;
m_gpsLat=lat;
m_gpsLon=lon;
m_gpsAlt=alt;
m_gpsSpd=spd;
}
void introText(){
//printTextFB((GRAPHICS_WIDTH_REAL/2 - 40)/16,GRAPHICS_HEIGHT_REAL-10,"ver 0.1");
write_string("ver 0.2", (GRAPHICS_WIDTH_REAL/2),GRAPHICS_HEIGHT_REAL-20, 0, 0, TEXT_VA_TOP, TEXT_HA_CENTER, 0, 3);
}
void introGraphics() {
/* logo */
int image=0;
struct splashEntry splash_info;
splash_info = splash[image];
copyimage(GRAPHICS_WIDTH_REAL/2-(splash_info.width)/2, GRAPHICS_HEIGHT_REAL/2-(splash_info.height)/2,image);
/* frame */
drawBox(0,0,GRAPHICS_WIDTH_REAL-2,GRAPHICS_HEIGHT_REAL-1);
}
/* /*
void drawAltitude(uint16_t x, uint16_t y, int16_t alt, uint8_t dir) { void drawAltitude(uint16_t x, uint16_t y, int16_t alt, uint8_t dir) {
@ -1863,12 +1773,12 @@ void hud_draw_vertical_scale(int v, int range, int halign, int x, int y, int hei
} }
else if(halign == +1) else if(halign == +1)
{ {
majtick_start = DISP_WIDTH - x - 1; majtick_start = GRAPHICS_WIDTH_REAL - x - 1;
majtick_end = DISP_WIDTH - x - majtick_len - 1; majtick_end = GRAPHICS_WIDTH_REAL - x - majtick_len - 1;
mintick_start = DISP_WIDTH - x - 1; mintick_start = GRAPHICS_WIDTH_REAL - x - 1;
mintick_end = DISP_WIDTH - x - mintick_len - 1; mintick_end = GRAPHICS_WIDTH_REAL - x - mintick_len - 1;
boundtick_start = DISP_WIDTH - x - 1; boundtick_start = GRAPHICS_WIDTH_REAL - x - 1;
boundtick_end = DISP_WIDTH - x - boundtick_len - 1; boundtick_end = GRAPHICS_WIDTH_REAL - x - boundtick_len - 1;
} }
// Retrieve width of large font (font #0); from this calculate the x spacing. // Retrieve width of large font (font #0); from this calculate the x spacing.
fetch_font_info(0, 0, &font_info, NULL); fetch_font_info(0, 0, &font_info, NULL);
@ -2075,7 +1985,45 @@ void hud_draw_linear_compass(int v, int range, int width, int x, int y, int mint
headingstr[3] = 0; headingstr[3] = 0;
write_string(headingstr, x + 1, majtick_start + textoffset+2, 0, 0, TEXT_VA_MIDDLE, TEXT_HA_CENTER, 1, 3); write_string(headingstr, x + 1, majtick_start + textoffset+2, 0, 0, TEXT_VA_MIDDLE, TEXT_HA_CENTER, 1, 3);
} }
// CORE draw routines end here
void setAttitudeOsd(int16_t pitch, int16_t roll, int16_t yaw)
{
m_pitch=pitch;
m_roll=roll;
m_yaw=yaw;
}
void setGpsOsd(uint8_t status, int32_t lat, int32_t lon, float alt, float spd)
{
m_gpsStatus=status;
m_gpsLat=lat;
m_gpsLon=lon;
m_gpsAlt=alt;
m_gpsSpd=spd;
}
void introText(){
write_string("ver 0.2", APPLY_HDEADBAND((GRAPHICS_RIGHT/2)),APPLY_VDEADBAND(GRAPHICS_BOTTOM-10), 0, 0, TEXT_VA_BOTTOM, TEXT_HA_CENTER, 0, 3);
}
void introGraphics() {
/* logo */
int image=0;
struct splashEntry splash_info;
splash_info = splash[image];
copyimage(APPLY_HDEADBAND(GRAPHICS_RIGHT/2-(splash_info.width)/2), APPLY_VDEADBAND(GRAPHICS_BOTTOM/2-(splash_info.height)/2),image);
/* frame */
drawBox(APPLY_HDEADBAND(0),APPLY_VDEADBAND(0),APPLY_HDEADBAND(GRAPHICS_RIGHT-8),APPLY_VDEADBAND(GRAPHICS_BOTTOM));
// Must mask out last half-word because SPI keeps clocking it out otherwise
for (uint32_t i = 0; i < 8; i++) {
write_vline( draw_buffer_level,GRAPHICS_WIDTH_REAL-i-1,0,GRAPHICS_HEIGHT_REAL-1,0);
write_vline( draw_buffer_mask,GRAPHICS_WIDTH_REAL-i-1,0,GRAPHICS_HEIGHT_REAL-1,0);
