1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-02 10:24:11 +01:00

Merge remote-tracking branch 'origin/os/OP-775_arm-dsplib' into next

This commit is contained in:
Oleg Semyonov 2013-02-16 16:08:31 +02:00
commit aea1b4b544
1139 changed files with 248001 additions and 1891 deletions

View File

@ -74,6 +74,7 @@ PIOSINC = $(PIOS)/inc
PIOSSTM32F10X = $(PIOS)/STM32F10x
PIOSCOMMON = $(PIOS)/Common
PIOSBOARDS = $(PIOS)/Boards
PIOSCOMMONLIB = $(PIOSCOMMON)/Libraries
APPLIBDIR = $(PIOSSTM32F10X)/Libraries
STMLIBDIR = $(APPLIBDIR)
STMSPDDIR = $(STMLIBDIR)/STM32F10x_StdPeriph_Driver
@ -100,6 +101,7 @@ SRC += $(OPSYSTEM)/pios_board.c
## PIOS Hardware (STM32F10x)
include $(PIOS)/STM32F10x/library.mk
SRC += $(PIOSSTM32F10X)/pios_sys.c
SRC += $(PIOSSTM32F10X)/pios_led.c
SRC += $(PIOSSTM32F10X)/pios_delay.c
@ -146,7 +148,7 @@ ASRCARM =
# List any extra directories to look for include files here.
# Each directory must be seperated by a space.
EXTRAINCDIRS = $(OPSYSTEM)
EXTRAINCDIRS += $(OPSYSTEM)
EXTRAINCDIRS += $(OPSYSTEMINC)
EXTRAINCDIRS += $(OPUAVTALK)
EXTRAINCDIRS += $(OPUAVTALKINC)
@ -174,7 +176,7 @@ EXTRAINCDIRS += $(HWDEFSINC)
# Also add directories where the linker should search for
# includes from linker-script to the list
# Each directory must be seperated by a space.
EXTRA_LIBDIRS =
#EXTRA_LIBDIRS +=
# Extra Libraries
# Each library-name must be seperated by a space.
@ -182,7 +184,7 @@ EXTRA_LIBDIRS =
# EXTRA_LIBS = xyz abc efsl
# for newlib-lpc (file: libnewlibc-lpc.a):
# EXTRA_LIBS = newlib-lpc
EXTRA_LIBS =
#EXTRA_LIBS +=
# Path to Linker-Scripts
LINKERSCRIPTPATH = $(PIOSSTM32F10X)
@ -209,7 +211,7 @@ DEBUGF = dwarf-2
# Place project-specific -D (define) and/or
# -U options for C here.
CDEFS = -DSTM32F10X_$(MODEL)
CDEFS += -DSTM32F10X_$(MODEL)
CDEFS += -DUSE_STDPERIPH_DRIVER
CDEFS += -DUSE_$(BOARD)
ifeq ($(ENABLE_DEBUG_PINS), YES)

View File

@ -71,6 +71,7 @@ PIOSINC = $(PIOS)/inc
PIOSSTM32F10X = $(PIOS)/STM32F10x
PIOSCOMMON = $(PIOS)/Common
PIOSBOARDS = $(PIOS)/Boards
PIOSCOMMONLIB = $(PIOSCOMMON)/Libraries
APPLIBDIR = $(PIOSSTM32F10X)/Libraries
STMLIBDIR = $(APPLIBDIR)
STMSPDDIR = $(STMLIBDIR)/STM32F10x_StdPeriph_Driver
@ -97,6 +98,7 @@ SRC += $(OPSYSTEM)/pios_board.c
SRC += $(OPSYSTEM)/op_dfu.c
## PIOS Hardware (STM32F10x)
include $(PIOS)/STM32F10x/library.mk
SRC += $(PIOSSTM32F10X)/pios_sys.c
SRC += $(PIOSSTM32F10X)/pios_led.c
SRC += $(PIOSSTM32F10X)/pios_delay.c
@ -180,7 +182,7 @@ ASRCARM =
# List any extra directories to look for include files here.
# Each directory must be seperated by a space.
EXTRAINCDIRS = $(OPSYSTEM)
EXTRAINCDIRS += $(OPSYSTEM)
EXTRAINCDIRS += $(OPSYSTEMINC)
EXTRAINCDIRS += $(OPUAVTALK)
EXTRAINCDIRS += $(OPUAVTALKINC)
@ -206,7 +208,7 @@ EXTRAINCDIRS += $(HWDEFSINC)
# Also add directories where the linker should search for
# includes from linker-script to the list
# Each directory must be seperated by a space.
EXTRA_LIBDIRS =
#EXTRA_LIBDIRS +=
# Extra Libraries
# Each library-name must be seperated by a space.
@ -214,7 +216,7 @@ EXTRA_LIBDIRS =
# EXTRA_LIBS = xyz abc efsl
# for newlib-lpc (file: libnewlibc-lpc.a):
# EXTRA_LIBS = newlib-lpc
EXTRA_LIBS =
#EXTRA_LIBS +=
# Path to Linker-Scripts
LINKERSCRIPTPATH = $(PIOSSTM32F10X)
@ -241,7 +243,7 @@ DEBUGF = dwarf-2
# Place project-specific -D (define) and/or
# -U options for C here.
CDEFS = -DSTM32F10X_$(MODEL)
CDEFS += -DSTM32F10X_$(MODEL)
CDEFS += -DUSE_STDPERIPH_DRIVER
CDEFS += -DUSE_$(BOARD)
ifeq ($(ENABLE_DEBUG_PINS), YES)

View File

@ -114,7 +114,7 @@ EXTRAINCDIRS += $(HWDEFSINC)
# Also add directories where the linker should search for
# includes from linker-script to the list
# Each directory must be seperated by a space.
EXTRA_LIBDIRS =
#EXTRA_LIBDIRS +=
# Extra Libraries
# Each library-name must be seperated by a space.
@ -122,7 +122,7 @@ EXTRA_LIBDIRS =
# EXTRA_LIBS = xyz abc efsl
# for newlib-lpc (file: libnewlibc-lpc.a):
# EXTRA_LIBS = newlib-lpc
EXTRA_LIBS =
#EXTRA_LIBS +=
# Path to Linker-Scripts
LINKERSCRIPTPATH = $(PIOSSTM32FXX)
@ -149,7 +149,7 @@ DEBUGF = dwarf-2
# Place project-specific -D (define) and/or
# -U options for C here.
CDEFS = -DSTM32F4XX
CDEFS += -DSTM32F4XX
CDEFS += -DSYSCLK_FREQ=$(SYSCLK_FREQ)
CDEFS += -DHSE_VALUE=$(OSCILLATOR_FREQ)
CDEFS += -DUSE_STDPERIPH_DRIVER

View File

@ -71,6 +71,7 @@ PIOSINC = $(PIOS)/inc
PIOSSTM32F10X = $(PIOS)/STM32F10x
PIOSCOMMON = $(PIOS)/Common
PIOSBOARDS = $(PIOS)/Boards
PIOSCOMMONLIB = $(PIOSCOMMON)/Libraries
APPLIBDIR = $(PIOSSTM32F10X)/Libraries
STMLIBDIR = $(APPLIBDIR)
STMSPDDIR = $(STMLIBDIR)/STM32F10x_StdPeriph_Driver
@ -97,6 +98,7 @@ SRC += $(OPSYSTEM)/pios_board.c
SRC += $(OPSYSTEM)/op_dfu.c
## PIOS Hardware (STM32F10x)
include $(PIOS)/STM32F10x/library.mk
SRC += $(PIOSSTM32F10X)/pios_sys.c
SRC += $(PIOSSTM32F10X)/pios_led.c
SRC += $(PIOSSTM32F10X)/pios_delay.c
@ -180,7 +182,7 @@ ASRCARM =
# List any extra directories to look for include files here.
# Each directory must be seperated by a space.
EXTRAINCDIRS = $(OPSYSTEM)
EXTRAINCDIRS += $(OPSYSTEM)
EXTRAINCDIRS += $(OPSYSTEMINC)
EXTRAINCDIRS += $(OPUAVTALK)
EXTRAINCDIRS += $(OPUAVTALKINC)
@ -206,7 +208,7 @@ EXTRAINCDIRS += $(HWDEFSINC)
# Also add directories where the linker should search for
# includes from linker-script to the list
# Each directory must be seperated by a space.
EXTRA_LIBDIRS =
#EXTRA_LIBDIRS +=
# Extra Libraries
# Each library-name must be seperated by a space.
@ -214,7 +216,7 @@ EXTRA_LIBDIRS =
# EXTRA_LIBS = xyz abc efsl
# for newlib-lpc (file: libnewlibc-lpc.a):
# EXTRA_LIBS = newlib-lpc
EXTRA_LIBS =
#EXTRA_LIBS +=
# Path to Linker-Scripts
LINKERSCRIPTPATH = $(PIOSSTM32F10X)
@ -241,7 +243,7 @@ DEBUGF = dwarf-2
# Place project-specific -D (define) and/or
# -U options for C here.
CDEFS = -DSTM32F10X_$(MODEL)
CDEFS += -DSTM32F10X_$(MODEL)
CDEFS += -DUSE_STDPERIPH_DRIVER
CDEFS += -DUSE_$(BOARD)
ifeq ($(ENABLE_DEBUG_PINS), YES)

View File

@ -114,7 +114,7 @@ EXTRAINCDIRS += $(HWDEFSINC)
# Also add directories where the linker should search for
# includes from linker-script to the list
# Each directory must be seperated by a space.
EXTRA_LIBDIRS =
#EXTRA_LIBDIRS +=
# Extra Libraries
# Each library-name must be seperated by a space.
@ -122,7 +122,7 @@ EXTRA_LIBDIRS =
# EXTRA_LIBS = xyz abc efsl
# for newlib-lpc (file: libnewlibc-lpc.a):
# EXTRA_LIBS = newlib-lpc
EXTRA_LIBS =
#EXTRA_LIBS +=
# Path to Linker-Scripts
LINKERSCRIPTPATH = $(PIOSSTM32FXX)
@ -149,7 +149,7 @@ DEBUGF = dwarf-2
# Place project-specific -D (define) and/or
# -U options for C here.
CDEFS = -DSTM32F4XX
CDEFS += -DSTM32F4XX
CDEFS += -DSYSCLK_FREQ=$(SYSCLK_FREQ)
CDEFS += -DHSE_VALUE=$(OSCILLATOR_FREQ)
CDEFS += -DUSE_STDPERIPH_DRIVER

View File

@ -114,7 +114,7 @@ EXTRAINCDIRS += $(HWDEFSINC)
# Also add directories where the linker should search for
# includes from linker-script to the list
# Each directory must be seperated by a space.
EXTRA_LIBDIRS =
#EXTRA_LIBDIRS +=
# Extra Libraries
# Each library-name must be seperated by a space.
@ -122,7 +122,7 @@ EXTRA_LIBDIRS =
# EXTRA_LIBS = xyz abc efsl
# for newlib-lpc (file: libnewlibc-lpc.a):
# EXTRA_LIBS = newlib-lpc
EXTRA_LIBS =
#EXTRA_LIBS +=
# Path to Linker-Scripts
LINKERSCRIPTPATH = $(PIOSSTM32FXX)
@ -149,7 +149,7 @@ DEBUGF = dwarf-2
# Place project-specific -D (define) and/or
# -U options for C here.
CDEFS = -DSTM32F4XX
CDEFS += -DSTM32F4XX
CDEFS += -DSYSCLK_FREQ=$(SYSCLK_FREQ)
CDEFS += -DHSE_VALUE=$(OSCILLATOR_FREQ)
CDEFS += -DUSE_STDPERIPH_DRIVER

View File

@ -115,6 +115,9 @@ MODULES = Attitude Stabilization Actuator ManualControl FirmwareIAP
# Telemetry must be last to grab the optional modules (why?)
MODULES += Telemetry
# Enable ARM DSP library
USE_DSP_LIB = NO
# Paths
OPSYSTEM = ./System
OPSYSTEMINC = $(OPSYSTEM)/inc
@ -133,6 +136,7 @@ PIOSINC = $(PIOS)/inc
PIOSSTM32F10X = $(PIOS)/STM32F10x
PIOSCOMMON = $(PIOS)/Common
PIOSBOARDS = $(PIOS)/Boards
PIOSCOMMONLIB = $(PIOSCOMMON)/Libraries
APPLIBDIR = $(PIOSSTM32F10X)/Libraries
STMLIBDIR = $(APPLIBDIR)
STMSPDDIR = $(STMLIBDIR)/STM32F10x_StdPeriph_Driver
@ -233,6 +237,7 @@ SRC += $(OPUAVSYNTHDIR)/airspeedactual.c
endif
## PIOS Hardware (STM32F10x)
include $(PIOS)/STM32F10x/library.mk
SRC += $(PIOSSTM32F10X)/pios_sys.c
SRC += $(PIOSSTM32F10X)/pios_led.c
SRC += $(PIOSSTM32F10X)/pios_delay.c
@ -376,7 +381,7 @@ ASRCARM =
# List any extra directories to look for include files here.
# Each directory must be seperated by a space.
EXTRAINCDIRS = $(OPSYSTEM)
EXTRAINCDIRS += $(OPSYSTEM)
EXTRAINCDIRS += $(OPSYSTEMINC)
EXTRAINCDIRS += $(OPUAVTALK)
EXTRAINCDIRS += $(OPUAVTALKINC)
@ -409,7 +414,7 @@ EXTRAINCDIRS += ${foreach MOD, ${OPTMODULES} ${MODULES}, ${OPMODULEDIR}/${MOD}/i
# Also add directories where the linker should search for
# includes from linker-script to the list
# Each directory must be seperated by a space.
EXTRA_LIBDIRS =
#EXTRA_LIBDIRS +=
# Extra Libraries
# Each library-name must be seperated by a space.
@ -417,7 +422,7 @@ EXTRA_LIBDIRS =
# EXTRA_LIBS = xyz abc efsl
# for newlib-lpc (file: libnewlibc-lpc.a):
# EXTRA_LIBS = newlib-lpc
EXTRA_LIBS =
#EXTRA_LIBS +=
# Path to Linker-Scripts
LINKERSCRIPTPATH = $(PIOSSTM32F10X)
@ -444,7 +449,7 @@ DEBUGF = dwarf-2
# Place project-specific -D (define) and/or
# -U options for C here.
CDEFS = -DSTM32F10X_$(MODEL)
CDEFS += -DSTM32F10X_$(MODEL)
CDEFS += -DUSE_STDPERIPH_DRIVER
CDEFS += -DUSE_$(BOARD)
ifeq ($(ENABLE_DEBUG_PINS), YES)
@ -628,7 +633,7 @@ endif
# @$(PYTHON) $(PYMITETOOLS)/pmImgCreator.py -f $(PYMITEPLAT)/pmfeatures.py -c -u -o $(OUTDIR)/pmlibusr_img.c --native-file=$(OUTDIR)/pmlibusr_nat.c $(FLIGHTPLANS)/test.py
# Link: create ELF output file from object files.
$(eval $(call LINK_TEMPLATE, $(OUTDIR)/$(TARGET).elf, $(ALLOBJ)))
$(eval $(call LINK_TEMPLATE, $(OUTDIR)/$(TARGET).elf, $(ALLOBJ), $(ALLLIB)))
# Assemble: create object files from assembler source files.
$(foreach src, $(ASRC), $(eval $(call ASSEMBLE_TEMPLATE, $(src))))

View File

@ -255,7 +255,7 @@ ASRCARM =
# List any extra directories to look for include files here.
# Each directory must be seperated by a space.
EXTRAINCDIRS += $(OPSYSTEM)
EXTRAINCDIRS += $(OPSYSTEM)
EXTRAINCDIRS += $(OPSYSTEMINC)
EXTRAINCDIRS += $(OPUAVTALK)
EXTRAINCDIRS += $(OPUAVTALKINC)
@ -283,7 +283,7 @@ EXTRAINCDIRS += ${foreach MOD, ${OPTMODULES} ${MODULES}, ${OPMODULEDIR}/${MOD}/i
# Also add directories where the linker should search for
# includes from linker-script to the list
# Each directory must be seperated by a space.
EXTRA_LIBDIRS =
#EXTRA_LIBDIRS +=
# Extra Libraries
# Each library-name must be seperated by a space.
@ -291,7 +291,7 @@ EXTRA_LIBDIRS =
# EXTRA_LIBS = xyz abc efsl
# for newlib-lpc (file: libnewlibc-lpc.a):
# EXTRA_LIBS = newlib-lpc
EXTRA_LIBS =
#EXTRA_LIBS +=
# Path to Linker-Scripts
LINKERSCRIPTPATH = $(PIOSSTM32F4XX)
@ -452,7 +452,7 @@ endif
endif
# Link: create ELF output file from object files.
$(eval $(call LINK_TEMPLATE, $(OUTDIR)/$(TARGET).elf, $(ALLOBJ)))
$(eval $(call LINK_TEMPLATE, $(OUTDIR)/$(TARGET).elf, $(ALLOBJ), $(ALLLIB)))
# Assemble: create object files from assembler source files.
$(foreach src, $(ASRC), $(eval $(call ASSEMBLE_TEMPLATE, $(src))))

View File

@ -0,0 +1,122 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_abs_f32.c
*
* Description: Vector absolute value.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
#include <math.h>
/**
* @ingroup groupMath
*/
/**
* @defgroup BasicAbs Vector Absolute Value
*
* Computes the absolute value of a vector on an element-by-element basis.
*
* <pre>
* pDst[n] = abs(pSrcA[n]), 0 <= n < blockSize.
* </pre>
*
* The operation can be done in-place by setting the input and output pointers to the same buffer.
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
*/
/**
* @addtogroup BasicAbs
* @{
*/
/**
* @brief Floating-point vector absolute value.
* @param[in] *pSrc points to the input buffer
* @param[out] *pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_abs_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = |A| */
/* Calculate absolute and then store the results in the destination buffer. */
*pDst++ = fabsf(*pSrc++);
*pDst++ = fabsf(*pSrc++);
*pDst++ = fabsf(*pSrc++);
*pDst++ = fabsf(*pSrc++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = |A| */
/* Calculate absolute and then store the results in the destination buffer. */
*pDst++ = fabsf(*pSrc++);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of BasicAbs group
*/

View File

@ -0,0 +1,170 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_abs_q15.c
*
* Description: Q15 vector absolute value.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicAbs
* @{
*/
/**
* @brief Q15 vector absolute value.
* @param[in] *pSrc points to the input buffer
* @param[out] *pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q15 value -1 (0x8000) will be saturated to the maximum allowable positive value 0x7FFF.
*/
void arm_abs_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q15_t in1; /* Input value1 */
q15_t in2; /* Input value2 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = |A| */
/* Read two inputs */
in1 = *pSrc++;
in2 = *pSrc++;
/* Store the Absolute result in the destination buffer by packing the two values, in a single cycle */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ =
__PKHBT(((in1 > 0) ? in1 : __SSAT(-in1, 16)),
((in2 > 0) ? in2 : __SSAT(-in2, 16)), 16);
#else
*__SIMD32(pDst)++ =
__PKHBT(((in2 > 0) ? in2 : __SSAT(-in2, 16)),
((in1 > 0) ? in1 : __SSAT(-in1, 16)), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
in1 = *pSrc++;
in2 = *pSrc++;
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ =
__PKHBT(((in1 > 0) ? in1 : __SSAT(-in1, 16)),
((in2 > 0) ? in2 : __SSAT(-in2, 16)), 16);
#else
*__SIMD32(pDst)++ =
__PKHBT(((in2 > 0) ? in2 : __SSAT(-in2, 16)),
((in1 > 0) ? in1 : __SSAT(-in1, 16)), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = |A| */
/* Read the input */
in1 = *pSrc++;
/* Calculate absolute value of input and then store the result in the destination buffer. */
*pDst++ = (in1 > 0) ? in1 : __SSAT(-in1, 16);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
q15_t in; /* Temporary input variable */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = |A| */
/* Read the input */
in = *pSrc++;
/* Calculate absolute value of input and then store the result in the destination buffer. */
*pDst++ = (in > 0) ? in : __SSAT(-in, 16);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicAbs group
*/

View File

@ -0,0 +1,120 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_abs_q31.c
*
* Description: Q31 vector absolute value.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicAbs
* @{
*/
/**
* @brief Q31 vector absolute value.
* @param[in] *pSrc points to the input buffer
* @param[out] *pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q31 value -1 (0x80000000) will be saturated to the maximum allowable positive value 0x7FFFFFFF.
*/
void arm_abs_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
q31_t in; /* Input value */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = |A| */
/* Calculate absolute of input (if -1 then saturated to 0x7fffffff) and then store the results in the destination buffer. */
in = *pSrc++;
*pDst++ = (in > 0) ? in : ((in == 0x80000000) ? 0x7fffffff : -in);
in = *pSrc++;
*pDst++ = (in > 0) ? in : ((in == 0x80000000) ? 0x7fffffff : -in);
in = *pSrc++;
*pDst++ = (in > 0) ? in : ((in == 0x80000000) ? 0x7fffffff : -in);
in = *pSrc++;
*pDst++ = (in > 0) ? in : ((in == 0x80000000) ? 0x7fffffff : -in);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = |A| */
/* Calculate absolute value of the input (if -1 then saturated to 0x7fffffff) and then store the results in the destination buffer. */
in = *pSrc++;
*pDst++ = (in > 0) ? in : ((in == 0x80000000) ? 0x7fffffff : -in);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of BasicAbs group
*/

View File

@ -0,0 +1,143 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_abs_q7.c
*
* Description: Q7 vector absolute value.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicAbs
* @{
*/
/**
* @brief Q7 vector absolute value.
* @param[in] *pSrc points to the input buffer
* @param[out] *pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q7 value -1 (0x80) will be saturated to the maximum allowable positive value 0x7F.
*/
void arm_abs_q7(
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q7_t in1; /* Input value1 */
q7_t in2; /* Input value2 */
q7_t in3; /* Input value3 */
q7_t in4; /* Input value4 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = |A| */
/* Read 4 inputs */
in1 = *pSrc++;
in2 = *pSrc++;
in3 = *pSrc++;
in4 = *pSrc++;
/* Store the Absolute result in the destination buffer by packing the 4 values in single cycle */
*__SIMD32(pDst)++ =
__PACKq7(((in1 > 0) ? in1 : __SSAT(-in1, 8)),
((in2 > 0) ? in2 : __SSAT(-in2, 8)),
((in3 > 0) ? in3 : __SSAT(-in3, 8)),
((in4 > 0) ? in4 : __SSAT(-in4, 8)));
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = |A| */
/* Read the input */
in1 = *pSrc++;
/* Store the Absolute result in the destination buffer */
*pDst++ = (in1 > 0) ? in1 : __SSAT(-in1, 8);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
q7_t in; /* Temporary input varible */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = |A| */
/* Read the input */
in = *pSrc++;
/* Store the Absolute result in the destination buffer */
*pDst++ = (in > 0) ? in : __SSAT(-in, 8);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicAbs group
*/

View File

@ -0,0 +1,121 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_add_f32.c
*
* Description: Floating-point vector addition.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup BasicAdd Vector Addition
*
* Element-by-element addition of two vectors.
*
* <pre>
* pDst[n] = pSrcA[n] + pSrcB[n], 0 <= n < blockSize.
* </pre>
*
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
*/
/**
* @addtogroup BasicAdd
* @{
*/
/**
* @brief Floating-point vector addition.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_add_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = (*pSrcA++) + (*pSrcB++);
*pDst++ = (*pSrcA++) + (*pSrcB++);
*pDst++ = (*pSrcA++) + (*pSrcB++);
*pDst++ = (*pSrcA++) + (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = (*pSrcA++) + (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of BasicAdd group
*/

View File

@ -0,0 +1,127 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_add_q15.c
*
* Description: Q15 vector addition
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicAdd
* @{
*/
/**
* @brief Q15 vector addition.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
*/
void arm_add_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*__SIMD32(pDst)++ = __QADD16(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++);
*__SIMD32(pDst)++ = __QADD16(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = (q15_t) __QADD16(*pSrcA++, *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = (q15_t) __SSAT(((q31_t) * pSrcA++ + *pSrcB++), 16);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicAdd group
*/

View File

@ -0,0 +1,129 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_add_q31.c
*
* Description: Q31 vector addition.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicAdd
* @{
*/
/**
* @brief Q31 vector addition.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range[0x80000000 0x7FFFFFFF] will be saturated.
*/
void arm_add_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = __QADD(*pSrcA++, *pSrcB++);
*pDst++ = __QADD(*pSrcA++, *pSrcB++);
*pDst++ = __QADD(*pSrcA++, *pSrcB++);
*pDst++ = __QADD(*pSrcA++, *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = __QADD(*pSrcA++, *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrcA++ + *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicAdd group
*/

View File

@ -0,0 +1,126 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_add_q7.c
*
* Description: Q7 vector addition.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicAdd
* @{
*/
/**
* @brief Q7 vector addition.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
*/
void arm_add_q7(
q7_t * pSrcA,
q7_t * pSrcB,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*__SIMD32(pDst)++ = __QADD8(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = (q7_t) __SSAT(*pSrcA++ + *pSrcB++, 8);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = (q7_t) __SSAT((q15_t) * pSrcA++ + *pSrcB++, 8);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicAdd group
*/

View File

@ -0,0 +1,122 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_dot_prod_f32.c
*
* Description: Floating-point dot product.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup dot_prod Vector Dot Product
*
* Computes the dot product of two vectors.
* The vectors are multiplied element-by-element and then summed.
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
*/
/**
* @addtogroup dot_prod
* @{
*/
/**
* @brief Dot product of floating-point vectors.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] *result output result returned here
* @return none.
*/
void arm_dot_prod_f32(
float32_t * pSrcA,
float32_t * pSrcB,
uint32_t blockSize,
float32_t * result)
{
float32_t sum = 0.0f; /* Temporary result storage */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer */
sum += (*pSrcA++) * (*pSrcB++);
sum += (*pSrcA++) * (*pSrcB++);
sum += (*pSrcA++) * (*pSrcB++);
sum += (*pSrcA++) * (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer. */
sum += (*pSrcA++) * (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
/* Store the result back in the destination buffer */
*result = sum;
}
/**
* @} end of dot_prod group
*/

View File

@ -0,0 +1,132 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_dot_prod_q15.c
*
* Description: Q15 dot product.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup dot_prod
* @{
*/
/**
* @brief Dot product of Q15 vectors.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] *result output result returned here
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The intermediate multiplications are in 1.15 x 1.15 = 2.30 format and these
* results are added to a 64-bit accumulator in 34.30 format.
* Nonsaturating additions are used and given that there are 33 guard bits in the accumulator
* there is no risk of overflow.
* The return result is in 34.30 format.
*/
void arm_dot_prod_q15(
q15_t * pSrcA,
q15_t * pSrcB,
uint32_t blockSize,
q63_t * result)
{
q63_t sum = 0; /* Temporary result storage */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer. */
sum = __SMLALD(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++, sum);
sum = __SMLALD(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++, sum);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the results in a temporary buffer. */
sum = __SMLALD(*pSrcA++, *pSrcB++, sum);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the results in a temporary buffer. */
sum += (q63_t) ((q31_t) * pSrcA++ * *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
/* Store the result in the destination buffer in 34.30 format */
*result = sum;
}
/**
* @} end of dot_prod group
*/

View File

@ -0,0 +1,124 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_dot_prod_q31.c
*
* Description: Q31 dot product.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup dot_prod
* @{
*/
/**
* @brief Dot product of Q31 vectors.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] *result output result returned here
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The intermediate multiplications are in 1.31 x 1.31 = 2.62 format and these
* are truncated to 2.48 format by discarding the lower 14 bits.
* The 2.48 result is then added without saturation to a 64-bit accumulator in 16.48 format.
* There are 15 guard bits in the accumulator and there is no risk of overflow as long as
* the length of the vectors is less than 2^16 elements.
* The return result is in 16.48 format.
*/
void arm_dot_prod_q31(
q31_t * pSrcA,
q31_t * pSrcB,
uint32_t blockSize,
q63_t * result)
{
q63_t sum = 0; /* Temporary result storage */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer. */
sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14u;
sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14u;
sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14u;
sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer. */
sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14u;
/* Decrement the loop counter */
blkCnt--;
}
/* Store the result in the destination buffer in 16.48 format */
*result = sum;
}
/**
* @} end of dot_prod group
*/

View File

@ -0,0 +1,163 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_dot_prod_q7.c
*
* Description: Q7 dot product.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup dot_prod
* @{
*/
/**
* @brief Dot product of Q7 vectors.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] *result output result returned here
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The intermediate multiplications are in 1.7 x 1.7 = 2.14 format and these
* results are added to an accumulator in 18.14 format.
* Nonsaturating additions are used and there is no danger of wrap around as long as
* the vectors are less than 2^18 elements long.
* The return result is in 18.14 format.
*/
void arm_dot_prod_q7(
q7_t * pSrcA,
q7_t * pSrcB,
uint32_t blockSize,
q31_t * result)
{
uint32_t blkCnt; /* loop counter */
q31_t sum = 0; /* Temporary variables to store output */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t input1, input2; /* Temporary variables to store input */
q15_t in1, in2; /* Temporary variables to store input */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Reading two inputs of SrcA buffer and packing */
in1 = (q15_t) * pSrcA++;
in2 = (q15_t) * pSrcA++;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* Reading two inputs of SrcB buffer and packing */
in1 = (q15_t) * pSrcB++;
in2 = (q15_t) * pSrcB++;
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Perform Dot product of 2 packed inputs using SMLALD and store the result in a temporary variable. */
sum = __SMLAD(input1, input2, sum);
/* Reading two inputs of SrcA buffer and packing */
in1 = (q15_t) * pSrcA++;
in2 = (q15_t) * pSrcA++;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* Reading two inputs of SrcB buffer and packing */
in1 = (q15_t) * pSrcB++;
in2 = (q15_t) * pSrcB++;
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Perform Dot product of 2 packed inputs using SMLALD and store the result in a temporary variable. */
sum = __SMLAD(input1, input2, sum);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Dot product and then store the results in a temporary buffer. */
sum = __SMLAD(*pSrcA++, *pSrcB++, sum);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Dot product and then store the results in a temporary buffer. */
sum += (q31_t) ((q15_t) * pSrcA++ * *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
/* Store the result in the destination buffer in 18.14 format */
*result = sum;
}
/**
* @} end of dot_prod group
*/

View File

@ -0,0 +1,126 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_mult_f32.c
*
* Description: Floating-point vector multiplication.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10
* Initial version
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup BasicMult Vector Multiplication
*
* Element-by-element multiplication of two vectors.
*
* <pre>
* pDst[n] = pSrcA[n] * pSrcB[n], 0 <= n < blockSize.
* </pre>
*
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
*/
/**
* @addtogroup BasicMult
* @{
*/
/**
* @brief Floating-point vector multiplication.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_mult_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and store the results in output buffer */
*pDst++ = (*pSrcA++) * (*pSrcB++);
*pDst++ = (*pSrcA++) * (*pSrcB++);
*pDst++ = (*pSrcA++) * (*pSrcB++);
*pDst++ = (*pSrcA++) * (*pSrcB++);
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and store the results in output buffer */
*pDst++ = (*pSrcA++) * (*pSrcB++);
/* Decrement the blockSize loop counter */
blkCnt--;
}
}
/**
* @} end of BasicMult group
*/

View File

@ -0,0 +1,119 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_mult_q15.c
*
* Description: Q15 vector multiplication.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10
* Initial version
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicMult
* @{
*/
/**
* @brief Q15 vector multiplication
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
*/
void arm_mult_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and store the result in the destination buffer */
*pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++)) >> 15), 16);
*pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++)) >> 15), 16);
*pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++)) >> 15), 16);
*pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++)) >> 15), 16);
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and store the result in the destination buffer */
*pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++)) >> 15), 16);
/* Decrement the blockSize loop counter */
blkCnt--;
}
}
/**
* @} end of BasicMult group
*/

View File

@ -0,0 +1,121 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_mult_q31.c
*
* Description: Q31 vector multiplication.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10
* Initial version
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicMult
* @{
*/
/**
* @brief Q31 vector multiplication.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range[0x80000000 0x7FFFFFFF] will be saturated.
*/
void arm_mult_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and then store the results in the destination buffer. */
*pDst++ =
(q31_t) clip_q63_to_q31(((q63_t) (*pSrcA++) * (*pSrcB++)) >> 31);
*pDst++ =
(q31_t) clip_q63_to_q31(((q63_t) (*pSrcA++) * (*pSrcB++)) >> 31);
*pDst++ =
(q31_t) clip_q63_to_q31(((q63_t) (*pSrcA++) * (*pSrcB++)) >> 31);
*pDst++ =
(q31_t) clip_q63_to_q31(((q63_t) (*pSrcA++) * (*pSrcB++)) >> 31);
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and then store the results in the destination buffer. */
*pDst++ =
(q31_t) clip_q63_to_q31(((q63_t) (*pSrcA++) * (*pSrcB++)) >> 31);
/* Decrement the blockSize loop counter */
blkCnt--;
}
}
/**
* @} end of BasicMult group
*/

View File

@ -0,0 +1,125 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_mult_q7.c
*
* Description: Q7 vector multiplication.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10 DP
* Initial version
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicMult
* @{
*/
/**
* @brief Q7 vector multiplication
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
*/
void arm_mult_q7(
q7_t * pSrcA,
q7_t * pSrcB,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q7_t out1, out2, out3, out4; /* Temporary variables to store the product */
/* loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and store the results in temporary variables */
out1 = (q7_t) (((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7);
out2 = (q7_t) (((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7);
out3 = (q7_t) (((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7);
out4 = (q7_t) (((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7);
/* Store the results of 4 inputs in the destination buffer in single cycle by packing */
*__SIMD32(pDst)++ = __PACKq7(out1, out2, out3, out4);
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and store the result in the destination buffer */
*pDst++ = (q7_t) (((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7);
/* Decrement the blockSize loop counter */
blkCnt--;
}
}
/**
* @} end of BasicMult group
*/

View File

@ -0,0 +1,117 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_negate_f32.c
*
* Description: Negates floating-point vectors.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup negate Vector Negate
*
* Negates the elements of a vector.
*
* <pre>
* pDst[n] = -pSrc[n], 0 <= n < blockSize.
* </pre>
*/
/**
* @addtogroup negate
* @{
*/
/**
* @brief Negates the elements of a floating-point vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_negate_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = -A */
/* Negate and then store the results in the destination buffer. */
*pDst++ = -*pSrc++;
*pDst++ = -*pSrc++;
*pDst++ = -*pSrc++;
*pDst++ = -*pSrc++;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = -A */
/* Negate and then store the results in the destination buffer. */
*pDst++ = -*pSrc++;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of negate group
*/

View File

@ -0,0 +1,140 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_negate_q15.c
*
* Description: Negates Q15 vectors.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup negate
* @{
*/
/**
* @brief Negates the elements of a Q15 vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q15 value -1 (0x8000) will be saturated to the maximum allowable positive value 0x7FFF.
*/
void arm_negate_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q15_t in1, in2; /* Temporary variables */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = -A */
/* Read two inputs */
in1 = *pSrc++;
in2 = *pSrc++;
/* Negate and then store the results in the destination buffer by packing. */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT(__SSAT(-in1, 16), __SSAT(-in2, 16), 16);
#else
*__SIMD32(pDst)++ = __PKHBT(__SSAT(-in2, 16), __SSAT(-in1, 16), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
in1 = *pSrc++;
in2 = *pSrc++;
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT(__SSAT(-in1, 16), __SSAT(-in2, 16), 16);
#else
*__SIMD32(pDst)++ = __PKHBT(__SSAT(-in2, 16), __SSAT(-in1, 16), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = -A */
/* Negate and then store the result in the destination buffer. */
*pDst++ = __SSAT(-*pSrc++, 16);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of negate group
*/

View File

@ -0,0 +1,119 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_negate_q31.c
*
* Description: Negates Q31 vectors.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup negate
* @{
*/
/**
* @brief Negates the elements of a Q31 vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q31 value -1 (0x80000000) will be saturated to the maximum allowable positive value 0x7FFFFFFF.
*/
void arm_negate_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
q31_t in; /* Temporary variable */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = -A */
/* Negate and then store the results in the destination buffer. */
in = *pSrc++;
*pDst++ = (in == 0x80000000) ? 0x7fffffff : -in;
in = *pSrc++;
*pDst++ = (in == 0x80000000) ? 0x7fffffff : -in;
in = *pSrc++;
*pDst++ = (in == 0x80000000) ? 0x7fffffff : -in;
in = *pSrc++;
*pDst++ = (in == 0x80000000) ? 0x7fffffff : -in;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = -A */
/* Negate and then store the result in the destination buffer. */
in = *pSrc++;
*pDst++ = (in == 0x80000000) ? 0x7fffffff : -in;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of negate group
*/

View File

@ -0,0 +1,122 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_negate_q7.c
*
* Description: Negates Q7 vectors.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup negate
* @{
*/
/**
* @brief Negates the elements of a Q7 vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q7 value -1 (0x80) will be saturated to the maximum allowable positive value 0x7F.
*/
void arm_negate_q7(
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q7_t in1; /* Input value1 */
q7_t in2; /* Input value2 */
q7_t in3; /* Input value3 */
q7_t in4; /* Input value4 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = -A */
/* Read four inputs */
in1 = *pSrc++;
in2 = *pSrc++;
in3 = *pSrc++;
in4 = *pSrc++;
/* Store the Negated results in the destination buffer in a single cycle by packing the results */
*__SIMD32(pDst)++ =
__PACKq7(__SSAT(-in1, 8), __SSAT(-in2, 8), __SSAT(-in3, 8),
__SSAT(-in4, 8));
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = -A */
/* Negate and then store the results in the destination buffer. */
*pDst++ = __SSAT(-*pSrc++, 8);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of negate group
*/

View File

@ -0,0 +1,122 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_offset_f32.c
*
* Description: Floating-point vector offset.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup offset Vector Offset
*
* Adds a constant offset to each element of a vector.
*
* <pre>
* pDst[n] = pSrc[n] + offset, 0 <= n < blockSize.
* </pre>
*
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
*/
/**
* @addtogroup offset
* @{
*/
/**
* @brief Adds a constant offset to a floating-point vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_offset_f32(
float32_t * pSrc,
float32_t offset,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the results in the destination buffer. */
*pDst++ = (*pSrc++) + offset;
*pDst++ = (*pSrc++) + offset;
*pDst++ = (*pSrc++) + offset;
*pDst++ = (*pSrc++) + offset;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the result in the destination buffer. */
*pDst++ = (*pSrc++) + offset;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of offset group
*/

View File

@ -0,0 +1,128 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_offset_q15.c
*
* Description: Q15 vector offset.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup offset
* @{
*/
/**
* @brief Adds a constant offset to a Q15 vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] are saturated.
*/
void arm_offset_q15(
q15_t * pSrc,
q15_t offset,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t offset_packed; /* Offset packed to 32 bit */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* Offset is packed to 32 bit in order to use SIMD32 for addition */
offset_packed = __PKHBT(offset, offset, 16);
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the results in the destination buffer, 2 samples at a time. */
*__SIMD32(pDst)++ = __QADD16(*__SIMD32(pSrc)++, offset_packed);
*__SIMD32(pDst)++ = __QADD16(*__SIMD32(pSrc)++, offset_packed);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the results in the destination buffer. */
*pDst++ = (q15_t) __QADD16(*pSrc++, offset);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the results in the destination buffer. */
*pDst++ = (q15_t) __SSAT(((q31_t) * pSrc++ + offset), 16);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of offset group
*/

View File

@ -0,0 +1,126 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_offset_q31.c
*
* Description: Q31 vector offset.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup offset
* @{
*/
/**
* @brief Adds a constant offset to a Q31 vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] are saturated.
*/
void arm_offset_q31(
q31_t * pSrc,
q31_t offset,
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the results in the destination buffer. */
*pDst++ = __QADD(*pSrc++, offset);
*pDst++ = __QADD(*pSrc++, offset);
*pDst++ = __QADD(*pSrc++, offset);
*pDst++ = __QADD(*pSrc++, offset);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the result in the destination buffer. */
*pDst++ = __QADD(*pSrc++, offset);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the result in the destination buffer. */
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrc++ + offset);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of offset group
*/

View File

@ -0,0 +1,127 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_offset_q7.c
*
* Description: Q7 vector offset.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup offset
* @{
*/
/**
* @brief Adds a constant offset to a Q7 vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q7 range [0x80 0x7F] are saturated.
*/
void arm_offset_q7(
q7_t * pSrc,
q7_t offset,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t offset_packed; /* Offset packed to 32 bit */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* Offset is packed to 32 bit in order to use SIMD32 for addition */
offset_packed = __PACKq7(offset, offset, offset, offset);
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the results in the destination bufferfor 4 samples at a time. */
*__SIMD32(pDst)++ = __QADD8(*__SIMD32(pSrc)++, offset_packed);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the result in the destination buffer. */
*pDst++ = (q7_t) __SSAT(*pSrc++ + offset, 8);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the result in the destination buffer. */
*pDst++ = (q7_t) __SSAT((q15_t) * pSrc++ + offset, 8);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of offset group
*/

View File

@ -0,0 +1,133 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_scale_f32.c
*
* Description: Multiplies a floating-point vector by a scalar.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup scale Vector Scale
*
* Multiply a vector by a scalar value. For floating-point data, the algorithm used is:
*
* <pre>
* pDst[n] = pSrc[n] * scale, 0 <= n < blockSize.
* </pre>
*
* In the fixed-point Q7, Q15, and Q31 functions, <code>scale</code> is represented by
* a fractional multiplication <code>scaleFract</code> and an arithmetic shift <code>shift</code>.
* The shift allows the gain of the scaling operation to exceed 1.0.
* The algorithm used with fixed-point data is:
*
* <pre>
* pDst[n] = (pSrc[n] * scaleFract) << shift, 0 <= n < blockSize.
* </pre>
*
* The overall scale factor applied to the fixed-point data is
* <pre>
* scale = scaleFract * 2^shift.
* </pre>
*/
/**
* @addtogroup scale
* @{
*/
/**
* @brief Multiplies a floating-point vector by a scalar.
* @param[in] *pSrc points to the input vector
* @param[in] scale scale factor to be applied
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_scale_f32(
float32_t * pSrc,
float32_t scale,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the results in the destination buffer. */
*pDst++ = (*pSrc++) * scale;
*pDst++ = (*pSrc++) * scale;
*pDst++ = (*pSrc++) * scale;
*pDst++ = (*pSrc++) * scale;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
*pDst++ = (*pSrc++) * scale;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of scale group
*/