}
}
void calcHomeArrow(void) void calcHomeArrow(void)
{ {
@ -2141,16 +2089,16 @@ void calcHomeArrow(void)
char temp[50]={0}; char temp[50]={0};
sprintf(temp,"hea:%d",(int)brng); sprintf(temp,"hea:%d",(int)brng);
write_string(temp, 130, 5, 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2); write_string(temp, APPLY_HDEADBAND(GRAPHICS_RIGHT/2-30), APPLY_VDEADBAND(30), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2);
sprintf(temp,"ele:%d",(int)elevation); sprintf(temp,"ele:%d",(int)elevation);
write_string(temp, 130, 5+10, 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2); write_string(temp, APPLY_HDEADBAND(GRAPHICS_RIGHT/2-30), APPLY_VDEADBAND(30+10), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2);
sprintf(temp,"dis:%d",(int)d); sprintf(temp,"dis:%d",(int)d);
write_string(temp, 130, 5+10+10, 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2); write_string(temp, APPLY_HDEADBAND(GRAPHICS_RIGHT/2-30), APPLY_VDEADBAND(30+10+10), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2);
sprintf(temp,"u2g:%d",(int)u2g); sprintf(temp,"u2g:%d",(int)u2g);
write_string(temp, 130, 5+10+10+10, 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2); write_string(temp, APPLY_HDEADBAND(GRAPHICS_RIGHT/2-30), APPLY_VDEADBAND(30+10+10+10), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2);
sprintf(temp,"%c%c",(int)(u2g/22.5f)*2+0x90,(int)(u2g/22.5f)*2+0x91); sprintf(temp,"%c%c",(int)(u2g/22.5f)*2+0x90,(int)(u2g/22.5f)*2+0x91);
write_string(temp,200,10+10+10, 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 3); write_string(temp, APPLY_HDEADBAND(250), APPLY_VDEADBAND(40+10+10), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 3);
} }
int lama=10; int lama=10;
@ -2186,15 +2134,15 @@ void updateGraphics() {
GPSPositionGet(&gpsData); GPSPositionGet(&gpsData);
HomeLocationData home; HomeLocationData home;
HomeLocationGet(&home); HomeLocationGet(&home);
if(home.Set == HOMELOCATION_SET_FALSE) if(home.Set == HOMELOCATION_SET_FALSE)
{ {
char temps[20]={0}; char temps[20]={0};
sprintf(temps,"HOME NOT SET"); sprintf(temps,"HOME NOT SET");
//printTextFB(x,y,temp); //printTextFB(x,y,temp);
write_string(temps, GRAPHICS_WIDTH_REAL/2-((12*12)/2), GRAPHICS_HEIGHT_REAL/2-18/2, 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 3); write_string(temps, APPLY_HDEADBAND(GRAPHICS_RIGHT/2), (GRAPHICS_BOTTOM/2), 0, 0, TEXT_VA_TOP, TEXT_HA_CENTER, 0, 3);
} }
uint32_t disp = 0; uint32_t disp = 0;
switch (disp) { switch (disp) {
case 0: // Dave simple case 0: // Dave simple
@ -2203,35 +2151,28 @@ void updateGraphics() {
setAttitudeOsd(0,0,(int16_t)(gpsData.Heading-360)); setAttitudeOsd(0,0,(int16_t)(gpsData.Heading-360));
else else
setAttitudeOsd(0,0,(int16_t)(gpsData.Heading)); setAttitudeOsd(0,0,(int16_t)(gpsData.Heading));
char temp[50]={0}; char temp[50]={0};
memset(temp, ' ', 40); memset(temp, ' ', 40);
sprintf(temp,"Lat:%11.7f",gpsData.Latitude/10000000.0f); sprintf(temp,"Lat:%11.7f",gpsData.Latitude/10000000.0f);
write_string(temp, 170, GRAPHICS_HEIGHT_REAL-30, 0, 0, TEXT_VA_BOTTOM, TEXT_HA_LEFT, 0, 3); write_string(temp, APPLY_HDEADBAND(20), APPLY_VDEADBAND(GRAPHICS_BOTTOM-30), 0, 0, TEXT_VA_BOTTOM, TEXT_HA_LEFT, 0, 3);