View File

@ -0,0 +1,162 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_scale_q15.c
*
* Description: Multiplies a Q15 vector by a scalar.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup scale
* @{
*/
/**
* @brief Multiplies a Q15 vector by a scalar.
* @param[in] *pSrc points to the input vector
* @param[in] scaleFract fractional portion of the scale value
* @param[in] shift number of bits to shift the result by
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.15 format.
* These are multiplied to yield a 2.30 intermediate result and this is shifted with saturation to 1.15 format.
*/
void arm_scale_q15(
q15_t * pSrc,
q15_t scaleFract,
int8_t shift,
q15_t * pDst,
uint32_t blockSize)
{
int8_t kShift = 15 - shift; /* shift to apply after scaling */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q15_t in1, in2; /* Temporary variables */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Reading 2 inputs from memory */
in1 = *pSrc++;
in2 = *pSrc++;
/* C = A * scale */
/* Scale the inputs and then store the 2 results in the destination buffer
* in single cycle by packing the outputs */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ =
__PKHBT(__SSAT((in1 * scaleFract) >> kShift, 16),
__SSAT((in2 * scaleFract) >> kShift, 16), 16);
#else
*__SIMD32(pDst)++ =
__PKHBT(__SSAT((in2 * scaleFract) >> kShift, 16),
__SSAT((in1 * scaleFract) >> kShift, 16), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
in1 = *pSrc++;
in2 = *pSrc++;
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ =
__PKHBT(__SSAT((in1 * scaleFract) >> kShift, 16),
__SSAT((in2 * scaleFract) >> kShift, 16), 16);
#else
*__SIMD32(pDst)++ =
__PKHBT(__SSAT((in2 * scaleFract) >> kShift, 16),
__SSAT((in1 * scaleFract) >> kShift, 16), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
*pDst++ = (q15_t) (__SSAT(((*pSrc++) * scaleFract) >> kShift, 16));
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
*pDst++ = (q15_t) (__SSAT(((q31_t) * pSrc++ * scaleFract) >> kShift, 16));
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of scale group
*/

View File

@ -0,0 +1,117 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_scale_q31.c
*
* Description: Multiplies a Q31 vector by a scalar.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup scale
* @{
*/
/**
* @brief Multiplies a Q31 vector by a scalar.
* @param[in] *pSrc points to the input vector
* @param[in] scaleFract fractional portion of the scale value
* @param[in] shift number of bits to shift the result by
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.31 format.
* These are multiplied to yield a 2.62 intermediate result and this is shifted with saturation to 1.31 format.
*/
void arm_scale_q31(
q31_t * pSrc,
q31_t scaleFract,
int8_t shift,
q31_t * pDst,
uint32_t blockSize)
{
int8_t kShift = 31 - shift; /* Shift to apply after scaling */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the results in the destination buffer. */
*pDst++ = clip_q63_to_q31(((q63_t) * pSrc++ * scaleFract) >> kShift);
*pDst++ = clip_q63_to_q31(((q63_t) * pSrc++ * scaleFract) >> kShift);
*pDst++ = clip_q63_to_q31(((q63_t) * pSrc++ * scaleFract) >> kShift);
*pDst++ = clip_q63_to_q31(((q63_t) * pSrc++ * scaleFract) >> kShift);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
*pDst++ = clip_q63_to_q31(((q63_t) * pSrc++ * scaleFract) >> kShift);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of scale group
*/

View File

@ -0,0 +1,141 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_scale_q7.c
*
* Description: Multiplies a Q7 vector by a scalar.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup scale
* @{
*/
/**
* @brief Multiplies a Q7 vector by a scalar.
* @param[in] *pSrc points to the input vector
* @param[in] scaleFract fractional portion of the scale value
* @param[in] shift number of bits to shift the result by
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.7 format.
* These are multiplied to yield a 2.14 intermediate result and this is shifted with saturation to 1.7 format.
*/
void arm_scale_q7(
q7_t * pSrc,
q7_t scaleFract,
int8_t shift,
q7_t * pDst,
uint32_t blockSize)
{
int8_t kShift = 7 - shift; /* shift to apply after scaling */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q7_t in1, in2, in3, in4, out1, out2, out3, out4; /* Temporary variables to store input & output */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Reading 4 inputs from memory */
in1 = *pSrc++;
in2 = *pSrc++;
in3 = *pSrc++;
in4 = *pSrc++;
/* C = A * scale */
/* Scale the inputs and then store the results in the temporary variables. */
out1 = (q7_t) (__SSAT(((in1) * scaleFract) >> kShift, 8));
out2 = (q7_t) (__SSAT(((in2) * scaleFract) >> kShift, 8));
out3 = (q7_t) (__SSAT(((in3) * scaleFract) >> kShift, 8));
out4 = (q7_t) (__SSAT(((in4) * scaleFract) >> kShift, 8));
/* Packing the individual outputs into 32bit and storing in
* destination buffer in single write */
*__SIMD32(pDst)++ = __PACKq7(out1, out2, out3, out4);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
*pDst++ = (q7_t) (__SSAT(((*pSrc++) * scaleFract) >> kShift, 8));
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
*pDst++ = (q7_t) (__SSAT((((q15_t) * pSrc++ * scaleFract) >> kShift), 8));
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of scale group
*/

View File

@ -0,0 +1,239 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_shift_q15.c
*
* Description: Shifts the elements of a Q15 vector by a specified number of bits.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup shift
* @{
*/
/**
* @brief Shifts the elements of a Q15 vector a specified number of bits.
* @param[in] *pSrc points to the input vector
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
*/
void arm_shift_q15(
q15_t * pSrc,
int8_t shiftBits,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
uint8_t sign; /* Sign of shiftBits */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q15_t in1, in2; /* Temporary variables */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* Getting the sign of shiftBits */
sign = (shiftBits & 0x80);
/* If the shift value is positive then do right shift else left shift */
if(sign == 0u)
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Read 2 inputs */
in1 = *pSrc++;
in2 = *pSrc++;
/* C = A << shiftBits */
/* Shift the inputs and then store the results in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 << shiftBits), 16),
__SSAT((in2 << shiftBits), 16), 16);
#else
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in2 << shiftBits), 16),
__SSAT((in1 << shiftBits), 16), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
in1 = *pSrc++;
in2 = *pSrc++;
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 << shiftBits), 16),
__SSAT((in2 << shiftBits), 16), 16);
#else
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in2 << shiftBits), 16),
__SSAT((in1 << shiftBits), 16), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A << shiftBits */
/* Shift and then store the results in the destination buffer. */
*pDst++ = __SSAT((*pSrc++ << shiftBits), 16);
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Read 2 inputs */
in1 = *pSrc++;
in2 = *pSrc++;
/* C = A >> shiftBits */
/* Shift the inputs and then store the results in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT((in1 >> -shiftBits),
(in2 >> -shiftBits), 16);
#else
*__SIMD32(pDst)++ = __PKHBT((in2 >> -shiftBits),
(in1 >> -shiftBits), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
in1 = *pSrc++;
in2 = *pSrc++;
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT((in1 >> -shiftBits),
(in2 >> -shiftBits), 16);
#else
*__SIMD32(pDst)++ = __PKHBT((in2 >> -shiftBits),
(in1 >> -shiftBits), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A >> shiftBits */
/* Shift the inputs and then store the results in the destination buffer. */
*pDst++ = (*pSrc++ >> -shiftBits);
/* Decrement the loop counter */
blkCnt--;
}
}
#else
/* Run the below code for Cortex-M0 */
/* Getting the sign of shiftBits */
sign = (shiftBits & 0x80);
/* If the shift value is positive then do right shift else left shift */
if(sign == 0u)
{
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A << shiftBits */
/* Shift and then store the results in the destination buffer. */
*pDst++ = __SSAT(((q31_t) * pSrc++ << shiftBits), 16);
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A >> shiftBits */
/* Shift the inputs and then store the results in the destination buffer. */
*pDst++ = (*pSrc++ >> -shiftBits);
/* Decrement the loop counter */
blkCnt--;
}
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of shift group
*/

View File

@ -0,0 +1,141 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_shift_q31.c
*
* Description: Shifts the elements of a Q31 vector by a specified number of bits.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup shift Vector Shift
*
* Shifts the elements of a fixed-point vector by a specified number of bits.
* There are separate functions for Q7, Q15, and Q31 data types.
* The underlying algorithm used is:
*
* <pre>
* pDst[n] = pSrc[n] << shift, 0 <= n < blockSize.
* </pre>
*
* If <code>shift</code> is positive then the elements of the vector are shifted to the left.
* If <code>shift</code> is negative then the elements of the vector are shifted to the right.
*/
/**
* @addtogroup shift
* @{
*/
/**
* @brief Shifts the elements of a Q31 vector a specified number of bits.
* @param[in] *pSrc points to the input vector
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] will be saturated.
*/
void arm_shift_q31(
q31_t * pSrc,
int8_t shiftBits,
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
uint8_t sign; /* Sign of shiftBits */
/* Getting the sign of shiftBits */
sign = (shiftBits & 0x80);
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A (>> or <<) shiftBits */
/* Shift the input and then store the results in the destination buffer. */
*pDst++ = (sign == 0u) ? clip_q63_to_q31((q63_t) * pSrc++ << shiftBits) :
(*pSrc++ >> -shiftBits);
*pDst++ = (sign == 0u) ? clip_q63_to_q31((q63_t) * pSrc++ << shiftBits) :
(*pSrc++ >> -shiftBits);
*pDst++ = (sign == 0u) ? clip_q63_to_q31((q63_t) * pSrc++ << shiftBits) :
(*pSrc++ >> -shiftBits);
*pDst++ = (sign == 0u) ? clip_q63_to_q31((q63_t) * pSrc++ << shiftBits) :
(*pSrc++ >> -shiftBits);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A (>> or <<) shiftBits */
/* Shift the input and then store the result in the destination buffer. */
*pDst++ = (sign == 0u) ? clip_q63_to_q31((q63_t) * pSrc++ << shiftBits) :
(*pSrc++ >> -shiftBits);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of shift group
*/

View File

@ -0,0 +1,202 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_shift_q7.c
*
* Description: Processing function for the Q7 Shifting
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup shift
* @{
*/
/**
* @brief Shifts the elements of a Q7 vector a specified number of bits.
* @param[in] *pSrc points to the input vector
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q7 range [0x8 0x7F] will be saturated.
*/
void arm_shift_q7(
q7_t * pSrc,
int8_t shiftBits,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
uint8_t sign; /* Sign of shiftBits */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q7_t in1; /* Input value1 */
q7_t in2; /* Input value2 */
q7_t in3; /* Input value3 */
q7_t in4; /* Input value4 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* Getting the sign of shiftBits */
sign = (shiftBits & 0x80);
/* If the shift value is positive then do right shift else left shift */
if(sign == 0u)
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A << shiftBits */
/* Read 4 inputs */
in1 = *pSrc++;
in2 = *pSrc++;
in3 = *pSrc++;
in4 = *pSrc++;
/* Store the Shifted result in the destination buffer in single cycle by packing the outputs */
*__SIMD32(pDst)++ = __PACKq7(__SSAT((in1 << shiftBits), 8),
__SSAT((in2 << shiftBits), 8),
__SSAT((in3 << shiftBits), 8),
__SSAT((in4 << shiftBits), 8));
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A << shiftBits */
/* Shift the input and then store the result in the destination buffer. */
*pDst++ = (q7_t) __SSAT((*pSrc++ << shiftBits), 8);
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A >> shiftBits */
/* Read 4 inputs */
in1 = *pSrc++;
in2 = *pSrc++;
in3 = *pSrc++;
in4 = *pSrc++;
/* Store the Shifted result in the destination buffer in single cycle by packing the outputs */
*__SIMD32(pDst)++ = __PACKq7((in1 >> -shiftBits), (in2 >> -shiftBits),
(in3 >> -shiftBits), (in4 >> -shiftBits));
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A >> shiftBits */
/* Shift the input and then store the result in the destination buffer. */
*pDst++ = (*pSrc++ >> -shiftBits);
/* Decrement the loop counter */
blkCnt--;
}
}
#else
/* Run the below code for Cortex-M0 */
/* Getting the sign of shiftBits */
sign = (shiftBits & 0x80);
/* If the shift value is positive then do right shift else left shift */
if(sign == 0u)
{
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A << shiftBits */
/* Shift the input and then store the result in the destination buffer. */
*pDst++ = (q7_t) __SSAT(((q15_t) * pSrc++ << shiftBits), 8);
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A >> shiftBits */
/* Shift the input and then store the result in the destination buffer. */
*pDst++ = (*pSrc++ >> -shiftBits);
/* Decrement the loop counter */
blkCnt--;
}
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of shift group
*/

View File

@ -0,0 +1,122 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_sub_f32.c
*
* Description: Floating-point vector subtraction.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup BasicSub Vector Subtraction
*
* Element-by-element subtraction of two vectors.
*
* <pre>
* pDst[n] = pSrcA[n] - pSrcB[n], 0 <= n < blockSize.
* </pre>
*
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
*/
/**
* @addtogroup BasicSub
* @{
*/
/**
* @brief Floating-point vector subtraction.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_sub_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the results in the destination buffer. */
*pDst++ = (*pSrcA++) - (*pSrcB++);
*pDst++ = (*pSrcA++) - (*pSrcB++);
*pDst++ = (*pSrcA++) - (*pSrcB++);
*pDst++ = (*pSrcA++) - (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the results in the destination buffer. */
*pDst++ = (*pSrcA++) - (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of BasicSub group
*/

View File

@ -0,0 +1,124 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_sub_q15.c
*
* Description: Q15 vector subtraction.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicSub
* @{
*/
/**
* @brief Q15 vector subtraction.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
*/
void arm_sub_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the results in the destination buffer two samples at a time. */
*__SIMD32(pDst)++ = __QSUB16(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++);
*__SIMD32(pDst)++ = __QSUB16(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the result in the destination buffer. */
*pDst++ = (q15_t) __QSUB16(*pSrcA++, *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the result in the destination buffer. */
*pDst++ = (q15_t) __SSAT(((q31_t) * pSrcA++ - *pSrcB++), 16);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicSub group
*/

View File

@ -0,0 +1,125 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_sub_q31.c
*
* Description: Q31 vector subtraction.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicSub
* @{
*/
/**
* @brief Q31 vector subtraction.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] will be saturated.
*/
void arm_sub_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the results in the destination buffer. */
*pDst++ = __QSUB(*pSrcA++, *pSrcB++);
*pDst++ = __QSUB(*pSrcA++, *pSrcB++);
*pDst++ = __QSUB(*pSrcA++, *pSrcB++);
*pDst++ = __QSUB(*pSrcA++, *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the result in the destination buffer. */
*pDst++ = __QSUB(*pSrcA++, *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the result in the destination buffer. */
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrcA++ - *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicSub group
*/

View File

@ -0,0 +1,123 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_sub_q7.c
*
* Description: Q7 vector subtraction.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicSub
* @{
*/
/**
* @brief Q7 vector subtraction.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
*/
void arm_sub_q7(
q7_t * pSrcA,
q7_t * pSrcB,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the results in the destination buffer 4 samples at a time. */
*__SIMD32(pDst)++ = __QSUB8(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the result in the destination buffer. */
*pDst++ = __SSAT(*pSrcA++ - *pSrcB++, 8);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the result in the destination buffer. */
*pDst++ = (q7_t) __SSAT((q15_t) * pSrcA++ - *pSrcB++, 8);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicSub group
*/

View File

@ -0,0 +1,144 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_common_tables.c
*
* Description: This file has common tables like Bitreverse, reciprocal etc which are used across different functions
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupTransforms
*/
/**
* @addtogroup CFFT_CIFFT
* @{
*/
/**
* \par
* Pseudo code for Generation of Bit reversal Table is
* \par
* <pre>for(l=1;l <= N/4;l++)
* {
* for(i=0;i<logN2;i++)
* {
* a[i]=l&(1<<i);
* }
* for(j=0; j<logN2; j++)
* {
* if (a[j]!=0)
* y[l]+=(1<<((logN2-1)-j));
* }
* y[l] = y[l] >> 1;
* } </pre>
* \par
* where N = 1024 logN2 = 10
* \par
* N is the maximum FFT Size supported
*/
/*
* @brief Table for bit reversal process
*/
const uint16_t armBitRevTable[256] = {
0x100, 0x80, 0x180, 0x40, 0x140, 0xc0, 0x1c0,
0x20, 0x120, 0xa0, 0x1a0, 0x60, 0x160, 0xe0,
0x1e0, 0x10, 0x110, 0x90, 0x190, 0x50, 0x150,
0xd0, 0x1d0, 0x30, 0x130, 0xb0, 0x1b0, 0x70,
0x170, 0xf0, 0x1f0, 0x8, 0x108, 0x88, 0x188,
0x48, 0x148, 0xc8, 0x1c8, 0x28, 0x128, 0xa8,
0x1a8, 0x68, 0x168, 0xe8, 0x1e8, 0x18, 0x118,
0x98, 0x198, 0x58, 0x158, 0xd8, 0x1d8, 0x38,
0x138, 0xb8, 0x1b8, 0x78, 0x178, 0xf8, 0x1f8,
0x4, 0x104, 0x84, 0x184, 0x44, 0x144, 0xc4,
0x1c4, 0x24, 0x124, 0xa4, 0x1a4, 0x64, 0x164,
0xe4, 0x1e4, 0x14, 0x114, 0x94, 0x194, 0x54,
0x154, 0xd4, 0x1d4, 0x34, 0x134, 0xb4, 0x1b4,
0x74, 0x174, 0xf4, 0x1f4, 0xc, 0x10c, 0x8c,
0x18c, 0x4c, 0x14c, 0xcc, 0x1cc, 0x2c, 0x12c,
0xac, 0x1ac, 0x6c, 0x16c, 0xec, 0x1ec, 0x1c,
0x11c, 0x9c, 0x19c, 0x5c, 0x15c, 0xdc, 0x1dc,
0x3c, 0x13c, 0xbc, 0x1bc, 0x7c, 0x17c, 0xfc,
0x1fc, 0x2, 0x102, 0x82, 0x182, 0x42, 0x142,
0xc2, 0x1c2, 0x22, 0x122, 0xa2, 0x1a2, 0x62,
0x162, 0xe2, 0x1e2, 0x12, 0x112, 0x92, 0x192,
0x52, 0x152, 0xd2, 0x1d2, 0x32, 0x132, 0xb2,
0x1b2, 0x72, 0x172, 0xf2, 0x1f2, 0xa, 0x10a,
0x8a, 0x18a, 0x4a, 0x14a, 0xca, 0x1ca, 0x2a,
0x12a, 0xaa, 0x1aa, 0x6a, 0x16a, 0xea, 0x1ea,
0x1a, 0x11a, 0x9a, 0x19a, 0x5a, 0x15a, 0xda,
0x1da, 0x3a, 0x13a, 0xba, 0x1ba, 0x7a, 0x17a,
0xfa, 0x1fa, 0x6, 0x106, 0x86, 0x186, 0x46,
0x146, 0xc6, 0x1c6, 0x26, 0x126, 0xa6, 0x1a6,
0x66, 0x166, 0xe6, 0x1e6, 0x16, 0x116, 0x96,
0x196, 0x56, 0x156, 0xd6, 0x1d6, 0x36, 0x136,
0xb6, 0x1b6, 0x76, 0x176, 0xf6, 0x1f6, 0xe,
0x10e, 0x8e, 0x18e, 0x4e, 0x14e, 0xce, 0x1ce,
0x2e, 0x12e, 0xae, 0x1ae, 0x6e, 0x16e, 0xee,
0x1ee, 0x1e, 0x11e, 0x9e, 0x19e, 0x5e, 0x15e,
0xde, 0x1de, 0x3e, 0x13e, 0xbe, 0x1be, 0x7e,
0x17e, 0xfe, 0x1fe, 0x1
};
/**
* @} end of CFFT_CIFFT group
*/
/*
* @brief Q15 table for reciprocal
*/
const q15_t armRecipTableQ15[64] = {
0x7F03, 0x7D13, 0x7B31, 0x795E, 0x7798, 0x75E0,
0x7434, 0x7294, 0x70FF, 0x6F76, 0x6DF6, 0x6C82,
0x6B16, 0x69B5, 0x685C, 0x670C, 0x65C4, 0x6484,
0x634C, 0x621C, 0x60F3, 0x5FD0, 0x5EB5, 0x5DA0,
0x5C91, 0x5B88, 0x5A85, 0x5988, 0x5890, 0x579E,
0x56B0, 0x55C8, 0x54E4, 0x5405, 0x532B, 0x5255,
0x5183, 0x50B6, 0x4FEC, 0x4F26, 0x4E64, 0x4DA6,
0x4CEC, 0x4C34, 0x4B81, 0x4AD0, 0x4A23, 0x4978,
0x48D1, 0x482D, 0x478C, 0x46ED, 0x4651, 0x45B8,
0x4521, 0x448D, 0x43FC, 0x436C, 0x42DF, 0x4255,
0x41CC, 0x4146, 0x40C2, 0x4040
};
/*
* @brief Q31 table for reciprocal
*/
const q31_t armRecipTableQ31[64] = {
0x7F03F03F, 0x7D137420, 0x7B31E739, 0x795E9F94, 0x7798FD29, 0x75E06928,
0x7434554D, 0x72943B4B, 0x70FF9C40, 0x6F760031, 0x6DF6F593, 0x6C8210E3,
0x6B16EC3A, 0x69B526F6, 0x685C655F, 0x670C505D, 0x65C4952D, 0x6484E519,
0x634CF53E, 0x621C7E4F, 0x60F33C61, 0x5FD0EEB3, 0x5EB55785, 0x5DA03BEB,
0x5C9163A1, 0x5B8898E6, 0x5A85A85A, 0x598860DF, 0x58909373, 0x579E1318,
0x56B0B4B8, 0x55C84F0B, 0x54E4BA80, 0x5405D124, 0x532B6E8F, 0x52556FD0,
0x5183B35A, 0x50B618F3, 0x4FEC81A2, 0x4F26CFA2, 0x4E64E64E, 0x4DA6AA1D,
0x4CEC008B, 0x4C34D010, 0x4B810016, 0x4AD078EF, 0x4A2323C4, 0x4978EA96,
0x48D1B827, 0x482D77FE, 0x478C1657, 0x46ED801D, 0x4651A2E5, 0x45B86CE2,
0x4521CCE1, 0x448DB244, 0x43FC0CFA, 0x436CCD78, 0x42DFE4B4, 0x42554426,
0x41CCDDB6, 0x4146A3C6, 0x40C28923, 0x40408102
};

View File

@ -0,0 +1,141 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_conj_f32.c
*
* Description: Floating-point complex conjugate.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup cmplx_conj Complex Conjugate
*
* Conjugates the elements of a complex data vector.
*
* The <code>pSrc</code> points to the source data and
* <code>pDst</code> points to the where the result should be written.
* <code>numSamples</code> specifies the number of complex samples
* and the data in each array is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* Each array has a total of <code>2*numSamples</code> values.
* The underlying algorithm is used:
*
* <pre>
* for(n=0; n<numSamples; n++) {
* pDst[(2*n)+0)] = pSrc[(2*n)+0]; // real part
* pDst[(2*n)+1)] = -pSrc[(2*n)+1]; // imag part
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup cmplx_conj
* @{
*/
/**
* @brief Floating-point complex conjugate.
* @param *pSrc points to the input vector
* @param *pDst points to the output vector
* @param numSamples number of complex samples in each vector
* @return none.
*/
void arm_cmplx_conj_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t numSamples)
{
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
*pDst++ = *pSrc++;
*pDst++ = -*pSrc++;
*pDst++ = *pSrc++;
*pDst++ = -*pSrc++;
*pDst++ = *pSrc++;
*pDst++ = -*pSrc++;
*pDst++ = *pSrc++;
*pDst++ = -*pSrc++;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
*pDst++ = *pSrc++;
*pDst++ = -*pSrc++;
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* realOut + j (imagOut) = realIn + j (-1) imagIn */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
*pDst++ = *pSrc++;
*pDst++ = -*pSrc++;
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_conj group
*/

View File

@ -0,0 +1,123 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_conj_q15.c
*
* Description: Q15 complex conjugate.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_conj
* @{
*/
/**
* @brief Q15 complex conjugate.
* @param *pSrc points to the input vector
* @param *pDst points to the output vector
* @param numSamples number of complex samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q15 value -1 (0x8000) will be saturated to the maximum allowable positive value 0x7FFF.
*/
void arm_cmplx_conj_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t numSamples)
{
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
*pDst++ = *pSrc++;
*pDst++ = __SSAT(-*pSrc++, 16);
*pDst++ = *pSrc++;
*pDst++ = __SSAT(-*pSrc++, 16);
*pDst++ = *pSrc++;
*pDst++ = __SSAT(-*pSrc++, 16);
*pDst++ = *pSrc++;
*pDst++ = __SSAT(-*pSrc++, 16);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
*pDst++ = *pSrc++;
*pDst++ = __SSAT(-*pSrc++, 16);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* realOut + j (imagOut) = realIn+ j (-1) imagIn */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
*pDst++ = *pSrc++;
*pDst++ = -*pSrc++;
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_conj group
*/

View File

@ -0,0 +1,131 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_conj_q31.c
*
* Description: Q31 complex conjugate.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_conj
* @{
*/
/**
* @brief Q31 complex conjugate.
* @param *pSrc points to the input vector
* @param *pDst points to the output vector
* @param numSamples number of complex samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q31 value -1 (0x80000000) will be saturated to the maximum allowable positive value 0x7FFFFFFF.
*/
void arm_cmplx_conj_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t numSamples)
{
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
q31_t in; /* Input value */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
/* Saturated to 0x7fffffff if the input is -1(0x80000000) */
*pDst++ = *pSrc++;
in = *pSrc++;
*pDst++ = (in == 0x80000000) ? 0x7fffffff : -in;
*pDst++ = *pSrc++;
in = *pSrc++;
*pDst++ = (in == 0x80000000) ? 0x7fffffff : -in;
*pDst++ = *pSrc++;
in = *pSrc++;
*pDst++ = (in == 0x80000000) ? 0x7fffffff : -in;
*pDst++ = *pSrc++;
in = *pSrc++;
*pDst++ = (in == 0x80000000) ? 0x7fffffff : -in;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
/* Saturated to 0x7fffffff if the input is -1(0x80000000) */
*pDst++ = *pSrc++;
in = *pSrc++;
*pDst++ = (in == 0x80000000) ? 0x7fffffff : -in;
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* realOut + j (imagOut) = realIn+ j (-1) imagIn */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
*pDst++ = *pSrc++;
*pDst++ = -*pSrc++;
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_conj group
*/

View File

@ -0,0 +1,157 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_dot_prod_f32.c
*
* Description: Floating-point complex dot product
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup cmplx_dot_prod Complex Dot Product
*
* Computes the dot product of two complex vectors.
* The vectors are multiplied element-by-element and then summed.
*
* The <code>pSrcA</code> points to the first complex input vector and
* <code>pSrcB</code> points to the second complex input vector.
* <code>numSamples</code> specifies the number of complex samples
* and the data in each array is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* Each array has a total of <code>2*numSamples</code> values.
*
* The underlying algorithm is used:
* <pre>
* realResult=0;
* imagResult=0;
* for(n=0; n<numSamples; n++) {
* realResult += pSrcA[(2*n)+0]*pSrcB[(2*n)+0] - pSrcA[(2*n)+1]*pSrcB[(2*n)+1];
* imagResult += pSrcA[(2*n)+0]*pSrcB[(2*n)+1] + pSrcA[(2*n)+1]*pSrcB[(2*n)+0];
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup cmplx_dot_prod
* @{
*/
/**
* @brief Floating-point complex dot product
* @param *pSrcA points to the first input vector
* @param *pSrcB points to the second input vector
* @param numSamples number of complex samples in each vector
* @param *realResult real part of the result returned here
* @param *imagResult imaginary part of the result returned here
* @return none.
*/
void arm_cmplx_dot_prod_f32(
float32_t * pSrcA,
float32_t * pSrcB,
uint32_t numSamples,
float32_t * realResult,
float32_t * imagResult)
{
float32_t real_sum = 0.0f, imag_sum = 0.0f; /* Temporary result storage */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += (*pSrcA++) * (*pSrcB++);
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += (*pSrcA++) * (*pSrcB++);
real_sum += (*pSrcA++) * (*pSrcB++);
imag_sum += (*pSrcA++) * (*pSrcB++);
real_sum += (*pSrcA++) * (*pSrcB++);
imag_sum += (*pSrcA++) * (*pSrcB++);
real_sum += (*pSrcA++) * (*pSrcB++);
imag_sum += (*pSrcA++) * (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += (*pSrcA++) * (*pSrcB++);
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += (*pSrcA++) * (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += (*pSrcA++) * (*pSrcB++);
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += (*pSrcA++) * (*pSrcB++);
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
/* Store the real and imaginary results in the destination buffers */
*realResult = real_sum;
*imagResult = imag_sum;
}
/**
* @} end of cmplx_dot_prod group
*/

View File

@ -0,0 +1,141 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_dot_prod_q15.c
*
* Description: Processing function for the Q15 Complex Dot product
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_dot_prod
* @{
*/
/**
* @brief Q15 complex dot product
* @param *pSrcA points to the first input vector
* @param *pSrcB points to the second input vector
* @param numSamples number of complex samples in each vector
* @param *realResult real part of the result returned here
* @param *imagResult imaginary part of the result returned here
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using an internal 64-bit accumulator.
* The intermediate 1.15 by 1.15 multiplications are performed with full precision and yield a 2.30 result.
* These are accumulated in a 64-bit accumulator with 34.30 precision.
* As a final step, the accumulators are converted to 8.24 format.
* The return results <code>realResult</code> and <code>imagResult</code> are in 8.24 format.
*/
void arm_cmplx_dot_prod_q15(
q15_t * pSrcA,
q15_t * pSrcB,
uint32_t numSamples,
q31_t * realResult,
q31_t * imagResult)
{
q63_t real_sum = 0, imag_sum = 0; /* Temporary result storage */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += ((q31_t) * pSrcA++ * *pSrcB++);
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += ((q31_t) * pSrcA++ * *pSrcB++);
real_sum += ((q31_t) * pSrcA++ * *pSrcB++);
imag_sum += ((q31_t) * pSrcA++ * *pSrcB++);
real_sum += ((q31_t) * pSrcA++ * *pSrcB++);
imag_sum += ((q31_t) * pSrcA++ * *pSrcB++);
real_sum += ((q31_t) * pSrcA++ * *pSrcB++);
imag_sum += ((q31_t) * pSrcA++ * *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += ((q31_t) * pSrcA++ * *pSrcB++);
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += ((q31_t) * pSrcA++ * *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += ((q31_t) * pSrcA++ * *pSrcB++);
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += ((q31_t) * pSrcA++ * *pSrcB++);
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
/* Store the real and imaginary results in 8.24 format */
/* Convert real data in 34.30 to 8.24 by 6 right shifts */
*realResult = (q31_t) (real_sum) >> 6;
/* Convert imaginary data in 34.30 to 8.24 by 6 right shifts */
*imagResult = (q31_t) (imag_sum) >> 6;
}
/**
* @} end of cmplx_dot_prod group
*/

View File

@ -0,0 +1,142 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_dot_prod_q31.c
*
* Description: Q31 complex dot product
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_dot_prod
* @{
*/
/**
* @brief Q31 complex dot product
* @param *pSrcA points to the first input vector
* @param *pSrcB points to the second input vector
* @param numSamples number of complex samples in each vector
* @param *realResult real part of the result returned here
* @param *imagResult imaginary part of the result returned here
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using an internal 64-bit accumulator.
* The intermediate 1.31 by 1.31 multiplications are performed with 64-bit precision and then shifted to 16.48 format.
* The internal real and imaginary accumulators are in 16.48 format and provide 15 guard bits.
* Additions are nonsaturating and no overflow will occur as long as <code>numSamples</code> is less than 32768.
* The return results <code>realResult</code> and <code>imagResult</code> are in 16.48 format.
* Input down scaling is not required.
*/
void arm_cmplx_dot_prod_q31(
q31_t * pSrcA,
q31_t * pSrcB,
uint32_t numSamples,
q63_t * realResult,
q63_t * imagResult)
{
q63_t real_sum = 0, imag_sum = 0; /* Temporary result storage */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
/* Convert real data in 2.62 to 16.48 by 14 right shifts */
real_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
/* Convert imag data in 2.62 to 16.48 by 14 right shifts */
imag_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
real_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
imag_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
real_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
imag_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
real_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
imag_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* outReal = realA[0]* realB[0] + realA[2]* realB[2] + realA[4]* realB[4] + .....+ realA[numSamples-2]* realB[numSamples-2] */
real_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
/* outImag = imagA[1]* imagB[1] + imagA[3]* imagB[3] + imagA[5]* imagB[5] + .....+ imagA[numSamples-1]* imagB[numSamples-1] */
imag_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
/* Store the real and imaginary results in 16.48 format */
*realResult = real_sum;
*imagResult = imag_sum;
}
/**
* @} end of cmplx_dot_prod group
*/

View File

@ -0,0 +1,154 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_f32.c
*
* Description: Floating-point complex magnitude.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup cmplx_mag Complex Magnitude
*
* Computes the magnitude of the elements of a complex data vector.
*
* The <code>pSrc</code> points to the source data and
* <code>pDst</code> points to the where the result should be written.
* <code>numSamples</code> specifies the number of complex samples
* in the input array and the data is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* The input array has a total of <code>2*numSamples</code> values;
* the output array has a total of <code>numSamples</code> values.
* The underlying algorithm is used:
*
* <pre>
* for(n=0; n<numSamples; n++) {
* pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2);
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup cmplx_mag
* @{
*/
/**
* @brief Floating-point complex magnitude.
* @param[in] *pSrc points to complex input buffer
* @param[out] *pDst points to real output buffer
* @param[in] numSamples number of complex samples in the input vector
* @return none.
*
*/
void arm_cmplx_mag_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t numSamples)
{
float32_t realIn, imagIn; /* Temporary variables to hold input values */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
realIn = *pSrc++;
imagIn = *pSrc++;
/* store the result in the destination buffer. */
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
realIn = *pSrc++;
imagIn = *pSrc++;
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
realIn = *pSrc++;
imagIn = *pSrc++;
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
realIn = *pSrc++;
imagIn = *pSrc++;
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
realIn = *pSrc++;
imagIn = *pSrc++;
/* store the result in the destination buffer. */
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* out = sqrt((real * real) + (imag * imag)) */
realIn = *pSrc++;
imagIn = *pSrc++;
/* store the result in the destination buffer. */
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_mag group
*/

View File

@ -0,0 +1,153 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_q15.c
*
* Description: Q15 complex magnitude.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_mag
* @{
*/
/**
* @brief Q15 complex magnitude
* @param *pSrc points to the complex input vector
* @param *pDst points to the real output vector
* @param numSamples number of complex samples in the input vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function implements 1.15 by 1.15 multiplications and finally output is converted into 2.14 format.
*/
void arm_cmplx_mag_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t numSamples)
{
q15_t real, imag; /* Temporary variables to hold input values */
q31_t acc0, acc1; /* Accumulators */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
acc0 = __SMUAD(real, real);
acc1 = __SMUAD(imag, imag);
/* store the result in 2.14 format in the destination buffer. */
arm_sqrt_q15((q15_t) (((q63_t) acc0 + acc1) >> 17), pDst++);
real = *pSrc++;
imag = *pSrc++;
acc0 = __SMUAD(real, real);
acc1 = __SMUAD(imag, imag);
/* store the result in 2.14 format in the destination buffer. */
arm_sqrt_q15((q15_t) (((q63_t) acc0 + acc1) >> 17), pDst++);
real = *pSrc++;
imag = *pSrc++;
acc0 = __SMUAD(real, real);
acc1 = __SMUAD(imag, imag);
/* store the result in 2.14 format in the destination buffer. */
arm_sqrt_q15((q15_t) (((q63_t) acc0 + acc1) >> 17), pDst++);
real = *pSrc++;
imag = *pSrc++;
acc0 = __SMUAD(real, real);
acc1 = __SMUAD(imag, imag);
/* store the result in 2.14 format in the destination buffer. */
arm_sqrt_q15((q15_t) (((q63_t) acc0 + acc1) >> 17), pDst++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
acc0 = __SMUAD(real, real);
acc1 = __SMUAD(imag, imag);
/* store the result in 2.14 format in the destination buffer. */
arm_sqrt_q15((q15_t) (((q63_t) acc0 + acc1) >> 17), pDst++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* out = sqrt(real * real + imag * imag) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (real * real);
acc1 = (imag * imag);
/* store the result in 2.14 format in the destination buffer. */
arm_sqrt_q15((q15_t) (((q63_t) acc0 + acc1) >> 17), pDst++);
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_mag group
*/

View File

@ -0,0 +1,151 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_q31.c
*
* Description: Q31 complex magnitude
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_mag
* @{
*/
/**
* @brief Q31 complex magnitude
* @param *pSrc points to the complex input vector
* @param *pDst points to the real output vector
* @param numSamples number of complex samples in the input vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function implements 1.31 by 1.31 multiplications and finally output is converted into 2.30 format.
* Input down scaling is not required.
*/
void arm_cmplx_mag_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t numSamples)
{
q31_t real, imag; /* Temporary variables to hold input values */
q31_t acc0, acc1; /* Accumulators */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 2.30 format in the destination buffer. */
arm_sqrt_q31(acc0 + acc1, pDst++);
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 2.30 format in the destination buffer. */
arm_sqrt_q31(acc0 + acc1, pDst++);
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 2.30 format in the destination buffer. */
arm_sqrt_q31(acc0 + acc1, pDst++);
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 2.30 format in the destination buffer. */
arm_sqrt_q31(acc0 + acc1, pDst++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 2.30 format in the destination buffer. */
arm_sqrt_q31(acc0 + acc1, pDst++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* out = sqrt((real * real) + (imag * imag)) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 2.30 format in the destination buffer. */
arm_sqrt_q31(acc0 + acc1, pDst++);
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_mag group
*/

View File

@ -0,0 +1,155 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_squared_f32.c
*
* Description: Floating-point complex magnitude squared.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup cmplx_mag_squared Complex Magnitude Squared
*
* Computes the magnitude squared of the elements of a complex data vector.
*
* The <code>pSrc</code> points to the source data and
* <code>pDst</code> points to the where the result should be written.
* <code>numSamples</code> specifies the number of complex samples
* in the input array and the data is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* The input array has a total of <code>2*numSamples</code> values;
* the output array has a total of <code>numSamples</code> values.
*
* The underlying algorithm is used:
*
* <pre>
* for(n=0; n<numSamples; n++) {
* pDst[n] = pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2;
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup cmplx_mag_squared
* @{
*/
/**
* @brief Floating-point complex magnitude squared
* @param[in] *pSrc points to the complex input vector
* @param[out] *pDst points to the real output vector
* @param[in] numSamples number of complex samples in the input vector
* @return none.
*/
void arm_cmplx_mag_squared_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t numSamples)
{
float32_t real, imag; /* Temporary variables to store real and imaginary values */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
/* store the result in the destination buffer. */
*pDst++ = (real * real) + (imag * imag);
real = *pSrc++;
imag = *pSrc++;
*pDst++ = (real * real) + (imag * imag);
real = *pSrc++;
imag = *pSrc++;
*pDst++ = (real * real) + (imag * imag);
real = *pSrc++;
imag = *pSrc++;
*pDst++ = (real * real) + (imag * imag);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
/* store the result in the destination buffer. */
*pDst++ = (real * real) + (imag * imag);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* reading real and imaginary values */
real = *pSrc++;
imag = *pSrc++;
/* out = (real * real) + (imag * imag) */
/* store the result in the destination buffer. */
*pDst++ = (real * real) + (imag * imag);
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_mag_squared group
*/

View File

@ -0,0 +1,148 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_squared_q15.c
*
* Description: Q15 complex magnitude squared.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_mag_squared
* @{
*/
/**
* @brief Q15 complex magnitude squared
* @param *pSrc points to the complex input vector
* @param *pDst points to the real output vector
* @param numSamples number of complex samples in the input vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function implements 1.15 by 1.15 multiplications and finally output is converted into 3.13 format.
*/
void arm_cmplx_mag_squared_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t numSamples)
{
q15_t real, imag; /* Temporary variables to store real and imaginary values */
q31_t acc0, acc1; /* Accumulators */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
acc0 = __SMUAD(real, real);
acc1 = __SMUAD(imag, imag);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ = (q15_t) (((q63_t) acc0 + acc1) >> 17);
real = *pSrc++;
imag = *pSrc++;
acc0 = __SMUAD(real, real);
acc1 = __SMUAD(imag, imag);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ = (q15_t) (((q63_t) acc0 + acc1) >> 17);
real = *pSrc++;
imag = *pSrc++;
acc0 = __SMUAD(real, real);
acc1 = __SMUAD(imag, imag);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ = (q15_t) (((q63_t) acc0 + acc1) >> 17);
real = *pSrc++;
imag = *pSrc++;
acc0 = __SMUAD(real, real);
acc1 = __SMUAD(imag, imag);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ = (q15_t) (((q63_t) acc0 + acc1) >> 17);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
acc0 = __SMUAD(real, real);
acc1 = __SMUAD(imag, imag);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ = (q15_t) (((q63_t) acc0 + acc1) >> 17);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* out = ((real * real) + (imag * imag)) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (real * real);
acc1 = (imag * imag);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ = (q15_t) (((q63_t) acc0 + acc1) >> 17);
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_mag_squared group
*/

View File

@ -0,0 +1,150 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_squared_q31.c
*
* Description: Q31 complex magnitude squared.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_mag_squared
* @{
*/
/**
* @brief Q31 complex magnitude squared
* @param *pSrc points to the complex input vector
* @param *pDst points to the real output vector
* @param numSamples number of complex samples in the input vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function implements 1.31 by 1.31 multiplications and finally output is converted into 3.29 format.
* Input down scaling is not required.
*/
void arm_cmplx_mag_squared_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t numSamples)
{
q31_t real, imag; /* Temporary variables to store real and imaginary values */
q31_t acc0, acc1; /* Accumulators */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = acc0 + acc1;
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = acc0 + acc1;
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = acc0 + acc1;
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = acc0 + acc1;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = acc0 + acc1;
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* out = ((real * real) + (imag * imag)) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = acc0 + acc1;
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_mag_squared group
*/

View File

@ -0,0 +1,180 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_cmplx_f32.c
*
* Description: Floating-point complex-by-complex multiplication
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup CmplxByCmplxMult Complex-by-Complex Multiplication
*
* Multiplies a complex vector by another complex vector and generates a complex result.
* The data in the complex arrays is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* The parameter <code>numSamples</code> represents the number of complex
* samples processed. The complex arrays have a total of <code>2*numSamples</code>
* real values.
*
* The underlying algorithm is used:
*
* <pre>
* for(n=0; n<numSamples; n++) {
* pDst[(2*n)+0] = pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1];
* pDst[(2*n)+1] = pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0];
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup CmplxByCmplxMult
* @{
*/
/**
* @brief Floating-point complex-by-complex multiplication
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] numSamples number of complex samples in each vector
* @return none.
*/
void arm_cmplx_mult_cmplx_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t numSamples)
{
float32_t a, b, c, d; /* Temporary variables to store real and imaginary values */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counters */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in the destination buffer. */
*pDst++ = (a * c) - (b * d);
*pDst++ = (a * d) + (b * c);
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
*pDst++ = (a * c) - (b * d);
*pDst++ = (a * d) + (b * c);
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
*pDst++ = (a * c) - (b * d);
*pDst++ = (a * d) + (b * c);
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
*pDst++ = (a * c) - (b * d);
*pDst++ = (a * d) + (b * c);
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in the destination buffer. */
*pDst++ = (a * c) - (b * d);
*pDst++ = (a * d) + (b * c);
/* Decrement the numSamples loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in the destination buffer. */
*pDst++ = (a * c) - (b * d);
*pDst++ = (a * d) + (b * c);
/* Decrement the numSamples loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of CmplxByCmplxMult group
*/

View File

@ -0,0 +1,182 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_cmplx_q15.c
*
* Description: Q15 complex-by-complex multiplication
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup CmplxByCmplxMult
* @{
*/
/**
* @brief Q15 complex-by-complex multiplication
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] numSamples number of complex samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function implements 1.15 by 1.15 multiplications and finally output is converted into 3.13 format.
*/
void arm_cmplx_mult_cmplx_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t numSamples)
{
q15_t a, b, c, d; /* Temporary variables to store real and imaginary values */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counters */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
/* Decrement the blockSize loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
/* Decrement the blockSize loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of CmplxByCmplxMult group
*/

View File

@ -0,0 +1,209 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_cmplx_q31.c
*
* Description: Q31 complex-by-complex multiplication
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup CmplxByCmplxMult
* @{
*/
/**
* @brief Q31 complex-by-complex multiplication
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] numSamples number of complex samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function implements 1.31 by 1.31 multiplications and finally output is converted into 3.29 format.
* Input down scaling is not required.
*/
void arm_cmplx_mult_cmplx_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t numSamples)
{
q31_t a, b, c, d; /* Temporary variables to store real and imaginary values */
uint32_t blkCnt; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the real result in 3.29 format in the destination buffer. */
*pDst++ = (q31_t) ((((q63_t) a * c) >> 33) - (((q63_t) b * d) >> 33));
/* store the imag result in 3.29 format in the destination buffer. */
*pDst++ = (q31_t) ((((q63_t) a * d) >> 33) + (((q63_t) b * c) >> 33));
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = (q31_t) ((((q63_t) a * c) >> 33) - (((q63_t) b * d) >> 33));
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = (q31_t) ((((q63_t) a * d) >> 33) + (((q63_t) b * c) >> 33));
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = (q31_t) ((((q63_t) a * c) >> 33) - (((q63_t) b * d) >> 33));
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = (q31_t) ((((q63_t) a * d) >> 33) + (((q63_t) b * c) >> 33));
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = (q31_t) ((((q63_t) a * c) >> 33) - (((q63_t) b * d) >> 33));
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = (q31_t) ((((q63_t) a * d) >> 33) + (((q63_t) b * c) >> 33));
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = (q31_t) ((((q63_t) a * c) >> 33) - (((q63_t) b * d) >> 33));
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = (q31_t) ((((q63_t) a * d) >> 33) + (((q63_t) b * c) >> 33));
/* Decrement the blockSize loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* loop Unrolling */
blkCnt = numSamples >> 1u;
/* First part of the processing with loop unrolling. Compute 2 outputs at a time.
** a second loop below computes the remaining 1 sample. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the real result in 3.29 format in the destination buffer. */
*pDst++ = (q31_t) ((((q63_t) a * c) >> 33) - (((q63_t) b * d) >> 33));
/* store the imag result in 3.29 format in the destination buffer. */
*pDst++ = (q31_t) ((((q63_t) a * d) >> 33) + (((q63_t) b * c) >> 33));
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = (q31_t) ((((q63_t) a * c) >> 33) - (((q63_t) b * d) >> 33));
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = (q31_t) ((((q63_t) a * d) >> 33) + (((q63_t) b * c) >> 33));
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 2, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x2u;
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = (q31_t) ((((q63_t) a * c) >> 33) - (((q63_t) b * d) >> 33));
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = (q31_t) ((((q63_t) a * d) >> 33) + (((q63_t) b * c) >> 33));
/* Decrement the blockSize loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of CmplxByCmplxMult group
*/

View File

@ -0,0 +1,157 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_real_f32.c
*
* Description: Floating-point complex by real multiplication
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup CmplxByRealMult Complex-by-Real Multiplication
*
* Multiplies a complex vector by a real vector and generates a complex result.
* The data in the complex arrays is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* The parameter <code>numSamples</code> represents the number of complex
* samples processed. The complex arrays have a total of <code>2*numSamples</code>
* real values while the real array has a total of <code>numSamples</code>
* real values.
*
* The underlying algorithm is used:
*
* <pre>
* for(n=0; n<numSamples; n++) {
* pCmplxDst[(2*n)+0] = pSrcCmplx[(2*n)+0] * pSrcReal[n];
* pCmplxDst[(2*n)+1] = pSrcCmplx[(2*n)+1] * pSrcReal[n];
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup CmplxByRealMult
* @{
*/
/**
* @brief Floating-point complex-by-real multiplication
* @param[in] *pSrcCmplx points to the complex input vector
* @param[in] *pSrcReal points to the real input vector
* @param[out] *pCmplxDst points to the complex output vector
* @param[in] numSamples number of samples in each vector
* @return none.
*/
void arm_cmplx_mult_real_f32(
float32_t * pSrcCmplx,
float32_t * pSrcReal,
float32_t * pCmplxDst,
uint32_t numSamples)
{
float32_t in; /* Temporary variable to store input value */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counters */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
in = *pSrcReal++;
/* store the result in the destination buffer. */
*pCmplxDst++ = (*pSrcCmplx++) * (in);
*pCmplxDst++ = (*pSrcCmplx++) * (in);
in = *pSrcReal++;
*pCmplxDst++ = (*pSrcCmplx++) * (in);
*pCmplxDst++ = (*pSrcCmplx++) * (in);
in = *pSrcReal++;
*pCmplxDst++ = (*pSrcCmplx++) * (in);
*pCmplxDst++ = (*pSrcCmplx++) * (in);
in = *pSrcReal++;
*pCmplxDst++ = (*pSrcCmplx++) * (in);
*pCmplxDst++ = (*pSrcCmplx++) * (in);
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
in = *pSrcReal++;
/* store the result in the destination buffer. */
*pCmplxDst++ = (*pSrcCmplx++) * (in);
*pCmplxDst++ = (*pSrcCmplx++) * (in);
/* Decrement the numSamples loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* realOut = realA * realB. */
/* imagOut = imagA * realB. */
in = *pSrcReal++;
/* store the result in the destination buffer. */
*pCmplxDst++ = (*pSrcCmplx++) * (in);
*pCmplxDst++ = (*pSrcCmplx++) * (in);
/* Decrement the numSamples loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of CmplxByRealMult group
*/

View File

@ -0,0 +1,151 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_real_q15.c
*
* Description: Q15 complex by real multiplication
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup CmplxByRealMult
* @{
*/
/**
* @brief Q15 complex-by-real multiplication
* @param[in] *pSrcCmplx points to the complex input vector
* @param[in] *pSrcReal points to the real input vector
* @param[out] *pCmplxDst points to the complex output vector
* @param[in] numSamples number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
*/
void arm_cmplx_mult_real_q15(
q15_t * pSrcCmplx,
q15_t * pSrcReal,
q15_t * pCmplxDst,
uint32_t numSamples)
{
q15_t in; /* Temporary variable to store input value */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counters */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
in = *pSrcReal++;
/* store the result in the destination buffer. */
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
in = *pSrcReal++;
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
in = *pSrcReal++;
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
in = *pSrcReal++;
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
in = *pSrcReal++;
/* store the result in the destination buffer. */
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
/* Decrement the numSamples loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* realOut = realA * realB. */
/* imagOut = imagA * realB. */
in = *pSrcReal++;
/* store the result in the destination buffer. */
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
/* Decrement the numSamples loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of CmplxByRealMult group
*/

View File

@ -0,0 +1,151 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_real_q31.c
*
* Description: Q31 complex by real multiplication
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup CmplxByRealMult
* @{
*/
/**
* @brief Q31 complex-by-real multiplication
* @param[in] *pSrcCmplx points to the complex input vector
* @param[in] *pSrcReal points to the real input vector
* @param[out] *pCmplxDst points to the complex output vector
* @param[in] numSamples number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range[0x80000000 0x7FFFFFFF] will be saturated.
*/
void arm_cmplx_mult_real_q31(
q31_t * pSrcCmplx,
q31_t * pSrcReal,
q31_t * pCmplxDst,
uint32_t numSamples)
{
q31_t in; /* Temporary variable to store input value */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counters */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
in = *pSrcReal++;
/* store the result in the destination buffer. */
*pCmplxDst++ =
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * in) >> 31);
*pCmplxDst++ =
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * in) >> 31);
in = *pSrcReal++;
*pCmplxDst++ =
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * in) >> 31);
*pCmplxDst++ =
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * in) >> 31);
in = *pSrcReal++;
*pCmplxDst++ =
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * in) >> 31);
*pCmplxDst++ =
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * in) >> 31);
in = *pSrcReal++;
*pCmplxDst++ =
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * in) >> 31);
*pCmplxDst++ =
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * in) >> 31);
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
in = *pSrcReal++;
/* store the result in the destination buffer. */
*pCmplxDst++ =
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * in) >> 31);
*pCmplxDst++ =
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * in) >> 31);
/* Decrement the numSamples loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* realOut = realA * realB. */
/* imagReal = imagA * realB. */
in = *pSrcReal++;
/* store the result in the destination buffer. */
*pCmplxDst++ =
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * in) >> 31);
*pCmplxDst++ =
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * in) >> 31);
/* Decrement the numSamples loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of CmplxByRealMult group
*/

View File

@ -0,0 +1,76 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_pid_init_f32.c
*
* Description: Floating-point PID Control initialization function
*
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @addtogroup PID
* @{
*/
/**
* @brief Initialization function for the floating-point PID Control.
* @param[in,out] *S points to an instance of the PID structure.
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state & 1 = reset the state.
* @return none.
* \par Description:
* \par
* The <code>resetStateFlag</code> specifies whether to set state to zero or not. \n
* The function computes the structure fields: <code>A0</code>, <code>A1</code> <code>A2</code>
* using the proportional gain( \c Kp), integral gain( \c Ki) and derivative gain( \c Kd)
* also sets the state variables to all zeros.
*/
void arm_pid_init_f32(
arm_pid_instance_f32 * S,
int32_t resetStateFlag)
{
/* Derived coefficient A0 */
S->A0 = S->Kp + S->Ki + S->Kd;
/* Derived coefficient A1 */
S->A1 = (-S->Kp) - ((float32_t) 2.0 * S->Kd);
/* Derived coefficient A2 */
S->A2 = S->Kd;
/* Check whether state needs reset or not */
if(resetStateFlag)
{
/* Clear the state buffer. The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(float32_t));
}
}
/**
* @} end of PID group
*/

View File

@ -0,0 +1,111 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_pid_init_q15.c
*
* Description: Q15 PID Control initialization function
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @addtogroup PID
* @{
*/
/**
* @details
* @param[in,out] *S points to an instance of the Q15 PID structure.
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
* @return none.
* \par Description:
* \par
* The <code>resetStateFlag</code> specifies whether to set state to zero or not. \n
* The function computes the structure fields: <code>A0</code>, <code>A1</code> <code>A2</code>
* using the proportional gain( \c Kp), integral gain( \c Ki) and derivative gain( \c Kd)
* also sets the state variables to all zeros.
*/
void arm_pid_init_q15(
arm_pid_instance_q15 * S,
int32_t resetStateFlag)
{
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* Derived coefficient A0 */
S->A0 = __QADD16(__QADD16(S->Kp, S->Ki), S->Kd);
/* Derived coefficients and pack into A1 */
#ifndef ARM_MATH_BIG_ENDIAN
S->A1 = __PKHBT(-__QADD16(__QADD16(S->Kd, S->Kd), S->Kp), S->Kd, 16);
#else
S->A1 = __PKHBT(S->Kd, -__QADD16(__QADD16(S->Kd, S->Kd), S->Kp), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Check whether state needs reset or not */
if(resetStateFlag)
{
/* Clear the state buffer. The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(q15_t));
}
#else
/* Run the below code for Cortex-M0 */
q31_t temp; /*to store the sum */
/* Derived coefficient A0 */
temp = S->Kp + S->Ki + S->Kd;
S->A0 = (q15_t) __SSAT(temp, 16);
/* Derived coefficients and pack into A1 */
temp = -(S->Kd + S->Kd + S->Kp);
S->A1 = (q15_t) __SSAT(temp, 16);
S->A2 = S->Kd;
/* Check whether state needs reset or not */
if(resetStateFlag)
{
/* Clear the state buffer. The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(q15_t));
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of PID group
*/

View File

@ -0,0 +1,96 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_pid_init_q31.c
*
* Description: Q31 PID Control initialization function
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @addtogroup PID
* @{
*/
/**
* @brief Initialization function for the Q31 PID Control.
* @param[in,out] *S points to an instance of the Q31 PID structure.
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
* @return none.
* \par Description:
* \par
* The <code>resetStateFlag</code> specifies whether to set state to zero or not. \n
* The function computes the structure fields: <code>A0</code>, <code>A1</code> <code>A2</code>
* using the proportional gain( \c Kp), integral gain( \c Ki) and derivative gain( \c Kd)
* also sets the state variables to all zeros.
*/
void arm_pid_init_q31(
arm_pid_instance_q31 * S,
int32_t resetStateFlag)
{
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* Derived coefficient A0 */
S->A0 = __QADD(__QADD(S->Kp, S->Ki), S->Kd);
/* Derived coefficient A1 */
S->A1 = -__QADD(__QADD(S->Kd, S->Kd), S->Kp);
#else
/* Run the below code for Cortex-M0 */
q31_t temp;
/* Derived coefficient A0 */
temp = clip_q63_to_q31((q63_t) S->Kp + S->Ki);
S->A0 = clip_q63_to_q31((q63_t) temp + S->Kd);
/* Derived coefficient A1 */
temp = clip_q63_to_q31((q63_t) S->Kd + S->Kd);
S->A1 = -clip_q63_to_q31((q63_t) temp + S->Kp);
#endif /* #ifndef ARM_MATH_CM0 */
/* Derived coefficient A2 */
S->A2 = S->Kd;
/* Check whether state needs reset or not */
if(resetStateFlag)
{
/* Clear the state buffer. The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(q31_t));
}
}
/**
* @} end of PID group
*/

View File

@ -0,0 +1,54 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_pid_reset_f32.c
*
* Description: Floating-point PID Control reset function
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @addtogroup PID
* @{
*/
/**
* @brief Reset function for the floating-point PID Control.
* @param[in] *S Instance pointer of PID control data structure.
* @return none.
* \par Description:
* The function resets the state buffer to zeros.
*/
void arm_pid_reset_f32(
arm_pid_instance_f32 * S)
{
/* Clear the state buffer. The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(float32_t));
}
/**
* @} end of PID group
*/

View File

@ -0,0 +1,53 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_pid_reset_q15.c
*
* Description: Q15 PID Control reset function
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @addtogroup PID
* @{
*/
/**
* @brief Reset function for the Q15 PID Control.
* @param[in] *S Instance pointer of PID control data structure.
* @return none.
* \par Description:
* The function resets the state buffer to zeros.
*/
void arm_pid_reset_q15(
arm_pid_instance_q15 * S)
{
/* Reset state to zero, The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(q15_t));
}
/**
* @} end of PID group
*/

View File

@ -0,0 +1,54 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_pid_reset_q31.c
*
* Description: Q31 PID Control reset function
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @addtogroup PID
* @{
*/
/**
* @brief Reset function for the Q31 PID Control.
* @param[in] *S Instance pointer of PID control data structure.
* @return none.
* \par Description:
* The function resets the state buffer to zeros.
*/
void arm_pid_reset_q31(
arm_pid_instance_q31 * S)
{
/* Clear the state buffer. The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(q31_t));
}
/**
* @} end of PID group
*/

View File

@ -0,0 +1,408 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_sin_cos_f32.c
*
* Description: Sine and Cosine calculation for floating-point values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupController
*/
/**
* @defgroup SinCos Sine Cosine
*
* Computes the trigonometric sine and cosine values using a combination of table lookup
* and linear interpolation.
* There are separate functions for Q31 and floating-point data types.
* The input to the floating-point version is in degrees while the
* fixed-point Q31 have a scaled input with the range
* [-1 1) mapping to [-180 180) degrees.
*
* The implementation is based on table lookup using 360 values together with linear interpolation.
* The steps used are:
* -# Calculation of the nearest integer table index.
* -# Compute the fractional portion (fract) of the input.
* -# Fetch the value corresponding to \c index from sine table to \c y0 and also value from \c index+1 to \c y1.
* -# Sine value is computed as <code> *psinVal = y0 + (fract * (y1 - y0))</code>.
* -# Fetch the value corresponding to \c index from cosine table to \c y0 and also value from \c index+1 to \c y1.
* -# Cosine value is computed as <code> *pcosVal = y0 + (fract * (y1 - y0))</code>.
*/
/**
* @addtogroup SinCos
* @{
*/
/**
* \par
* Cosine Table is generated from following loop
* <pre>for(i = 0; i < 360; i++)
* {
* cosTable[i]= cos((i-180) * PI/180.0);
* } </pre>
*/
static const float32_t cosTable[360] = {
-0.999847695156391270f, -0.999390827019095760f, -0.998629534754573830f,
-0.997564050259824200f, -0.996194698091745550f, -0.994521895368273290f,
-0.992546151641321980f, -0.990268068741570250f,
-0.987688340595137660f, -0.984807753012208020f, -0.981627183447663980f,
-0.978147600733805690f, -0.974370064785235250f, -0.970295726275996470f,
-0.965925826289068200f, -0.961261695938318670f,
-0.956304755963035440f, -0.951056516295153530f, -0.945518575599316740f,
-0.939692620785908320f, -0.933580426497201740f, -0.927183854566787310f,
-0.920504853452440150f, -0.913545457642600760f,
-0.906307787036649940f, -0.898794046299167040f, -0.891006524188367790f,
-0.882947592858926770f, -0.874619707139395740f, -0.866025403784438710f,
-0.857167300702112220f, -0.848048096156425960f,
-0.838670567945424160f, -0.829037572555041620f, -0.819152044288991580f,
-0.809016994374947340f, -0.798635510047292940f, -0.788010753606721900f,
-0.777145961456970680f, -0.766044443118977900f,
-0.754709580222772010f, -0.743144825477394130f, -0.731353701619170460f,
-0.719339800338651300f, -0.707106781186547460f, -0.694658370458997030f,
-0.681998360062498370f, -0.669130606358858240f,
-0.656059028990507500f, -0.642787609686539360f, -0.629320391049837280f,
-0.615661475325658290f, -0.601815023152048380f, -0.587785252292473030f,
-0.573576436351045830f, -0.559192903470746680f,
-0.544639035015027080f, -0.529919264233204790f, -0.515038074910054270f,
-0.499999999999999780f, -0.484809620246337000f, -0.469471562785890530f,
-0.453990499739546750f, -0.438371146789077510f,
-0.422618261740699330f, -0.406736643075800100f, -0.390731128489273600f,
-0.374606593415912070f, -0.358367949545300270f, -0.342020143325668710f,
-0.325568154457156420f, -0.309016994374947340f,
-0.292371704722736660f, -0.275637355816999050f, -0.258819045102520850f,
-0.241921895599667790f, -0.224951054343864810f, -0.207911690817759120f,
-0.190808995376544800f, -0.173648177666930300f,
-0.156434465040231040f, -0.139173100960065350f, -0.121869343405147370f,
-0.104528463267653330f, -0.087155742747658235f, -0.069756473744125330f,
-0.052335956242943620f, -0.034899496702500733f,
-0.017452406437283477f, 0.000000000000000061f, 0.017452406437283376f,
0.034899496702501080f, 0.052335956242943966f, 0.069756473744125455f,
0.087155742747658138f, 0.104528463267653460f,
0.121869343405147490f, 0.139173100960065690f, 0.156434465040230920f,
0.173648177666930410f, 0.190808995376544920f, 0.207911690817759450f,
0.224951054343864920f, 0.241921895599667900f,
0.258819045102520740f, 0.275637355816999160f, 0.292371704722736770f,
0.309016994374947450f, 0.325568154457156760f, 0.342020143325668820f,
0.358367949545300380f, 0.374606593415911960f,
0.390731128489273940f, 0.406736643075800210f, 0.422618261740699440f,
0.438371146789077460f, 0.453990499739546860f, 0.469471562785890860f,
0.484809620246337110f, 0.500000000000000110f,
0.515038074910054380f, 0.529919264233204900f, 0.544639035015027200f,
0.559192903470746790f, 0.573576436351046050f, 0.587785252292473140f,
0.601815023152048270f, 0.615661475325658290f,
0.629320391049837500f, 0.642787609686539360f, 0.656059028990507280f,
0.669130606358858240f, 0.681998360062498480f, 0.694658370458997370f,
0.707106781186547570f, 0.719339800338651190f,
0.731353701619170570f, 0.743144825477394240f, 0.754709580222772010f,
0.766044443118978010f, 0.777145961456970900f, 0.788010753606722010f,
0.798635510047292830f, 0.809016994374947450f,
0.819152044288991800f, 0.829037572555041620f, 0.838670567945424050f,
0.848048096156425960f, 0.857167300702112330f, 0.866025403784438710f,
0.874619707139395740f, 0.882947592858926990f,
0.891006524188367900f, 0.898794046299167040f, 0.906307787036649940f,
0.913545457642600870f, 0.920504853452440370f, 0.927183854566787420f,
0.933580426497201740f, 0.939692620785908430f,
0.945518575599316850f, 0.951056516295153530f, 0.956304755963035440f,
0.961261695938318890f, 0.965925826289068310f, 0.970295726275996470f,
0.974370064785235250f, 0.978147600733805690f,
0.981627183447663980f, 0.984807753012208020f, 0.987688340595137770f,
0.990268068741570360f, 0.992546151641321980f, 0.994521895368273290f,
0.996194698091745550f, 0.997564050259824200f,
0.998629534754573830f, 0.999390827019095760f, 0.999847695156391270f,
1.000000000000000000f, 0.999847695156391270f, 0.999390827019095760f,
0.998629534754573830f, 0.997564050259824200f,
0.996194698091745550f, 0.994521895368273290f, 0.992546151641321980f,
0.990268068741570360f, 0.987688340595137770f, 0.984807753012208020f,
0.981627183447663980f, 0.978147600733805690f,
0.974370064785235250f, 0.970295726275996470f, 0.965925826289068310f,
0.961261695938318890f, 0.956304755963035440f, 0.951056516295153530f,
0.945518575599316850f, 0.939692620785908430f,
0.933580426497201740f, 0.927183854566787420f, 0.920504853452440370f,
0.913545457642600870f, 0.906307787036649940f, 0.898794046299167040f,
0.891006524188367900f, 0.882947592858926990f,
0.874619707139395740f, 0.866025403784438710f, 0.857167300702112330f,
0.848048096156425960f, 0.838670567945424050f, 0.829037572555041620f,
0.819152044288991800f, 0.809016994374947450f,
0.798635510047292830f, 0.788010753606722010f, 0.777145961456970900f,
0.766044443118978010f, 0.754709580222772010f, 0.743144825477394240f,
0.731353701619170570f, 0.719339800338651190f,
0.707106781186547570f, 0.694658370458997370f, 0.681998360062498480f,
0.669130606358858240f, 0.656059028990507280f, 0.642787609686539360f,
0.629320391049837500f, 0.615661475325658290f,
0.601815023152048270f, 0.587785252292473140f, 0.573576436351046050f,
0.559192903470746790f, 0.544639035015027200f, 0.529919264233204900f,
0.515038074910054380f, 0.500000000000000110f,
0.484809620246337110f, 0.469471562785890860f, 0.453990499739546860f,
0.438371146789077460f, 0.422618261740699440f, 0.406736643075800210f,
0.390731128489273940f, 0.374606593415911960f,
0.358367949545300380f, 0.342020143325668820f, 0.325568154457156760f,
0.309016994374947450f, 0.292371704722736770f, 0.275637355816999160f,
0.258819045102520740f, 0.241921895599667900f,
0.224951054343864920f, 0.207911690817759450f, 0.190808995376544920f,
0.173648177666930410f, 0.156434465040230920f, 0.139173100960065690f,
0.121869343405147490f, 0.104528463267653460f,
0.087155742747658138f, 0.069756473744125455f, 0.052335956242943966f,
0.034899496702501080f, 0.017452406437283376f, 0.000000000000000061f,
-0.017452406437283477f, -0.034899496702500733f,
-0.052335956242943620f, -0.069756473744125330f, -0.087155742747658235f,
-0.104528463267653330f, -0.121869343405147370f, -0.139173100960065350f,
-0.156434465040231040f, -0.173648177666930300f,
-0.190808995376544800f, -0.207911690817759120f, -0.224951054343864810f,
-0.241921895599667790f, -0.258819045102520850f, -0.275637355816999050f,
-0.292371704722736660f, -0.309016994374947340f,
-0.325568154457156420f, -0.342020143325668710f, -0.358367949545300270f,
-0.374606593415912070f, -0.390731128489273600f, -0.406736643075800100f,
-0.422618261740699330f, -0.438371146789077510f,
-0.453990499739546750f, -0.469471562785890530f, -0.484809620246337000f,
-0.499999999999999780f, -0.515038074910054270f, -0.529919264233204790f,
-0.544639035015027080f, -0.559192903470746680f,
-0.573576436351045830f, -0.587785252292473030f, -0.601815023152048380f,
-0.615661475325658290f, -0.629320391049837280f, -0.642787609686539360f,
-0.656059028990507500f, -0.669130606358858240f,
-0.681998360062498370f, -0.694658370458997030f, -0.707106781186547460f,
-0.719339800338651300f, -0.731353701619170460f, -0.743144825477394130f,
-0.754709580222772010f, -0.766044443118977900f,
-0.777145961456970680f, -0.788010753606721900f, -0.798635510047292940f,
-0.809016994374947340f, -0.819152044288991580f, -0.829037572555041620f,
-0.838670567945424160f, -0.848048096156425960f,
-0.857167300702112220f, -0.866025403784438710f, -0.874619707139395740f,
-0.882947592858926770f, -0.891006524188367790f, -0.898794046299167040f,
-0.906307787036649940f, -0.913545457642600760f,
-0.920504853452440150f, -0.927183854566787310f, -0.933580426497201740f,
-0.939692620785908320f, -0.945518575599316740f, -0.951056516295153530f,
-0.956304755963035440f, -0.961261695938318670f,
-0.965925826289068200f, -0.970295726275996470f, -0.974370064785235250f,
-0.978147600733805690f, -0.981627183447663980f, -0.984807753012208020f,
-0.987688340595137660f, -0.990268068741570250f,
-0.992546151641321980f, -0.994521895368273290f, -0.996194698091745550f,
-0.997564050259824200f, -0.998629534754573830f, -0.999390827019095760f,
-0.999847695156391270f, -1.000000000000000000f
};
/**
* \par
* Sine Table is generated from following loop
* <pre>for(i = 0; i < 360; i++)
* {
* sinTable[i]= sin((i-180) * PI/180.0);
* } </pre>
*/
static const float32_t sinTable[360] = {
-0.017452406437283439f, -0.034899496702500699f, -0.052335956242943807f,
-0.069756473744125524f, -0.087155742747658638f, -0.104528463267653730f,
-0.121869343405147550f, -0.139173100960065740f,
-0.156434465040230980f, -0.173648177666930280f, -0.190808995376544970f,
-0.207911690817759310f, -0.224951054343864780f, -0.241921895599667730f,
-0.258819045102521020f, -0.275637355816999660f,
-0.292371704722737050f, -0.309016994374947510f, -0.325568154457156980f,
-0.342020143325668880f, -0.358367949545300210f, -0.374606593415912240f,
-0.390731128489274160f, -0.406736643075800430f,
-0.422618261740699500f, -0.438371146789077290f, -0.453990499739546860f,
-0.469471562785891080f, -0.484809620246337170f, -0.499999999999999940f,
-0.515038074910054380f, -0.529919264233204900f,
-0.544639035015026860f, -0.559192903470746900f, -0.573576436351046380f,
-0.587785252292473250f, -0.601815023152048160f, -0.615661475325658400f,
-0.629320391049837720f, -0.642787609686539470f,
-0.656059028990507280f, -0.669130606358858350f, -0.681998360062498590f,
-0.694658370458997140f, -0.707106781186547570f, -0.719339800338651410f,
-0.731353701619170570f, -0.743144825477394240f,
-0.754709580222771790f, -0.766044443118978010f, -0.777145961456971010f,
-0.788010753606722010f, -0.798635510047292720f, -0.809016994374947450f,
-0.819152044288992020f, -0.829037572555041740f,
-0.838670567945424050f, -0.848048096156426070f, -0.857167300702112330f,
-0.866025403784438710f, -0.874619707139395850f, -0.882947592858927100f,
-0.891006524188367900f, -0.898794046299166930f,
-0.906307787036650050f, -0.913545457642600980f, -0.920504853452440370f,
-0.927183854566787420f, -0.933580426497201740f, -0.939692620785908430f,
-0.945518575599316850f, -0.951056516295153640f,
-0.956304755963035550f, -0.961261695938318890f, -0.965925826289068310f,
-0.970295726275996470f, -0.974370064785235250f, -0.978147600733805690f,
-0.981627183447663980f, -0.984807753012208020f,
-0.987688340595137660f, -0.990268068741570360f, -0.992546151641322090f,
-0.994521895368273400f, -0.996194698091745550f, -0.997564050259824200f,
-0.998629534754573830f, -0.999390827019095760f,
-0.999847695156391270f, -1.000000000000000000f, -0.999847695156391270f,
-0.999390827019095760f, -0.998629534754573830f, -0.997564050259824200f,
-0.996194698091745550f, -0.994521895368273290f,
-0.992546151641321980f, -0.990268068741570250f, -0.987688340595137770f,
-0.984807753012208020f, -0.981627183447663980f, -0.978147600733805580f,
-0.974370064785235250f, -0.970295726275996470f,
-0.965925826289068310f, -0.961261695938318890f, -0.956304755963035440f,
-0.951056516295153530f, -0.945518575599316740f, -0.939692620785908320f,
-0.933580426497201740f, -0.927183854566787420f,
-0.920504853452440260f, -0.913545457642600870f, -0.906307787036649940f,
-0.898794046299167040f, -0.891006524188367790f, -0.882947592858926880f,
-0.874619707139395740f, -0.866025403784438600f,
-0.857167300702112220f, -0.848048096156426070f, -0.838670567945423940f,
-0.829037572555041740f, -0.819152044288991800f, -0.809016994374947450f,
-0.798635510047292830f, -0.788010753606722010f,
-0.777145961456970790f, -0.766044443118978010f, -0.754709580222772010f,
-0.743144825477394240f, -0.731353701619170460f, -0.719339800338651080f,
-0.707106781186547460f, -0.694658370458997250f,
-0.681998360062498480f, -0.669130606358858240f, -0.656059028990507160f,
-0.642787609686539250f, -0.629320391049837390f, -0.615661475325658180f,
-0.601815023152048270f, -0.587785252292473140f,
-0.573576436351046050f, -0.559192903470746900f, -0.544639035015027080f,
-0.529919264233204900f, -0.515038074910054160f, -0.499999999999999940f,
-0.484809620246337060f, -0.469471562785890810f,
-0.453990499739546750f, -0.438371146789077400f, -0.422618261740699440f,
-0.406736643075800150f, -0.390731128489273720f, -0.374606593415912010f,
-0.358367949545300270f, -0.342020143325668710f,
-0.325568154457156640f, -0.309016994374947400f, -0.292371704722736770f,
-0.275637355816999160f, -0.258819045102520740f, -0.241921895599667730f,
-0.224951054343865000f, -0.207911690817759310f,
-0.190808995376544800f, -0.173648177666930330f, -0.156434465040230870f,
-0.139173100960065440f, -0.121869343405147480f, -0.104528463267653460f,
-0.087155742747658166f, -0.069756473744125302f,
-0.052335956242943828f, -0.034899496702500969f, -0.017452406437283512f,
0.000000000000000000f, 0.017452406437283512f, 0.034899496702500969f,
0.052335956242943828f, 0.069756473744125302f,
0.087155742747658166f, 0.104528463267653460f, 0.121869343405147480f,
0.139173100960065440f, 0.156434465040230870f, 0.173648177666930330f,
0.190808995376544800f, 0.207911690817759310f,
0.224951054343865000f, 0.241921895599667730f, 0.258819045102520740f,
0.275637355816999160f, 0.292371704722736770f, 0.309016994374947400f,
0.325568154457156640f, 0.342020143325668710f,
0.358367949545300270f, 0.374606593415912010f, 0.390731128489273720f,
0.406736643075800150f, 0.422618261740699440f, 0.438371146789077400f,
0.453990499739546750f, 0.469471562785890810f,
0.484809620246337060f, 0.499999999999999940f, 0.515038074910054160f,
0.529919264233204900f, 0.544639035015027080f, 0.559192903470746900f,
0.573576436351046050f, 0.587785252292473140f,
0.601815023152048270f, 0.615661475325658180f, 0.629320391049837390f,
0.642787609686539250f, 0.656059028990507160f, 0.669130606358858240f,
0.681998360062498480f, 0.694658370458997250f,
0.707106781186547460f, 0.719339800338651080f, 0.731353701619170460f,
0.743144825477394240f, 0.754709580222772010f, 0.766044443118978010f,
0.777145961456970790f, 0.788010753606722010f,
0.798635510047292830f, 0.809016994374947450f, 0.819152044288991800f,
0.829037572555041740f, 0.838670567945423940f, 0.848048096156426070f,
0.857167300702112220f, 0.866025403784438600f,
0.874619707139395740f, 0.882947592858926880f, 0.891006524188367790f,
0.898794046299167040f, 0.906307787036649940f, 0.913545457642600870f,
0.920504853452440260f, 0.927183854566787420f,
0.933580426497201740f, 0.939692620785908320f, 0.945518575599316740f,
0.951056516295153530f, 0.956304755963035440f, 0.961261695938318890f,
0.965925826289068310f, 0.970295726275996470f,
0.974370064785235250f, 0.978147600733805580f, 0.981627183447663980f,
0.984807753012208020f, 0.987688340595137770f, 0.990268068741570250f,
0.992546151641321980f, 0.994521895368273290f,
0.996194698091745550f, 0.997564050259824200f, 0.998629534754573830f,
0.999390827019095760f, 0.999847695156391270f, 1.000000000000000000f,
0.999847695156391270f, 0.999390827019095760f,
0.998629534754573830f, 0.997564050259824200f, 0.996194698091745550f,
0.994521895368273400f, 0.992546151641322090f, 0.990268068741570360f,
0.987688340595137660f, 0.984807753012208020f,
0.981627183447663980f, 0.978147600733805690f, 0.974370064785235250f,
0.970295726275996470f, 0.965925826289068310f, 0.961261695938318890f,
0.956304755963035550f, 0.951056516295153640f,
0.945518575599316850f, 0.939692620785908430f, 0.933580426497201740f,
0.927183854566787420f, 0.920504853452440370f, 0.913545457642600980f,
0.906307787036650050f, 0.898794046299166930f,
0.891006524188367900f, 0.882947592858927100f, 0.874619707139395850f,
0.866025403784438710f, 0.857167300702112330f, 0.848048096156426070f,
0.838670567945424050f, 0.829037572555041740f,
0.819152044288992020f, 0.809016994374947450f, 0.798635510047292720f,
0.788010753606722010f, 0.777145961456971010f, 0.766044443118978010f,
0.754709580222771790f, 0.743144825477394240f,
0.731353701619170570f, 0.719339800338651410f, 0.707106781186547570f,
0.694658370458997140f, 0.681998360062498590f, 0.669130606358858350f,
0.656059028990507280f, 0.642787609686539470f,
0.629320391049837720f, 0.615661475325658400f, 0.601815023152048160f,
0.587785252292473250f, 0.573576436351046380f, 0.559192903470746900f,
0.544639035015026860f, 0.529919264233204900f,
0.515038074910054380f, 0.499999999999999940f, 0.484809620246337170f,
0.469471562785891080f, 0.453990499739546860f, 0.438371146789077290f,
0.422618261740699500f, 0.406736643075800430f,
0.390731128489274160f, 0.374606593415912240f, 0.358367949545300210f,
0.342020143325668880f, 0.325568154457156980f, 0.309016994374947510f,
0.292371704722737050f, 0.275637355816999660f,
0.258819045102521020f, 0.241921895599667730f, 0.224951054343864780f,
0.207911690817759310f, 0.190808995376544970f, 0.173648177666930280f,
0.156434465040230980f, 0.139173100960065740f,
0.121869343405147550f, 0.104528463267653730f, 0.087155742747658638f,
0.069756473744125524f, 0.052335956242943807f, 0.034899496702500699f,
0.017452406437283439f, 0.000000000000000122f
};
/**
* @brief Floating-point sin_cos function.
* @param[in] theta input value in degrees
* @param[out] *pSinVal points to the processed sine output.
* @param[out] *pCosVal points to the processed cos output.
* @return none.
*/
void arm_sin_cos_f32(
float32_t theta,
float32_t * pSinVal,
float32_t * pCosVal)
{
uint32_t i; /* Index for reading nearwst output values */
float32_t x1 = -179.0f; /* Initial input value */
float32_t y0, y1; /* nearest output values */
float32_t fract; /* fractional part of input */
/* Calculation of fractional part */
if(theta > 0.0f)
{
fract = theta - (float32_t) ((int32_t) theta);
}
else
{
fract = (theta - (float32_t) ((int32_t) theta)) + 1.0f;
}
/* index calculation for reading nearest output values */
i = (uint32_t) (theta - x1);
/* reading nearest sine output values */
y0 = sinTable[i];
y1 = sinTable[i + 1u];
/* Calculation of sine value */
*pSinVal = y0 + (fract * (y1 - y0));
/* reading nearest cosine output values */
y0 = cosTable[i];
y1 = cosTable[i + 1u];
/* Calculation of cosine value */
*pCosVal = y0 + (fract * (y1 - y0));
}
/**
* @} end of SinCos group
*/