sprintf(temp,"Lon:%11.7f",gpsData.Longitude/10000000.0f); sprintf(temp,"Lon:%11.7f",gpsData.Longitude/10000000.0f);
write_string(temp, 170, GRAPHICS_HEIGHT_REAL-10, 0, 0, TEXT_VA_BOTTOM, TEXT_HA_LEFT, 0, 3); write_string(temp, APPLY_HDEADBAND(20), APPLY_VDEADBAND(GRAPHICS_BOTTOM-10), 0, 0, TEXT_VA_BOTTOM, TEXT_HA_LEFT, 0, 3);
sprintf(temp,"Sat:%d",(int)gpsData.Satellites); sprintf(temp,"Sat:%d",(int)gpsData.Satellites);
write_string(temp, GRAPHICS_WIDTH_REAL-40, 30, 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2); write_string(temp, APPLY_HDEADBAND(GRAPHICS_RIGHT-40), APPLY_VDEADBAND(30), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
/* Print ADC voltage FLIGHT*/ /* Print ADC voltage FLIGHT*/
sprintf(temp,"V:%4.2fV",(PIOS_ADC_PinGet(2)*3.0f*6.1f/4096.0f)); sprintf(temp,"V:%5.2fV",(PIOS_ADC_PinGet(2)*3*6.1f/4096));
write_string(temp, 170, 20, 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 3); write_string(temp, APPLY_HDEADBAND(20), APPLY_VDEADBAND(20), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 3);
calcHomeArrow(); calcHomeArrow();
write_vline( draw_buffer_level,GRAPHICS_WIDTH_REAL-12,0,GRAPHICS_HEIGHT_REAL-1,1);
write_vline( draw_buffer_mask,GRAPHICS_WIDTH_REAL-12,0,GRAPHICS_HEIGHT_REAL-1,1);
// Last pixel
write_vline( draw_buffer_level,GRAPHICS_WIDTH_REAL-1,0,GRAPHICS_HEIGHT_REAL-1,0);
write_vline( draw_buffer_mask,GRAPHICS_WIDTH_REAL-1,0,GRAPHICS_HEIGHT_REAL-1,0);
} }
break; break;
case 1: case 1:
{ {
if(OsdSettings.Attitude == OSDSETTINGS_ATTITUDE_ENABLED) if(OsdSettings.Attitude == OSDSETTINGS_ATTITUDE_ENABLED)
{ {
// GPS HACK // GPS HACK
if(gpsData.Heading>180) if(gpsData.Heading>180)
setAttitudeOsd(0,0,(int16_t)(gpsData.Heading-360)); setAttitudeOsd(0,0,(int16_t)(gpsData.Heading-360));
@ -2259,62 +2200,62 @@ void updateGraphics() {
} }
angleB+=sum; angleB+=sum;
angleC+=2; angleC+=2;
calcHomeArrow(); calcHomeArrow();
/* Draw Attitude Indicator */ /* Draw Attitude Indicator */
//if(OsdSettings.Attitude == OSDSETTINGS_ATTITUDE_ENABLED) //if(OsdSettings.Attitude == OSDSETTINGS_ATTITUDE_ENABLED)
if(0) if(0)
{ {
drawAttitude(OsdSettings.AttitudeSetup[OSDSETTINGS_ATTITUDESETUP_X],OsdSettings.AttitudeSetup[OSDSETTINGS_ATTITUDESETUP_Y],attitude.Pitch,attitude.Roll,96); drawAttitude(APPLY_HDEADBAND(OsdSettings.AttitudeSetup[OSDSETTINGS_ATTITUDESETUP_X]),APPLY_VDEADBAND(OsdSettings.AttitudeSetup[OSDSETTINGS_ATTITUDESETUP_Y]),attitude.Pitch,attitude.Roll,96);
} }
//write_string("Hello OP-OSD", 60, 12, 1, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 0); //write_string("Hello OP-OSD", 60, 12, 1, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 0);
//printText16( 60, 12,"Hello OP-OSD"); //printText16( 60, 12,"Hello OP-OSD");
char temp[50]={0}; char temp[50]={0};
memset(temp, ' ', 40); memset(temp, ' ', 40);
sprintf(temp,"Lat:%11.7f",gpsData.Latitude/10000000.0f); sprintf(temp,"Lat:%11.7f",gpsData.Latitude/10000000.0f);
write_string(temp, 5, 5, 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2); write_string(temp, APPLY_HDEADBAND(5), APPLY_VDEADBAND(5), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2);
sprintf(temp,"Lon:%11.7f",gpsData.Longitude/10000000.0f); sprintf(temp,"Lon:%11.7f",gpsData.Longitude/10000000.0f);
write_string(temp, 5, 15, 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2); write_string(temp, APPLY_HDEADBAND(5), APPLY_VDEADBAND(15), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2);
sprintf(temp,"Fix:%d",(int)gpsData.Status); sprintf(temp,"Fix:%d",(int)gpsData.Status);
write_string(temp, 5, 25, 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2); write_string(temp, APPLY_HDEADBAND(5), APPLY_VDEADBAND(25), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2);
sprintf(temp,"Sat:%d",(int)gpsData.Satellites); sprintf(temp,"Sat:%d",(int)gpsData.Satellites);
write_string(temp, 5, 35, 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2); write_string(temp, APPLY_HDEADBAND(5), APPLY_VDEADBAND(35), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2);
/* Print RTC time */ /* Print RTC time */
if(OsdSettings.Time == OSDSETTINGS_TIME_ENABLED) if(OsdSettings.Time == OSDSETTINGS_TIME_ENABLED)
{ {
printTime(OsdSettings.TimeSetup[OSDSETTINGS_TIMESETUP_X],OsdSettings.TimeSetup[OSDSETTINGS_TIMESETUP_Y]); printTime(APPLY_HDEADBAND(OsdSettings.TimeSetup[OSDSETTINGS_TIMESETUP_X]),APPLY_VDEADBAND(OsdSettings.TimeSetup[OSDSETTINGS_TIMESETUP_Y]));
} }
/* Print Number of detected video Lines */ /* Print Number of detected video Lines */
sprintf(temp,"Lines:%4d",PIOS_Video_GetOSDLines()); sprintf(temp,"Lines:%4d",PIOS_Video_GetOSDLines());
write_string(temp, (GRAPHICS_WIDTH_REAL - 2),5, 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2); write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 2)),APPLY_VDEADBAND(5), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
/* Print ADC voltage */ /* Print ADC voltage */
//sprintf(temp,"Rssi:%4dV",(int)(PIOS_ADC_PinGet(4)*3000/4096)); //sprintf(temp,"Rssi:%4dV",(int)(PIOS_ADC_PinGet(4)*3000/4096));
//write_string(temp, (GRAPHICS_WIDTH_REAL - 2),15, 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2); //write_string(temp, (GRAPHICS_WIDTH_REAL - 2),15, 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
sprintf(temp,"Rssi:%4.2fV",(PIOS_ADC_PinGet(4)*3.0f/4096.0f)); sprintf(temp,"Rssi:%4.2fV",(PIOS_ADC_PinGet(4)*3.0f/4096.0f));
write_string(temp, (GRAPHICS_WIDTH_REAL - 2),15, 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2); write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 2)),APPLY_VDEADBAND(15), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
/* Print CPU temperature */ /* Print CPU temperature */
sprintf(temp,"Temp:%4.2fC",(PIOS_ADC_PinGet(6)*0.29296875f-264)); sprintf(temp,"Temp:%4.2fC",(PIOS_ADC_PinGet(6)*0.29296875f-264));
write_string(temp, (GRAPHICS_WIDTH_REAL - 2),25, 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2); write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 2)),APPLY_VDEADBAND(25), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
/* Print ADC voltage FLIGHT*/ /* Print ADC voltage FLIGHT*/
sprintf(temp,"FltV:%4.2fV",(PIOS_ADC_PinGet(2)*3.0f*6.1f/4096.0f)); sprintf(temp,"FltV:%4.2fV",(PIOS_ADC_PinGet(2)*3.0f*6.1f/4096.0f));