View File

@ -0,0 +1,311 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_sin_cos_q31.c
*
* Description: Cosine & Sine calculation for Q31 values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupController
*/
/**
* @addtogroup SinCos
* @{
*/
/**
* \par
* Sine Table is generated from following loop
* <pre>for(i = 0; i < 360; i++)
* {
* sinTable[i]= sin((i-180) * PI/180.0);
* } </pre>
* Convert above coefficients to fixed point 1.31 format.
*/
static const int32_t sinTableQ31[360] = {
0x0, 0xfdc41e9b, 0xfb8869ce, 0xf94d0e2e, 0xf7123849, 0xf4d814a4, 0xf29ecfb2,
0xf06695da,
0xee2f9369, 0xebf9f498, 0xe9c5e582, 0xe7939223, 0xe5632654, 0xe334cdc9,
0xe108b40d, 0xdedf047d,
0xdcb7ea46, 0xda939061, 0xd8722192, 0xd653c860, 0xd438af17, 0xd220ffc0,
0xd00ce422, 0xcdfc85bb,
0xcbf00dbe, 0xc9e7a512, 0xc7e3744b, 0xc5e3a3a9, 0xc3e85b18, 0xc1f1c224,
0xc0000000, 0xbe133b7c,
0xbc2b9b05, 0xba4944a2, 0xb86c5df0, 0xb6950c1e, 0xb4c373ee, 0xb2f7b9af,
0xb1320139, 0xaf726def,
0xadb922b7, 0xac0641fb, 0xaa59eda4, 0xa8b4471a, 0xa7156f3c, 0xa57d8666,
0xa3ecac65, 0xa263007d,
0xa0e0a15f, 0x9f65ad2d, 0x9df24175, 0x9c867b2c, 0x9b2276b0, 0x99c64fc5,
0x98722192, 0x9726069c,
0x95e218c9, 0x94a6715d, 0x937328f5, 0x92485786, 0x9126145f, 0x900c7621,
0x8efb92c2, 0x8df37f8b,
0x8cf45113, 0x8bfe1b3f, 0x8b10f144, 0x8a2ce59f, 0x89520a1a, 0x88806fc4,
0x87b826f7, 0x86f93f50,
0x8643c7b3, 0x8597ce46, 0x84f56073, 0x845c8ae3, 0x83cd5982, 0x8347d77b,
0x82cc0f36, 0x825a0a5b,
0x81f1d1ce, 0x81936daf, 0x813ee55b, 0x80f43f69, 0x80b381ac, 0x807cb130,
0x804fd23a, 0x802ce84c,
0x8013f61d, 0x8004fda0, 0x80000000, 0x8004fda0, 0x8013f61d, 0x802ce84c,
0x804fd23a, 0x807cb130,
0x80b381ac, 0x80f43f69, 0x813ee55b, 0x81936daf, 0x81f1d1ce, 0x825a0a5b,
0x82cc0f36, 0x8347d77b,
0x83cd5982, 0x845c8ae3, 0x84f56073, 0x8597ce46, 0x8643c7b3, 0x86f93f50,
0x87b826f7, 0x88806fc4,
0x89520a1a, 0x8a2ce59f, 0x8b10f144, 0x8bfe1b3f, 0x8cf45113, 0x8df37f8b,
0x8efb92c2, 0x900c7621,
0x9126145f, 0x92485786, 0x937328f5, 0x94a6715d, 0x95e218c9, 0x9726069c,
0x98722192, 0x99c64fc5,
0x9b2276b0, 0x9c867b2c, 0x9df24175, 0x9f65ad2d, 0xa0e0a15f, 0xa263007d,
0xa3ecac65, 0xa57d8666,
0xa7156f3c, 0xa8b4471a, 0xaa59eda4, 0xac0641fb, 0xadb922b7, 0xaf726def,
0xb1320139, 0xb2f7b9af,
0xb4c373ee, 0xb6950c1e, 0xb86c5df0, 0xba4944a2, 0xbc2b9b05, 0xbe133b7c,
0xc0000000, 0xc1f1c224,
0xc3e85b18, 0xc5e3a3a9, 0xc7e3744b, 0xc9e7a512, 0xcbf00dbe, 0xcdfc85bb,
0xd00ce422, 0xd220ffc0,
0xd438af17, 0xd653c860, 0xd8722192, 0xda939061, 0xdcb7ea46, 0xdedf047d,
0xe108b40d, 0xe334cdc9,
0xe5632654, 0xe7939223, 0xe9c5e582, 0xebf9f498, 0xee2f9369, 0xf06695da,
0xf29ecfb2, 0xf4d814a4,
0xf7123849, 0xf94d0e2e, 0xfb8869ce, 0xfdc41e9b, 0x0, 0x23be165, 0x4779632,
0x6b2f1d2,
0x8edc7b7, 0xb27eb5c, 0xd61304e, 0xf996a26, 0x11d06c97, 0x14060b68,
0x163a1a7e, 0x186c6ddd,
0x1a9cd9ac, 0x1ccb3237, 0x1ef74bf3, 0x2120fb83, 0x234815ba, 0x256c6f9f,
0x278dde6e, 0x29ac37a0,
0x2bc750e9, 0x2ddf0040, 0x2ff31bde, 0x32037a45, 0x340ff242, 0x36185aee,
0x381c8bb5, 0x3a1c5c57,
0x3c17a4e8, 0x3e0e3ddc, 0x40000000, 0x41ecc484, 0x43d464fb, 0x45b6bb5e,
0x4793a210, 0x496af3e2,
0x4b3c8c12, 0x4d084651, 0x4ecdfec7, 0x508d9211, 0x5246dd49, 0x53f9be05,
0x55a6125c, 0x574bb8e6,
0x58ea90c4, 0x5a82799a, 0x5c13539b, 0x5d9cff83, 0x5f1f5ea1, 0x609a52d3,
0x620dbe8b, 0x637984d4,
0x64dd8950, 0x6639b03b, 0x678dde6e, 0x68d9f964, 0x6a1de737, 0x6b598ea3,
0x6c8cd70b, 0x6db7a87a,
0x6ed9eba1, 0x6ff389df, 0x71046d3e, 0x720c8075, 0x730baeed, 0x7401e4c1,
0x74ef0ebc, 0x75d31a61,
0x76adf5e6, 0x777f903c, 0x7847d909, 0x7906c0b0, 0x79bc384d, 0x7a6831ba,
0x7b0a9f8d, 0x7ba3751d,
0x7c32a67e, 0x7cb82885, 0x7d33f0ca, 0x7da5f5a5, 0x7e0e2e32, 0x7e6c9251,
0x7ec11aa5, 0x7f0bc097,
0x7f4c7e54, 0x7f834ed0, 0x7fb02dc6, 0x7fd317b4, 0x7fec09e3, 0x7ffb0260,
0x7fffffff, 0x7ffb0260,
0x7fec09e3, 0x7fd317b4, 0x7fb02dc6, 0x7f834ed0, 0x7f4c7e54, 0x7f0bc097,
0x7ec11aa5, 0x7e6c9251,
0x7e0e2e32, 0x7da5f5a5, 0x7d33f0ca, 0x7cb82885, 0x7c32a67e, 0x7ba3751d,
0x7b0a9f8d, 0x7a6831ba,
0x79bc384d, 0x7906c0b0, 0x7847d909, 0x777f903c, 0x76adf5e6, 0x75d31a61,
0x74ef0ebc, 0x7401e4c1,
0x730baeed, 0x720c8075, 0x71046d3e, 0x6ff389df, 0x6ed9eba1, 0x6db7a87a,
0x6c8cd70b, 0x6b598ea3,
0x6a1de737, 0x68d9f964, 0x678dde6e, 0x6639b03b, 0x64dd8950, 0x637984d4,
0x620dbe8b, 0x609a52d3,
0x5f1f5ea1, 0x5d9cff83, 0x5c13539b, 0x5a82799a, 0x58ea90c4, 0x574bb8e6,
0x55a6125c, 0x53f9be05,
0x5246dd49, 0x508d9211, 0x4ecdfec7, 0x4d084651, 0x4b3c8c12, 0x496af3e2,
0x4793a210, 0x45b6bb5e,
0x43d464fb, 0x41ecc484, 0x40000000, 0x3e0e3ddc, 0x3c17a4e8, 0x3a1c5c57,
0x381c8bb5, 0x36185aee,
0x340ff242, 0x32037a45, 0x2ff31bde, 0x2ddf0040, 0x2bc750e9, 0x29ac37a0,
0x278dde6e, 0x256c6f9f,
0x234815ba, 0x2120fb83, 0x1ef74bf3, 0x1ccb3237, 0x1a9cd9ac, 0x186c6ddd,
0x163a1a7e, 0x14060b68,
0x11d06c97, 0xf996a26, 0xd61304e, 0xb27eb5c, 0x8edc7b7, 0x6b2f1d2,
0x4779632, 0x23be165,
};
/**
* \par
* Cosine Table is generated from following loop
* <pre>for(i = 0; i < 360; i++)
* {
* cosTable[i]= cos((i-180) * PI/180.0);
* } </pre>
* \par
* Convert above coefficients to fixed point 1.31 format.
*/
static const int32_t cosTableQ31[360] = {
0x80000000, 0x8004fda0, 0x8013f61d, 0x802ce84c, 0x804fd23a, 0x807cb130,
0x80b381ac, 0x80f43f69,
0x813ee55b, 0x81936daf, 0x81f1d1ce, 0x825a0a5b, 0x82cc0f36, 0x8347d77b,
0x83cd5982, 0x845c8ae3,
0x84f56073, 0x8597ce46, 0x8643c7b3, 0x86f93f50, 0x87b826f7, 0x88806fc4,
0x89520a1a, 0x8a2ce59f,
0x8b10f144, 0x8bfe1b3f, 0x8cf45113, 0x8df37f8b, 0x8efb92c2, 0x900c7621,
0x9126145f, 0x92485786,
0x937328f5, 0x94a6715d, 0x95e218c9, 0x9726069c, 0x98722192, 0x99c64fc5,
0x9b2276b0, 0x9c867b2c,
0x9df24175, 0x9f65ad2d, 0xa0e0a15f, 0xa263007d, 0xa3ecac65, 0xa57d8666,
0xa7156f3c, 0xa8b4471a,
0xaa59eda4, 0xac0641fb, 0xadb922b7, 0xaf726def, 0xb1320139, 0xb2f7b9af,
0xb4c373ee, 0xb6950c1e,
0xb86c5df0, 0xba4944a2, 0xbc2b9b05, 0xbe133b7c, 0xc0000000, 0xc1f1c224,
0xc3e85b18, 0xc5e3a3a9,
0xc7e3744b, 0xc9e7a512, 0xcbf00dbe, 0xcdfc85bb, 0xd00ce422, 0xd220ffc0,
0xd438af17, 0xd653c860,
0xd8722192, 0xda939061, 0xdcb7ea46, 0xdedf047d, 0xe108b40d, 0xe334cdc9,
0xe5632654, 0xe7939223,
0xe9c5e582, 0xebf9f498, 0xee2f9369, 0xf06695da, 0xf29ecfb2, 0xf4d814a4,
0xf7123849, 0xf94d0e2e,
0xfb8869ce, 0xfdc41e9b, 0x0, 0x23be165, 0x4779632, 0x6b2f1d2, 0x8edc7b7,
0xb27eb5c,
0xd61304e, 0xf996a26, 0x11d06c97, 0x14060b68, 0x163a1a7e, 0x186c6ddd,
0x1a9cd9ac, 0x1ccb3237,
0x1ef74bf3, 0x2120fb83, 0x234815ba, 0x256c6f9f, 0x278dde6e, 0x29ac37a0,
0x2bc750e9, 0x2ddf0040,
0x2ff31bde, 0x32037a45, 0x340ff242, 0x36185aee, 0x381c8bb5, 0x3a1c5c57,
0x3c17a4e8, 0x3e0e3ddc,
0x40000000, 0x41ecc484, 0x43d464fb, 0x45b6bb5e, 0x4793a210, 0x496af3e2,
0x4b3c8c12, 0x4d084651,
0x4ecdfec7, 0x508d9211, 0x5246dd49, 0x53f9be05, 0x55a6125c, 0x574bb8e6,
0x58ea90c4, 0x5a82799a,
0x5c13539b, 0x5d9cff83, 0x5f1f5ea1, 0x609a52d3, 0x620dbe8b, 0x637984d4,
0x64dd8950, 0x6639b03b,
0x678dde6e, 0x68d9f964, 0x6a1de737, 0x6b598ea3, 0x6c8cd70b, 0x6db7a87a,
0x6ed9eba1, 0x6ff389df,
0x71046d3e, 0x720c8075, 0x730baeed, 0x7401e4c1, 0x74ef0ebc, 0x75d31a61,
0x76adf5e6, 0x777f903c,
0x7847d909, 0x7906c0b0, 0x79bc384d, 0x7a6831ba, 0x7b0a9f8d, 0x7ba3751d,
0x7c32a67e, 0x7cb82885,
0x7d33f0ca, 0x7da5f5a5, 0x7e0e2e32, 0x7e6c9251, 0x7ec11aa5, 0x7f0bc097,
0x7f4c7e54, 0x7f834ed0,
0x7fb02dc6, 0x7fd317b4, 0x7fec09e3, 0x7ffb0260, 0x7fffffff, 0x7ffb0260,
0x7fec09e3, 0x7fd317b4,
0x7fb02dc6, 0x7f834ed0, 0x7f4c7e54, 0x7f0bc097, 0x7ec11aa5, 0x7e6c9251,
0x7e0e2e32, 0x7da5f5a5,
0x7d33f0ca, 0x7cb82885, 0x7c32a67e, 0x7ba3751d, 0x7b0a9f8d, 0x7a6831ba,
0x79bc384d, 0x7906c0b0,
0x7847d909, 0x777f903c, 0x76adf5e6, 0x75d31a61, 0x74ef0ebc, 0x7401e4c1,
0x730baeed, 0x720c8075,
0x71046d3e, 0x6ff389df, 0x6ed9eba1, 0x6db7a87a, 0x6c8cd70b, 0x6b598ea3,
0x6a1de737, 0x68d9f964,
0x678dde6e, 0x6639b03b, 0x64dd8950, 0x637984d4, 0x620dbe8b, 0x609a52d3,
0x5f1f5ea1, 0x5d9cff83,
0x5c13539b, 0x5a82799a, 0x58ea90c4, 0x574bb8e6, 0x55a6125c, 0x53f9be05,
0x5246dd49, 0x508d9211,
0x4ecdfec7, 0x4d084651, 0x4b3c8c12, 0x496af3e2, 0x4793a210, 0x45b6bb5e,
0x43d464fb, 0x41ecc484,
0x40000000, 0x3e0e3ddc, 0x3c17a4e8, 0x3a1c5c57, 0x381c8bb5, 0x36185aee,
0x340ff242, 0x32037a45,
0x2ff31bde, 0x2ddf0040, 0x2bc750e9, 0x29ac37a0, 0x278dde6e, 0x256c6f9f,
0x234815ba, 0x2120fb83,
0x1ef74bf3, 0x1ccb3237, 0x1a9cd9ac, 0x186c6ddd, 0x163a1a7e, 0x14060b68,
0x11d06c97, 0xf996a26,
0xd61304e, 0xb27eb5c, 0x8edc7b7, 0x6b2f1d2, 0x4779632, 0x23be165, 0x0,
0xfdc41e9b,
0xfb8869ce, 0xf94d0e2e, 0xf7123849, 0xf4d814a4, 0xf29ecfb2, 0xf06695da,
0xee2f9369, 0xebf9f498,
0xe9c5e582, 0xe7939223, 0xe5632654, 0xe334cdc9, 0xe108b40d, 0xdedf047d,
0xdcb7ea46, 0xda939061,
0xd8722192, 0xd653c860, 0xd438af17, 0xd220ffc0, 0xd00ce422, 0xcdfc85bb,
0xcbf00dbe, 0xc9e7a512,
0xc7e3744b, 0xc5e3a3a9, 0xc3e85b18, 0xc1f1c224, 0xc0000000, 0xbe133b7c,
0xbc2b9b05, 0xba4944a2,
0xb86c5df0, 0xb6950c1e, 0xb4c373ee, 0xb2f7b9af, 0xb1320139, 0xaf726def,
0xadb922b7, 0xac0641fb,
0xaa59eda4, 0xa8b4471a, 0xa7156f3c, 0xa57d8666, 0xa3ecac65, 0xa263007d,
0xa0e0a15f, 0x9f65ad2d,
0x9df24175, 0x9c867b2c, 0x9b2276b0, 0x99c64fc5, 0x98722192, 0x9726069c,
0x95e218c9, 0x94a6715d,
0x937328f5, 0x92485786, 0x9126145f, 0x900c7621, 0x8efb92c2, 0x8df37f8b,
0x8cf45113, 0x8bfe1b3f,
0x8b10f144, 0x8a2ce59f, 0x89520a1a, 0x88806fc4, 0x87b826f7, 0x86f93f50,
0x8643c7b3, 0x8597ce46,
0x84f56073, 0x845c8ae3, 0x83cd5982, 0x8347d77b, 0x82cc0f36, 0x825a0a5b,
0x81f1d1ce, 0x81936daf,
0x813ee55b, 0x80f43f69, 0x80b381ac, 0x807cb130, 0x804fd23a, 0x802ce84c,
0x8013f61d, 0x8004fda0,
};
/**
* @brief Q31 sin_cos function.
* @param[in] theta scaled input value in degrees
* @param[out] *pSinVal points to the processed sine output.
* @param[out] *pCosVal points to the processed cosine output.
* @return none.
*
* The Q31 input value is in the range [-1 +1) and is mapped to a degree value in the range [-180 180).
*
*/
void arm_sin_cos_q31(
q31_t theta,
q31_t * pSinVal,
q31_t * pCosVal)
{
q31_t x0; /* Nearest input value */
q31_t y0, y1; /* Nearest output values */
q31_t xSpacing = INPUT_SPACING; /* Spaing between inputs */
uint32_t i; /* Index */
q31_t oneByXSpacing; /* 1/ xSpacing value */
q31_t out; /* temporary variable */
uint32_t sign_bits; /* No.of sign bits */
uint32_t firstX = 0x80000000; /* First X value */
/* Calculation of index */
i = ((uint32_t) theta - firstX) / (uint32_t) xSpacing;
/* Calculation of first nearest input value */
x0 = (q31_t) firstX + ((q31_t) i * xSpacing);
/* Reading nearest sine output values from table */
y0 = sinTableQ31[i];
y1 = sinTableQ31[i + 1u];
/* Calculation of 1/(x1-x0) */
/* (x1-x0) is xSpacing which is fixed value */
sign_bits = 8u;
oneByXSpacing = 0x5A000000;
/* Calculation of (theta - x0)/(x1-x0) */
out =
(((q31_t) (((q63_t) (theta - x0) * oneByXSpacing) >> 32)) << sign_bits);
/* Calculation of y0 + (y1 - y0) * ((theta - x0)/(x1-x0)) */
*pSinVal = y0 + ((q31_t) (((q63_t) (y1 - y0) * out) >> 30));
/* Reading nearest cosine output values from table */
y0 = cosTableQ31[i];
y1 = cosTableQ31[i + 1u];
/* Calculation of y0 + (y1 - y0) * ((theta - x0)/(x1-x0)) */
*pCosVal = y0 + ((q31_t) (((q63_t) (y1 - y0) * out) >> 30));
}
/**
* @} end of SinCos group
*/

View File

@ -0,0 +1,254 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cos_f32.c
*
* Description: Fast cosine calculation for floating-point values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFastMath
*/
/**
* @defgroup cos Cosine
*
* Computes the trigonometric cosine function using a combination of table lookup
* and cubic interpolation. There are separate functions for
* Q15, Q31, and floating-point data types.
* The input to the floating-point version is in radians while the
* fixed-point Q15 and Q31 have a scaled input with the range
* [0 1) mapping to [0 2*pi).
*
* The implementation is based on table lookup using 256 values together with cubic interpolation.
* The steps used are:
* -# Calculation of the nearest integer table index
* -# Fetch the four table values a, b, c, and d
* -# Compute the fractional portion (fract) of the table index.
* -# Calculation of wa, wb, wc, wd
* -# The final result equals <code>a*wa + b*wb + c*wc + d*wd</code>
*
* where
* <pre>
* a=Table[index-1];
* b=Table[index+0];
* c=Table[index+1];
* d=Table[index+2];
* </pre>
* and
* <pre>
* wa=-(1/6)*fract.^3 + (1/2)*fract.^2 - (1/3)*fract;
* wb=(1/2)*fract.^3 - fract.^2 - (1/2)*fract + 1;
* wc=-(1/2)*fract.^3+(1/2)*fract.^2+fract;
* wd=(1/6)*fract.^3 - (1/6)*fract;
* </pre>
*/
/**
* @addtogroup cos
* @{
*/
/**
* \par
* <b>Example code for Generation of Cos Table:</b>
* tableSize = 256;
* <pre>for(n = -1; n < (tableSize + 1); n++)
* {
* cosTable[n+1]= cos(2*pi*n/tableSize);
* } </pre>
* where pi value is 3.14159265358979
*/
static const float32_t cosTable[259] = {
0.999698817729949950f, 1.000000000000000000f, 0.999698817729949950f,
0.998795449733734130f, 0.997290432453155520f, 0.995184719562530520f,
0.992479562759399410f, 0.989176511764526370f,
0.985277652740478520f, 0.980785250663757320f, 0.975702106952667240f,
0.970031261444091800f, 0.963776051998138430f, 0.956940352916717530f,
0.949528157711029050f, 0.941544055938720700f,
0.932992815971374510f, 0.923879504203796390f, 0.914209783077239990f,
0.903989315032958980f, 0.893224298954010010f, 0.881921291351318360f,
0.870086967945098880f, 0.857728600502014160f,
0.844853579998016360f, 0.831469595432281490f, 0.817584812641143800f,
0.803207516670227050f, 0.788346409797668460f, 0.773010432720184330f,
0.757208824157714840f, 0.740951120853424070f,
0.724247097969055180f, 0.707106769084930420f, 0.689540565013885500f,
0.671558976173400880f, 0.653172850608825680f, 0.634393274784088130f,
0.615231573581695560f, 0.595699310302734380f,
0.575808167457580570f, 0.555570244789123540f, 0.534997642040252690f,
0.514102756977081300f, 0.492898195981979370f, 0.471396744251251220f,
0.449611335992813110f, 0.427555084228515630f,
0.405241310596466060f, 0.382683426141738890f, 0.359895050525665280f,
0.336889863014221190f, 0.313681751489639280f, 0.290284663438797000f,
0.266712754964828490f, 0.242980182170867920f,
0.219101235270500180f, 0.195090323686599730f, 0.170961886644363400f,
0.146730467677116390f, 0.122410677373409270f, 0.098017141222953796f,
0.073564566671848297f, 0.049067676067352295f,
0.024541229009628296f, 0.000000000000000061f, -0.024541229009628296f,
-0.049067676067352295f, -0.073564566671848297f, -0.098017141222953796f,
-0.122410677373409270f, -0.146730467677116390f,
-0.170961886644363400f, -0.195090323686599730f, -0.219101235270500180f,
-0.242980182170867920f, -0.266712754964828490f, -0.290284663438797000f,
-0.313681751489639280f, -0.336889863014221190f,
-0.359895050525665280f, -0.382683426141738890f, -0.405241310596466060f,
-0.427555084228515630f, -0.449611335992813110f, -0.471396744251251220f,
-0.492898195981979370f, -0.514102756977081300f,
-0.534997642040252690f, -0.555570244789123540f, -0.575808167457580570f,
-0.595699310302734380f, -0.615231573581695560f, -0.634393274784088130f,
-0.653172850608825680f, -0.671558976173400880f,
-0.689540565013885500f, -0.707106769084930420f, -0.724247097969055180f,
-0.740951120853424070f, -0.757208824157714840f, -0.773010432720184330f,
-0.788346409797668460f, -0.803207516670227050f,
-0.817584812641143800f, -0.831469595432281490f, -0.844853579998016360f,
-0.857728600502014160f, -0.870086967945098880f, -0.881921291351318360f,
-0.893224298954010010f, -0.903989315032958980f,
-0.914209783077239990f, -0.923879504203796390f, -0.932992815971374510f,
-0.941544055938720700f, -0.949528157711029050f, -0.956940352916717530f,
-0.963776051998138430f, -0.970031261444091800f,
-0.975702106952667240f, -0.980785250663757320f, -0.985277652740478520f,
-0.989176511764526370f, -0.992479562759399410f, -0.995184719562530520f,
-0.997290432453155520f, -0.998795449733734130f,
-0.999698817729949950f, -1.000000000000000000f, -0.999698817729949950f,
-0.998795449733734130f, -0.997290432453155520f, -0.995184719562530520f,
-0.992479562759399410f, -0.989176511764526370f,
-0.985277652740478520f, -0.980785250663757320f, -0.975702106952667240f,
-0.970031261444091800f, -0.963776051998138430f, -0.956940352916717530f,
-0.949528157711029050f, -0.941544055938720700f,
-0.932992815971374510f, -0.923879504203796390f, -0.914209783077239990f,
-0.903989315032958980f, -0.893224298954010010f, -0.881921291351318360f,
-0.870086967945098880f, -0.857728600502014160f,
-0.844853579998016360f, -0.831469595432281490f, -0.817584812641143800f,
-0.803207516670227050f, -0.788346409797668460f, -0.773010432720184330f,
-0.757208824157714840f, -0.740951120853424070f,
-0.724247097969055180f, -0.707106769084930420f, -0.689540565013885500f,
-0.671558976173400880f, -0.653172850608825680f, -0.634393274784088130f,
-0.615231573581695560f, -0.595699310302734380f,
-0.575808167457580570f, -0.555570244789123540f, -0.534997642040252690f,
-0.514102756977081300f, -0.492898195981979370f, -0.471396744251251220f,
-0.449611335992813110f, -0.427555084228515630f,
-0.405241310596466060f, -0.382683426141738890f, -0.359895050525665280f,
-0.336889863014221190f, -0.313681751489639280f, -0.290284663438797000f,
-0.266712754964828490f, -0.242980182170867920f,
-0.219101235270500180f, -0.195090323686599730f, -0.170961886644363400f,
-0.146730467677116390f, -0.122410677373409270f, -0.098017141222953796f,
-0.073564566671848297f, -0.049067676067352295f,
-0.024541229009628296f, -0.000000000000000184f, 0.024541229009628296f,
0.049067676067352295f, 0.073564566671848297f, 0.098017141222953796f,
0.122410677373409270f, 0.146730467677116390f,
0.170961886644363400f, 0.195090323686599730f, 0.219101235270500180f,
0.242980182170867920f, 0.266712754964828490f, 0.290284663438797000f,
0.313681751489639280f, 0.336889863014221190f,
0.359895050525665280f, 0.382683426141738890f, 0.405241310596466060f,
0.427555084228515630f, 0.449611335992813110f, 0.471396744251251220f,
0.492898195981979370f, 0.514102756977081300f,
0.534997642040252690f, 0.555570244789123540f, 0.575808167457580570f,
0.595699310302734380f, 0.615231573581695560f, 0.634393274784088130f,
0.653172850608825680f, 0.671558976173400880f,
0.689540565013885500f, 0.707106769084930420f, 0.724247097969055180f,
0.740951120853424070f, 0.757208824157714840f, 0.773010432720184330f,
0.788346409797668460f, 0.803207516670227050f,
0.817584812641143800f, 0.831469595432281490f, 0.844853579998016360f,
0.857728600502014160f, 0.870086967945098880f, 0.881921291351318360f,
0.893224298954010010f, 0.903989315032958980f,
0.914209783077239990f, 0.923879504203796390f, 0.932992815971374510f,
0.941544055938720700f, 0.949528157711029050f, 0.956940352916717530f,
0.963776051998138430f, 0.970031261444091800f,
0.975702106952667240f, 0.980785250663757320f, 0.985277652740478520f,
0.989176511764526370f, 0.992479562759399410f, 0.995184719562530520f,
0.997290432453155520f, 0.998795449733734130f,
0.999698817729949950f, 1.000000000000000000f, 0.999698817729949950f
};
/**
* @brief Fast approximation to the trigonometric cosine function for floating-point data.
* @param[in] x input value in radians.
* @return cos(x).
*/
float32_t arm_cos_f32(
float32_t x)
{
float32_t cosVal, fract, in;
uint32_t index;
uint32_t tableSize = (uint32_t) TABLE_SIZE;
float32_t wa, wb, wc, wd;
float32_t a, b, c, d;
float32_t *tablePtr;
int32_t n;
/* input x is in radians */
/* Scale the input to [0 1] range from [0 2*PI] , divide input by 2*pi */
in = x * 0.159154943092f;
/* Calculation of floor value of input */
n = (int32_t) in;
/* Make negative values towards -infinity */
if(x < 0.0f)
{
n = n - 1;
}
/* Map input value to [0 1] */
in = in - (float32_t) n;
/* Calculation of index of the table */
index = (uint32_t) (tableSize * in);
/* fractional value calculation */
fract = ((float32_t) tableSize * in) - (float32_t) index;
/* Initialise table pointer */
tablePtr = (float32_t *) & cosTable[index];
/* Read four nearest values of input value from the cos table */
a = *tablePtr++;
b = *tablePtr++;
c = *tablePtr++;
d = *tablePtr++;
/* Cubic interpolation process */
wa = -(((0.166666667f) * fract) * (fract * fract)) +
(((0.5f) * (fract * fract)) - ((0.3333333333333f) * fract));
wb = ((((0.5f) * fract) * (fract * fract)) - (fract * fract)) +
(-((0.5f) * fract) + 1.0f);
wc = -(((0.5f) * fract) * (fract * fract)) +
(((0.5f) * (fract * fract)) + fract);
wd = (((0.166666667f) * fract) * (fract * fract)) -
((0.166666667f) * fract);
/* Calculate cos value */
cosVal = ((a * wa) + (b * wb)) + ((c * wc) + (d * wd));
/* Return the output value */
return (cosVal);
}
/**
* @} end of cos group
*/

View File

@ -0,0 +1,189 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cos_q15.c
*
* Description: Fast cosine calculation for Q15 values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFastMath
*/
/**
* @addtogroup cos
* @{
*/
/**
* \par
* Table Values are in Q15(1.15 Fixed point format) and generation is done in three steps
* \par
* First Generate cos values in floating point:
* tableSize = 256;
* <pre>for(n = -1; n < (tableSize + 1); n++)
* {
* cosTable[n+1]= cos(2*pi*n/tableSize);
* }</pre>
* where pi value is 3.14159265358979
* \par
* Secondly Convert Floating point to Q15(Fixed point):
* (cosTable[i] * pow(2, 15))
* \par
* Finally Rounding to nearest integer is done
* cosTable[i] += (cosTable[i] > 0 ? 0.5 :-0.5);
*/
static const q15_t cosTableQ15[259] = {
0x7ff6, 0x7fff, 0x7ff6, 0x7fd9, 0x7fa7, 0x7f62, 0x7f0a, 0x7e9d,
0x7e1e, 0x7d8a, 0x7ce4, 0x7c2a, 0x7b5d, 0x7a7d, 0x798a, 0x7885,
0x776c, 0x7642, 0x7505, 0x73b6, 0x7255, 0x70e3, 0x6f5f, 0x6dca,
0x6c24, 0x6a6e, 0x68a7, 0x66d0, 0x64e9, 0x62f2, 0x60ec, 0x5ed7,
0x5cb4, 0x5a82, 0x5843, 0x55f6, 0x539b, 0x5134, 0x4ec0, 0x4c40,
0x49b4, 0x471d, 0x447b, 0x41ce, 0x3f17, 0x3c57, 0x398d, 0x36ba,
0x33df, 0x30fc, 0x2e11, 0x2b1f, 0x2827, 0x2528, 0x2224, 0x1f1a,
0x1c0c, 0x18f9, 0x15e2, 0x12c8, 0xfab, 0xc8c, 0x96b, 0x648,
0x324, 0x0, 0xfcdc, 0xf9b8, 0xf695, 0xf374, 0xf055, 0xed38,
0xea1e, 0xe707, 0xe3f4, 0xe0e6, 0xdddc, 0xdad8, 0xd7d9, 0xd4e1,
0xd1ef, 0xcf04, 0xcc21, 0xc946, 0xc673, 0xc3a9, 0xc0e9, 0xbe32,
0xbb85, 0xb8e3, 0xb64c, 0xb3c0, 0xb140, 0xaecc, 0xac65, 0xaa0a,
0xa7bd, 0xa57e, 0xa34c, 0xa129, 0x9f14, 0x9d0e, 0x9b17, 0x9930,
0x9759, 0x9592, 0x93dc, 0x9236, 0x90a1, 0x8f1d, 0x8dab, 0x8c4a,
0x8afb, 0x89be, 0x8894, 0x877b, 0x8676, 0x8583, 0x84a3, 0x83d6,
0x831c, 0x8276, 0x81e2, 0x8163, 0x80f6, 0x809e, 0x8059, 0x8027,
0x800a, 0x8000, 0x800a, 0x8027, 0x8059, 0x809e, 0x80f6, 0x8163,
0x81e2, 0x8276, 0x831c, 0x83d6, 0x84a3, 0x8583, 0x8676, 0x877b,
0x8894, 0x89be, 0x8afb, 0x8c4a, 0x8dab, 0x8f1d, 0x90a1, 0x9236,
0x93dc, 0x9592, 0x9759, 0x9930, 0x9b17, 0x9d0e, 0x9f14, 0xa129,
0xa34c, 0xa57e, 0xa7bd, 0xaa0a, 0xac65, 0xaecc, 0xb140, 0xb3c0,
0xb64c, 0xb8e3, 0xbb85, 0xbe32, 0xc0e9, 0xc3a9, 0xc673, 0xc946,
0xcc21, 0xcf04, 0xd1ef, 0xd4e1, 0xd7d9, 0xdad8, 0xdddc, 0xe0e6,
0xe3f4, 0xe707, 0xea1e, 0xed38, 0xf055, 0xf374, 0xf695, 0xf9b8,
0xfcdc, 0x0, 0x324, 0x648, 0x96b, 0xc8c, 0xfab, 0x12c8,
0x15e2, 0x18f9, 0x1c0c, 0x1f1a, 0x2224, 0x2528, 0x2827, 0x2b1f,
0x2e11, 0x30fc, 0x33df, 0x36ba, 0x398d, 0x3c57, 0x3f17, 0x41ce,
0x447b, 0x471d, 0x49b4, 0x4c40, 0x4ec0, 0x5134, 0x539b, 0x55f6,
0x5843, 0x5a82, 0x5cb4, 0x5ed7, 0x60ec, 0x62f2, 0x64e9, 0x66d0,
0x68a7, 0x6a6e, 0x6c24, 0x6dca, 0x6f5f, 0x70e3, 0x7255, 0x73b6,
0x7505, 0x7642, 0x776c, 0x7885, 0x798a, 0x7a7d, 0x7b5d, 0x7c2a,
0x7ce4, 0x7d8a, 0x7e1e, 0x7e9d, 0x7f0a, 0x7f62, 0x7fa7, 0x7fd9,
0x7ff6, 0x7fff, 0x7ff6
};
/**
* @brief Fast approximation to the trigonometric cosine function for Q15 data.
* @param[in] x Scaled input value in radians.
* @return cos(x).
*
* The Q15 input value is in the range [0 +1) and is mapped to a radian value in the range [0 2*pi).
*/
q15_t arm_cos_q15(
q15_t x)
{
q31_t cosVal; /* Temporary variable for output */
q15_t *tablePtr; /* Pointer to table */
q15_t in, in2; /* Temporary variables for input */
q31_t wa, wb, wc, wd; /* Cubic interpolation coefficients */
q15_t a, b, c, d; /* Four nearest output values */
q15_t fract, fractCube, fractSquare; /* Variables for fractional value */
q15_t oneBy6 = 0x1555; /* Fixed point value of 1/6 */
q15_t tableSpacing = TABLE_SPACING_Q15; /* Table spacing */
int32_t index; /* Index variable */
in = x;
/* Calculate the nearest index */
index = (int32_t) in / tableSpacing;
/* Calculate the nearest value of input */
in2 = (q15_t) index *tableSpacing;
/* Calculation of fractional value */
fract = (in - in2) << 8;
/* fractSquare = fract * fract */
fractSquare = (q15_t) ((fract * fract) >> 15);
/* fractCube = fract * fract * fract */
fractCube = (q15_t) ((fractSquare * fract) >> 15);
/* Initialise table pointer */
tablePtr = (q15_t *) & cosTableQ15[index];
/* Cubic interpolation process */
/* Calculation of wa */
/* wa = -(oneBy6)*fractCube + (fractSquare >> 1u) - (0x2AAA)*fract; */
wa = (q31_t) oneBy6 *fractCube;
wa += (q31_t) 0x2AAA *fract;
wa = -(wa >> 15);
wa += (fractSquare >> 1u);
/* Read first nearest value of output from the cos table */
a = *tablePtr++;
/* cosVal = a * wa */
cosVal = a * wa;
/* Calculation of wb */
wb = (((fractCube >> 1u) - fractSquare) - (fract >> 1u)) + 0x7FFF;
/* Read second nearest value of output from the cos table */
b = *tablePtr++;
/* cosVal += b*wb */
cosVal += b * wb;
/* Calculation of wc */
wc = -(q31_t) fractCube + fractSquare;
wc = (wc >> 1u) + fract;
/* Read third nearest value of output from the cos table */
c = *tablePtr++;
/* cosVal += c*wc */
cosVal += c * wc;
/* Calculation of wd */
/* wd = (oneBy6)*fractCube - (oneBy6)*fract; */
fractCube = fractCube - fract;
wd = ((q15_t) (((q31_t) oneBy6 * fractCube) >> 15));
/* Read fourth nearest value of output from the cos table */
d = *tablePtr++;
/* cosVal += d*wd; */
cosVal += d * wd;
/* Return the output value in 1.15(q15) format */
return ((q15_t) (cosVal >> 15u));
}
/**
* @} end of cos group
*/

View File

@ -0,0 +1,225 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cos_q31.c
*
* Description: Fast cosine calculation for Q31 values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFastMath
*/
/**
* @addtogroup cos
* @{
*/
/**
* \par
* Table Values are in Q31(1.31 Fixed point format) and generation is done in three steps
* First Generate cos values in floating point:
* tableSize = 256;
* <pre>for(n = -1; n < (tableSize + 1); n++)
* {
* cosTable[n+1]= cos(2*pi*n/tableSize);
* } </pre>
* where pi value is 3.14159265358979
* \par
* Secondly Convert Floating point to Q31(Fixed point):
* (cosTable[i] * pow(2, 31))
* \par
* Finally Rounding to nearest integer is done
* cosTable[i] += (cosTable[i] > 0 ? 0.5 :-0.5);
*/
static const q31_t cosTableQ31[259] = {
0x7ff62182, 0x7fffffff, 0x7ff62182, 0x7fd8878e, 0x7fa736b4, 0x7f62368f,
0x7f0991c4, 0x7e9d55fc,
0x7e1d93ea, 0x7d8a5f40, 0x7ce3ceb2, 0x7c29fbee, 0x7b5d039e, 0x7a7d055b,
0x798a23b1, 0x78848414,
0x776c4edb, 0x7641af3d, 0x7504d345, 0x73b5ebd1, 0x72552c85, 0x70e2cbc6,
0x6f5f02b2, 0x6dca0d14,
0x6c242960, 0x6a6d98a4, 0x68a69e81, 0x66cf8120, 0x64e88926, 0x62f201ac,
0x60ec3830, 0x5ed77c8a,
0x5cb420e0, 0x5a82799a, 0x5842dd54, 0x55f5a4d2, 0x539b2af0, 0x5133cc94,
0x4ebfe8a5, 0x4c3fdff4,
0x49b41533, 0x471cece7, 0x447acd50, 0x41ce1e65, 0x3f1749b8, 0x3c56ba70,
0x398cdd32, 0x36ba2014,
0x33def287, 0x30fbc54d, 0x2e110a62, 0x2b1f34eb, 0x2826b928, 0x25280c5e,
0x2223a4c5, 0x1f19f97b,
0x1c0b826a, 0x18f8b83c, 0x15e21445, 0x12c8106f, 0xfab272b, 0xc8bd35e,
0x96a9049, 0x647d97c,
0x3242abf, 0x0, 0xfcdbd541, 0xf9b82684, 0xf6956fb7, 0xf3742ca2, 0xf054d8d5,
0xed37ef91,
0xea1debbb, 0xe70747c4, 0xe3f47d96, 0xe0e60685, 0xdddc5b3b, 0xdad7f3a2,
0xd7d946d8, 0xd4e0cb15,
0xd1eef59e, 0xcf043ab3, 0xcc210d79, 0xc945dfec, 0xc67322ce, 0xc3a94590,
0xc0e8b648, 0xbe31e19b,
0xbb8532b0, 0xb8e31319, 0xb64beacd, 0xb3c0200c, 0xb140175b, 0xaecc336c,
0xac64d510, 0xaa0a5b2e,
0xa7bd22ac, 0xa57d8666, 0xa34bdf20, 0xa1288376, 0x9f13c7d0, 0x9d0dfe54,
0x9b1776da, 0x99307ee0,
0x9759617f, 0x9592675c, 0x93dbd6a0, 0x9235f2ec, 0x90a0fd4e, 0x8f1d343a,
0x8daad37b, 0x8c4a142f,
0x8afb2cbb, 0x89be50c3, 0x8893b125, 0x877b7bec, 0x8675dc4f, 0x8582faa5,
0x84a2fc62, 0x83d60412,
0x831c314e, 0x8275a0c0, 0x81e26c16, 0x8162aa04, 0x80f66e3c, 0x809dc971,
0x8058c94c, 0x80277872,
0x8009de7e, 0x80000000, 0x8009de7e, 0x80277872, 0x8058c94c, 0x809dc971,
0x80f66e3c, 0x8162aa04,
0x81e26c16, 0x8275a0c0, 0x831c314e, 0x83d60412, 0x84a2fc62, 0x8582faa5,
0x8675dc4f, 0x877b7bec,
0x8893b125, 0x89be50c3, 0x8afb2cbb, 0x8c4a142f, 0x8daad37b, 0x8f1d343a,
0x90a0fd4e, 0x9235f2ec,
0x93dbd6a0, 0x9592675c, 0x9759617f, 0x99307ee0, 0x9b1776da, 0x9d0dfe54,
0x9f13c7d0, 0xa1288376,
0xa34bdf20, 0xa57d8666, 0xa7bd22ac, 0xaa0a5b2e, 0xac64d510, 0xaecc336c,
0xb140175b, 0xb3c0200c,
0xb64beacd, 0xb8e31319, 0xbb8532b0, 0xbe31e19b, 0xc0e8b648, 0xc3a94590,
0xc67322ce, 0xc945dfec,
0xcc210d79, 0xcf043ab3, 0xd1eef59e, 0xd4e0cb15, 0xd7d946d8, 0xdad7f3a2,
0xdddc5b3b, 0xe0e60685,
0xe3f47d96, 0xe70747c4, 0xea1debbb, 0xed37ef91, 0xf054d8d5, 0xf3742ca2,
0xf6956fb7, 0xf9b82684,
0xfcdbd541, 0x0, 0x3242abf, 0x647d97c, 0x96a9049, 0xc8bd35e, 0xfab272b,
0x12c8106f,
0x15e21445, 0x18f8b83c, 0x1c0b826a, 0x1f19f97b, 0x2223a4c5, 0x25280c5e,
0x2826b928, 0x2b1f34eb,
0x2e110a62, 0x30fbc54d, 0x33def287, 0x36ba2014, 0x398cdd32, 0x3c56ba70,
0x3f1749b8, 0x41ce1e65,
0x447acd50, 0x471cece7, 0x49b41533, 0x4c3fdff4, 0x4ebfe8a5, 0x5133cc94,
0x539b2af0, 0x55f5a4d2,
0x5842dd54, 0x5a82799a, 0x5cb420e0, 0x5ed77c8a, 0x60ec3830, 0x62f201ac,
0x64e88926, 0x66cf8120,
0x68a69e81, 0x6a6d98a4, 0x6c242960, 0x6dca0d14, 0x6f5f02b2, 0x70e2cbc6,
0x72552c85, 0x73b5ebd1,
0x7504d345, 0x7641af3d, 0x776c4edb, 0x78848414, 0x798a23b1, 0x7a7d055b,
0x7b5d039e, 0x7c29fbee,
0x7ce3ceb2, 0x7d8a5f40, 0x7e1d93ea, 0x7e9d55fc, 0x7f0991c4, 0x7f62368f,
0x7fa736b4, 0x7fd8878e,
0x7ff62182, 0x7fffffff, 0x7ff62182
};
/**
* @brief Fast approximation to the trigonometric cosine function for Q31 data.
* @param[in] x Scaled input value in radians.
* @return cos(x).
*
* The Q31 input value is in the range [0 +1) and is mapped to a radian value in the range [0 2*pi).
*/
q31_t arm_cos_q31(
q31_t x)
{
q31_t cosVal, in, in2; /* Temporary variables for input, output */
q31_t wa, wb, wc, wd; /* Cubic interpolation coefficients */
q31_t a, b, c, d; /* Four nearest output values */
q31_t *tablePtr; /* Pointer to table */
q31_t fract, fractCube, fractSquare; /* Temporary values for fractional values */
q31_t oneBy6 = 0x15555555; /* Fixed point value of 1/6 */
q31_t tableSpacing = TABLE_SPACING_Q31; /* Table spacing */
q31_t temp; /* Temporary variable for intermediate process */
uint32_t index; /* Index variable */
in = x;
/* Calculate the nearest index */
index = in / tableSpacing;
/* Calculate the nearest value of input */
in2 = ((q31_t) index) * tableSpacing;
/* Calculation of fractional value */
fract = (in - in2) << 8;
/* fractSquare = fract * fract */
fractSquare = ((q31_t) (((q63_t) fract * fract) >> 32));
fractSquare = fractSquare << 1;
/* fractCube = fract * fract * fract */
fractCube = ((q31_t) (((q63_t) fractSquare * fract) >> 32));
fractCube = fractCube << 1;
/* Initialise table pointer */
tablePtr = (q31_t *) & cosTableQ31[index];
/* Cubic interpolation process */
/* Calculation of wa */
/* wa = -(oneBy6)*fractCube + (fractSquare >> 1u) - (0x2AAAAAAA)*fract; */
wa = ((q31_t) (((q63_t) oneBy6 * fractCube) >> 32));
temp = 0x2AAAAAAA;
wa = (q31_t) ((((q63_t) wa << 32) + ((q63_t) temp * fract)) >> 32);
wa = -(wa << 1u);
wa += (fractSquare >> 1u);
/* Read first nearest value of output from the cos table */
a = *tablePtr++;
/* cosVal = a*wa */
cosVal = ((q31_t) (((q63_t) a * wa) >> 32));
/* q31(1.31) Fixed point value of 1 */
temp = 0x7FFFFFFF;
/* Calculation of wb */
wb = ((fractCube >> 1u) - (fractSquare + (fract >> 1u))) + temp;
/* Read second nearest value of output from the cos table */
b = *tablePtr++;
/* cosVal += b*wb */
cosVal = (q31_t) ((((q63_t) cosVal << 32) + ((q63_t) b * (wb))) >> 32);
/* Calculation of wc */
wc = -fractCube + fractSquare;
wc = (wc >> 1u) + fract;
/* Read third nearest values of output value from the cos table */
c = *tablePtr++;
/* cosVal += c*wc */
cosVal = (q31_t) ((((q63_t) cosVal << 32) + ((q63_t) c * (wc))) >> 32);
/* Calculation of wd */
/* wd = (oneBy6)*fractCube - (oneBy6)*fract; */
fractCube = fractCube - fract;
wd = ((q31_t) (((q63_t) oneBy6 * fractCube) >> 32));
wd = (wd << 1u);
/* Read fourth nearest value of output from the cos table */
d = *tablePtr++;
/* cosVal += d*wd; */
cosVal = (q31_t) ((((q63_t) cosVal << 32) + ((q63_t) d * (wd))) >> 32);
/* convert cosVal in 2.30 format to 1.31 format */
return (cosVal << 1u);
}
/**
* @} end of cos group
*/