write_string(temp, (GRAPHICS_WIDTH_REAL - 2),35, 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2); write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 2)),APPLY_VDEADBAND(35), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
/* Print ADC voltage VIDEO*/ /* Print ADC voltage VIDEO*/
sprintf(temp,"VidV:%4.2fV",(PIOS_ADC_PinGet(3)*3.0f*6.1f/4096.0f)); sprintf(temp,"VidV:%4.2fV",(PIOS_ADC_PinGet(3)*3.0f*6.1f/4096.0f));
write_string(temp, (GRAPHICS_WIDTH_REAL - 2),45, 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2); write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 2)),APPLY_VDEADBAND(45), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
/* Print ADC voltage RSSI */ /* Print ADC voltage RSSI */
//sprintf(temp,"Curr:%4dA",(int)(PIOS_ADC_PinGet(0)*300*61/4096)); //sprintf(temp,"Curr:%4dA",(int)(PIOS_ADC_PinGet(0)*300*61/4096));
//write_string(temp, (GRAPHICS_WIDTH_REAL - 2),60, 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2); //write_string(temp, (GRAPHICS_WIDTH_REAL - 2),60, 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2);
/* Draw Battery Gauge */ /* Draw Battery Gauge */
m_batt++; m_batt++;
uint8_t dir=3; uint8_t dir=3;
@ -2333,35 +2274,35 @@ void updateGraphics() {
//if(OsdSettings.Battery == OSDSETTINGS_BATTERY_ENABLED) //if(OsdSettings.Battery == OSDSETTINGS_BATTERY_ENABLED)
if(0) if(0)
{ {
drawBattery(OsdSettings.BatterySetup[OSDSETTINGS_BATTERYSETUP_X],OsdSettings.BatterySetup[OSDSETTINGS_BATTERYSETUP_Y],m_batt,16); drawBattery(APPLY_HDEADBAND(OsdSettings.BatterySetup[OSDSETTINGS_BATTERYSETUP_X]),APPLY_VDEADBAND(OsdSettings.BatterySetup[OSDSETTINGS_BATTERYSETUP_Y]),m_batt,16);
} }
//drawAltitude(200,50,m_alt,dir); //drawAltitude(200,50,m_alt,dir);
//drawArrow(96,GRAPHICS_HEIGHT_REAL/2,angleB,32); //drawArrow(96,GRAPHICS_HEIGHT_REAL/2,angleB,32);
// Draw airspeed (left side.) // Draw airspeed (left side.)
if(OsdSettings.Speed == OSDSETTINGS_SPEED_ENABLED) if(OsdSettings.Speed == OSDSETTINGS_SPEED_ENABLED)
{ {
hud_draw_vertical_scale((int)m_gpsSpd, 100, -1, OsdSettings.SpeedSetup[OSDSETTINGS_SPEEDSETUP_X], hud_draw_vertical_scale((int)m_gpsSpd, 100, -1, APPLY_HDEADBAND(OsdSettings.SpeedSetup[OSDSETTINGS_SPEEDSETUP_X]),
OsdSettings.SpeedSetup[OSDSETTINGS_SPEEDSETUP_Y], 100, 10, 20, 7, 12, 15, 1000, HUD_VSCALE_FLAG_NO_NEGATIVE); APPLY_VDEADBAND(OsdSettings.SpeedSetup[OSDSETTINGS_SPEEDSETUP_Y]), 100, 10, 20, 7, 12, 15, 1000, HUD_VSCALE_FLAG_NO_NEGATIVE);
} }
// Draw altimeter (right side.) // Draw altimeter (right side.)
if(OsdSettings.Altitude == OSDSETTINGS_ALTITUDE_ENABLED) if(OsdSettings.Altitude == OSDSETTINGS_ALTITUDE_ENABLED)
{ {
hud_draw_vertical_scale((int)m_gpsAlt, 200, +1, OsdSettings.AltitudeSetup[OSDSETTINGS_ALTITUDESETUP_X], hud_draw_vertical_scale((int)m_gpsAlt, 200, +1, APPLY_HDEADBAND(OsdSettings.AltitudeSetup[OSDSETTINGS_ALTITUDESETUP_X]),
OsdSettings.AltitudeSetup[OSDSETTINGS_ALTITUDESETUP_Y], 100, 20, 100, 7, 12, 15, 500, 0); APPLY_VDEADBAND(OsdSettings.AltitudeSetup[OSDSETTINGS_ALTITUDESETUP_Y]), 100, 20, 100, 7, 12, 15, 500, 0);
} }
// Draw compass. // Draw compass.
if(OsdSettings.Heading == OSDSETTINGS_HEADING_ENABLED) if(OsdSettings.Heading == OSDSETTINGS_HEADING_ENABLED)
{ {
if(m_yaw<0) { if(m_yaw<0) {
hud_draw_linear_compass(360+m_yaw, 150, 120, OsdSettings.HeadingSetup[OSDSETTINGS_HEADINGSETUP_X], hud_draw_linear_compass(360+m_yaw, 150, 120, APPLY_HDEADBAND(OsdSettings.HeadingSetup[OSDSETTINGS_HEADINGSETUP_X]),
OsdSettings.HeadingSetup[OSDSETTINGS_HEADINGSETUP_Y], 15, 30, 7, 12, 0); APPLY_VDEADBAND(OsdSettings.HeadingSetup[OSDSETTINGS_HEADINGSETUP_Y]), 15, 30, 7, 12, 0);
} else { } else {
hud_draw_linear_compass(m_yaw, 150, 120, OsdSettings.HeadingSetup[OSDSETTINGS_HEADINGSETUP_X], hud_draw_linear_compass(m_yaw, 150, 120, APPLY_HDEADBAND(OsdSettings.HeadingSetup[OSDSETTINGS_HEADINGSETUP_X]),
OsdSettings.HeadingSetup[OSDSETTINGS_HEADINGSETUP_Y], 15, 30, 7, 12, 0); APPLY_VDEADBAND(OsdSettings.HeadingSetup[OSDSETTINGS_HEADINGSETUP_Y]), 15, 30, 7, 12, 0);
} }
} }
//write_filled_rectangle(draw_buffer_level,20,20,30,30,1); //write_filled_rectangle(draw_buffer_level,20,20,30,30,1);
@ -2377,15 +2318,14 @@ void updateGraphics() {
write_vline( draw_buffer_level,16,0,GRAPHICS_HEIGHT_REAL-1,1); write_vline( draw_buffer_level,16,0,GRAPHICS_HEIGHT_REAL-1,1);
write_vline( draw_buffer_mask,16,0,GRAPHICS_HEIGHT_REAL-1,1); write_vline( draw_buffer_mask,16,0,GRAPHICS_HEIGHT_REAL-1,1);
} }
// Must mask out last half-word because SPI keeps clocking it out otherwise // Must mask out last half-word because SPI keeps clocking it out otherwise
for (uint32_t i = 0; i < 16; i++) { for (uint32_t i = 0; i < 8; i++) {
write_vline( draw_buffer_level,GRAPHICS_WIDTH_REAL-i-1,0,GRAPHICS_HEIGHT_REAL-1,0); write_vline( draw_buffer_level,GRAPHICS_WIDTH_REAL-i-1,0,GRAPHICS_HEIGHT_REAL-1,0);
write_vline( draw_buffer_mask,GRAPHICS_WIDTH_REAL-i-1,0,GRAPHICS_HEIGHT_REAL-1,0); write_vline( draw_buffer_mask,GRAPHICS_WIDTH_REAL-i-1,0,GRAPHICS_HEIGHT_REAL-1,0);
} }
} }
void updateOnceEveryFrame() { void updateOnceEveryFrame() {
clearGraphics(); clearGraphics();
updateGraphics(); updateGraphics();
@ -2441,8 +2381,6 @@ MODULE_INITCALL(osdgenInitialize, osdgenStart)
static void osdgenTask(void *parameters) static void osdgenTask(void *parameters)
{ {
portTickType lastSysTime; portTickType lastSysTime;
AttitudeActualData attitude;
GPSPositionData gpsData;
// Loop forever // Loop forever
lastSysTime = xTaskGetTickCount(); lastSysTime = xTaskGetTickCount();
@ -2469,10 +2407,6 @@ static void osdgenTask(void *parameters)
{ {
if( xSemaphoreTake( osdSemaphore, LONG_TIME ) == pdTRUE ) if( xSemaphoreTake( osdSemaphore, LONG_TIME ) == pdTRUE )
{ {
GPSPositionGet(&gpsData);
AttitudeActualGet(&attitude);
setAttitudeOsd((int16_t)attitude.Pitch,(int16_t)attitude.Roll,(int16_t)attitude.Yaw);
setGpsOsd(gpsData.Status,gpsData.Latitude,gpsData.Longitude,gpsData.Altitude,gpsData.Groundspeed);
updateOnceEveryFrame(); updateOnceEveryFrame();
} }
//xSemaphoreTake(osdSemaphore, portMAX_DELAY); //xSemaphoreTake(osdSemaphore, portMAX_DELAY);

View File

@ -160,8 +160,8 @@ SRC += $(OPUAVSYNTHDIR)/osdsettings.c
## PIOS Hardware (Common) ## PIOS Hardware (Common)
SRC += $(PIOSCOMMON)/pios_com.c SRC += $(PIOSCOMMON)/pios_com.c
#SRC += $(PIOSCOMMON)/pios_hmc5843.c #SRC += $(PIOSCOMMON)/pios_hmc5843.c
SRC += $(PIOSCOMMON)/printf-stdarg.c #SRC += $(PIOSCOMMON)/printf-stdarg.c
#SRC += $(PIOSCOMMON)/printf2.c SRC += $(PIOSCOMMON)/printf2.c
SRC += $(PIOSCOMMON)/pios_crc.c SRC += $(PIOSCOMMON)/pios_crc.c
SRC += $(PIOSCOMMON)/pios_video.c SRC += $(PIOSCOMMON)/pios_video.c
SRC += $(PIOSCOMMON)/pios_usb_desc_hid_cdc.c SRC += $(PIOSCOMMON)/pios_usb_desc_hid_cdc.c

View File

@ -683,17 +683,17 @@ static void Clock(uint32_t spektrum_id) {
++supv_timer; ++supv_timer;
if(supv_timer >= 625) { if(supv_timer >= 625) {
supv_timer = 0; supv_timer = 0;
time.sec++; timex.sec++;
} }
if (time.sec >= 60) { if (timex.sec >= 60) {
time.sec = 0; timex.sec = 0;
time.min++; timex.min++;
} }
if (time.min >= 60) { if (timex.min >= 60) {
time.min = 0; timex.min = 0;
time.hour++; timex.hour++;
} }
if (time.hour >= 99) { if (timex.hour >= 99) {
time.hour = 0; timex.hour = 0;
} }
} }

View File

@ -56,24 +56,204 @@ static uint use_leading_plus = 0 ;