View File

@ -0,0 +1,257 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_sin_f32.c
*
* Description: Fast sine calculation for floating-point values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFastMath
*/
/**
* @defgroup sin Sine
*
* Computes the trigonometric sine function using a combination of table lookup
* and cubic interpolation. There are separate functions for
* Q15, Q31, and floating-point data types.
* The input to the floating-point version is in radians while the
* fixed-point Q15 and Q31 have a scaled input with the range
* [0 1) mapping to [0 2*pi).
*
* The implementation is based on table lookup using 256 values together with cubic interpolation.
* The steps used are:
* -# Calculation of the nearest integer table index
* -# Fetch the four table values a, b, c, and d
* -# Compute the fractional portion (fract) of the table index.
* -# Calculation of wa, wb, wc, wd
* -# The final result equals <code>a*wa + b*wb + c*wc + d*wd</code>
*
* where
* <pre>
* a=Table[index-1];
* b=Table[index+0];
* c=Table[index+1];
* d=Table[index+2];
* </pre>
* and
* <pre>
* wa=-(1/6)*fract.^3 + (1/2)*fract.^2 - (1/3)*fract;
* wb=(1/2)*fract.^3 - fract.^2 - (1/2)*fract + 1;
* wc=-(1/2)*fract.^3+(1/2)*fract.^2+fract;
* wd=(1/6)*fract.^3 - (1/6)*fract;
* </pre>
*/
/**
* @addtogroup sin
* @{
*/
/**
* \par
* Example code for Generation of Floating-point Sin Table:
* tableSize = 256;
* <pre>for(n = -1; n < (tableSize + 1); n++)
* {
* sinTable[n+1]=sin(2*pi*n/tableSize);
* }</pre>
* \par
* where pi value is 3.14159265358979
*/
static const float32_t sinTable[259] = {
-0.024541229009628296f, 0.000000000000000000f, 0.024541229009628296f,
0.049067676067352295f, 0.073564566671848297f, 0.098017141222953796f,
0.122410677373409270f, 0.146730467677116390f,
0.170961886644363400f, 0.195090323686599730f, 0.219101235270500180f,
0.242980182170867920f, 0.266712754964828490f, 0.290284663438797000f,
0.313681751489639280f, 0.336889863014221190f,
0.359895050525665280f, 0.382683426141738890f, 0.405241310596466060f,
0.427555084228515630f, 0.449611335992813110f, 0.471396744251251220f,
0.492898195981979370f, 0.514102756977081300f,
0.534997642040252690f, 0.555570244789123540f, 0.575808167457580570f,
0.595699310302734380f, 0.615231573581695560f, 0.634393274784088130f,
0.653172850608825680f, 0.671558976173400880f,
0.689540565013885500f, 0.707106769084930420f, 0.724247097969055180f,
0.740951120853424070f, 0.757208824157714840f, 0.773010432720184330f,
0.788346409797668460f, 0.803207516670227050f,
0.817584812641143800f, 0.831469595432281490f, 0.844853579998016360f,
0.857728600502014160f, 0.870086967945098880f, 0.881921291351318360f,
0.893224298954010010f, 0.903989315032958980f,
0.914209783077239990f, 0.923879504203796390f, 0.932992815971374510f,
0.941544055938720700f, 0.949528157711029050f, 0.956940352916717530f,
0.963776051998138430f, 0.970031261444091800f,
0.975702106952667240f, 0.980785250663757320f, 0.985277652740478520f,
0.989176511764526370f, 0.992479562759399410f, 0.995184719562530520f,
0.997290432453155520f, 0.998795449733734130f,
0.999698817729949950f, 1.000000000000000000f, 0.999698817729949950f,
0.998795449733734130f, 0.997290432453155520f, 0.995184719562530520f,
0.992479562759399410f, 0.989176511764526370f,
0.985277652740478520f, 0.980785250663757320f, 0.975702106952667240f,
0.970031261444091800f, 0.963776051998138430f, 0.956940352916717530f,
0.949528157711029050f, 0.941544055938720700f,
0.932992815971374510f, 0.923879504203796390f, 0.914209783077239990f,
0.903989315032958980f, 0.893224298954010010f, 0.881921291351318360f,
0.870086967945098880f, 0.857728600502014160f,
0.844853579998016360f, 0.831469595432281490f, 0.817584812641143800f,
0.803207516670227050f, 0.788346409797668460f, 0.773010432720184330f,
0.757208824157714840f, 0.740951120853424070f,
0.724247097969055180f, 0.707106769084930420f, 0.689540565013885500f,
0.671558976173400880f, 0.653172850608825680f, 0.634393274784088130f,
0.615231573581695560f, 0.595699310302734380f,
0.575808167457580570f, 0.555570244789123540f, 0.534997642040252690f,
0.514102756977081300f, 0.492898195981979370f, 0.471396744251251220f,
0.449611335992813110f, 0.427555084228515630f,
0.405241310596466060f, 0.382683426141738890f, 0.359895050525665280f,
0.336889863014221190f, 0.313681751489639280f, 0.290284663438797000f,
0.266712754964828490f, 0.242980182170867920f,
0.219101235270500180f, 0.195090323686599730f, 0.170961886644363400f,
0.146730467677116390f, 0.122410677373409270f, 0.098017141222953796f,
0.073564566671848297f, 0.049067676067352295f,
0.024541229009628296f, 0.000000000000000122f, -0.024541229009628296f,
-0.049067676067352295f, -0.073564566671848297f, -0.098017141222953796f,
-0.122410677373409270f, -0.146730467677116390f,
-0.170961886644363400f, -0.195090323686599730f, -0.219101235270500180f,
-0.242980182170867920f, -0.266712754964828490f, -0.290284663438797000f,
-0.313681751489639280f, -0.336889863014221190f,
-0.359895050525665280f, -0.382683426141738890f, -0.405241310596466060f,
-0.427555084228515630f, -0.449611335992813110f, -0.471396744251251220f,
-0.492898195981979370f, -0.514102756977081300f,
-0.534997642040252690f, -0.555570244789123540f, -0.575808167457580570f,
-0.595699310302734380f, -0.615231573581695560f, -0.634393274784088130f,
-0.653172850608825680f, -0.671558976173400880f,
-0.689540565013885500f, -0.707106769084930420f, -0.724247097969055180f,
-0.740951120853424070f, -0.757208824157714840f, -0.773010432720184330f,
-0.788346409797668460f, -0.803207516670227050f,
-0.817584812641143800f, -0.831469595432281490f, -0.844853579998016360f,
-0.857728600502014160f, -0.870086967945098880f, -0.881921291351318360f,
-0.893224298954010010f, -0.903989315032958980f,
-0.914209783077239990f, -0.923879504203796390f, -0.932992815971374510f,
-0.941544055938720700f, -0.949528157711029050f, -0.956940352916717530f,
-0.963776051998138430f, -0.970031261444091800f,
-0.975702106952667240f, -0.980785250663757320f, -0.985277652740478520f,
-0.989176511764526370f, -0.992479562759399410f, -0.995184719562530520f,
-0.997290432453155520f, -0.998795449733734130f,
-0.999698817729949950f, -1.000000000000000000f, -0.999698817729949950f,
-0.998795449733734130f, -0.997290432453155520f, -0.995184719562530520f,
-0.992479562759399410f, -0.989176511764526370f,
-0.985277652740478520f, -0.980785250663757320f, -0.975702106952667240f,
-0.970031261444091800f, -0.963776051998138430f, -0.956940352916717530f,
-0.949528157711029050f, -0.941544055938720700f,
-0.932992815971374510f, -0.923879504203796390f, -0.914209783077239990f,
-0.903989315032958980f, -0.893224298954010010f, -0.881921291351318360f,
-0.870086967945098880f, -0.857728600502014160f,
-0.844853579998016360f, -0.831469595432281490f, -0.817584812641143800f,
-0.803207516670227050f, -0.788346409797668460f, -0.773010432720184330f,
-0.757208824157714840f, -0.740951120853424070f,
-0.724247097969055180f, -0.707106769084930420f, -0.689540565013885500f,
-0.671558976173400880f, -0.653172850608825680f, -0.634393274784088130f,
-0.615231573581695560f, -0.595699310302734380f,
-0.575808167457580570f, -0.555570244789123540f, -0.534997642040252690f,
-0.514102756977081300f, -0.492898195981979370f, -0.471396744251251220f,
-0.449611335992813110f, -0.427555084228515630f,
-0.405241310596466060f, -0.382683426141738890f, -0.359895050525665280f,
-0.336889863014221190f, -0.313681751489639280f, -0.290284663438797000f,
-0.266712754964828490f, -0.242980182170867920f,
-0.219101235270500180f, -0.195090323686599730f, -0.170961886644363400f,
-0.146730467677116390f, -0.122410677373409270f, -0.098017141222953796f,
-0.073564566671848297f, -0.049067676067352295f,
-0.024541229009628296f, -0.000000000000000245f, 0.024541229009628296f
};
/**
* @brief Fast approximation to the trigonometric sine function for floating-point data.
* @param[in] x input value in radians.
* @return sin(x).
*/
float32_t arm_sin_f32(
float32_t x)
{
float32_t sinVal, fract, in; /* Temporary variables for input, output */
uint32_t index; /* Index variable */
uint32_t tableSize = (uint32_t) TABLE_SIZE; /* Initialise tablesize */
float32_t wa, wb, wc, wd; /* Cubic interpolation coefficients */
float32_t a, b, c, d; /* Four nearest output values */
float32_t *tablePtr; /* Pointer to table */
int32_t n;
/* input x is in radians */
/* Scale the input to [0 1] range from [0 2*PI] , divide input by 2*pi */
in = x * 0.159154943092f;
/* Calculation of floor value of input */
n = (int32_t) in;
/* Make negative values towards -infinity */
if(x < 0.0f)
{
n = n - 1;
}
/* Map input value to [0 1] */
in = in - (float32_t) n;
/* Calculation of index of the table */
index = (uint32_t) (tableSize * in);
/* fractional value calculation */
fract = ((float32_t) tableSize * in) - (float32_t) index;
/* Initialise table pointer */
tablePtr = (float32_t *) & sinTable[index];
/* Read four nearest values of output value from the sin table */
a = *tablePtr++;
b = *tablePtr++;
c = *tablePtr++;
d = *tablePtr++;
/* Cubic interpolation process */
wa = -(((0.166666667f) * (fract * (fract * fract))) +
((0.3333333333333f) * fract)) + ((0.5f) * (fract * fract));
wb = (((0.5f) * (fract * (fract * fract))) -
((fract * fract) + ((0.5f) * fract))) + 1.0f;
wc = (-((0.5f) * (fract * (fract * fract))) +
((0.5f) * (fract * fract))) + fract;
wd = ((0.166666667f) * (fract * (fract * fract))) -
((0.166666667f) * fract);
/* Calculate sin value */
sinVal = ((a * wa) + (b * wb)) + ((c * wc) + (d * wd));
/* Return the output value */
return (sinVal);
}
/**
* @} end of sin group
*/

View File

@ -0,0 +1,192 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_sin_q15.c
*
* Description: Fast sine calculation for Q15 values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFastMath
*/
/**
* @addtogroup sin
* @{
*/
/**
* \par
* Example code for Generation of Q15 Sin Table:
* \par
* <pre>tableSize = 256;
* for(n = -1; n < (tableSize + 1); n++)
* {
* sinTable[n+1]=sin(2*pi*n/tableSize);
* } </pre>
* where pi value is 3.14159265358979
* \par
* Convert Floating point to Q15(Fixed point):
* (sinTable[i] * pow(2, 15))
* \par
* rounding to nearest integer is done
* sinTable[i] += (sinTable[i] > 0 ? 0.5 :-0.5);
*/
static const q15_t sinTableQ15[259] = {
0xfcdc, 0x0, 0x324, 0x648, 0x96b, 0xc8c, 0xfab, 0x12c8,
0x15e2, 0x18f9, 0x1c0c, 0x1f1a, 0x2224, 0x2528, 0x2827, 0x2b1f,
0x2e11, 0x30fc, 0x33df, 0x36ba, 0x398d, 0x3c57, 0x3f17, 0x41ce,
0x447b, 0x471d, 0x49b4, 0x4c40, 0x4ec0, 0x5134, 0x539b, 0x55f6,
0x5843, 0x5a82, 0x5cb4, 0x5ed7, 0x60ec, 0x62f2, 0x64e9, 0x66d0,
0x68a7, 0x6a6e, 0x6c24, 0x6dca, 0x6f5f, 0x70e3, 0x7255, 0x73b6,
0x7505, 0x7642, 0x776c, 0x7885, 0x798a, 0x7a7d, 0x7b5d, 0x7c2a,
0x7ce4, 0x7d8a, 0x7e1e, 0x7e9d, 0x7f0a, 0x7f62, 0x7fa7, 0x7fd9,
0x7ff6, 0x7fff, 0x7ff6, 0x7fd9, 0x7fa7, 0x7f62, 0x7f0a, 0x7e9d,
0x7e1e, 0x7d8a, 0x7ce4, 0x7c2a, 0x7b5d, 0x7a7d, 0x798a, 0x7885,
0x776c, 0x7642, 0x7505, 0x73b6, 0x7255, 0x70e3, 0x6f5f, 0x6dca,
0x6c24, 0x6a6e, 0x68a7, 0x66d0, 0x64e9, 0x62f2, 0x60ec, 0x5ed7,
0x5cb4, 0x5a82, 0x5843, 0x55f6, 0x539b, 0x5134, 0x4ec0, 0x4c40,
0x49b4, 0x471d, 0x447b, 0x41ce, 0x3f17, 0x3c57, 0x398d, 0x36ba,
0x33df, 0x30fc, 0x2e11, 0x2b1f, 0x2827, 0x2528, 0x2224, 0x1f1a,
0x1c0c, 0x18f9, 0x15e2, 0x12c8, 0xfab, 0xc8c, 0x96b, 0x648,
0x324, 0x0, 0xfcdc, 0xf9b8, 0xf695, 0xf374, 0xf055, 0xed38,
0xea1e, 0xe707, 0xe3f4, 0xe0e6, 0xdddc, 0xdad8, 0xd7d9, 0xd4e1,
0xd1ef, 0xcf04, 0xcc21, 0xc946, 0xc673, 0xc3a9, 0xc0e9, 0xbe32,
0xbb85, 0xb8e3, 0xb64c, 0xb3c0, 0xb140, 0xaecc, 0xac65, 0xaa0a,
0xa7bd, 0xa57e, 0xa34c, 0xa129, 0x9f14, 0x9d0e, 0x9b17, 0x9930,
0x9759, 0x9592, 0x93dc, 0x9236, 0x90a1, 0x8f1d, 0x8dab, 0x8c4a,
0x8afb, 0x89be, 0x8894, 0x877b, 0x8676, 0x8583, 0x84a3, 0x83d6,
0x831c, 0x8276, 0x81e2, 0x8163, 0x80f6, 0x809e, 0x8059, 0x8027,
0x800a, 0x8000, 0x800a, 0x8027, 0x8059, 0x809e, 0x80f6, 0x8163,
0x81e2, 0x8276, 0x831c, 0x83d6, 0x84a3, 0x8583, 0x8676, 0x877b,
0x8894, 0x89be, 0x8afb, 0x8c4a, 0x8dab, 0x8f1d, 0x90a1, 0x9236,
0x93dc, 0x9592, 0x9759, 0x9930, 0x9b17, 0x9d0e, 0x9f14, 0xa129,
0xa34c, 0xa57e, 0xa7bd, 0xaa0a, 0xac65, 0xaecc, 0xb140, 0xb3c0,
0xb64c, 0xb8e3, 0xbb85, 0xbe32, 0xc0e9, 0xc3a9, 0xc673, 0xc946,
0xcc21, 0xcf04, 0xd1ef, 0xd4e1, 0xd7d9, 0xdad8, 0xdddc, 0xe0e6,
0xe3f4, 0xe707, 0xea1e, 0xed38, 0xf055, 0xf374, 0xf695, 0xf9b8,
0xfcdc, 0x0, 0x324
};
/**
* @brief Fast approximation to the trigonometric sine function for Q15 data.
* @param[in] x Scaled input value in radians.
* @return sin(x).
*
* The Q15 input value is in the range [0 +1) and is mapped to a radian value in the range [0 2*pi).
*/
q15_t arm_sin_q15(
q15_t x)
{
q31_t sinVal; /* Temporary variables output */
q15_t *tablePtr; /* Pointer to table */
q15_t fract, in, in2; /* Temporary variables for input, output */
q31_t wa, wb, wc, wd; /* Cubic interpolation coefficients */
q15_t a, b, c, d; /* Four nearest output values */
q15_t fractCube, fractSquare; /* Temporary values for fractional value */
q15_t oneBy6 = 0x1555; /* Fixed point value of 1/6 */
q15_t tableSpacing = TABLE_SPACING_Q15; /* Table spacing */
int32_t index; /* Index variable */
in = x;
/* Calculate the nearest index */
index = (int32_t) in / tableSpacing;
/* Calculate the nearest value of input */
in2 = (q15_t) ((index) * tableSpacing);
/* Calculation of fractional value */
fract = (in - in2) << 8;
/* fractSquare = fract * fract */
fractSquare = (q15_t) ((fract * fract) >> 15);
/* fractCube = fract * fract * fract */
fractCube = (q15_t) ((fractSquare * fract) >> 15);
/* Initialise table pointer */
tablePtr = (q15_t *) & sinTableQ15[index];
/* Cubic interpolation process */
/* Calculation of wa */
/* wa = -(oneBy6)*fractCube + (fractSquare >> 1u) - (0x2AAA)*fract; */
wa = (q31_t) oneBy6 *fractCube;
wa += (q31_t) 0x2AAA *fract;
wa = -(wa >> 15);
wa += ((q31_t) fractSquare >> 1u);
/* Read first nearest value of output from the sin table */
a = *tablePtr++;
/* sinVal = a * wa */
sinVal = a * wa;
/* Calculation of wb */
wb = (((q31_t) fractCube >> 1u) - (q31_t) fractSquare) -
(((q31_t) fract >> 1u) - 0x7FFF);
/* Read second nearest value of output from the sin table */
b = *tablePtr++;
/* sinVal += b*wb */
sinVal += b * wb;
/* Calculation of wc */
wc = -(q31_t) fractCube + fractSquare;
wc = (wc >> 1u) + fract;
/* Read third nearest value of output from the sin table */
c = *tablePtr++;
/* sinVal += c*wc */
sinVal += c * wc;
/* Calculation of wd */
/* wd = (oneBy6)*fractCube - (oneBy6)*fract; */
fractCube = fractCube - fract;
wd = ((q15_t) (((q31_t) oneBy6 * fractCube) >> 15));
/* Read fourth nearest value of output from the sin table */
d = *tablePtr++;
/* sinVal += d*wd; */
sinVal += d * wd;
/* Return the output value in 1.15(q15) format */
return ((q15_t) (sinVal >> 15u));
}
/**
* @} end of sin group
*/

View File

@ -0,0 +1,227 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_sin_q31.c
*
* Description: Fast sine calculation for Q31 values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFastMath
*/
/**
* @addtogroup sin
* @{
*/
/**
* \par
* Tables generated are in Q31(1.31 Fixed point format)
* Generation of sin values in floating point:
* <pre>tableSize = 256;
* for(n = -1; n < (tableSize + 1); n++)
* {
* sinTable[n+1]= sin(2*pi*n/tableSize);
* } </pre>
* where pi value is 3.14159265358979
* \par
* Convert Floating point to Q31(Fixed point):
* (sinTable[i] * pow(2, 31))
* \par
* rounding to nearest integer is done
* sinTable[i] += (sinTable[i] > 0 ? 0.5 :-0.5);
*/
static const q31_t sinTableQ31[259] = {
0xfcdbd541, 0x0, 0x3242abf, 0x647d97c, 0x96a9049, 0xc8bd35e, 0xfab272b,
0x12c8106f,
0x15e21445, 0x18f8b83c, 0x1c0b826a, 0x1f19f97b, 0x2223a4c5, 0x25280c5e,
0x2826b928, 0x2b1f34eb,
0x2e110a62, 0x30fbc54d, 0x33def287, 0x36ba2014, 0x398cdd32, 0x3c56ba70,
0x3f1749b8, 0x41ce1e65,
0x447acd50, 0x471cece7, 0x49b41533, 0x4c3fdff4, 0x4ebfe8a5, 0x5133cc94,
0x539b2af0, 0x55f5a4d2,
0x5842dd54, 0x5a82799a, 0x5cb420e0, 0x5ed77c8a, 0x60ec3830, 0x62f201ac,
0x64e88926, 0x66cf8120,
0x68a69e81, 0x6a6d98a4, 0x6c242960, 0x6dca0d14, 0x6f5f02b2, 0x70e2cbc6,
0x72552c85, 0x73b5ebd1,
0x7504d345, 0x7641af3d, 0x776c4edb, 0x78848414, 0x798a23b1, 0x7a7d055b,
0x7b5d039e, 0x7c29fbee,
0x7ce3ceb2, 0x7d8a5f40, 0x7e1d93ea, 0x7e9d55fc, 0x7f0991c4, 0x7f62368f,
0x7fa736b4, 0x7fd8878e,
0x7ff62182, 0x7fffffff, 0x7ff62182, 0x7fd8878e, 0x7fa736b4, 0x7f62368f,
0x7f0991c4, 0x7e9d55fc,
0x7e1d93ea, 0x7d8a5f40, 0x7ce3ceb2, 0x7c29fbee, 0x7b5d039e, 0x7a7d055b,
0x798a23b1, 0x78848414,
0x776c4edb, 0x7641af3d, 0x7504d345, 0x73b5ebd1, 0x72552c85, 0x70e2cbc6,
0x6f5f02b2, 0x6dca0d14,
0x6c242960, 0x6a6d98a4, 0x68a69e81, 0x66cf8120, 0x64e88926, 0x62f201ac,
0x60ec3830, 0x5ed77c8a,
0x5cb420e0, 0x5a82799a, 0x5842dd54, 0x55f5a4d2, 0x539b2af0, 0x5133cc94,
0x4ebfe8a5, 0x4c3fdff4,
0x49b41533, 0x471cece7, 0x447acd50, 0x41ce1e65, 0x3f1749b8, 0x3c56ba70,
0x398cdd32, 0x36ba2014,
0x33def287, 0x30fbc54d, 0x2e110a62, 0x2b1f34eb, 0x2826b928, 0x25280c5e,
0x2223a4c5, 0x1f19f97b,
0x1c0b826a, 0x18f8b83c, 0x15e21445, 0x12c8106f, 0xfab272b, 0xc8bd35e,
0x96a9049, 0x647d97c,
0x3242abf, 0x0, 0xfcdbd541, 0xf9b82684, 0xf6956fb7, 0xf3742ca2, 0xf054d8d5,
0xed37ef91,
0xea1debbb, 0xe70747c4, 0xe3f47d96, 0xe0e60685, 0xdddc5b3b, 0xdad7f3a2,
0xd7d946d8, 0xd4e0cb15,
0xd1eef59e, 0xcf043ab3, 0xcc210d79, 0xc945dfec, 0xc67322ce, 0xc3a94590,
0xc0e8b648, 0xbe31e19b,
0xbb8532b0, 0xb8e31319, 0xb64beacd, 0xb3c0200c, 0xb140175b, 0xaecc336c,
0xac64d510, 0xaa0a5b2e,
0xa7bd22ac, 0xa57d8666, 0xa34bdf20, 0xa1288376, 0x9f13c7d0, 0x9d0dfe54,
0x9b1776da, 0x99307ee0,
0x9759617f, 0x9592675c, 0x93dbd6a0, 0x9235f2ec, 0x90a0fd4e, 0x8f1d343a,
0x8daad37b, 0x8c4a142f,
0x8afb2cbb, 0x89be50c3, 0x8893b125, 0x877b7bec, 0x8675dc4f, 0x8582faa5,
0x84a2fc62, 0x83d60412,
0x831c314e, 0x8275a0c0, 0x81e26c16, 0x8162aa04, 0x80f66e3c, 0x809dc971,
0x8058c94c, 0x80277872,
0x8009de7e, 0x80000000, 0x8009de7e, 0x80277872, 0x8058c94c, 0x809dc971,
0x80f66e3c, 0x8162aa04,
0x81e26c16, 0x8275a0c0, 0x831c314e, 0x83d60412, 0x84a2fc62, 0x8582faa5,
0x8675dc4f, 0x877b7bec,
0x8893b125, 0x89be50c3, 0x8afb2cbb, 0x8c4a142f, 0x8daad37b, 0x8f1d343a,
0x90a0fd4e, 0x9235f2ec,
0x93dbd6a0, 0x9592675c, 0x9759617f, 0x99307ee0, 0x9b1776da, 0x9d0dfe54,
0x9f13c7d0, 0xa1288376,
0xa34bdf20, 0xa57d8666, 0xa7bd22ac, 0xaa0a5b2e, 0xac64d510, 0xaecc336c,
0xb140175b, 0xb3c0200c,
0xb64beacd, 0xb8e31319, 0xbb8532b0, 0xbe31e19b, 0xc0e8b648, 0xc3a94590,
0xc67322ce, 0xc945dfec,
0xcc210d79, 0xcf043ab3, 0xd1eef59e, 0xd4e0cb15, 0xd7d946d8, 0xdad7f3a2,
0xdddc5b3b, 0xe0e60685,
0xe3f47d96, 0xe70747c4, 0xea1debbb, 0xed37ef91, 0xf054d8d5, 0xf3742ca2,
0xf6956fb7, 0xf9b82684,
0xfcdbd541, 0x0, 0x3242abf
};
/**
* @brief Fast approximation to the trigonometric sine function for Q31 data.
* @param[in] x Scaled input value in radians.
* @return sin(x).
*
* The Q31 input value is in the range [0 +1) and is mapped to a radian value in the range [0 2*pi).
*/
q31_t arm_sin_q31(
q31_t x)
{
q31_t sinVal, in, in2; /* Temporary variables for input, output */
uint32_t index; /* Index variables */
q31_t wa, wb, wc, wd; /* Cubic interpolation coefficients */
q31_t a, b, c, d; /* Four nearest output values */
q31_t *tablePtr; /* Pointer to table */
q31_t fract, fractCube, fractSquare; /* Temporary values for fractional values */
q31_t oneBy6 = 0x15555555; /* Fixed point value of 1/6 */
q31_t tableSpacing = TABLE_SPACING_Q31; /* Table spacing */
q31_t temp; /* Temporary variable for intermediate process */
in = x;
/* Calculate the nearest index */
index = (uint32_t) in / (uint32_t) tableSpacing;
/* Calculate the nearest value of input */
in2 = (q31_t) index *tableSpacing;
/* Calculation of fractional value */
fract = (in - in2) << 8;
/* fractSquare = fract * fract */
fractSquare = ((q31_t) (((q63_t) fract * fract) >> 32));
fractSquare = fractSquare << 1;
/* fractCube = fract * fract * fract */
fractCube = ((q31_t) (((q63_t) fractSquare * fract) >> 32));
fractCube = fractCube << 1;
/* Initialise table pointer */
tablePtr = (q31_t *) & sinTableQ31[index];
/* Cubic interpolation process */
/* Calculation of wa */
/* wa = -(oneBy6)*fractCube + (fractSquare >> 1u) - (0x2AAAAAAA)*fract; */
wa = ((q31_t) (((q63_t) oneBy6 * fractCube) >> 32));
temp = 0x2AAAAAAA;
wa = (q31_t) ((((q63_t) wa << 32) + ((q63_t) temp * fract)) >> 32);
wa = -(wa << 1u);
wa += (fractSquare >> 1u);
/* Read first nearest value of output from the sin table */
a = *tablePtr++;
/* sinVal = a*wa */
sinVal = ((q31_t) (((q63_t) a * wa) >> 32));
/* q31(1.31) Fixed point value of 1 */
temp = 0x7FFFFFFF;
/* Calculation of wb */
wb = ((fractCube >> 1u) - (fractSquare + (fract >> 1u))) + temp;
/* Read second nearest value of output from the sin table */
b = *tablePtr++;
/* sinVal += b*wb */
sinVal = (q31_t) ((((q63_t) sinVal << 32) + (q63_t) b * (wb)) >> 32);
/* Calculation of wc */
wc = -fractCube + fractSquare;
wc = (wc >> 1u) + fract;
/* Read third nearest value of output from the sin table */
c = *tablePtr++;
/* sinVal += c*wc */
sinVal = (q31_t) ((((q63_t) sinVal << 32) + ((q63_t) c * wc)) >> 32);
/* Calculation of wd */
/* wd = (oneBy6) * fractCube - (oneBy6) * fract; */
fractCube = fractCube - fract;
wd = ((q31_t) (((q63_t) oneBy6 * fractCube) >> 32));
wd = (wd << 1u);
/* Read fourth nearest value of output from the sin table */
d = *tablePtr++;
/* sinVal += d*wd; */
sinVal = (q31_t) ((((q63_t) sinVal << 32) + ((q63_t) d * wd)) >> 32);
/* convert sinVal in 2.30 format to 1.31 format */
return (sinVal << 1u);
}
/**
* @} end of sin group
*/

View File

@ -0,0 +1,178 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_sqrt_q15.c
*
* Description: Q15 square root function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
#include "arm_common_tables.h"
/**
* @ingroup groupFastMath
*/
/**
* @addtogroup SQRT
* @{
*/
/**
* @brief Q15 square root function.
* @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
* @param[out] *pOut square root of input value.
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
* <code>in</code> is negative value and returns zero output for negative values.
*/
arm_status arm_sqrt_q15(
q15_t in,
q15_t * pOut)
{
q31_t prevOut;
q15_t oneByOut;
uint32_t sign_bits;
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t out;
if(in > 0)
{
/* run for ten iterations */
/* Take initial guess as half of the input and first iteration */
out = ((q31_t) in >> 1u) + 0x3FFF;
/* Calculation of reciprocal of out */
/* oneByOut contains reciprocal of out which is in 2.14 format
and oneByOut should be upscaled by signBits */
sign_bits = arm_recip_q15((q15_t) out, &oneByOut, armRecipTableQ15);
/* 0.5 * (out) */
out = out >> 1u;
/* prevOut = 0.5 * out + (in * (oneByOut << signBits))) */
prevOut = out + (((q15_t) (((q31_t) in * oneByOut) >> 16)) << sign_bits);
/* Third iteration */
sign_bits = arm_recip_q15((q15_t) prevOut, &oneByOut, armRecipTableQ15);
prevOut = prevOut >> 1u;
out = prevOut + (((q15_t) (((q31_t) in * oneByOut) >> 16)) << sign_bits);
sign_bits = arm_recip_q15((q15_t) out, &oneByOut, armRecipTableQ15);
out = out >> 1u;
prevOut = out + (((q15_t) (((q31_t) in * oneByOut) >> 16)) << sign_bits);
/* Fifth iteration */
sign_bits = arm_recip_q15((q15_t) prevOut, &oneByOut, armRecipTableQ15);
prevOut = prevOut >> 1u;
out = prevOut + (((q15_t) (((q31_t) in * oneByOut) >> 16)) << sign_bits);
sign_bits = arm_recip_q15((q15_t) out, &oneByOut, armRecipTableQ15);
out = out >> 1u;
prevOut = out + (((q15_t) (((q31_t) in * oneByOut) >> 16)) << sign_bits);
/* Seventh iteration */
sign_bits = arm_recip_q15((q15_t) prevOut, &oneByOut, armRecipTableQ15);
prevOut = prevOut >> 1u;
out = prevOut + (((q15_t) (((q31_t) in * oneByOut) >> 16)) << sign_bits);
sign_bits = arm_recip_q15((q15_t) out, &oneByOut, armRecipTableQ15);
out = out >> 1u;
prevOut = out + (((q15_t) (((q31_t) in * oneByOut) >> 16)) << sign_bits);
sign_bits = arm_recip_q15((q15_t) prevOut, &oneByOut, armRecipTableQ15);
prevOut = prevOut >> 1u;
out = prevOut + (((q15_t) (((q31_t) in * oneByOut) >> 16)) << sign_bits);
/* tenth iteration */
sign_bits = arm_recip_q15((q15_t) out, &oneByOut, armRecipTableQ15);
out = out >> 1u;
*pOut = out + (((q15_t) (((q31_t) in * oneByOut) >> 16)) << sign_bits);
return (ARM_MATH_SUCCESS);
}
#else
/* Run the below code for Cortex-M0 */
q31_t out, loopVar; /* Temporary variable for output, loop variable */
if(in > 0)
{
/* run for ten iterations */
/* Take initial guess as half of the input and first iteration */
out = ((q31_t) in >> 1u) + 0x3FFF;
/* Calculation of reciprocal of out */
/* oneByOut contains reciprocal of out which is in 2.14 format
and oneByOut should be upscaled by sign bits */
sign_bits = arm_recip_q15((q15_t) out, &oneByOut, armRecipTableQ15);
/* 0.5 * (out) */
out = out >> 1u;
/* prevOut = 0.5 * out + (in * oneByOut) << signbits))) */
prevOut = out + (((q15_t) (((q31_t) in * oneByOut) >> 16)) << sign_bits);
/* loop for third iteration to tenth iteration */
for (loopVar = 1; loopVar <= 8; loopVar++)
{
sign_bits = arm_recip_q15((q15_t) prevOut, &oneByOut, armRecipTableQ15);
/* 0.5 * (prevOut) */
prevOut = prevOut >> 1u;
/* prevOut = 0.5 * prevOut+ (in * oneByOut) << signbits))) */
out =
prevOut + (((q15_t) (((q31_t) in * oneByOut) >> 16)) << sign_bits);
/* prevOut = out */
prevOut = out;
}
/* output is moved to pOut pointer */
*pOut = prevOut;
return (ARM_MATH_SUCCESS);
}
#endif /* #ifndef ARM_MATH_CM0 */
else
{
*pOut = 0;
return (ARM_MATH_ARGUMENT_ERROR);
}
}
/**
* @} end of SQRT group
*/

View File

@ -0,0 +1,199 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_sqrt_q31.c
*
* Description: Q31 square root function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
#include "arm_common_tables.h"
/**
* @ingroup groupFastMath
*/
/**
* @addtogroup SQRT
* @{
*/
/**
* @brief Q31 square root function.
* @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
* @param[out] *pOut square root of input value.
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
* <code>in</code> is negative value and returns zero output for negative values.
*/
arm_status arm_sqrt_q31(
q31_t in,
q31_t * pOut)
{
q63_t prevOut;
q31_t oneByOut;
uint32_t signBits;
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q63_t out;
if(in > 0)
{
/* run for ten iterations */
/* Take initial guess as half of the input and first iteration */
out = (in >> 1) + 0x3FFFFFFF;
/* Calculation of reciprocal of out */
/* oneByOut contains reciprocal of out which is in 2.30 format
and oneByOut should be upscaled by signBits */
signBits = arm_recip_q31((q31_t) out, &oneByOut, armRecipTableQ31);
/* 0.5 * (out) */
out = out >> 1u;
/* prevOut = 0.5 * out + (in * (oneByOut << signBits))) */
prevOut = out + (((q31_t) (((q63_t) in * oneByOut) >> 32)) << signBits);
/* Third iteration */
signBits = arm_recip_q31((q31_t) prevOut, &oneByOut, armRecipTableQ31);
prevOut = prevOut >> 1u;
out = prevOut + (((q31_t) (((q63_t) in * oneByOut) >> 32)) << signBits);
signBits = arm_recip_q31((q31_t) out, &oneByOut, armRecipTableQ31);
out = out >> 1u;
prevOut = out + (((q31_t) (((q63_t) in * oneByOut) >> 32)) << signBits);
/* Fifth iteration */
signBits = arm_recip_q31((q31_t) prevOut, &oneByOut, armRecipTableQ31);
prevOut = prevOut >> 1u;
out = prevOut + (((q31_t) (((q63_t) in * oneByOut) >> 32)) << signBits);
signBits = arm_recip_q31((q31_t) out, &oneByOut, armRecipTableQ31);
out = out >> 1u;
prevOut = out + (((q31_t) (((q63_t) in * oneByOut) >> 32)) << signBits);
/* Seventh iteration */
signBits = arm_recip_q31((q31_t) prevOut, &oneByOut, armRecipTableQ31);
prevOut = prevOut >> 1u;
out = prevOut + (((q31_t) (((q63_t) in * oneByOut) >> 32)) << signBits);
signBits = arm_recip_q31((q31_t) out, &oneByOut, armRecipTableQ31);
out = out >> 1u;
prevOut = out + (((q31_t) (((q63_t) in * oneByOut) >> 32)) << signBits);
signBits = arm_recip_q31((q31_t) prevOut, &oneByOut, armRecipTableQ31);
prevOut = prevOut >> 1u;
out = prevOut + (((q31_t) (((q63_t) in * oneByOut) >> 32)) << signBits);
signBits = arm_recip_q31((q31_t) out, &oneByOut, armRecipTableQ31);
out = out >> 1u;
prevOut = out + (((q31_t) (((q63_t) in * oneByOut) >> 32)) << signBits);
signBits = arm_recip_q31((q31_t) prevOut, &oneByOut, armRecipTableQ31);
prevOut = prevOut >> 1u;
out = prevOut + (((q31_t) (((q63_t) in * oneByOut) >> 32)) << signBits);
signBits = arm_recip_q31((q31_t) out, &oneByOut, armRecipTableQ31);
out = out >> 1u;
prevOut = out + (((q31_t) (((q63_t) in * oneByOut) >> 32)) << signBits);
signBits = arm_recip_q31((q31_t) prevOut, &oneByOut, armRecipTableQ31);
prevOut = prevOut >> 1u;
out = prevOut + (((q31_t) (((q63_t) in * oneByOut) >> 32)) << signBits);
signBits = arm_recip_q31((q31_t) out, &oneByOut, armRecipTableQ31);
out = out >> 1u;
prevOut = out + (((q31_t) (((q63_t) in * oneByOut) >> 32)) << signBits);
signBits = arm_recip_q31((q31_t) prevOut, &oneByOut, armRecipTableQ31);
prevOut = prevOut >> 1u;
out = prevOut + (((q31_t) (((q63_t) in * oneByOut) >> 32)) << signBits);
/* tenth iteration */
signBits = arm_recip_q31((q31_t) out, &oneByOut, armRecipTableQ31);
out = out >> 1u;
*pOut = out + (((q31_t) (((q63_t) in * oneByOut) >> 32)) << signBits);
return (ARM_MATH_SUCCESS);
}
#else
/* Run the below code for Cortex-M0 */
q63_t out, loopVar; /* Temporary variable for output, loop variable */
if(in > 0)
{
/* run for ten iterations */
/* Take initial guess as half of the input and first iteration */
out = (in >> 1) + 0x3FFFFFFF;
/* Calculation of reciprocal of out */
/* oneByOut contains reciprocal of out which is in 2.30 format
and oneByOut should be upscaled by sign bits */
signBits = arm_recip_q31((q31_t) out, &oneByOut, armRecipTableQ31);
/* 0.5 * (out) */
out = out >> 1u;
/* prevOut = 0.5 * out + (in * (oneByOut) << signbits) */
prevOut = out + (((q31_t) (((q63_t) in * oneByOut) >> 32)) << signBits);
/* loop for third iteration to tength iteration */
for (loopVar = 1; loopVar <= 14; loopVar++)
{
signBits = arm_recip_q31((q31_t) prevOut, &oneByOut, armRecipTableQ31);
/* 0.5 * (prevOut) */
prevOut = prevOut >> 1u;
/* out = 0.5 * prevOut + (in * oneByOut) << signbits))) */
out = prevOut + (((q31_t) (((q63_t) in * oneByOut) >> 32)) << signBits);
/* prevOut = out */
prevOut = out;
}
/* output is moved to pOut pointer */
*pOut = prevOut;
return (ARM_MATH_SUCCESS);
}
#endif /* #ifndef ARM_MATH_CM0 */
else
{
*pOut = 0;
return (ARM_MATH_ARGUMENT_ERROR);
}
}
/**
* @} end of SQRT group
*/