/* for caddr_t (typedef char * caddr_t;) */ /* for caddr_t (typedef char * caddr_t;) */
#include <sys/types.h> #include <sys/types.h>
extern int __HEAP_START; //* NEWLIB STUBS *//
#include <stdlib.h>
#include <sys/unistd.h>
#include <sys/stat.h>
#include <sys/times.h>
#include <errno.h>
caddr_t _sbrk ( int incr ) /*==============================================================================
* Environment variables.
* A pointer to a list of environment variables and their values. For a minimal
* environment, this empty list is adequate:
*/
char *__env[1] = { 0 };
char **environ = __env;
/*==============================================================================
* Close a file.
*/
int _close(int file)
{ {
static unsigned char *heap = NULL; return -1;
unsigned char *prev_heap;
if (heap == NULL) {
heap = (unsigned char *)&__HEAP_START;
}
prev_heap = heap;
/* check removed to show basic approach */
heap += incr;
return (caddr_t) prev_heap;
} }
/*==============================================================================
* Transfer control to a new process.
*/
int _execve(char *name, char **argv, char **env)
{
errno = ENOMEM;
return -1;
}
/*==============================================================================
* Exit a program without cleaning up files.
*/
void _exit( int code )
{
/* Should we force a system reset? */
while( 1 )
{
;
}
}
/*==============================================================================
* Create a new process.
*/
int _fork(void)
{
errno = EAGAIN;
return -1;
}
/*==============================================================================
* Status of an open file.
*/
int _fstat(int file, struct stat *st)
{
st->st_mode = S_IFCHR;
return 0;
}
/*==============================================================================
* Process-ID
*/
int _getpid(void)
{
return 1;
}
/*==============================================================================
* Query whether output stream is a terminal.
*/
int _isatty(int file)
{
return 1;
}
/*==============================================================================
* Send a signal.
*/
int _kill(int pid, int sig)
{
errno = EINVAL;
return -1;
}
/*==============================================================================
* Establish a new name for an existing file.
*/
int _link(char *old, char *new)
{
errno = EMLINK;
return -1;
}
/*==============================================================================
* Set position in a file.
*/
int _lseek(int file, int ptr, int dir)
{
return 0;
}
/*==============================================================================
* Open a file.
*/
int _open(const char *name, int flags, int mode)
{
return -1;
}
/*==============================================================================
* Read from a file.
*/
int _read(int file, char *ptr, int len)
{
return 0;
}
/*==============================================================================
* Write to a file. libc subroutines will use this system routine for output to
* all files, including stdoutso if you need to generate any output, for
* example to a serial port for debugging, you should make your minimal write
* capable of doing this.
*/
int _write_r( void * reent, int file, char * ptr, int len )
{
return 0;
}
/*==============================================================================
* Increase program data space. As malloc and related functions depend on this,
* it is useful to have a working implementation. The following suffices for a
* standalone system; it exploits the symbol _end automatically defined by the
* GNU linker.
*/
caddr_t _sbrk(int incr)
{
extern char _end; /* Defined by the linker */
static char *heap_end;
char *prev_heap_end;
char * stack_ptr;
if (heap_end == 0)
{
heap_end = &_end;
}
prev_heap_end = heap_end;
asm volatile ("MRS %0, msp" : "=r" (stack_ptr) );
if (heap_end + incr > stack_ptr)
{
_write_r ((void *)0, 1, "Heap and stack collision\n", 25);
_exit (1);
}
heap_end += incr;
return (caddr_t) prev_heap_end;
}
/*==============================================================================
* Status of a file (by name).