View File

@ -0,0 +1,102 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df1_32x64_init_q31.c
*
* Description: High precision Q31 Biquad cascade filter initialization function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup BiquadCascadeDF1_32x64
* @{
*/
/**
* @details
*
* @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
* @param[in] numStages number of 2nd order stages in the filter.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @param[in] postShift Shift to be applied after the accumulator. Varies according to the coefficients format.
* @return none
*
* <b>Coefficient and State Ordering:</b>
*
* \par
* The coefficients are stored in the array <code>pCoeffs</code> in the following order:
* <pre>
* {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
* </pre>
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
* and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values.
*
* \par
* The <code>pState</code> points to state variables array and size of each state variable is 1.63 format.
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>.
* The state variables are arranged in the state array as:
* <pre>
* {x[n-1], x[n-2], y[n-1], y[n-2]}
* </pre>
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
* The state array has a total length of <code>4*numStages</code> values.
* The state variables are updated after each block of data is processed; the coefficients are untouched.
*/
void arm_biquad_cas_df1_32x64_init_q31(
arm_biquad_cas_df1_32x64_ins_q31 * S,
uint8_t numStages,
q31_t * pCoeffs,
q63_t * pState,
uint8_t postShift)
{
/* Assign filter stages */
S->numStages = numStages;
/* Assign postShift to be applied to the output */
S->postShift = postShift;
/* Assign coefficient pointer */
S->pCoeffs = pCoeffs;
/* Clear state buffer and size is always 4 * numStages */
memset(pState, 0, (4u * (uint32_t) numStages) * sizeof(q63_t));
/* Assign state pointer */
S->pState = pState;
}
/**
* @} end of BiquadCascadeDF1_32x64 group
*/

View File

@ -0,0 +1,476 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df1_32x64_q31.c
*
* Description: High precision Q31 Biquad cascade filter processing function
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @defgroup BiquadCascadeDF1_32x64 High Precision Q31 Biquad Cascade Filter
*
* This function implements a high precision Biquad cascade filter which operates on
* Q31 data values. The filter coefficients are in 1.31 format and the state variables
* are in 1.63 format. The double precision state variables reduce quantization noise
* in the filter and provide a cleaner output.
* These filters are particularly useful when implementing filters in which the
* singularities are close to the unit circle. This is common for low pass or high
* pass filters with very low cutoff frequencies.
*
* The function operates on blocks of input and output data
* and each call to the function processes <code>blockSize</code> samples through
* the filter. <code>pSrc</code> and <code>pDst</code> points to input and output arrays
* containing <code>blockSize</code> Q31 values.
*
* \par Algorithm
* Each Biquad stage implements a second order filter using the difference equation:
* <pre>
* y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
* </pre>
* A Direct Form I algorithm is used with 5 coefficients and 4 state variables per stage.
* \image html Biquad.gif "Single Biquad filter stage"
* Coefficients <code>b0, b1, and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients.
* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients.
* Pay careful attention to the sign of the feedback coefficients.
* Some design tools use the difference equation
* <pre>
* y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] - a1 * y[n-1] - a2 * y[n-2]
* </pre>
* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library.
*
* \par
* Higher order filters are realized as a cascade of second order sections.
* <code>numStages</code> refers to the number of second order stages used.
* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages.
* \image html BiquadCascade.gif "8th order filter using a cascade of Biquad stages"
* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>).
*
* \par
* The <code>pState</code> points to state variables array .
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code> and each state variable in 1.63 format to improve precision.
* The state variables are arranged in the array as:
* <pre>
* {x[n-1], x[n-2], y[n-1], y[n-2]}
* </pre>
*
* \par
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
* The state array has a total length of <code>4*numStages</code> values of data in 1.63 format.
* The state variables are updated after each block of data is processed; the coefficients are untouched.
*
* \par Instance Structure
* The coefficients and state variables for a filter are stored together in an instance data structure.
* A separate instance structure must be defined for each filter.
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
*
* \par Init Function
* There is also an associated initialization function which performs the following operations:
* - Sets the values of the internal structure fields.
* - Zeros out the values in the state buffer.
* \par
* Use of the initialization function is optional.
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
* To place an instance structure into a const data section, the instance structure must be manually initialized.
* Set the values in the state buffer to zeros before static initialization.
* For example, to statically initialize the filter instance structure use
* <pre>
* arm_biquad_cas_df1_32x64_ins_q31 S1 = {numStages, pState, pCoeffs, postShift};
* </pre>
* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer;
* <code>pCoeffs</code> is the address of the coefficient buffer; <code>postShift</code> shift to be applied which is described in detail below.
* \par Fixed-Point Behavior
* Care must be taken while using Biquad Cascade 32x64 filter function.
* Following issues must be considered:
* - Scaling of coefficients
* - Filter gain
* - Overflow and saturation
*
* \par
* Filter coefficients are represented as fractional values and
* restricted to lie in the range <code>[-1 +1)</code>.
* The processing function has an additional scaling parameter <code>postShift</code>
* which allows the filter coefficients to exceed the range <code>[+1 -1)</code>.
* At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits.
* \image html BiquadPostshift.gif "Fixed-point Biquad with shift by postShift bits after accumulator"
* This essentially scales the filter coefficients by <code>2^postShift</code>.
* For example, to realize the coefficients
* <pre>
* {1.5, -0.8, 1.2, 1.6, -0.9}
* </pre>
* set the Coefficient array to:
* <pre>
* {0.75, -0.4, 0.6, 0.8, -0.45}
* </pre>
* and set <code>postShift=1</code>
*
* \par
* The second thing to keep in mind is the gain through the filter.
* The frequency response of a Biquad filter is a function of its coefficients.
* It is possible for the gain through the filter to exceed 1.0 meaning that the filter increases the amplitude of certain frequencies.
* This means that an input signal with amplitude < 1.0 may result in an output > 1.0 and these are saturated or overflowed based on the implementation of the filter.
* To avoid this behavior the filter needs to be scaled down such that its peak gain < 1.0 or the input signal must be scaled down so that the combination of input and filter are never overflowed.
*
* \par
* The third item to consider is the overflow and saturation behavior of the fixed-point Q31 version.
* This is described in the function specific documentation below.
*/
/**
* @addtogroup BiquadCascadeDF1_32x64
* @{
*/
/**
* @details
* @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
* @return none.
*
* \par
* The function is implemented using an internal 64-bit accumulator.
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
* Thus, if the accumulator result overflows it wraps around rather than clip.
* In order to avoid overflows completely the input signal must be scaled down by 2 bits and lie in the range [-0.25 +0.25).
* After all 5 multiply-accumulates are performed, the 2.62 accumulator is shifted by <code>postShift</code> bits and the result truncated to
* 1.31 format by discarding the low 32 bits.
*
* \par
* Two related functions are provided in the CMSIS DSP library.
* <code>arm_biquad_cascade_df1_q31()</code> implements a Biquad cascade with 32-bit coefficients and state variables with a Q63 accumulator.
* <code>arm_biquad_cascade_df1_fast_q31()</code> implements a Biquad cascade with 32-bit coefficients and state variables with a Q31 accumulator.
*/
void arm_biquad_cas_df1_32x64_q31(
const arm_biquad_cas_df1_32x64_ins_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
q31_t *pIn = pSrc; /* input pointer initialization */
q31_t *pOut = pDst; /* output pointer initialization */
q63_t *pState = S->pState; /* state pointer initialization */
q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
q63_t acc; /* accumulator */
q63_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
q63_t Xn; /* temporary input */
int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */
uint32_t sample, stage = S->numStages; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
do
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/* Reading the state values */
Xn1 = pState[0];
Xn2 = pState[1];
Yn1 = pState[2];
Yn2 = pState[3];
/* Apply loop unrolling and compute 4 output values simultaneously. */
/* The variable acc hold output value that is being computed and
* stored in the destination buffer
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
sample = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* The value is shifted to the MSB to perform 32x64 multiplication */
Xn = Xn << 32;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = mult32x64(Xn, b0);
/* acc += b1 * x[n-1] */
acc += mult32x64(Xn1, b1);
/* acc += b[2] * x[n-2] */
acc += mult32x64(Xn2, b2);
/* acc += a1 * y[n-1] */
acc += mult32x64(Yn1, a1);
/* acc += a2 * y[n-2] */
acc += mult32x64(Yn2, a2);
/* The result is converted to 1.63 , Yn2 variable is reused */
Yn2 = acc << shift;
/* Store the output in the destination buffer in 1.31 format. */
*pOut++ = (q31_t) (acc >> (32 - shift));
/* Read the second input into Xn2, to reuse the value */
Xn2 = *pIn++;
/* The value is shifted to the MSB to perform 32x64 multiplication */
Xn2 = Xn2 << 32;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = mult32x64(Xn2, b0);
/* acc += b1 * x[n-1] */
acc += mult32x64(Xn, b1);
/* acc += b[2] * x[n-2] */
acc += mult32x64(Xn1, b2);
/* acc += a1 * y[n-1] */
acc += mult32x64(Yn2, a1);
/* acc += a2 * y[n-2] */
acc += mult32x64(Yn1, a2);
/* The result is converted to 1.63, Yn1 variable is reused */
Yn1 = acc << shift;
/* The result is converted to 1.31 */
/* Store the output in the destination buffer. */
*pOut++ = (q31_t) (acc >> (32 - shift));
/* Read the third input into Xn1, to reuse the value */
Xn1 = *pIn++;
/* The value is shifted to the MSB to perform 32x64 multiplication */
Xn1 = Xn1 << 32;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = mult32x64(Xn1, b0);
/* acc += b1 * x[n-1] */
acc += mult32x64(Xn2, b1);
/* acc += b[2] * x[n-2] */
acc += mult32x64(Xn, b2);
/* acc += a1 * y[n-1] */
acc += mult32x64(Yn1, a1);
/* acc += a2 * y[n-2] */
acc += mult32x64(Yn2, a2);
/* The result is converted to 1.63, Yn2 variable is reused */
Yn2 = acc << shift;
/* Store the output in the destination buffer in 1.31 format. */
*pOut++ = (q31_t) (acc >> (32 - shift));
/* Read the fourth input into Xn, to reuse the value */
Xn = *pIn++;
/* The value is shifted to the MSB to perform 32x64 multiplication */
Xn = Xn << 32;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = mult32x64(Xn, b0);
/* acc += b1 * x[n-1] */
acc += mult32x64(Xn1, b1);
/* acc += b[2] * x[n-2] */
acc += mult32x64(Xn2, b2);
/* acc += a1 * y[n-1] */
acc += mult32x64(Yn2, a1);
/* acc += a2 * y[n-2] */
acc += mult32x64(Yn1, a2);
/* The result is converted to 1.63, Yn1 variable is reused */
Yn1 = acc << shift;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
/* Store the output in the destination buffer in 1.31 format. */
*pOut++ = (q31_t) (acc >> (32 - shift));
/* decrement the loop counter */
sample--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
sample = (blockSize & 0x3u);
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* The value is shifted to the MSB to perform 32x64 multiplication */
Xn = Xn << 32;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = mult32x64(Xn, b0);
/* acc += b1 * x[n-1] */
acc += mult32x64(Xn1, b1);
/* acc += b[2] * x[n-2] */
acc += mult32x64(Xn2, b2);
/* acc += a1 * y[n-1] */
acc += mult32x64(Yn1, a1);
/* acc += a2 * y[n-2] */
acc += mult32x64(Yn2, a2);
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
Yn2 = Yn1;
Yn1 = acc << shift;
/* Store the output in the destination buffer in 1.31 format. */
*pOut++ = (q31_t) (acc >> (32 - shift));
/* decrement the loop counter */
sample--;
}
/* The first stage output is given as input to the second stage. */
pIn = pDst;
/* Reset to destination buffer working pointer */
pOut = pDst;
/* Store the updated state variables back into the pState array */
*pState++ = Xn1;
*pState++ = Xn2;
*pState++ = Yn1;
*pState++ = Yn2;
} while(--stage);
#else
/* Run the below code for Cortex-M0 */
do
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/* Reading the state values */
Xn1 = pState[0];
Xn2 = pState[1];
Yn1 = pState[2];
Yn2 = pState[3];
/* The variable acc hold output value that is being computed and
* stored in the destination buffer
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
sample = blockSize;
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* The value is shifted to the MSB to perform 32x64 multiplication */
Xn = Xn << 32;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = mult32x64(Xn, b0);
/* acc += b1 * x[n-1] */
acc += mult32x64(Xn1, b1);
/* acc += b[2] * x[n-2] */
acc += mult32x64(Xn2, b2);
/* acc += a1 * y[n-1] */
acc += mult32x64(Yn1, a1);
/* acc += a2 * y[n-2] */
acc += mult32x64(Yn2, a2);
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
Yn2 = Yn1;
Yn1 = acc << shift;
/* Store the output in the destination buffer in 1.31 format. */
*pOut++ = (q31_t) (acc >> (32 - shift));
/* decrement the loop counter */
sample--;
}
/* The first stage output is given as input to the second stage. */
pIn = pDst;
/* Reset to destination buffer working pointer */
pOut = pDst;
/* Store the updated state variables back into the pState array */
*pState++ = Xn1;
*pState++ = Xn2;
*pState++ = Yn1;
*pState++ = Yn2;
} while(--stage);
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BiquadCascadeDF1_32x64 group
*/

View File

@ -0,0 +1,418 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df1_f32.c
*
* Description: Processing function for the
* floating-point Biquad cascade DirectFormI(DF1) filter.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10
* Initial version
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @defgroup BiquadCascadeDF1 Biquad Cascade IIR Filters Using Direct Form I Structure
*
* This set of functions implements arbitrary order recursive (IIR) filters.
* The filters are implemented as a cascade of second order Biquad sections.
* The functions support Q15, Q31 and floating-point data types.
* Fast version of Q15 and Q31 also supported on CortexM4 and Cortex-M3.
*
* The functions operate on blocks of input and output data and each call to the function
* processes <code>blockSize</code> samples through the filter.
* <code>pSrc</code> points to the array of input data and
* <code>pDst</code> points to the array of output data.
* Both arrays contain <code>blockSize</code> values.
*
* \par Algorithm
* Each Biquad stage implements a second order filter using the difference equation:
* <pre>
* y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
* </pre>
* A Direct Form I algorithm is used with 5 coefficients and 4 state variables per stage.
* \image html Biquad.gif "Single Biquad filter stage"
* Coefficients <code>b0, b1 and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients.
* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients.
* Pay careful attention to the sign of the feedback coefficients.
* Some design tools use the difference equation
* <pre>
* y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] - a1 * y[n-1] - a2 * y[n-2]
* </pre>
* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library.
*
* \par
* Higher order filters are realized as a cascade of second order sections.
* <code>numStages</code> refers to the number of second order stages used.
* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages.
* \image html BiquadCascade.gif "8th order filter using a cascade of Biquad stages"
* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>).
*
* \par
* The <code>pState</code> points to state variables array.
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>.
* The state variables are arranged in the <code>pState</code> array as:
* <pre>
* {x[n-1], x[n-2], y[n-1], y[n-2]}
* </pre>
*
* \par
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
* The state array has a total length of <code>4*numStages</code> values.
* The state variables are updated after each block of data is processed, the coefficients are untouched.
*
* \par Instance Structure
* The coefficients and state variables for a filter are stored together in an instance data structure.
* A separate instance structure must be defined for each filter.
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
* There are separate instance structure declarations for each of the 3 supported data types.
*
* \par Init Functions
* There is also an associated initialization function for each data type.
* The initialization function performs following operations:
* - Sets the values of the internal structure fields.
* - Zeros out the values in the state buffer.
*
* \par
* Use of the initialization function is optional.
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
* To place an instance structure into a const data section, the instance structure must be manually initialized.
* Set the values in the state buffer to zeros before static initialization.
* The code below statically initializes each of the 3 different data type filter instance structures
* <pre>
* arm_biquad_casd_df1_inst_f32 S1 = {numStages, pState, pCoeffs};
* arm_biquad_casd_df1_inst_q15 S2 = {numStages, pState, pCoeffs, postShift};
* arm_biquad_casd_df1_inst_q31 S3 = {numStages, pState, pCoeffs, postShift};
* </pre>
* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer;
* <code>pCoeffs</code> is the address of the coefficient buffer; <code>postShift</code> shift to be applied.
*
* \par Fixed-Point Behavior
* Care must be taken when using the Q15 and Q31 versions of the Biquad Cascade filter functions.
* Following issues must be considered:
* - Scaling of coefficients
* - Filter gain
* - Overflow and saturation
*
* \par
* <b>Scaling of coefficients: </b>
* Filter coefficients are represented as fractional values and
* coefficients are restricted to lie in the range <code>[-1 +1)</code>.
* The fixed-point functions have an additional scaling parameter <code>postShift</code>
* which allow the filter coefficients to exceed the range <code>[+1 -1)</code>.
* At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits.
* \image html BiquadPostshift.gif "Fixed-point Biquad with shift by postShift bits after accumulator"
* This essentially scales the filter coefficients by <code>2^postShift</code>.
* For example, to realize the coefficients
* <pre>
* {1.5, -0.8, 1.2, 1.6, -0.9}
* </pre>
* set the pCoeffs array to:
* <pre>
* {0.75, -0.4, 0.6, 0.8, -0.45}
* </pre>
* and set <code>postShift=1</code>
*
* \par
* <b>Filter gain: </b>
* The frequency response of a Biquad filter is a function of its coefficients.
* It is possible for the gain through the filter to exceed 1.0 meaning that the filter increases the amplitude of certain frequencies.
* This means that an input signal with amplitude < 1.0 may result in an output > 1.0 and these are saturated or overflowed based on the implementation of the filter.
* To avoid this behavior the filter needs to be scaled down such that its peak gain < 1.0 or the input signal must be scaled down so that the combination of input and filter are never overflowed.
*
* \par
* <b>Overflow and saturation: </b>
* For Q15 and Q31 versions, it is described separately as part of the function specific documentation below.
*/
/**
* @addtogroup BiquadCascadeDF1
* @{
*/
/**
* @param[in] *S points to an instance of the floating-point Biquad cascade structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process per call.
* @return none.
*
*/
void arm_biquad_cascade_df1_f32(
const arm_biquad_casd_df1_inst_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
float32_t *pIn = pSrc; /* source pointer */
float32_t *pOut = pDst; /* destination pointer */
float32_t *pState = S->pState; /* pState pointer */
float32_t *pCoeffs = S->pCoeffs; /* coefficient pointer */
float32_t acc; /* Simulates the accumulator */
float32_t b0, b1, b2, a1, a2; /* Filter coefficients */
float32_t Xn1, Xn2, Yn1, Yn2; /* Filter pState variables */
float32_t Xn; /* temporary input */
uint32_t sample, stage = S->numStages; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
do
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/* Reading the pState values */
Xn1 = pState[0];
Xn2 = pState[1];
Yn1 = pState[2];
Yn2 = pState[3];
/* Apply loop unrolling and compute 4 output values simultaneously. */
/* The variable acc hold output values that are being computed:
*
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
sample = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(sample > 0u)
{
/* Read the first input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
Yn2 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = Yn2;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
/* Read the second input */
Xn2 = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
Yn1 = (b0 * Xn2) + (b1 * Xn) + (b2 * Xn1) + (a1 * Yn2) + (a2 * Yn1);
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = Yn1;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
/* Read the third input */
Xn1 = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
Yn2 = (b0 * Xn1) + (b1 * Xn2) + (b2 * Xn) + (a1 * Yn1) + (a2 * Yn2);
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = Yn2;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
/* Read the forth input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
Yn1 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn2) + (a2 * Yn1);
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = Yn1;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
/* decrement the loop counter */
sample--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
sample = blockSize & 0x3u;
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
acc = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = acc;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
Yn2 = Yn1;
Yn1 = acc;
/* decrement the loop counter */
sample--;
}
/* Store the updated state variables back into the pState array */
*pState++ = Xn1;
*pState++ = Xn2;
*pState++ = Yn1;
*pState++ = Yn2;
/* The first stage goes from the input buffer to the output buffer. */
/* Subsequent numStages occur in-place in the output buffer */
pIn = pDst;
/* Reset the output pointer */
pOut = pDst;
/* decrement the loop counter */
stage--;
} while(stage > 0u);
#else
/* Run the below code for Cortex-M0 */
do
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/* Reading the pState values */
Xn1 = pState[0];
Xn2 = pState[1];
Yn1 = pState[2];
Yn2 = pState[3];
/* The variables acc holds the output value that is computed:
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
sample = blockSize;
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
acc = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = acc;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
Yn2 = Yn1;
Yn1 = acc;
/* decrement the loop counter */
sample--;
}
/* Store the updated state variables back into the pState array */
*pState++ = Xn1;
*pState++ = Xn2;
*pState++ = Yn1;
*pState++ = Yn2;
/* The first stage goes from the input buffer to the output buffer. */
/* Subsequent numStages occur in-place in the output buffer */
pIn = pDst;
/* Reset the output pointer */
pOut = pDst;
/* decrement the loop counter */
stage--;
} while(stage > 0u);
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BiquadCascadeDF1 group
*/

View File

@ -0,0 +1,283 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df1_fast_q15.c
*
* Description: Fast processing function for the
* Q15 Biquad cascade filter.
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.9 2010/08/16
* Initial version
*
*
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup BiquadCascadeDF1
* @{
*/
/**
* @details
* @param[in] *S points to an instance of the Q15 Biquad cascade structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process per call.
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* This fast version uses a 32-bit accumulator with 2.30 format.
* The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit.
* Thus, if the accumulator result overflows it wraps around and distorts the result.
* In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25).
* The 2.30 accumulator is then shifted by <code>postShift</code> bits and the result truncated to 1.15 format by discarding the low 16 bits.
*
* \par
* Refer to the function <code>arm_biquad_cascade_df1_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion. Both the slow and the fast versions use the same instance structure.
* Use the function <code>arm_biquad_cascade_df1_init_q15()</code> to initialize the filter structure.
*
*/
void arm_biquad_cascade_df1_fast_q15(
const arm_biquad_casd_df1_inst_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize)
{
q15_t *pIn = pSrc; /* Source pointer */
q15_t *pOut = pDst; /* Destination pointer */
q31_t in; /* Temporary variable to hold input value */
q31_t out; /* Temporary variable to hold output value */
q31_t b0; /* Temporary variable to hold bo value */
q31_t b1, a1; /* Filter coefficients */
q31_t state_in, state_out; /* Filter state variables */
q31_t acc0; /* Accumulator */
int32_t shift = (int32_t) (15 - S->postShift); /* Post shift */
q15_t *pState = S->pState; /* State pointer */
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q31_t *pState_q31; /* 32-bit state pointer for SIMD implementation */
uint32_t sample, stage = S->numStages; /* Stage loop counter */
do
{
/* Initialize state pointer of type q31 */
pState_q31 = (q31_t *) (pState);
/* Read the b0 and 0 coefficients using SIMD */
b0 = *__SIMD32(pCoeffs)++;
/* Read the b1 and b2 coefficients using SIMD */
b1 = *__SIMD32(pCoeffs)++;
/* Read the a1 and a2 coefficients using SIMD */
a1 = *__SIMD32(pCoeffs)++;
/* Read the input state values from the state buffer: x[n-1], x[n-2] */
state_in = (q31_t) (*pState_q31++);
/* Read the output state values from the state buffer: y[n-1], y[n-2] */
state_out = (q31_t) (*pState_q31);
/* Apply loop unrolling and compute 2 output values simultaneously. */
/* The variables acc0 ... acc3 hold output values that are being computed:
*
* acc0 = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
* acc0 = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
sample = blockSize >> 1u;
/* First part of the processing with loop unrolling. Compute 2 outputs at a time.
** a second loop below computes the remaining 1 sample. */
while(sample > 0u)
{
/* Read the input */
in = *__SIMD32(pIn)++;
/* out = b0 * x[n] + 0 * 0 */
out = __SMUAD(b0, in);
/* acc0 = b1 * x[n-1] + acc0 += b2 * x[n-2] + out */
acc0 = __SMLAD(b1, state_in, out);
/* acc0 += a1 * y[n-1] + acc0 += a2 * y[n-2] */
acc0 = __SMLAD(a1, state_out, acc0);
/* The result is converted from 3.29 to 1.31 and then saturation is applied */
out = __SSAT((acc0 >> shift), 16);
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc0 */
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
#ifndef ARM_MATH_BIG_ENDIAN
state_in = __PKHBT(in, state_in, 16);
state_out = __PKHBT(out, state_out, 16);
#else
state_in = __PKHBT(state_in >> 16, (in >> 16), 16);
state_out = __PKHBT(state_out >> 16, (out), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* out = b0 * x[n] + 0 * 0 */
out = __SMUADX(b0, in);
/* acc0 = b1 * x[n-1] + acc0 += b2 * x[n-2] + out */
acc0 = __SMLAD(b1, state_in, out);
/* acc0 += a1 * y[n-1] + acc0 += a2 * y[n-2] */
acc0 = __SMLAD(a1, state_out, acc0);
/* The result is converted from 3.29 to 1.31 and then saturation is applied */
out = __SSAT((acc0 >> shift), 16);
/* Store the output in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pOut)++ = __PKHBT(state_out, out, 16);
#else
*__SIMD32(pOut)++ = __PKHBT(out, state_out >> 16, 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc0 */
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
#ifndef ARM_MATH_BIG_ENDIAN
state_in = __PKHBT(in >> 16, state_in, 16);
state_out = __PKHBT(out, state_out, 16);
#else
state_in = __PKHBT(state_in >> 16, in, 16);
state_out = __PKHBT(state_out >> 16, out, 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Decrement the loop counter */
sample--;
}
/* If the blockSize is not a multiple of 2, compute any remaining output samples here.
** No loop unrolling is used. */
if((blockSize & 0x1u) != 0u)
{
/* Read the input */
in = *pIn++;
/* out = b0 * x[n] + 0 * 0 */
#ifndef ARM_MATH_BIG_ENDIAN
out = __SMUAD(b0, in);
#else
out = __SMUADX(b0, in);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* acc0 = b1 * x[n-1] + acc0 += b2 * x[n-2] + out */
acc0 = __SMLAD(b1, state_in, out);
/* acc0 += a1 * y[n-1] + acc0 += a2 * y[n-2] */
acc0 = __SMLAD(a1, state_out, acc0);
/* The result is converted from 3.29 to 1.31 and then saturation is applied */
out = __SSAT((acc0 >> shift), 16);
/* Store the output in the destination buffer. */
*pOut++ = (q15_t) out;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc0 */
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
#ifndef ARM_MATH_BIG_ENDIAN
state_in = __PKHBT(in, state_in, 16);
state_out = __PKHBT(out, state_out, 16);
#else
state_in = __PKHBT(state_in >> 16, in, 16);
state_out = __PKHBT(state_out >> 16, out, 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
}
/* The first stage goes from the input buffer to the output buffer. */
/* Subsequent (numStages - 1) occur in-place in the output buffer */
pIn = pDst;
/* Reset the output pointer */
pOut = pDst;
/* Store the updated state variables back into the state array */
*__SIMD32(pState)++ = state_in;
*__SIMD32(pState)++ = state_out;
/* Decrement the loop counter */
stage--;
} while(stage > 0u);
}
/**
* @} end of BiquadCascadeDF1 group
*/

View File

@ -0,0 +1,271 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df1_fast_q31.c
*
* Description: Processing function for the
* Q31 Fast Biquad cascade DirectFormI(DF1) filter.
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.9 2010/08/27
* Initial version
*
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup BiquadCascadeDF1
* @{
*/
/**
* @details
*
* @param[in] *S points to an instance of the Q31 Biquad cascade structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process per call.
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* This function is optimized for speed at the expense of fixed-point precision and overflow protection.
* The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.
* These intermediate results are added to a 2.30 accumulator.
* Finally, the accumulator is saturated and converted to a 1.31 result.
* The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result.
* In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25). Use the intialization function
* arm_biquad_cascade_df1_init_q31() to initialize filter structure.
*
* \par
* Refer to the function <code>arm_biquad_cascade_df1_q31()</code> for a slower implementation of this function which uses 64-bit accumulation to provide higher precision. Both the slow and the fast versions use the same instance structure.
* Use the function <code>arm_biquad_cascade_df1_init_q31()</code> to initialize the filter structure.
*/
void arm_biquad_cascade_df1_fast_q31(
const arm_biquad_casd_df1_inst_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
q31_t *pIn = pSrc; /* input pointer initialization */
q31_t *pOut = pDst; /* output pointer initialization */
q31_t *pState = S->pState; /* pState pointer initialization */
q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
q31_t acc; /* accumulator */
q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
q31_t Xn; /* temporary input */
int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */
uint32_t sample, stage = S->numStages; /* loop counters */
do
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/* Reading the state values */
Xn1 = pState[0];
Xn2 = pState[1];
Yn1 = pState[2];
Yn2 = pState[3];
/* Apply loop unrolling and compute 4 output values simultaneously. */
/* The variables acc ... acc3 hold output values that are being computed:
*
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
sample = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q31_t) (((q63_t) b0 * Xn) >> 32);
/* acc += b1 * x[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);
/* acc += b[2] * x[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);
/* acc += a1 * y[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);
/* acc += a2 * y[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);
/* The result is converted to 1.31 , Yn2 variable is reused */
Yn2 = acc << shift;
/* Store the output in the destination buffer. */
*pOut++ = Yn2;
/* Read the second input */
Xn2 = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q31_t) (((q63_t) b0 * (Xn2)) >> 32);
/* acc += b1 * x[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn))) >> 32);
/* acc += b[2] * x[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn1))) >> 32);
/* acc += a1 * y[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);
/* acc += a2 * y[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);
/* The result is converted to 1.31, Yn1 variable is reused */
Yn1 = acc << shift;
/* Store the output in the destination buffer. */
*pOut++ = Yn1;
/* Read the third input */
Xn1 = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q31_t) (((q63_t) b0 * (Xn1)) >> 32);
/* acc += b1 * x[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn2))) >> 32);
/* acc += b[2] * x[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn))) >> 32);
/* acc += a1 * y[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);
/* acc += a2 * y[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);
/* The result is converted to 1.31, Yn2 variable is reused */
Yn2 = acc << shift;
/* Store the output in the destination buffer. */
*pOut++ = Yn2;
/* Read the forth input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);
/* acc += b1 * x[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);
/* acc += b[2] * x[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);
/* acc += a1 * y[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);
/* acc += a2 * y[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);
/* The result is converted to 1.31, Yn1 variable is reused */
Yn1 = acc << shift;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
/* Store the output in the destination buffer. */
*pOut++ = Yn1;
/* decrement the loop counter */
sample--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
sample = (blockSize & 0x3u);
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);
/* acc += b1 * x[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);
/* acc += b[2] * x[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);
/* acc += a1 * y[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);
/* acc += a2 * y[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);
/* The result is converted to 1.31 */
acc = acc << shift;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
Yn2 = Yn1;
Yn1 = acc;
/* Store the output in the destination buffer. */
*pOut++ = acc;
/* decrement the loop counter */
sample--;
}
/* The first stage goes from the input buffer to the output buffer. */
/* Subsequent stages occur in-place in the output buffer */
pIn = pDst;
/* Reset to destination pointer */
pOut = pDst;
/* Store the updated state variables back into the pState array */
*pState++ = Xn1;
*pState++ = Xn2;
*pState++ = Yn1;
*pState++ = Yn2;
} while(--stage);
}
/**
* @} end of BiquadCascadeDF1 group
*/

View File

@ -0,0 +1,104 @@
/*-----------------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df1_init_f32.c
*
* Description: floating-point Biquad cascade DirectFormI(DF1) filter initialization function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10
* Initial version
* ---------------------------------------------------------------------------*/
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup BiquadCascadeDF1
* @{
*/
/**
* @details
* @brief Initialization function for the floating-point Biquad cascade filter.
* @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
* @param[in] numStages number of 2nd order stages in the filter.
* @param[in] *pCoeffs points to the filter coefficients array.
* @param[in] *pState points to the state array.
* @return none
*
*
* <b>Coefficient and State Ordering:</b>
*
* \par
* The coefficients are stored in the array <code>pCoeffs</code> in the following order:
* <pre>
* {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
* </pre>
*
* \par
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
* and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values.
*
* \par
* The <code>pState</code> is a pointer to state array.
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>.
* The state variables are arranged in the <code>pState</code> array as:
* <pre>
* {x[n-1], x[n-2], y[n-1], y[n-2]}
* </pre>
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
* The state array has a total length of <code>4*numStages</code> values.
* The state variables are updated after each block of data is processed; the coefficients are untouched.
*
*/
void arm_biquad_cascade_df1_init_f32(
arm_biquad_casd_df1_inst_f32 * S,
uint8_t numStages,
float32_t * pCoeffs,
float32_t * pState)
{
/* Assign filter stages */
S->numStages = numStages;
/* Assign coefficient pointer */
S->pCoeffs = pCoeffs;
/* Clear state buffer and size is always 4 * numStages */
memset(pState, 0, (4u * (uint32_t) numStages) * sizeof(float32_t));
/* Assign state pointer */
S->pState = pState;
}
/**
* @} end of BiquadCascadeDF1 group
*/

View File

@ -0,0 +1,106 @@
/*-----------------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df1_init_q15.c
*
* Description: Q15 Biquad cascade DirectFormI(DF1) filter initialization function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10
* Initial version
* ---------------------------------------------------------------------------*/
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup BiquadCascadeDF1
* @{
*/
/**
* @details
*
* @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
* @param[in] numStages number of 2nd order stages in the filter.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @param[in] postShift Shift to be applied to the accumulator result. Varies according to the coefficients format
* @return none
*
* <b>Coefficient and State Ordering:</b>
*
* \par
* The coefficients are stored in the array <code>pCoeffs</code> in the following order:
* <pre>
* {b10, 0, b11, b12, a11, a12, b20, 0, b21, b22, a21, a22, ...}
* </pre>
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
* and so on. The <code>pCoeffs</code> array contains a total of <code>6*numStages</code> values.
* The zero coefficient between <code>b1</code> and <code>b2</code> facilities use of 16-bit SIMD instructions on the Cortex-M4.
*
* \par
* The state variables are stored in the array <code>pState</code>.
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>.
* The state variables are arranged in the <code>pState</code> array as:
* <pre>
* {x[n-1], x[n-2], y[n-1], y[n-2]}
* </pre>
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
* The state array has a total length of <code>4*numStages</code> values.
* The state variables are updated after each block of data is processed; the coefficients are untouched.
*/
void arm_biquad_cascade_df1_init_q15(
arm_biquad_casd_df1_inst_q15 * S,
uint8_t numStages,
q15_t * pCoeffs,
q15_t * pState,
int8_t postShift)
{
/* Assign filter stages */
S->numStages = numStages;
/* Assign postShift to be applied to the output */
S->postShift = postShift;
/* Assign coefficient pointer */
S->pCoeffs = pCoeffs;
/* Clear state buffer and size is always 4 * numStages */
memset(pState, 0, (4u * (uint32_t) numStages) * sizeof(q15_t));
/* Assign state pointer */
S->pState = pState;
}
/**
* @} end of BiquadCascadeDF1 group
*/

View File

@ -0,0 +1,106 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df1_init_q31.c
*
* Description: Q31 Biquad cascade DirectFormI(DF1) filter initialization function.
*
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10
* Initial version
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup BiquadCascadeDF1
* @{
*/
/**
* @details
*
* @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
* @param[in] numStages number of 2nd order stages in the filter.
* @param[in] *pCoeffs points to the filter coefficients buffer.
* @param[in] *pState points to the state buffer.
* @param[in] postShift Shift to be applied after the accumulator. Varies according to the coefficients format
* @return none
*
* <b>Coefficient and State Ordering:</b>
*
* \par
* The coefficients are stored in the array <code>pCoeffs</code> in the following order:
* <pre>
* {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
* </pre>
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
* and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values.
*
* \par
* The <code>pState</code> points to state variables array.
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>.
* The state variables are arranged in the <code>pState</code> array as:
* <pre>
* {x[n-1], x[n-2], y[n-1], y[n-2]}
* </pre>
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
* The state array has a total length of <code>4*numStages</code> values.
* The state variables are updated after each block of data is processed; the coefficients are untouched.
*/
void arm_biquad_cascade_df1_init_q31(
arm_biquad_casd_df1_inst_q31 * S,
uint8_t numStages,
q31_t * pCoeffs,
q31_t * pState,
int8_t postShift)
{
/* Assign filter stages */
S->numStages = numStages;
/* Assign postShift to be applied to the output */
S->postShift = postShift;
/* Assign coefficient pointer */
S->pCoeffs = pCoeffs;
/* Clear state buffer and size is always 4 * numStages */
memset(pState, 0, (4u * (uint32_t) numStages) * sizeof(q31_t));
/* Assign state pointer */
S->pState = pState;
}
/**
* @} end of BiquadCascadeDF1 group
*/

View File

@ -0,0 +1,380 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df1_q15.c
*
* Description: Processing function for the
* Q15 Biquad cascade DirectFormI(DF1) filter.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10
* Initial version
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup BiquadCascadeDF1
* @{
*/
/**
* @brief Processing function for the Q15 Biquad cascade filter.
* @param[in] *S points to an instance of the Q15 Biquad cascade structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the location where the output result is written.
* @param[in] blockSize number of samples to process per call.
* @return none.
*
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using a 64-bit internal accumulator.
* Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
* The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
* There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
* The accumulator is then shifted by <code>postShift</code> bits to truncate the result to 1.15 format by discarding the low 16 bits.
* Finally, the result is saturated to 1.15 format.
*
* \par
* Refer to the function <code>arm_biquad_cascade_df1_fast_q15()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
*/
void arm_biquad_cascade_df1_q15(
const arm_biquad_casd_df1_inst_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize)
{
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q15_t *pIn = pSrc; /* Source pointer */
q15_t *pOut = pDst; /* Destination pointer */
q31_t in; /* Temporary variable to hold input value */
q31_t out; /* Temporary variable to hold output value */
q31_t b0; /* Temporary variable to hold bo value */
q31_t b1, a1; /* Filter coefficients */
q31_t state_in, state_out; /* Filter state variables */
q63_t acc; /* Accumulator */
int32_t shift = (15 - (int32_t) S->postShift); /* Post shift */
q15_t *pState = S->pState; /* State pointer */
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q31_t *pState_q31; /* 32-bit state pointer for SIMD implementation */
uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */
do
{
/* Initialize state pointer of type q31 */
pState_q31 = (q31_t *) (pState);
/* Read the b0 and 0 coefficients using SIMD */
b0 = *__SIMD32(pCoeffs)++;
/* Read the b1 and b2 coefficients using SIMD */
b1 = *__SIMD32(pCoeffs)++;
/* Read the a1 and a2 coefficients using SIMD */
a1 = *__SIMD32(pCoeffs)++;
/* Read the input state values from the state buffer: x[n-1], x[n-2] */
state_in = (q31_t) (*pState_q31++);
/* Read the output state values from the state buffer: y[n-1], y[n-2] */
state_out = (q31_t) (*pState_q31);
/* Apply loop unrolling and compute 2 output values simultaneously. */
/* The variable acc hold output values that are being computed:
*
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
sample = blockSize >> 1u;
/* First part of the processing with loop unrolling. Compute 2 outputs at a time.
** a second loop below computes the remaining 1 sample. */
while(sample > 0u)
{
/* Read the input */
in = *__SIMD32(pIn)++;
/* out = b0 * x[n] + 0 * 0 */
out = __SMUAD(b0, in);
/* acc += b1 * x[n-1] + b2 * x[n-2] + out */
acc = __SMLALD(b1, state_in, out);
/* acc += a1 * y[n-1] + a2 * y[n-2] */
acc = __SMLALD(a1, state_out, acc);
/* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
out = __SSAT((acc >> shift), 16);
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
#ifndef ARM_MATH_BIG_ENDIAN
state_in = __PKHBT(in, state_in, 16);
state_out = __PKHBT(out, state_out, 16);
#else
state_in = __PKHBT(state_in >> 16, (in >> 16), 16);
state_out = __PKHBT(state_out >> 16, (out), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* out = b0 * x[n] + 0 * 0 */
out = __SMUADX(b0, in);
/* acc += b1 * x[n-1] + b2 * x[n-2] + out */
acc = __SMLALD(b1, state_in, out);
/* acc += a1 * y[n-1] + a2 * y[n-2] */
acc = __SMLALD(a1, state_out, acc);
/* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
out = __SSAT((acc >> shift), 16);
/* Store the output in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pOut)++ = __PKHBT(state_out, out, 16);
#else
*__SIMD32(pOut)++ = __PKHBT(out, state_out >> 16, 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
#ifndef ARM_MATH_BIG_ENDIAN
state_in = __PKHBT(in >> 16, state_in, 16);
state_out = __PKHBT(out, state_out, 16);
#else
state_in = __PKHBT(state_in >> 16, in, 16);
state_out = __PKHBT(state_out >> 16, out, 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Decrement the loop counter */
sample--;
}
/* If the blockSize is not a multiple of 2, compute any remaining output samples here.
** No loop unrolling is used. */
if((blockSize & 0x1u) != 0u)
{
/* Read the input */
in = *pIn++;
/* out = b0 * x[n] + 0 * 0 */
#ifndef ARM_MATH_BIG_ENDIAN
out = __SMUAD(b0, in);
#else
out = __SMUADX(b0, in);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* acc = b1 * x[n-1] + b2 * x[n-2] + out */
acc = __SMLALD(b1, state_in, out);
/* acc += a1 * y[n-1] + a2 * y[n-2] */
acc = __SMLALD(a1, state_out, acc);
/* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
out = __SSAT((acc >> shift), 16);
/* Store the output in the destination buffer. */
*pOut++ = (q15_t) out;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
#ifndef ARM_MATH_BIG_ENDIAN
state_in = __PKHBT(in, state_in, 16);
state_out = __PKHBT(out, state_out, 16);
#else
state_in = __PKHBT(state_in >> 16, in, 16);
state_out = __PKHBT(state_out >> 16, out, 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
}
/* The first stage goes from the input wire to the output wire. */
/* Subsequent numStages occur in-place in the output wire */
pIn = pDst;
/* Reset the output pointer */
pOut = pDst;
/* Store the updated state variables back into the state array */
*__SIMD32(pState)++ = state_in;
*__SIMD32(pState)++ = state_out;
/* Decrement the loop counter */
stage--;
} while(stage > 0u);
#else
/* Run the below code for Cortex-M0 */
q15_t *pIn = pSrc; /* Source pointer */
q15_t *pOut = pDst; /* Destination pointer */
q15_t b0, b1, b2, a1, a2; /* Filter coefficients */
q15_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
q15_t Xn; /* temporary input */
q63_t acc; /* Accumulator */
int32_t shift = (15 - (int32_t) S->postShift); /* Post shift */
q15_t *pState = S->pState; /* State pointer */
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */
do
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/* Reading the state values */
Xn1 = pState[0];
Xn2 = pState[1];
Yn1 = pState[2];
Yn2 = pState[3];
/* The variables acc holds the output value that is computed:
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
sample = blockSize;
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q31_t) b0 *Xn;
/* acc += b1 * x[n-1] */
acc += (q31_t) b1 *Xn1;
/* acc += b[2] * x[n-2] */
acc += (q31_t) b2 *Xn2;
/* acc += a1 * y[n-1] */
acc += (q31_t) a1 *Yn1;
/* acc += a2 * y[n-2] */
acc += (q31_t) a2 *Yn2;
/* The result is converted to 1.31 */
acc = __SSAT((acc >> shift), 16);
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
Yn2 = Yn1;
Yn1 = (q15_t) acc;
/* Store the output in the destination buffer. */
*pOut++ = (q15_t) acc;
/* decrement the loop counter */
sample--;
}
/* The first stage goes from the input buffer to the output buffer. */
/* Subsequent stages occur in-place in the output buffer */
pIn = pDst;
/* Reset to destination pointer */
pOut = pDst;
/* Store the updated state variables back into the pState array */
*pState++ = Xn1;
*pState++ = Xn2;
*pState++ = Yn1;
*pState++ = Yn2;
} while(--stage);
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BiquadCascadeDF1 group
*/