*/
int _stat(char *file, struct stat *st)
{
st->st_mode = S_IFCHR;
return 0;
}
/*==============================================================================
* Timing information for current process.
*/
int _times(struct tms *buf)
{
return -1;
}
/*==============================================================================
* Remove a file's directory entry.
*/
int _unlink(char *name)
{
errno = ENOENT;
return -1;
}
/*==============================================================================
* Wait for a child process.
*/
int _wait(int *status)
{
errno = ECHILD;
return -1;
}
//* NEWLIB STUBS *//
//**************************************************************************** //****************************************************************************
static void printchar (char **str, int c) static void printchar (char **str, int c)
{ {

View File

@ -22,8 +22,8 @@ LINKER_SCRIPTS_BL = $(PIOS_DEVLIB)/link_STM32F4xx_BL_memory.ld \
CDEFS += -DSTM32F4XX CDEFS += -DSTM32F4XX
CDEFS += -DHSE_VALUE=$(OSCILLATOR_FREQ) CDEFS += -DHSE_VALUE=$(OSCILLATOR_FREQ)
CDEFS += -DUSE_STDPERIPH_DRIVER CDEFS += -DUSE_STDPERIPH_DRIVER
ARCHFLAGS += -mcpu=cortex-m4 -mthumb -mfpu=fpv4-sp-d16 -mfloat-abi=softfp #ARCHFLAGS += -mcpu=cortex-m4 -mthumb -mfpu=fpv4-sp-d16 -mfloat-abi=softfp
#ARCHFLAGS += -mcpu=cortex-m4 -march=armv7e-m -mfpu=fpv4-sp-d16 -mfloat-abi=hard ARCHFLAGS += -mcpu=cortex-m4 -march=armv7e-m -mfpu=fpv4-sp-d16 -mfloat-abi=hard
# #
# PIOS device library source and includes # PIOS device library source and includes

View File

@ -48,7 +48,9 @@ SECTIONS
} > FLASH } > FLASH
.ARM.exidx : .ARM.exidx :
{ {
__exidx_start = .;
*(.ARM.exidx* .gnu.linkonce.armexidx.*) *(.ARM.exidx* .gnu.linkonce.armexidx.*)
__exidx_end = .;
} > FLASH } > FLASH
/* /*
@ -108,7 +110,6 @@ SECTIONS
PROVIDE ( _end = _ebss ) ; PROVIDE ( _end = _ebss ) ;
} > SRAM } > SRAM
/*PROVIDE(__HEAP_START = _end );*/
/* /*
* The heap consumes the remainder of the SRAM. * The heap consumes the remainder of the SRAM.
*/ */

View File

@ -62,7 +62,7 @@ typedef struct {
uint8_t hour; uint8_t hour;
} TTime; } TTime;
extern TTime time; extern TTime timex;
extern void PIOS_Video_Init(const struct pios_video_cfg * cfg); extern void PIOS_Video_Init(const struct pios_video_cfg * cfg);
uint16_t PIOS_Video_GetOSDLines(void); uint16_t PIOS_Video_GetOSDLines(void);
@ -72,9 +72,20 @@ extern void PIOS_Vsync_ISR();
// First OSD line // First OSD line
#define GRAPHICS_LINE 32 #define GRAPHICS_LINE 32
//top/left deadband
#define GRAPHICS_HDEADBAND 32
#define GRAPHICS_VDEADBAND 0
// Real OSD size // Real OSD size
#define GRAPHICS_WIDTH_REAL 360 #define GRAPHICS_WIDTH_REAL (336+GRAPHICS_HDEADBAND)
#define GRAPHICS_HEIGHT_REAL 270 #define GRAPHICS_HEIGHT_REAL (270+GRAPHICS_VDEADBAND)
//draw area
#define GRAPHICS_TOP 0
#define GRAPHICS_LEFT 0
#define GRAPHICS_BOTTOM (GRAPHICS_HEIGHT_REAL-GRAPHICS_VDEADBAND-1)
#define GRAPHICS_RIGHT (GRAPHICS_WIDTH_REAL-GRAPHICS_HDEADBAND-1)
#define GRAPHICS_WIDTH (GRAPHICS_WIDTH_REAL/8) #define GRAPHICS_WIDTH (GRAPHICS_WIDTH_REAL/8)
#define GRAPHICS_HEIGHT GRAPHICS_HEIGHT_REAL #define GRAPHICS_HEIGHT GRAPHICS_HEIGHT_REAL