View File

@ -0,0 +1,362 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df1_q31.c
*
* Description: Processing function for the
* Q31 Biquad cascade filter
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10
* Initial version
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup BiquadCascadeDF1
* @{
*/
/**
* @brief Processing function for the Q31 Biquad cascade filter.
* @param[in] *S points to an instance of the Q31 Biquad cascade structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process per call.
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using an internal 64-bit accumulator.
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
* Thus, if the accumulator result overflows it wraps around rather than clip.
* In order to avoid overflows completely the input signal must be scaled down by 2 bits and lie in the range [-0.25 +0.25).
* After all 5 multiply-accumulates are performed, the 2.62 accumulator is shifted by <code>postShift</code> bits and the result truncated to
* 1.31 format by discarding the low 32 bits.
*
* \par
* Refer to the function <code>arm_biquad_cascade_df1_fast_q31()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
*/
void arm_biquad_cascade_df1_q31(
const arm_biquad_casd_df1_inst_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
q31_t *pIn = pSrc; /* input pointer initialization */
q31_t *pOut = pDst; /* output pointer initialization */
q31_t *pState = S->pState; /* pState pointer initialization */
q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
q63_t acc; /* accumulator */
q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
q31_t Xn; /* temporary input */
uint32_t shift = 32u - ((uint32_t) S->postShift + 1u); /* Shift to be applied to the output */
uint32_t sample, stage = S->numStages; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
do
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/* Reading the state values */
Xn1 = pState[0];
Xn2 = pState[1];
Yn1 = pState[2];
Yn2 = pState[3];
/* Apply loop unrolling and compute 4 output values simultaneously. */
/* The variable acc hold output values that are being computed:
*
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
sample = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q63_t) b0 *Xn;
/* acc += b1 * x[n-1] */
acc += (q63_t) b1 *Xn1;
/* acc += b[2] * x[n-2] */
acc += (q63_t) b2 *Xn2;
/* acc += a1 * y[n-1] */
acc += (q63_t) a1 *Yn1;
/* acc += a2 * y[n-2] */
acc += (q63_t) a2 *Yn2;
/* The result is converted to 1.31 , Yn2 variable is reused */
Yn2 = (q31_t) (acc >> shift);
/* Store the output in the destination buffer. */
*pOut++ = Yn2;
/* Read the second input */
Xn2 = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q63_t) b0 *Xn2;
/* acc += b1 * x[n-1] */
acc += (q63_t) b1 *Xn;
/* acc += b[2] * x[n-2] */
acc += (q63_t) b2 *Xn1;
/* acc += a1 * y[n-1] */
acc += (q63_t) a1 *Yn2;
/* acc += a2 * y[n-2] */
acc += (q63_t) a2 *Yn1;
/* The result is converted to 1.31, Yn1 variable is reused */
Yn1 = (q31_t) (acc >> shift);
/* Store the output in the destination buffer. */
*pOut++ = Yn1;
/* Read the third input */
Xn1 = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q63_t) b0 *Xn1;
/* acc += b1 * x[n-1] */
acc += (q63_t) b1 *Xn2;
/* acc += b[2] * x[n-2] */
acc += (q63_t) b2 *Xn;
/* acc += a1 * y[n-1] */
acc += (q63_t) a1 *Yn1;
/* acc += a2 * y[n-2] */
acc += (q63_t) a2 *Yn2;
/* The result is converted to 1.31, Yn2 variable is reused */
Yn2 = (q31_t) (acc >> shift);
/* Store the output in the destination buffer. */
*pOut++ = Yn2;
/* Read the forth input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q63_t) b0 *Xn;
/* acc += b1 * x[n-1] */
acc += (q63_t) b1 *Xn1;
/* acc += b[2] * x[n-2] */
acc += (q63_t) b2 *Xn2;
/* acc += a1 * y[n-1] */
acc += (q63_t) a1 *Yn2;
/* acc += a2 * y[n-2] */
acc += (q63_t) a2 *Yn1;
/* The result is converted to 1.31, Yn1 variable is reused */
Yn1 = (q31_t) (acc >> shift);
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
/* Store the output in the destination buffer. */
*pOut++ = Yn1;
/* decrement the loop counter */
sample--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
sample = (blockSize & 0x3u);
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q63_t) b0 *Xn;
/* acc += b1 * x[n-1] */
acc += (q63_t) b1 *Xn1;
/* acc += b[2] * x[n-2] */
acc += (q63_t) b2 *Xn2;
/* acc += a1 * y[n-1] */
acc += (q63_t) a1 *Yn1;
/* acc += a2 * y[n-2] */
acc += (q63_t) a2 *Yn2;
/* The result is converted to 1.31 */
acc = acc >> shift;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
Yn2 = Yn1;
Yn1 = (q31_t) acc;
/* Store the output in the destination buffer. */
*pOut++ = (q31_t) acc;
/* decrement the loop counter */
sample--;
}
/* The first stage goes from the input buffer to the output buffer. */
/* Subsequent stages occur in-place in the output buffer */
pIn = pDst;
/* Reset to destination pointer */
pOut = pDst;
/* Store the updated state variables back into the pState array */
*pState++ = Xn1;
*pState++ = Xn2;
*pState++ = Yn1;
*pState++ = Yn2;
} while(--stage);
#else
/* Run the below code for Cortex-M0 */
do
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/* Reading the state values */
Xn1 = pState[0];
Xn2 = pState[1];
Yn1 = pState[2];
Yn2 = pState[3];
/* The variables acc holds the output value that is computed:
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
sample = blockSize;
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q63_t) b0 *Xn;
/* acc += b1 * x[n-1] */
acc += (q63_t) b1 *Xn1;
/* acc += b[2] * x[n-2] */
acc += (q63_t) b2 *Xn2;
/* acc += a1 * y[n-1] */
acc += (q63_t) a1 *Yn1;
/* acc += a2 * y[n-2] */
acc += (q63_t) a2 *Yn2;
/* The result is converted to 1.31 */
acc = acc >> shift;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
Yn2 = Yn1;
Yn1 = (q31_t) acc;
/* Store the output in the destination buffer. */
*pOut++ = (q31_t) acc;
/* decrement the loop counter */
sample--;
}
/* The first stage goes from the input buffer to the output buffer. */
/* Subsequent stages occur in-place in the output buffer */
pIn = pDst;
/* Reset to destination pointer */
pOut = pDst;
/* Store the updated state variables back into the pState array */
*pState++ = Xn1;
*pState++ = Xn2;
*pState++ = Yn1;
*pState++ = Yn2;
} while(--stage);
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BiquadCascadeDF1 group
*/

View File

@ -0,0 +1,359 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df2T_f32.c
*
* Description: Processing function for the floating-point transposed
* direct form II Biquad cascade filter.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @defgroup BiquadCascadeDF2T Biquad Cascade IIR Filters Using a Direct Form II Transposed Structure
*
* This set of functions implements arbitrary order recursive (IIR) filters using a transposed direct form II structure.
* The filters are implemented as a cascade of second order Biquad sections.
* These functions provide a slight memory savings as compared to the direct form I Biquad filter functions.
* Only floating-point data is supported.
*
* This function operate on blocks of input and output data and each call to the function
* processes <code>blockSize</code> samples through the filter.
* <code>pSrc</code> points to the array of input data and
* <code>pDst</code> points to the array of output data.
* Both arrays contain <code>blockSize</code> values.
*
* \par Algorithm
* Each Biquad stage implements a second order filter using the difference equation:
* <pre>
* y[n] = b0 * x[n] + d1
* d1 = b1 * x[n] + a1 * y[n] + d2
* d2 = b2 * x[n] + a2 * y[n]
* </pre>
* where d1 and d2 represent the two state values.
*
* \par
* A Biquad filter using a transposed Direct Form II structure is shown below.
* \image html BiquadDF2Transposed.gif "Single transposed Direct Form II Biquad"
* Coefficients <code>b0, b1, and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients.
* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients.
* Pay careful attention to the sign of the feedback coefficients.
* Some design tools flip the sign of the feedback coefficients:
* <pre>
* y[n] = b0 * x[n] + d1;
* d1 = b1 * x[n] - a1 * y[n] + d2;
* d2 = b2 * x[n] - a2 * y[n];
* </pre>
* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library.
*
* \par
* Higher order filters are realized as a cascade of second order sections.
* <code>numStages</code> refers to the number of second order stages used.
* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages.
* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the
* coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>).
*
* \par
* <code>pState</code> points to the state variable array.
* Each Biquad stage has 2 state variables <code>d1</code> and <code>d2</code>.
* The state variables are arranged in the <code>pState</code> array as:
* <pre>
* {d11, d12, d21, d22, ...}
* </pre>
* where <code>d1x</code> refers to the state variables for the first Biquad and
* <code>d2x</code> refers to the state variables for the second Biquad.
* The state array has a total length of <code>2*numStages</code> values.
* The state variables are updated after each block of data is processed; the coefficients are untouched.
*
* \par
* The CMSIS library contains Biquad filters in both Direct Form I and transposed Direct Form II.
* The advantage of the Direct Form I structure is that it is numerically more robust for fixed-point data types.
* That is why the Direct Form I structure supports Q15 and Q31 data types.
* The transposed Direct Form II structure, on the other hand, requires a wide dynamic range for the state variables <code>d1</code> and <code>d2</code>.
* Because of this, the CMSIS library only has a floating-point version of the Direct Form II Biquad.
* The advantage of the Direct Form II Biquad is that it requires half the number of state variables, 2 rather than 4, per Biquad stage.
*
* \par Instance Structure
* The coefficients and state variables for a filter are stored together in an instance data structure.
* A separate instance structure must be defined for each filter.
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
*
* \par Init Functions
* There is also an associated initialization function.
* The initialization function performs following operations:
* - Sets the values of the internal structure fields.
* - Zeros out the values in the state buffer.
*
* \par
* Use of the initialization function is optional.
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
* To place an instance structure into a const data section, the instance structure must be manually initialized.
* Set the values in the state buffer to zeros before static initialization.
* For example, to statically initialize the instance structure use
* <pre>
* arm_biquad_cascade_df2T_instance_f32 S1 = {numStages, pState, pCoeffs};
* </pre>
* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer.
* <code>pCoeffs</code> is the address of the coefficient buffer;
*
*/
/**
* @addtogroup BiquadCascadeDF2T
* @{
*/
/**
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
* @param[in] *S points to an instance of the filter data structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data
* @param[in] blockSize number of samples to process.
* @return none.
*/
void arm_biquad_cascade_df2T_f32(
const arm_biquad_cascade_df2T_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
float32_t *pIn = pSrc; /* source pointer */
float32_t *pOut = pDst; /* destination pointer */
float32_t *pState = S->pState; /* State pointer */
float32_t *pCoeffs = S->pCoeffs; /* coefficient pointer */
float32_t acc0; /* Simulates the accumulator */
float32_t b0, b1, b2, a1, a2; /* Filter coefficients */
float32_t Xn; /* temporary input */
float32_t d1, d2; /* state variables */
uint32_t sample, stage = S->numStages; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
do
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/*Reading the state values */
d1 = pState[0];
d2 = pState[1];
/* Apply loop unrolling and compute 4 output values simultaneously. */
sample = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(sample > 0u)
{
/* Read the first input */
Xn = *pIn++;
/* y[n] = b0 * x[n] + d1 */
acc0 = (b0 * Xn) + d1;
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = acc0;
/* Every time after the output is computed state should be updated. */
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
d1 = ((b1 * Xn) + (a1 * acc0)) + d2;
/* d2 = b2 * x[n] + a2 * y[n] */
d2 = (b2 * Xn) + (a2 * acc0);
/* Read the second input */
Xn = *pIn++;
/* y[n] = b0 * x[n] + d1 */
acc0 = (b0 * Xn) + d1;
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = acc0;
/* Every time after the output is computed state should be updated. */
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
d1 = ((b1 * Xn) + (a1 * acc0)) + d2;
/* d2 = b2 * x[n] + a2 * y[n] */
d2 = (b2 * Xn) + (a2 * acc0);
/* Read the third input */
Xn = *pIn++;
/* y[n] = b0 * x[n] + d1 */
acc0 = (b0 * Xn) + d1;
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = acc0;
/* Every time after the output is computed state should be updated. */
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
d1 = ((b1 * Xn) + (a1 * acc0)) + d2;
/* d2 = b2 * x[n] + a2 * y[n] */
d2 = (b2 * Xn) + (a2 * acc0);
/* Read the fourth input */
Xn = *pIn++;
/* y[n] = b0 * x[n] + d1 */
acc0 = (b0 * Xn) + d1;
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = acc0;
/* Every time after the output is computed state should be updated. */
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
d1 = (b1 * Xn) + (a1 * acc0) + d2;
/* d2 = b2 * x[n] + a2 * y[n] */
d2 = (b2 * Xn) + (a2 * acc0);
/* decrement the loop counter */
sample--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
sample = blockSize & 0x3u;
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* y[n] = b0 * x[n] + d1 */
acc0 = (b0 * Xn) + d1;
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = acc0;
/* Every time after the output is computed state should be updated. */
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
d1 = ((b1 * Xn) + (a1 * acc0)) + d2;
/* d2 = b2 * x[n] + a2 * y[n] */
d2 = (b2 * Xn) + (a2 * acc0);
/* decrement the loop counter */
sample--;
}
/* Store the updated state variables back into the state array */
*pState++ = d1;
*pState++ = d2;
/* The current stage input is given as the output to the next stage */
pIn = pDst;
/*Reset the output working pointer */
pOut = pDst;
/* decrement the loop counter */
stage--;
} while(stage > 0u);
#else
/* Run the below code for Cortex-M0 */
do
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/*Reading the state values */
d1 = pState[0];
d2 = pState[1];
sample = blockSize;
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* y[n] = b0 * x[n] + d1 */
acc0 = (b0 * Xn) + d1;
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = acc0;
/* Every time after the output is computed state should be updated. */
/* d1 = b1 * x[n] + a1 * y[n] + d2 */
d1 = ((b1 * Xn) + (a1 * acc0)) + d2;
/* d2 = b2 * x[n] + a2 * y[n] */
d2 = (b2 * Xn) + (a2 * acc0);
/* decrement the loop counter */
sample--;
}
/* Store the updated state variables back into the state array */
*pState++ = d1;
*pState++ = d2;
/* The current stage input is given as the output to the next stage */
pIn = pDst;
/*Reset the output working pointer */
pOut = pDst;
/* decrement the loop counter */
stage--;
} while(stage > 0u);
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BiquadCascadeDF2T group
*/

View File

@ -0,0 +1,94 @@
/*-----------------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df2T_init_f32.c
*
* Description: Initialization function for the floating-point transposed
* direct form II Biquad cascade filter.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------*/
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup BiquadCascadeDF2T
* @{
*/
/**
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
* @param[in,out] *S points to an instance of the filter data structure.
* @param[in] numStages number of 2nd order stages in the filter.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @return none
*
* <b>Coefficient and State Ordering:</b>
* \par
* The coefficients are stored in the array <code>pCoeffs</code> in the following order:
* <pre>
* {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
* </pre>
*
* \par
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
* and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values.
*
* \par
* The <code>pState</code> is a pointer to state array.
* Each Biquad stage has 2 state variables <code>d1,</code> and <code>d2</code>.
* The 2 state variables for stage 1 are first, then the 2 state variables for stage 2, and so on.
* The state array has a total length of <code>2*numStages</code> values.
* The state variables are updated after each block of data is processed; the coefficients are untouched.
*/
void arm_biquad_cascade_df2T_init_f32(
arm_biquad_cascade_df2T_instance_f32 * S,
uint8_t numStages,
float32_t * pCoeffs,
float32_t * pState)
{
/* Assign filter stages */
S->numStages = numStages;
/* Assign coefficient pointer */
S->pCoeffs = pCoeffs;
/* Clear state buffer and size is always 2 * numStages */
memset(pState, 0, (2u * (uint32_t) numStages) * sizeof(float32_t));
/* Assign state pointer */
S->pState = pState;
}
/**
* @} end of BiquadCascadeDF2T group
*/

View File

@ -0,0 +1,623 @@
/* ----------------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_conv_f32.c
*
* Description: Convolution of floating-point sequences.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
*
* -------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @defgroup Conv Convolution
*
* Convolution is a mathematical operation that operates on two finite length vectors to generate a finite length output vector.
* Convolution is similar to correlation and is frequently used in filtering and data analysis.
* The CMSIS DSP library contains functions for convolving Q7, Q15, Q31, and floating-point data types.
* The library also provides fast versions of the Q15 and Q31 functions on Cortex-M4 and Cortex-M3.
*
* \par Algorithm
* Let <code>a[n]</code> and <code>b[n]</code> be sequences of length <code>srcALen</code> and <code>srcBLen</code> samples respectively.
* Then the convolution
*
* <pre>
* c[n] = a[n] * b[n]
* </pre>
*
* \par
* is defined as
* \image html ConvolutionEquation.gif
* \par
* Note that <code>c[n]</code> is of length <code>srcALen + srcBLen - 1</code> and is defined over the interval <code>n=0, 1, 2, ..., srcALen + srcBLen - 2</code>.
* <code>pSrcA</code> points to the first input vector of length <code>srcALen</code> and
* <code>pSrcB</code> points to the second input vector of length <code>srcBLen</code>.
* The output result is written to <code>pDst</code> and the calling function must allocate <code>srcALen+srcBLen-1</code> words for the result.
*
* \par
* Conceptually, when two signals <code>a[n]</code> and <code>b[n]</code> are convolved,
* the signal <code>b[n]</code> slides over <code>a[n]</code>.
* For each offset \c n, the overlapping portions of a[n] and b[n] are multiplied and summed together.
*
* \par
* Note that convolution is a commutative operation:
*
* <pre>
* a[n] * b[n] = b[n] * a[n].
* </pre>
*
* \par
* This means that switching the A and B arguments to the convolution functions has no effect.
*
* <b>Fixed-Point Behavior</b>
*
* \par
* Convolution requires summing up a large number of intermediate products.
* As such, the Q7, Q15, and Q31 functions run a risk of overflow and saturation.
* Refer to the function specific documentation below for further details of the particular algorithm used.
*/
/**
* @addtogroup Conv
* @{
*/
/**
* @brief Convolution of floating-point sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
* @return none.
*/
void arm_conv_f32(
float32_t * pSrcA,
uint32_t srcALen,
float32_t * pSrcB,
uint32_t srcBLen,
float32_t * pDst)
{
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t *pIn1; /* inputA pointer */
float32_t *pIn2; /* inputB pointer */
float32_t *pOut = pDst; /* output pointer */
float32_t *px; /* Intermediate inputA pointer */
float32_t *py; /* Intermediate inputB pointer */
float32_t *pSrc1, *pSrc2; /* Intermediate pointers */
float32_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
float32_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counters */
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
/* So srcBLen is always considered as shorter or equal to srcALen */
if(srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
pIn1 = pSrcA;
/* Initialization of inputB pointer */
pIn2 = pSrcB;
}
else
{
/* Initialization of inputA pointer */
pIn1 = pSrcB;
/* Initialization of inputB pointer */
pIn2 = pSrcA;
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
srcBLen = srcALen;
srcALen = j;
}
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
/* The function is internally
* divided into three stages according to the number of multiplications that has to be
* taken place between inputA samples and inputB samples. In the first stage of the
* algorithm, the multiplications increase by one for every iteration.
* In the second stage of the algorithm, srcBLen number of multiplications are done.
* In the third stage of the algorithm, the multiplications decrease by one
* for every iteration. */
/* The algorithm is implemented in three stages.
The loop counters of each stage is initiated here. */
blockSize1 = srcBLen - 1u;
blockSize2 = srcALen - (srcBLen - 1u);
blockSize3 = blockSize1;
/* --------------------------
* initializations of stage1
* -------------------------*/
/* sum = x[0] * y[0]
* sum = x[0] * y[1] + x[1] * y[0]
* ....
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
*/
/* In this stage the MAC operations are increased by 1 for every iteration.
The count variable holds the number of MAC operations performed */
count = 1u;
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
py = pIn2;
/* ------------------------
* Stage1 process
* ----------------------*/
/* The first stage starts here */
while(blockSize1 > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0.0f;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* x[0] * y[srcBLen - 1] */
sum += *px++ * *py--;
/* x[1] * y[srcBLen - 2] */
sum += *px++ * *py--;
/* x[2] * y[srcBLen - 3] */
sum += *px++ * *py--;
/* x[3] * y[srcBLen - 4] */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum;
/* Update the inputA and inputB pointers for next MAC calculation */
py = pIn2 + count;
px = pIn1;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blockSize1--;
}
/* --------------------------
* Initializations of stage2
* ------------------------*/
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
* ....
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
*/
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* count is index by which the pointer pIn1 to be incremented */
count = 1u;
/* -------------------
* Stage2 process
* ------------------*/
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
* So, to loop unroll over blockSize2,
* srcBLen should be greater than or equal to 4 */
if(srcBLen >= 4u)
{
/* Loop unroll over blockSize2, by 4 */
blkCnt = blockSize2 >> 2u;
while(blkCnt > 0u)
{
/* Set all accumulators to zero */
acc0 = 0.0f;
acc1 = 0.0f;
acc2 = 0.0f;
acc3 = 0.0f;
/* read x[0], x[1], x[2] samples */
x0 = *(px++);
x1 = *(px++);
x2 = *(px++);
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
do
{
/* Read y[srcBLen - 1] sample */
c0 = *(py--);
/* Read x[3] sample */
x3 = *(px++);
/* Perform the multiply-accumulate */
/* acc0 += x[0] * y[srcBLen - 1] */
acc0 += x0 * c0;
/* acc1 += x[1] * y[srcBLen - 1] */
acc1 += x1 * c0;
/* acc2 += x[2] * y[srcBLen - 1] */
acc2 += x2 * c0;
/* acc3 += x[3] * y[srcBLen - 1] */
acc3 += x3 * c0;
/* Read y[srcBLen - 2] sample */
c0 = *(py--);
/* Read x[4] sample */
x0 = *(px++);
/* Perform the multiply-accumulate */
/* acc0 += x[1] * y[srcBLen - 2] */
acc0 += x1 * c0;
/* acc1 += x[2] * y[srcBLen - 2] */
acc1 += x2 * c0;
/* acc2 += x[3] * y[srcBLen - 2] */
acc2 += x3 * c0;
/* acc3 += x[4] * y[srcBLen - 2] */
acc3 += x0 * c0;
/* Read y[srcBLen - 3] sample */
c0 = *(py--);
/* Read x[5] sample */
x1 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[2] * y[srcBLen - 3] */
acc0 += x2 * c0;
/* acc1 += x[3] * y[srcBLen - 2] */
acc1 += x3 * c0;
/* acc2 += x[4] * y[srcBLen - 2] */
acc2 += x0 * c0;
/* acc3 += x[5] * y[srcBLen - 2] */
acc3 += x1 * c0;
/* Read y[srcBLen - 4] sample */
c0 = *(py--);
/* Read x[6] sample */
x2 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[3] * y[srcBLen - 4] */
acc0 += x3 * c0;
/* acc1 += x[4] * y[srcBLen - 4] */
acc1 += x0 * c0;
/* acc2 += x[5] * y[srcBLen - 4] */
acc2 += x1 * c0;
/* acc3 += x[6] * y[srcBLen - 4] */
acc3 += x2 * c0;
} while(--k);
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Read y[srcBLen - 5] sample */
c0 = *(py--);
/* Read x[7] sample */
x3 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[4] * y[srcBLen - 5] */
acc0 += x0 * c0;
/* acc1 += x[5] * y[srcBLen - 5] */
acc1 += x1 * c0;
/* acc2 += x[6] * y[srcBLen - 5] */
acc2 += x2 * c0;
/* acc3 += x[7] * y[srcBLen - 5] */
acc3 += x3 * c0;
/* Reuse the present samples for the next MAC */
x0 = x1;
x1 = x2;
x2 = x3;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = acc0;
*pOut++ = acc1;
*pOut++ = acc2;
*pOut++ = acc3;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + (count * 4u);
py = pSrc2;
/* Increment the pointer pIn1 index, count by 1 */
count++;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize2 % 0x4u;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0.0f;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += *px++ * *py--;
sum += *px++ * *py--;
sum += *px++ * *py--;
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* If the srcBLen is not a multiple of 4,
* the blockSize2 loop cannot be unrolled by 4 */
blkCnt = blockSize2;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0.0f;
/* srcBLen number of MACS should be performed */
k = srcBLen;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
/* --------------------------
* Initializations of stage3
* -------------------------*/
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
* ....
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
* sum += x[srcALen-1] * y[srcBLen-1]
*/
/* In this stage the MAC operations are decreased by 1 for every iteration.
The blockSize3 variable holds the number of MAC operations performed */
/* Working pointer of inputA */
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
px = pSrc1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* -------------------
* Stage3 process
* ------------------*/
while(blockSize3 > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0.0f;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = blockSize3 >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
sum += *px++ * *py--;
/* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
sum += *px++ * *py--;
/* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
sum += *px++ * *py--;
/* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = blockSize3 % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
/* sum += x[srcALen-1] * y[srcBLen-1] */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum;
/* Update the inputA and inputB pointers for next MAC calculation */
px = ++pSrc1;
py = pSrc2;
/* Decrement the loop counter */
blockSize3--;
}
#else
/* Run the below code for Cortex-M0 */
float32_t *pIn1 = pSrcA; /* inputA pointer */
float32_t *pIn2 = pSrcB; /* inputB pointer */
float32_t sum; /* Accumulator */
uint32_t i, j; /* loop counters */
/* Loop to calculate convolution for output length number of times */
for (i = 0u; i < ((srcALen + srcBLen) - 1u); i++)
{
/* Initialize sum with zero to carry out MAC operations */
sum = 0.0f;
/* Loop to perform MAC operations according to convolution equation */
for (j = 0u; j <= i; j++)
{
/* Check the array limitations */
if((((i - j) < srcBLen) && (j < srcALen)))
{
/* z[i] += x[i-j] * y[j] */
sum += pIn1[j] * pIn2[i - j];
}
}
/* Store the output in the destination buffer */
pDst[i] = sum;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of Conv group
*/

View File

@ -0,0 +1,677 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_conv_fast_q15.c
*
* Description: Fast Q15 Convolution.
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup Conv
* @{
*/
/**
* @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
*
* \par
* This fast version uses a 32-bit accumulator with 2.30 format.
* The accumulator maintains full precision of the intermediate multiplication results
* but provides only a single guard bit. There is no saturation on intermediate additions.
* Thus, if the accumulator overflows it wraps around and distorts the result.
* The input signals should be scaled down to avoid intermediate overflows.
* Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows,
* as maximum of min(srcALen, srcBLen) number of additions are carried internally.
* The 2.30 accumulator is right shifted by 15 bits and then saturated to 1.15 format to yield the final result.
*
* \par
* See <code>arm_conv_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion.
*/
void arm_conv_fast_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst)
{
q15_t *pIn1; /* inputA pointer */
q15_t *pIn2; /* inputB pointer */
q15_t *pOut = pDst; /* output pointer */
q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
q15_t *px; /* Intermediate inputA pointer */
q15_t *py; /* Intermediate inputB pointer */
q15_t *pSrc1, *pSrc2; /* Intermediate pointers */
q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
uint32_t blockSize1, blockSize2, blockSize3, j, k, count, blkCnt; /* loop counter */
q31_t *pb; /* 32 bit pointer for inputB buffer */
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
/* So srcBLen is always considered as shorter or equal to srcALen */
if(srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
pIn1 = pSrcA;
/* Initialization of inputB pointer */
pIn2 = pSrcB;
}
else
{
/* Initialization of inputA pointer */
pIn1 = pSrcB;
/* Initialization of inputB pointer */
pIn2 = pSrcA;
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
srcBLen = srcALen;
srcALen = j;
}
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
/* The function is internally
* divided into three stages according to the number of multiplications that has to be
* taken place between inputA samples and inputB samples. In the first stage of the
* algorithm, the multiplications increase by one for every iteration.
* In the second stage of the algorithm, srcBLen number of multiplications are done.
* In the third stage of the algorithm, the multiplications decrease by one
* for every iteration. */
/* The algorithm is implemented in three stages.
The loop counters of each stage is initiated here. */
blockSize1 = srcBLen - 1u;
blockSize2 = srcALen - (srcBLen - 1u);
blockSize3 = blockSize1;
/* --------------------------
* Initializations of stage1
* -------------------------*/
/* sum = x[0] * y[0]
* sum = x[0] * y[1] + x[1] * y[0]
* ....
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
*/
/* In this stage the MAC operations are increased by 1 for every iteration.
The count variable holds the number of MAC operations performed */
count = 1u;
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
py = pIn2;
/* ------------------------
* Stage1 process
* ----------------------*/
/* For loop unrolling by 4, this stage is divided into two. */
/* First part of this stage computes the MAC operations less than 4 */
/* Second part of this stage computes the MAC operations greater than or equal to 4 */
/* The first part of the stage starts here */
while((count < 4u) && (blockSize1 > 0u))
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Loop over number of MAC operations between
* inputA samples and inputB samples */
k = count;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum = __SMLAD(*px++, *py--, sum);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (sum >> 15);
/* Update the inputA and inputB pointers for next MAC calculation */
py = pIn2 + count;
px = pIn1;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blockSize1--;
}
/* The second part of the stage starts here */
/* The internal loop, over count, is unrolled by 4 */
/* To, read the last two inputB samples using SIMD:
* y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */
py = py - 1;
while(blockSize1 > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Perform the multiply-accumulates */
/* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */
sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
/* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */
sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
/* Decrement the loop counter */
k--;
}
/* For the next MAC operations, the pointer py is used without SIMD
* So, py is incremented by 1 */
py = py + 1u;
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum = __SMLAD(*px++, *py--, sum);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (sum >> 15);
/* Update the inputA and inputB pointers for next MAC calculation */
py = pIn2 + (count - 1u);
px = pIn1;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blockSize1--;
}
/* --------------------------
* Initializations of stage2
* ------------------------*/
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
* ....
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
*/
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* Initialize inputB pointer of type q31 */
pb = (q31_t *) (py - 1u);
/* count is the index by which the pointer pIn1 to be incremented */
count = 1u;
/* --------------------
* Stage2 process
* -------------------*/
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
* So, to loop unroll over blockSize2,
* srcBLen should be greater than or equal to 4 */
if(srcBLen >= 4u)
{
/* Loop unroll over blockSize2, by 4 */
blkCnt = blockSize2 >> 2u;
while(blkCnt > 0u)
{
/* Set all accumulators to zero */
acc0 = 0;
acc1 = 0;
acc2 = 0;
acc3 = 0;
/* read x[0], x[1] samples */
x0 = *(q31_t *) (px++);
/* read x[1], x[2] samples */
x1 = *(q31_t *) (px++);
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
do
{
/* Read the last two inputB samples using SIMD:
* y[srcBLen - 1] and y[srcBLen - 2] */
c0 = *(pb--);
/* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
acc0 = __SMLADX(x0, c0, acc0);
/* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
acc1 = __SMLADX(x1, c0, acc1);
/* Read x[2], x[3] */
x2 = *(q31_t *) (px++);
/* Read x[3], x[4] */
x3 = *(q31_t *) (px++);
/* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
acc2 = __SMLADX(x2, c0, acc2);
/* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
acc3 = __SMLADX(x3, c0, acc3);
/* Read y[srcBLen - 3] and y[srcBLen - 4] */
c0 = *(pb--);
/* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
acc0 = __SMLADX(x2, c0, acc0);
/* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
acc1 = __SMLADX(x3, c0, acc1);
/* Read x[4], x[5] */
x0 = *(q31_t *) (px++);
/* Read x[5], x[6] */
x1 = *(q31_t *) (px++);
/* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
acc2 = __SMLADX(x0, c0, acc2);
/* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
acc3 = __SMLADX(x1, c0, acc3);
} while(--k);
/* For the next MAC operations, SIMD is not used
* So, the 16 bit pointer if inputB, py is updated */
py = (q15_t *) pb;
py = py + 1;
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
if(k == 1u)
{
/* Read y[srcBLen - 5] */
c0 = *(py);
#ifdef ARM_MATH_BIG_ENDIAN
// c0 = unallign_rev(p, c0);
c0 = c0 << 16;
#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
/* Read x[7] */
x3 = *(q31_t *) px++;
/* Perform the multiply-accumulates */
acc0 = __SMLAD(x0, c0, acc0);
acc1 = __SMLAD(x1, c0, acc1);
acc2 = __SMLADX(x1, c0, acc2);
acc3 = __SMLADX(x3, c0, acc3);
}
if(k == 2u)
{
/* Read y[srcBLen - 5], y[srcBLen - 6] */
c0 = *(pb);
/* Read x[7], x[8] */
x3 = *(q31_t *) px++;
/* Read x[9] */
x2 = *(q31_t *) px++;
/* Perform the multiply-accumulates */
acc0 = __SMLADX(x0, c0, acc0);
acc1 = __SMLADX(x1, c0, acc1);
acc2 = __SMLADX(x3, c0, acc2);
acc3 = __SMLADX(x2, c0, acc3);
}
if(k == 3u)
{
/* Read y[srcBLen - 5], y[srcBLen - 6] */
c0 = *pb--;
/* Read x[7], x[8] */
x3 = *(q31_t *) px++;
/* Read x[9] */
x2 = *(q31_t *) px++;
/* Perform the multiply-accumulates */
acc0 = __SMLADX(x0, c0, acc0);
acc1 = __SMLADX(x1, c0, acc1);
acc2 = __SMLADX(x3, c0, acc2);
acc3 = __SMLADX(x2, c0, acc3);
/* Read y[srcBLen - 7] */
#ifdef ARM_MATH_BIG_ENDIAN
c0 = (*pb);
// c0 = (c0 & 0x0000FFFF)<<16;
c0 = (c0) << 16;
#else
c0 = (q15_t) (*pb >> 16);
#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
/* Read x[10] */
x3 = *(q31_t *) px++;
/* Perform the multiply-accumulates */
acc0 = __SMLADX(x1, c0, acc0);
acc1 = __SMLAD(x2, c0, acc1);
acc2 = __SMLADX(x2, c0, acc2);
acc3 = __SMLADX(x3, c0, acc3);
}
/* Store the results in the accumulators in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pOut)++ = __PKHBT((acc0 >> 15), (acc1 >> 15), 16);
*__SIMD32(pOut)++ = __PKHBT((acc2 >> 15), (acc3 >> 15), 16);
#else
*__SIMD32(pOut)++ = __PKHBT((acc1 >> 15), (acc0 >> 15), 16);
*__SIMD32(pOut)++ = __PKHBT((acc3 >> 15), (acc2 >> 15), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + (count * 4u);
py = pSrc2;
pb = (q31_t *) (py - 1);
/* Increment the pointer pIn1 index, count by 1 */
count++;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize2 % 0x4u;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += ((q31_t) * px++ * *py--);
sum += ((q31_t) * px++ * *py--);
sum += ((q31_t) * px++ * *py--);
sum += ((q31_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += ((q31_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (sum >> 15);
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the pointer pIn1 index, count by 1 */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* If the srcBLen is not a multiple of 4,
* the blockSize2 loop cannot be unrolled by 4 */
blkCnt = blockSize2;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* srcBLen number of MACS should be performed */
k = srcBLen;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += ((q31_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (sum >> 15);
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
/* --------------------------
* Initializations of stage3
* -------------------------*/
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
* ....
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
* sum += x[srcALen-1] * y[srcBLen-1]
*/
/* In this stage the MAC operations are decreased by 1 for every iteration.
The blockSize3 variable holds the number of MAC operations performed */
/* Working pointer of inputA */
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
px = pSrc1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
pIn2 = pSrc2 - 1u;
py = pIn2;
/* -------------------
* Stage3 process
* ------------------*/
/* For loop unrolling by 4, this stage is divided into two. */
/* First part of this stage computes the MAC operations greater than 4 */
/* Second part of this stage computes the MAC operations less than or equal to 4 */
/* The first part of the stage starts here */
j = blockSize3 >> 2u;
while((j > 0u) && (blockSize3 > 0u))
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = blockSize3 >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied
* with y[srcBLen - 1], y[srcBLen - 2] respectively */
sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
/* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied
* with y[srcBLen - 3], y[srcBLen - 4] respectively */
sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
/* Decrement the loop counter */
k--;
}
/* For the next MAC operations, the pointer py is used without SIMD
* So, py is incremented by 1 */
py = py + 1u;
/* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = blockSize3 % 0x4u;
while(k > 0u)
{
/* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */
sum = __SMLAD(*px++, *py--, sum);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (sum >> 15);
/* Update the inputA and inputB pointers for next MAC calculation */
px = ++pSrc1;
py = pIn2;
/* Decrement the loop counter */
blockSize3--;
j--;
}
/* The second part of the stage starts here */
/* SIMD is not used for the next MAC operations,
* so pointer py is updated to read only one sample at a time */
py = py + 1u;
while(blockSize3 > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = blockSize3;
while(k > 0u)
{
/* Perform the multiply-accumulates */
/* sum += x[srcALen-1] * y[srcBLen-1] */
sum = __SMLAD(*px++, *py--, sum);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (sum >> 15);
/* Update the inputA and inputB pointers for next MAC calculation */
px = ++pSrc1;
py = pSrc2;
/* Decrement the loop counter */
blockSize3--;
}
}
/**
* @} end of Conv group
*/

View File

@ -0,0 +1,567 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_conv_fast_q31.c
*
* Description: Q31 Convolution (fast version).
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup Conv
* @{
*/
/**
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
* @return none.
*
* @details
* <b>Scaling and Overflow Behavior:</b>
*
* \par
* This function is optimized for speed at the expense of fixed-point precision and overflow protection.
* The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.
* These intermediate results are accumulated in a 32-bit register in 2.30 format.
* Finally, the accumulator is saturated and converted to a 1.31 result.
*
* \par
* The fast version has the same overflow behavior as the standard version but provides less precision since it discards the low 32 bits of each multiplication result.
* In order to avoid overflows completely the input signals must be scaled down.
* Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows,
* as maximum of min(srcALen, srcBLen) number of additions are carried internally.
*
* \par
* See <code>arm_conv_q31()</code> for a slower implementation of this function which uses 64-bit accumulation to provide higher precision.
*/
void arm_conv_fast_q31(
q31_t * pSrcA,
uint32_t srcALen,
q31_t * pSrcB,
uint32_t srcBLen,
q31_t * pDst)
{
q31_t *pIn1; /* inputA pointer */
q31_t *pIn2; /* inputB pointer */
q31_t *pOut = pDst; /* output pointer */
q31_t *px; /* Intermediate inputA pointer */
q31_t *py; /* Intermediate inputB pointer */
q31_t *pSrc1, *pSrc2; /* Intermediate pointers */
q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counter */
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
/* So srcBLen is always considered as shorter or equal to srcALen */
if(srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
pIn1 = pSrcA;
/* Initialization of inputB pointer */
pIn2 = pSrcB;
}
else
{
/* Initialization of inputA pointer */
pIn1 = pSrcB;
/* Initialization of inputB pointer */
pIn2 = pSrcA;
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
srcBLen = srcALen;
srcALen = j;
}
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
/* The function is internally
* divided into three stages according to the number of multiplications that has to be
* taken place between inputA samples and inputB samples. In the first stage of the
* algorithm, the multiplications increase by one for every iteration.
* In the second stage of the algorithm, srcBLen number of multiplications are done.
* In the third stage of the algorithm, the multiplications decrease by one
* for every iteration. */
/* The algorithm is implemented in three stages.
The loop counters of each stage is initiated here. */
blockSize1 = srcBLen - 1u;
blockSize2 = srcALen - (srcBLen - 1u);
blockSize3 = blockSize1;
/* --------------------------
* Initializations of stage1
* -------------------------*/
/* sum = x[0] * y[0]
* sum = x[0] * y[1] + x[1] * y[0]
* ....
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
*/
/* In this stage the MAC operations are increased by 1 for every iteration.
The count variable holds the number of MAC operations performed */
count = 1u;
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
py = pIn2;
/* ------------------------
* Stage1 process
* ----------------------*/
/* The first stage starts here */
while(blockSize1 > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* x[0] * y[srcBLen - 1] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* x[1] * y[srcBLen - 2] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* x[2] * y[srcBLen - 3] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* x[3] * y[srcBLen - 4] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum << 1;
/* Update the inputA and inputB pointers for next MAC calculation */
py = pIn2 + count;
px = pIn1;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blockSize1--;
}
/* --------------------------
* Initializations of stage2
* ------------------------*/
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
* ....
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
*/
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* count is index by which the pointer pIn1 to be incremented */
count = 1u;
/* -------------------
* Stage2 process
* ------------------*/
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
* So, to loop unroll over blockSize2,
* srcBLen should be greater than or equal to 4 */
if(srcBLen >= 4u)
{
/* Loop unroll over blockSize2, by 4 */
blkCnt = blockSize2 >> 2u;
while(blkCnt > 0u)
{
/* Set all accumulators to zero */
acc0 = 0;
acc1 = 0;
acc2 = 0;
acc3 = 0;
/* read x[0], x[1], x[2] samples */
x0 = *(px++);
x1 = *(px++);
x2 = *(px++);
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
do
{
/* Read y[srcBLen - 1] sample */
c0 = *(py--);
/* Read x[3] sample */
x3 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[0] * y[srcBLen - 1] */
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
/* acc1 += x[1] * y[srcBLen - 1] */
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
/* acc2 += x[2] * y[srcBLen - 1] */
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
/* acc3 += x[3] * y[srcBLen - 1] */
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
/* Read y[srcBLen - 2] sample */
c0 = *(py--);
/* Read x[4] sample */
x0 = *(px++);
/* Perform the multiply-accumulate */
/* acc0 += x[1] * y[srcBLen - 2] */
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x1 * c0)) >> 32);
/* acc1 += x[2] * y[srcBLen - 2] */
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x2 * c0)) >> 32);
/* acc2 += x[3] * y[srcBLen - 2] */
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x3 * c0)) >> 32);
/* acc3 += x[4] * y[srcBLen - 2] */
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x0 * c0)) >> 32);
/* Read y[srcBLen - 3] sample */
c0 = *(py--);
/* Read x[5] sample */
x1 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[2] * y[srcBLen - 3] */
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x2 * c0)) >> 32);
/* acc1 += x[3] * y[srcBLen - 2] */
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x3 * c0)) >> 32);
/* acc2 += x[4] * y[srcBLen - 2] */
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x0 * c0)) >> 32);
/* acc3 += x[5] * y[srcBLen - 2] */
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x1 * c0)) >> 32);
/* Read y[srcBLen - 4] sample */
c0 = *(py--);
/* Read x[6] sample */
x2 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[3] * y[srcBLen - 4] */
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x3 * c0)) >> 32);
/* acc1 += x[4] * y[srcBLen - 4] */
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x0 * c0)) >> 32);
/* acc2 += x[5] * y[srcBLen - 4] */
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x1 * c0)) >> 32);
/* acc3 += x[6] * y[srcBLen - 4] */
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x2 * c0)) >> 32);
} while(--k);
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Read y[srcBLen - 5] sample */
c0 = *(py--);
/* Read x[7] sample */
x3 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[4] * y[srcBLen - 5] */
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
/* acc1 += x[5] * y[srcBLen - 5] */
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
/* acc2 += x[6] * y[srcBLen - 5] */
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
/* acc3 += x[7] * y[srcBLen - 5] */
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
/* Reuse the present samples for the next MAC */
x0 = x1;
x1 = x2;
x2 = x3;
/* Decrement the loop counter */
k--;
}
/* Store the results in the accumulators in the destination buffer. */
*pOut++ = (q31_t) (acc0 << 1);
*pOut++ = (q31_t) (acc1 << 1);
*pOut++ = (q31_t) (acc2 << 1);
*pOut++ = (q31_t) (acc3 << 1);
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + (count * 4u);
py = pSrc2;
/* Increment the pointer pIn1 index, count by 1 */
count++;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize2 % 0x4u;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum << 1;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* If the srcBLen is not a multiple of 4,
* the blockSize2 loop cannot be unrolled by 4 */
blkCnt = blockSize2;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* srcBLen number of MACS should be performed */
k = srcBLen;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum << 1;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
/* --------------------------
* Initializations of stage3
* -------------------------*/
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
* ....
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
* sum += x[srcALen-1] * y[srcBLen-1]
*/
/* In this stage the MAC operations are decreased by 1 for every iteration.
The blockSize3 variable holds the number of MAC operations performed */
/* Working pointer of inputA */
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
px = pSrc1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* -------------------
* Stage3 process
* ------------------*/
while(blockSize3 > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = blockSize3 >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = blockSize3 % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum << 1;
/* Update the inputA and inputB pointers for next MAC calculation */
px = ++pSrc1;
py = pSrc2;
/* Decrement the loop counter */
blockSize3--;
}
}
/**
* @} end of Conv group
*/

View File

@ -0,0 +1,641 @@
/* ----------------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_conv_partial_f32.c
*
* Description: Partial convolution of floating-point sequences.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
*
* -------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @defgroup PartialConv Partial Convolution
*
* Partial Convolution is equivalent to Convolution except that a subset of the output samples is generated.
* Each function has two additional arguments.
* <code>firstIndex</code> specifies the starting index of the subset of output samples.
* <code>numPoints</code> is the number of output samples to compute.
* The function computes the output in the range
* <code>[firstIndex, ..., firstIndex+numPoints-1]</code>.
* The output array <code>pDst</code> contains <code>numPoints</code> values.
*
* The allowable range of output indices is [0 srcALen+srcBLen-2].
* If the requested subset does not fall in this range then the functions return ARM_MATH_ARGUMENT_ERROR.
* Otherwise the functions return ARM_MATH_SUCCESS.
* \note Refer arm_conv_f32() for details on fixed point behavior.
*/
/**
* @addtogroup PartialConv
* @{
*/
/**
* @brief Partial convolution of floating-point sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written.
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_f32(
float32_t * pSrcA,
uint32_t srcALen,
float32_t * pSrcB,
uint32_t srcBLen,
float32_t * pDst,
uint32_t firstIndex,
uint32_t numPoints)
{
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t *pIn1 = pSrcA; /* inputA pointer */
float32_t *pIn2 = pSrcB; /* inputB pointer */
float32_t *pOut = pDst; /* output pointer */
float32_t *px; /* Intermediate inputA pointer */
float32_t *py; /* Intermediate inputB pointer */
float32_t *pSrc1, *pSrc2; /* Intermediate pointers */
float32_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
float32_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
uint32_t j, k, count = 0u, blkCnt, check;
int32_t blockSize1, blockSize2, blockSize3; /* loop counters */
arm_status status; /* status of Partial convolution */
/* Check for range of output samples to be calculated */
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
{
/* Set status as ARM_MATH_ARGUMENT_ERROR */
status = ARM_MATH_ARGUMENT_ERROR;
}
else
{
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
/* So srcBLen is always considered as shorter or equal to srcALen */
if(srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
pIn1 = pSrcA;
/* Initialization of inputB pointer */
pIn2 = pSrcB;
}
else
{
/* Initialization of inputA pointer */
pIn1 = pSrcB;
/* Initialization of inputB pointer */
pIn2 = pSrcA;
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
srcBLen = srcALen;
srcALen = j;
}
/* Conditions to check which loopCounter holds
* the first and last indices of the output samples to be calculated. */
check = firstIndex + numPoints;
blockSize3 = (int32_t) check - (int32_t) srcALen;
blockSize3 = (blockSize3 > 0) ? blockSize3 : 0;
blockSize1 = ((int32_t) srcBLen - 1) - (int32_t) firstIndex;
blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1u)) ? blockSize1 :
(int32_t) numPoints) : 0;
blockSize2 = ((int32_t) check - blockSize3) -
(blockSize1 + (int32_t) firstIndex);
blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
/* The function is internally
* divided into three stages according to the number of multiplications that has to be
* taken place between inputA samples and inputB samples. In the first stage of the
* algorithm, the multiplications increase by one for every iteration.
* In the second stage of the algorithm, srcBLen number of multiplications are done.
* In the third stage of the algorithm, the multiplications decrease by one
* for every iteration. */
/* Set the output pointer to point to the firstIndex
* of the output sample to be calculated. */
pOut = pDst + firstIndex;
/* --------------------------
* Initializations of stage1
* -------------------------*/
/* sum = x[0] * y[0]
* sum = x[0] * y[1] + x[1] * y[0]
* ....
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
*/
/* In this stage the MAC operations are increased by 1 for every iteration.
The count variable holds the number of MAC operations performed.
Since the partial convolution starts from from firstIndex
Number of Macs to be performed is firstIndex + 1 */
count = 1u + firstIndex;
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc1 = pIn2 + firstIndex;
py = pSrc1;
/* ------------------------
* Stage1 process
* ----------------------*/
/* The first stage starts here */
while(blockSize1 > 0)
{
/* Accumulator is made zero for every iteration */
sum = 0.0f;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* x[0] * y[srcBLen - 1] */
sum += *px++ * *py--;
/* x[1] * y[srcBLen - 2] */
sum += *px++ * *py--;
/* x[2] * y[srcBLen - 3] */
sum += *px++ * *py--;
/* x[3] * y[srcBLen - 4] */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum;
/* Update the inputA and inputB pointers for next MAC calculation */
py = ++pSrc1;
px = pIn1;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blockSize1--;
}
/* --------------------------
* Initializations of stage2
* ------------------------*/
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
* ....
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
*/
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* count is index by which the pointer pIn1 to be incremented */
count = 1u;
/* -------------------
* Stage2 process
* ------------------*/
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
* So, to loop unroll over blockSize2,
* srcBLen should be greater than or equal to 4 */
if(srcBLen >= 4u)
{
/* Loop unroll over blockSize2, by 4 */
blkCnt = ((uint32_t) blockSize2 >> 2u);
while(blkCnt > 0u)
{
/* Set all accumulators to zero */
acc0 = 0.0f;
acc1 = 0.0f;
acc2 = 0.0f;
acc3 = 0.0f;
/* read x[0], x[1], x[2] samples */
x0 = *(px++);
x1 = *(px++);
x2 = *(px++);
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
do
{
/* Read y[srcBLen - 1] sample */
c0 = *(py--);
/* Read x[3] sample */
x3 = *(px++);
/* Perform the multiply-accumulate */
/* acc0 += x[0] * y[srcBLen - 1] */
acc0 += x0 * c0;
/* acc1 += x[1] * y[srcBLen - 1] */
acc1 += x1 * c0;
/* acc2 += x[2] * y[srcBLen - 1] */
acc2 += x2 * c0;
/* acc3 += x[3] * y[srcBLen - 1] */
acc3 += x3 * c0;
/* Read y[srcBLen - 2] sample */
c0 = *(py--);
/* Read x[4] sample */
x0 = *(px++);
/* Perform the multiply-accumulate */
/* acc0 += x[1] * y[srcBLen - 2] */
acc0 += x1 * c0;
/* acc1 += x[2] * y[srcBLen - 2] */
acc1 += x2 * c0;
/* acc2 += x[3] * y[srcBLen - 2] */
acc2 += x3 * c0;
/* acc3 += x[4] * y[srcBLen - 2] */
acc3 += x0 * c0;
/* Read y[srcBLen - 3] sample */
c0 = *(py--);
/* Read x[5] sample */
x1 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[2] * y[srcBLen - 3] */
acc0 += x2 * c0;
/* acc1 += x[3] * y[srcBLen - 2] */
acc1 += x3 * c0;
/* acc2 += x[4] * y[srcBLen - 2] */
acc2 += x0 * c0;
/* acc3 += x[5] * y[srcBLen - 2] */
acc3 += x1 * c0;
/* Read y[srcBLen - 4] sample */
c0 = *(py--);
/* Read x[6] sample */
x2 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[3] * y[srcBLen - 4] */
acc0 += x3 * c0;
/* acc1 += x[4] * y[srcBLen - 4] */
acc1 += x0 * c0;
/* acc2 += x[5] * y[srcBLen - 4] */
acc2 += x1 * c0;
/* acc3 += x[6] * y[srcBLen - 4] */
acc3 += x2 * c0;
} while(--k);
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Read y[srcBLen - 5] sample */
c0 = *(py--);
/* Read x[7] sample */
x3 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[4] * y[srcBLen - 5] */
acc0 += x0 * c0;
/* acc1 += x[5] * y[srcBLen - 5] */
acc1 += x1 * c0;
/* acc2 += x[6] * y[srcBLen - 5] */
acc2 += x2 * c0;
/* acc3 += x[7] * y[srcBLen - 5] */
acc3 += x3 * c0;
/* Reuse the present samples for the next MAC */
x0 = x1;
x1 = x2;
x2 = x3;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = acc0;
*pOut++ = acc1;
*pOut++ = acc2;
*pOut++ = acc3;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + (count * 4u);
py = pSrc2;
/* Increment the pointer pIn1 index, count by 1 */
count++;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = (uint32_t) blockSize2 % 0x4u;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0.0f;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += *px++ * *py--;
sum += *px++ * *py--;
sum += *px++ * *py--;
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* If the srcBLen is not a multiple of 4,
* the blockSize2 loop cannot be unrolled by 4 */
blkCnt = (uint32_t) blockSize2;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0.0f;
/* srcBLen number of MACS should be performed */
k = srcBLen;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
/* --------------------------
* Initializations of stage3
* -------------------------*/
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
* ....
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
* sum += x[srcALen-1] * y[srcBLen-1]
*/
/* In this stage the MAC operations are decreased by 1 for every iteration.
The count variable holds the number of MAC operations performed */
count = srcBLen - 1u;
/* Working pointer of inputA */
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
px = pSrc1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
while(blockSize3 > 0)
{
/* Accumulator is made zero for every iteration */
sum = 0.0f;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
sum += *px++ * *py--;
/* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
sum += *px++ * *py--;
/* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
sum += *px++ * *py--;
/* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
/* sum += x[srcALen-1] * y[srcBLen-1] */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum;
/* Update the inputA and inputB pointers for next MAC calculation */
px = ++pSrc1;
py = pSrc2;
/* Decrement the MAC count */
count--;
/* Decrement the loop counter */
blockSize3--;
}
/* set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
#else
/* Run the below code for Cortex-M0 */
float32_t *pIn1 = pSrcA; /* inputA pointer */
float32_t *pIn2 = pSrcB; /* inputB pointer */
float32_t sum; /* Accumulator */
uint32_t i, j; /* loop counters */
arm_status status; /* status of Partial convolution */
/* Check for range of output samples to be calculated */
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
{
/* Set status as ARM_ARGUMENT_ERROR */
status = ARM_MATH_ARGUMENT_ERROR;
}
else
{
/* Loop to calculate convolution for output length number of values */
for (i = firstIndex; i <= (firstIndex + numPoints - 1); i++)
{
/* Initialize sum with zero to carry on MAC operations */
sum = 0.0f;
/* Loop to perform MAC operations according to convolution equation */
for (j = 0u; j <= i; j++)
{
/* Check the array limitations for inputs */
if((((i - j) < srcBLen) && (j < srcALen)))
{
/* z[i] += x[i-j] * y[j] */
sum += pIn1[j] * pIn2[i - j];
}
}
/* Store the output in the destination buffer */
pDst[i] = sum;
}
/* set status as ARM_SUCCESS as there are no argument errors */
status = ARM_MATH_SUCCESS;
}
return (status);
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of PartialConv group
*/

View File

@ -0,0 +1,705 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_conv_partial_fast_q15.c
*
* Description: Fast Q15 Partial convolution.
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup PartialConv
* @{
*/
/**
* @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written.
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*
* See <code>arm_conv_partial_q15()</code> for a slower implementation of this function which uses a 64-bit accumulator to avoid wrap around distortion.
*/
arm_status arm_conv_partial_fast_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
uint32_t firstIndex,
uint32_t numPoints)
{
q15_t *pIn1; /* inputA pointer */
q15_t *pIn2; /* inputB pointer */
q15_t *pOut = pDst; /* output pointer */
q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
q15_t *px; /* Intermediate inputA pointer */
q15_t *py; /* Intermediate inputB pointer */
q15_t *pSrc1, *pSrc2; /* Intermediate pointers */
q31_t x0, x1, x2, x3, c0;
uint32_t j, k, count, check, blkCnt;
int32_t blockSize1, blockSize2, blockSize3; /* loop counters */
arm_status status; /* status of Partial convolution */
q31_t *pb; /* 32 bit pointer for inputB buffer */
/* Check for range of output samples to be calculated */
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
{
/* Set status as ARM_MATH_ARGUMENT_ERROR */
status = ARM_MATH_ARGUMENT_ERROR;
}
else
{
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
/* So srcBLen is always considered as shorter or equal to srcALen */
if(srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
pIn1 = pSrcA;
/* Initialization of inputB pointer */
pIn2 = pSrcB;
}
else
{
/* Initialization of inputA pointer */
pIn1 = pSrcB;
/* Initialization of inputB pointer */
pIn2 = pSrcA;
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
srcBLen = srcALen;
srcALen = j;
}
/* Conditions to check which loopCounter holds
* the first and last indices of the output samples to be calculated. */
check = firstIndex + numPoints;
blockSize3 = ((int32_t) check - (int32_t) srcALen);
blockSize3 = (blockSize3 > 0) ? blockSize3 : 0;
blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex);
blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1u)) ? blockSize1 :
(int32_t) numPoints) : 0;
blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) +
(int32_t) firstIndex);
blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
/* The function is internally
* divided into three stages according to the number of multiplications that has to be
* taken place between inputA samples and inputB samples. In the first stage of the
* algorithm, the multiplications increase by one for every iteration.
* In the second stage of the algorithm, srcBLen number of multiplications are done.
* In the third stage of the algorithm, the multiplications decrease by one
* for every iteration. */
/* Set the output pointer to point to the firstIndex
* of the output sample to be calculated. */
pOut = pDst + firstIndex;
/* --------------------------
* Initializations of stage1
* -------------------------*/
/* sum = x[0] * y[0]
* sum = x[0] * y[1] + x[1] * y[0]
* ....
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
*/
/* In this stage the MAC operations are increased by 1 for every iteration.
The count variable holds the number of MAC operations performed.
Since the partial convolution starts from firstIndex
Number of Macs to be performed is firstIndex + 1 */
count = 1u + firstIndex;
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + firstIndex;
py = pSrc2;
/* ------------------------
* Stage1 process
* ----------------------*/
/* For loop unrolling by 4, this stage is divided into two. */
/* First part of this stage computes the MAC operations less than 4 */
/* Second part of this stage computes the MAC operations greater than or equal to 4 */
/* The first part of the stage starts here */
while((count < 4u) && (blockSize1 > 0))
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Loop over number of MAC operations between
* inputA samples and inputB samples */
k = count;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum = __SMLAD(*px++, *py--, sum);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (sum >> 15);
/* Update the inputA and inputB pointers for next MAC calculation */
py = ++pSrc2;
px = pIn1;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blockSize1--;
}
/* The second part of the stage starts here */
/* The internal loop, over count, is unrolled by 4 */
/* To, read the last two inputB samples using SIMD:
* y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */
py = py - 1;
while(blockSize1 > 0)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Perform the multiply-accumulates */
/* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */
sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
/* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */
sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
/* Decrement the loop counter */
k--;
}
/* For the next MAC operations, the pointer py is used without SIMD
* So, py is incremented by 1 */
py = py + 1u;
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum = __SMLAD(*px++, *py--, sum);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (sum >> 15);
/* Update the inputA and inputB pointers for next MAC calculation */
py = ++pSrc2 - 1u;
px = pIn1;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blockSize1--;
}
/* --------------------------
* Initializations of stage2
* ------------------------*/
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
* ....
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
*/
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* Initialize inputB pointer of type q31 */
pb = (q31_t *) (py - 1u);
/* count is the index by which the pointer pIn1 to be incremented */
count = 1u;
/* --------------------
* Stage2 process
* -------------------*/
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
* So, to loop unroll over blockSize2,
* srcBLen should be greater than or equal to 4 */
if(srcBLen >= 4u)
{
/* Loop unroll over blockSize2, by 4 */
blkCnt = ((uint32_t) blockSize2 >> 2u);
while(blkCnt > 0u)
{
/* Set all accumulators to zero */
acc0 = 0;
acc1 = 0;
acc2 = 0;
acc3 = 0;
/* read x[0], x[1] samples */
x0 = *(q31_t *) (px++);
/* read x[1], x[2] samples */
x1 = *(q31_t *) (px++);
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
do
{
/* Read the last two inputB samples using SIMD:
* y[srcBLen - 1] and y[srcBLen - 2] */
c0 = *(pb--);
/* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
acc0 = __SMLADX(x0, c0, acc0);
/* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
acc1 = __SMLADX(x1, c0, acc1);
/* Read x[2], x[3] */
x2 = *(q31_t *) (px++);
/* Read x[3], x[4] */
x3 = *(q31_t *) (px++);
/* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
acc2 = __SMLADX(x2, c0, acc2);
/* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
acc3 = __SMLADX(x3, c0, acc3);
/* Read y[srcBLen - 3] and y[srcBLen - 4] */
c0 = *(pb--);
/* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
acc0 = __SMLADX(x2, c0, acc0);
/* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
acc1 = __SMLADX(x3, c0, acc1);
/* Read x[4], x[5] */
x0 = *(q31_t *) (px++);
/* Read x[5], x[6] */
x1 = *(q31_t *) (px++);
/* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
acc2 = __SMLADX(x0, c0, acc2);
/* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
acc3 = __SMLADX(x1, c0, acc3);
} while(--k);
/* For the next MAC operations, SIMD is not used
* So, the 16 bit pointer if inputB, py is updated */
py = (q15_t *) pb;
py = py + 1;
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
if(k == 1u)
{
/* Read y[srcBLen - 5] */
c0 = *(py);
#ifdef ARM_MATH_BIG_ENDIAN
c0 = c0 << 16;
#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
/* Read x[7] */
x3 = *(q31_t *) px++;
/* Perform the multiply-accumulates */
acc0 = __SMLAD(x0, c0, acc0);
acc1 = __SMLAD(x1, c0, acc1);
acc2 = __SMLADX(x1, c0, acc2);
acc3 = __SMLADX(x3, c0, acc3);
}
if(k == 2u)
{
/* Read y[srcBLen - 5], y[srcBLen - 6] */
c0 = *(pb);
/* Read x[7], x[8] */
x3 = *(q31_t *) px++;
/* Read x[9] */
x2 = *(q31_t *) px++;
/* Perform the multiply-accumulates */
acc0 = __SMLADX(x0, c0, acc0);
acc1 = __SMLADX(x1, c0, acc1);
acc2 = __SMLADX(x3, c0, acc2);
acc3 = __SMLADX(x2, c0, acc3);
}
if(k == 3u)
{
/* Read y[srcBLen - 5], y[srcBLen - 6] */
c0 = *pb--;
/* Read x[7], x[8] */
x3 = *(q31_t *) px++;
/* Read x[9] */
x2 = *(q31_t *) px++;
/* Perform the multiply-accumulates */
acc0 = __SMLADX(x0, c0, acc0);
acc1 = __SMLADX(x1, c0, acc1);
acc2 = __SMLADX(x3, c0, acc2);
acc3 = __SMLADX(x2, c0, acc3);
/* Read y[srcBLen - 7] */
#ifdef ARM_MATH_BIG_ENDIAN
c0 = (*pb);
c0 = (c0) << 16;
#else
c0 = (q15_t) (*pb >> 16);
#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
/* Read x[10] */
x3 = *(q31_t *) px++;
/* Perform the multiply-accumulates */
acc0 = __SMLADX(x1, c0, acc0);
acc1 = __SMLAD(x2, c0, acc1);
acc2 = __SMLADX(x2, c0, acc2);
acc3 = __SMLADX(x3, c0, acc3);
}
/* Store the results in the accumulators in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pOut)++ = __PKHBT(acc0 >> 15, acc1 >> 15, 16);
*__SIMD32(pOut)++ = __PKHBT(acc2 >> 15, acc3 >> 15, 16);
#else
*__SIMD32(pOut)++ = __PKHBT(acc1 >> 15, acc0 >> 15, 16);
*__SIMD32(pOut)++ = __PKHBT(acc3 >> 15, acc2 >> 15, 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + (count * 4u);
py = pSrc2;
pb = (q31_t *) (py - 1);
/* Increment the pointer pIn1 index, count by 1 */
count++;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = (uint32_t) blockSize2 % 0x4u;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += ((q31_t) * px++ * *py--);
sum += ((q31_t) * px++ * *py--);
sum += ((q31_t) * px++ * *py--);
sum += ((q31_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += ((q31_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (sum >> 15);
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the pointer pIn1 index, count by 1 */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* If the srcBLen is not a multiple of 4,
* the blockSize2 loop cannot be unrolled by 4 */
blkCnt = (uint32_t) blockSize2;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* srcBLen number of MACS should be performed */
k = srcBLen;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += ((q31_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (sum >> 15);
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
/* --------------------------
* Initializations of stage3
* -------------------------*/
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
* ....
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
* sum += x[srcALen-1] * y[srcBLen-1]
*/
/* In this stage the MAC operations are decreased by 1 for every iteration.
The count variable holds the number of MAC operations performed */
count = srcBLen - 1u;
/* Working pointer of inputA */
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
px = pSrc1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
pIn2 = pSrc2 - 1u;
py = pIn2;
/* -------------------
* Stage3 process
* ------------------*/
/* For loop unrolling by 4, this stage is divided into two. */
/* First part of this stage computes the MAC operations greater than 4 */
/* Second part of this stage computes the MAC operations less than or equal to 4 */
/* The first part of the stage starts here */
j = count >> 2u;
while((j > 0u) && (blockSize3 > 0))
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied
* with y[srcBLen - 1], y[srcBLen - 2] respectively */
sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
/* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied
* with y[srcBLen - 3], y[srcBLen - 4] respectively */
sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
/* Decrement the loop counter */
k--;
}
/* For the next MAC operations, the pointer py is used without SIMD
* So, py is incremented by 1 */
py = py + 1u;
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */
sum = __SMLAD(*px++, *py--, sum);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (sum >> 15);
/* Update the inputA and inputB pointers for next MAC calculation */
px = ++pSrc1;
py = pIn2;
/* Decrement the MAC count */
count--;
/* Decrement the loop counter */
blockSize3--;
j--;
}
/* The second part of the stage starts here */
/* SIMD is not used for the next MAC operations,
* so pointer py is updated to read only one sample at a time */
py = py + 1u;
while(blockSize3 > 0)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count;
while(k > 0u)
{
/* Perform the multiply-accumulates */
/* sum += x[srcALen-1] * y[srcBLen-1] */
sum = __SMLAD(*px++, *py--, sum);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (sum >> 15);
/* Update the inputA and inputB pointers for next MAC calculation */
px = ++pSrc1;
py = pSrc2;
/* Decrement the MAC count */
count--;
/* Decrement the loop counter */
blockSize3--;
}
/* set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of PartialConv group
*/

View File

@ -0,0 +1,593 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_conv_partial_fast_q31.c
*
* Description: Fast Q31 Partial convolution.
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup PartialConv
* @{
*/
/**
* @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written.
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*
* \par
* See <code>arm_conv_partial_q31()</code> for a slower implementation of this function which uses a 64-bit accumulator to provide higher precision.
*/
arm_status arm_conv_partial_fast_q31(
q31_t * pSrcA,
uint32_t srcALen,
q31_t * pSrcB,
uint32_t srcBLen,
q31_t * pDst,
uint32_t firstIndex,
uint32_t numPoints)
{
q31_t *pIn1; /* inputA pointer */
q31_t *pIn2; /* inputB pointer */
q31_t *pOut = pDst; /* output pointer */
q31_t *px; /* Intermediate inputA pointer */
q31_t *py; /* Intermediate inputB pointer */
q31_t *pSrc1, *pSrc2; /* Intermediate pointers */
q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
q31_t x0, x1, x2, x3, c0;
uint32_t j, k, count, check, blkCnt;
int32_t blockSize1, blockSize2, blockSize3; /* loop counters */
arm_status status; /* status of Partial convolution */
/* Check for range of output samples to be calculated */
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
{
/* Set status as ARM_MATH_ARGUMENT_ERROR */
status = ARM_MATH_ARGUMENT_ERROR;
}
else
{
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
/* So srcBLen is always considered as shorter or equal to srcALen */
if(srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
pIn1 = pSrcA;
/* Initialization of inputB pointer */
pIn2 = pSrcB;
}
else
{
/* Initialization of inputA pointer */
pIn1 = pSrcB;
/* Initialization of inputB pointer */
pIn2 = pSrcA;
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
srcBLen = srcALen;
srcALen = j;
}
/* Conditions to check which loopCounter holds
* the first and last indices of the output samples to be calculated. */
check = firstIndex + numPoints;
blockSize3 = ((int32_t) check - (int32_t) srcALen);
blockSize3 = (blockSize3 > 0) ? blockSize3 : 0;
blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex);
blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1u)) ? blockSize1 :
(int32_t) numPoints) : 0;
blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) +
(int32_t) firstIndex);
blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
/* The function is internally
* divided into three stages according to the number of multiplications that has to be
* taken place between inputA samples and inputB samples. In the first stage of the
* algorithm, the multiplications increase by one for every iteration.
* In the second stage of the algorithm, srcBLen number of multiplications are done.
* In the third stage of the algorithm, the multiplications decrease by one
* for every iteration. */
/* Set the output pointer to point to the firstIndex
* of the output sample to be calculated. */
pOut = pDst + firstIndex;
/* --------------------------
* Initializations of stage1
* -------------------------*/
/* sum = x[0] * y[0]
* sum = x[0] * y[1] + x[1] * y[0]
* ....
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
*/
/* In this stage the MAC operations are increased by 1 for every iteration.
The count variable holds the number of MAC operations performed.
Since the partial convolution starts from firstIndex
Number of Macs to be performed is firstIndex + 1 */
count = 1u + firstIndex;
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + firstIndex;
py = pSrc2;
/* ------------------------
* Stage1 process
* ----------------------*/
/* The first loop starts here */
while(blockSize1 > 0)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* x[0] * y[srcBLen - 1] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* x[1] * y[srcBLen - 2] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* x[2] * y[srcBLen - 3] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* x[3] * y[srcBLen - 4] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum << 1;
/* Update the inputA and inputB pointers for next MAC calculation */
py = ++pSrc2;
px = pIn1;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blockSize1--;
}
/* --------------------------
* Initializations of stage2
* ------------------------*/
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
* ....
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
*/
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* count is index by which the pointer pIn1 to be incremented */
count = 1u;
/* -------------------
* Stage2 process
* ------------------*/
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
* So, to loop unroll over blockSize2,
* srcBLen should be greater than or equal to 4 */
if(srcBLen >= 4u)
{
/* Loop unroll over blockSize2 */
blkCnt = ((uint32_t) blockSize2 >> 2u);
while(blkCnt > 0u)
{
/* Set all accumulators to zero */
acc0 = 0;
acc1 = 0;
acc2 = 0;
acc3 = 0;
/* read x[0], x[1], x[2] samples */
x0 = *(px++);
x1 = *(px++);
x2 = *(px++);
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
do
{
/* Read y[srcBLen - 1] sample */
c0 = *(py--);
/* Read x[3] sample */
x3 = *(px++);
/* Perform the multiply-accumulate */
/* acc0 += x[0] * y[srcBLen - 1] */
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
/* acc1 += x[1] * y[srcBLen - 1] */
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
/* acc2 += x[2] * y[srcBLen - 1] */
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
/* acc3 += x[3] * y[srcBLen - 1] */
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
/* Read y[srcBLen - 2] sample */
c0 = *(py--);
/* Read x[4] sample */
x0 = *(px++);
/* Perform the multiply-accumulate */
/* acc0 += x[1] * y[srcBLen - 2] */
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x1 * c0)) >> 32);
/* acc1 += x[2] * y[srcBLen - 2] */
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x2 * c0)) >> 32);
/* acc2 += x[3] * y[srcBLen - 2] */
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x3 * c0)) >> 32);
/* acc3 += x[4] * y[srcBLen - 2] */
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x0 * c0)) >> 32);
/* Read y[srcBLen - 3] sample */
c0 = *(py--);
/* Read x[5] sample */
x1 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[2] * y[srcBLen - 3] */
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x2 * c0)) >> 32);
/* acc1 += x[3] * y[srcBLen - 2] */
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x3 * c0)) >> 32);
/* acc2 += x[4] * y[srcBLen - 2] */
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x0 * c0)) >> 32);
/* acc3 += x[5] * y[srcBLen - 2] */
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x1 * c0)) >> 32);
/* Read y[srcBLen - 4] sample */
c0 = *(py--);
/* Read x[6] sample */
x2 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[3] * y[srcBLen - 4] */
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x3 * c0)) >> 32);
/* acc1 += x[4] * y[srcBLen - 4] */
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x0 * c0)) >> 32);
/* acc2 += x[5] * y[srcBLen - 4] */
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x1 * c0)) >> 32);
/* acc3 += x[6] * y[srcBLen - 4] */
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x2 * c0)) >> 32);
} while(--k);
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Read y[srcBLen - 5] sample */
c0 = *(py--);
/* Read x[7] sample */
x3 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[4] * y[srcBLen - 5] */
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
/* acc1 += x[5] * y[srcBLen - 5] */
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
/* acc2 += x[6] * y[srcBLen - 5] */
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
/* acc3 += x[7] * y[srcBLen - 5] */
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
/* Reuse the present samples for the next MAC */
x0 = x1;
x1 = x2;
x2 = x3;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q31_t) (acc0 << 1);
*pOut++ = (q31_t) (acc1 << 1);
*pOut++ = (q31_t) (acc2 << 1);
*pOut++ = (q31_t) (acc3 << 1);
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + (count * 4u);
py = pSrc2;
/* Increment the pointer pIn1 index, count by 1 */
count++;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = (uint32_t) blockSize2 % 0x4u;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum << 1;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* If the srcBLen is not a multiple of 4,
* the blockSize2 loop cannot be unrolled by 4 */
blkCnt = (uint32_t) blockSize2;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* srcBLen number of MACS should be performed */
k = srcBLen;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum << 1;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
/* --------------------------
* Initializations of stage3
* -------------------------*/
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
* ....
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
* sum += x[srcALen-1] * y[srcBLen-1]
*/
/* In this stage the MAC operations are decreased by 1 for every iteration.
The count variable holds the number of MAC operations performed */
count = srcBLen - 1u;
/* Working pointer of inputA */
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
px = pSrc1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* -------------------
* Stage3 process
* ------------------*/
while(blockSize3 > 0)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
/* sum += x[srcALen-1] * y[srcBLen-1] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum << 1;
/* Update the inputA and inputB pointers for next MAC calculation */
px = ++pSrc1;
py = pSrc2;
/* Decrement the MAC count */
count--;
/* Decrement the loop counter */
blockSize3--;
}
/* set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of PartialConv group
*/

View File

@ -0,0 +1,765 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_conv_partial_q15.c
*
* Description: Partial convolution of Q15 sequences.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
*
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup PartialConv
* @{
*/
/**
* @brief Partial convolution of Q15 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written.
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*
* Refer to <code>arm_conv_partial_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.
*/
arm_status arm_conv_partial_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
uint32_t firstIndex,
uint32_t numPoints)
{
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q15_t *pIn1; /* inputA pointer */
q15_t *pIn2; /* inputB pointer */
q15_t *pOut = pDst; /* output pointer */
q63_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
q15_t *px; /* Intermediate inputA pointer */
q15_t *py; /* Intermediate inputB pointer */
q15_t *pSrc1, *pSrc2; /* Intermediate pointers */
q31_t x0, x1, x2, x3, c0; /* Temporary input variables */
uint32_t j, k, count, check, blkCnt;
int32_t blockSize1, blockSize2, blockSize3; /* loop counter */
arm_status status; /* status of Partial convolution */
q31_t *pb; /* 32 bit pointer for inputB buffer */
/* Check for range of output samples to be calculated */
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
{
/* Set status as ARM_MATH_ARGUMENT_ERROR */
status = ARM_MATH_ARGUMENT_ERROR;
}
else
{
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
/* So srcBLen is always considered as shorter or equal to srcALen */
if(srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
pIn1 = pSrcA;
/* Initialization of inputB pointer */
pIn2 = pSrcB;
}
else
{
/* Initialization of inputA pointer */
pIn1 = pSrcB;
/* Initialization of inputB pointer */
pIn2 = pSrcA;
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
srcBLen = srcALen;
srcALen = j;
}
/* Conditions to check which loopCounter holds
* the first and last indices of the output samples to be calculated. */
check = firstIndex + numPoints;
blockSize3 = ((int32_t) check - (int32_t) srcALen);
blockSize3 = (blockSize3 > 0) ? blockSize3 : 0;
blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex);
blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1u)) ? blockSize1 :
(int32_t) numPoints) : 0;
blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) +
(int32_t) firstIndex);
blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
/* The function is internally
* divided into three stages according to the number of multiplications that has to be
* taken place between inputA samples and inputB samples. In the first stage of the
* algorithm, the multiplications increase by one for every iteration.
* In the second stage of the algorithm, srcBLen number of multiplications are done.
* In the third stage of the algorithm, the multiplications decrease by one
* for every iteration. */
/* Set the output pointer to point to the firstIndex
* of the output sample to be calculated. */
pOut = pDst + firstIndex;
/* --------------------------
* Initializations of stage1
* -------------------------*/
/* sum = x[0] * y[0]
* sum = x[0] * y[1] + x[1] * y[0]
* ....
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
*/
/* In this stage the MAC operations are increased by 1 for every iteration.
The count variable holds the number of MAC operations performed.
Since the partial convolution starts from firstIndex
Number of Macs to be performed is firstIndex + 1 */
count = 1u + firstIndex;
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + firstIndex;
py = pSrc2;
/* ------------------------
* Stage1 process
* ----------------------*/
/* For loop unrolling by 4, this stage is divided into two. */
/* First part of this stage computes the MAC operations less than 4 */
/* Second part of this stage computes the MAC operations greater than or equal to 4 */
/* The first part of the stage starts here */
while((count < 4u) && (blockSize1 > 0))
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Loop over number of MAC operations between
* inputA samples and inputB samples */
k = count;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum = __SMLALD(*px++, *py--, sum);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
/* Update the inputA and inputB pointers for next MAC calculation */
py = ++pSrc2;
px = pIn1;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blockSize1--;
}
/* The second part of the stage starts here */
/* The internal loop, over count, is unrolled by 4 */
/* To, read the last two inputB samples using SIMD:
* y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */
py = py - 1;
while(blockSize1 > 0)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Perform the multiply-accumulates */
/* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */
sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
/* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */
sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
/* Decrement the loop counter */
k--;
}
/* For the next MAC operations, the pointer py is used without SIMD
* So, py is incremented by 1 */
py = py + 1u;
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum = __SMLALD(*px++, *py--, sum);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
/* Update the inputA and inputB pointers for next MAC calculation */
py = ++pSrc2 - 1u;
px = pIn1;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blockSize1--;
}
/* --------------------------
* Initializations of stage2
* ------------------------*/
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
* ....
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
*/
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* Initialize inputB pointer of type q31 */
pb = (q31_t *) (py - 1u);
/* count is the index by which the pointer pIn1 to be incremented */
count = 1u;
/* --------------------
* Stage2 process
* -------------------*/
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
* So, to loop unroll over blockSize2,
* srcBLen should be greater than or equal to 4 */
if(srcBLen >= 4u)
{
/* Loop unroll over blockSize2, by 4 */
blkCnt = ((uint32_t) blockSize2 >> 2u);
while(blkCnt > 0u)
{
/* Set all accumulators to zero */
acc0 = 0;
acc1 = 0;
acc2 = 0;
acc3 = 0;
/* read x[0], x[1] samples */
x0 = *(q31_t *) (px++);
/* read x[1], x[2] samples */
x1 = *(q31_t *) (px++);
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
do
{
/* Read the last two inputB samples using SIMD:
* y[srcBLen - 1] and y[srcBLen - 2] */
c0 = *(pb--);
/* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
acc0 = __SMLALDX(x0, c0, acc0);
/* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
acc1 = __SMLALDX(x1, c0, acc1);
/* Read x[2], x[3] */
x2 = *(q31_t *) (px++);
/* Read x[3], x[4] */
x3 = *(q31_t *) (px++);
/* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
acc2 = __SMLALDX(x2, c0, acc2);
/* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
acc3 = __SMLALDX(x3, c0, acc3);
/* Read y[srcBLen - 3] and y[srcBLen - 4] */
c0 = *(pb--);
/* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
acc0 = __SMLALDX(x2, c0, acc0);
/* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
acc1 = __SMLALDX(x3, c0, acc1);
/* Read x[4], x[5] */
x0 = *(q31_t *) (px++);
/* Read x[5], x[6] */
x1 = *(q31_t *) (px++);
/* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
acc2 = __SMLALDX(x0, c0, acc2);
/* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
acc3 = __SMLALDX(x1, c0, acc3);
} while(--k);
/* For the next MAC operations, SIMD is not used
* So, the 16 bit pointer if inputB, py is updated */
py = (q15_t *) pb;
py = py + 1;
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
if(k == 1u)
{
/* Read y[srcBLen - 5] */
c0 = *(py);
#ifdef ARM_MATH_BIG_ENDIAN
c0 = c0 << 16u;
#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
/* Read x[7] */
x3 = *(q31_t *) px++;
/* Perform the multiply-accumulates */
acc0 = __SMLALD(x0, c0, acc0);
acc1 = __SMLALD(x1, c0, acc1);
acc2 = __SMLALDX(x1, c0, acc2);
acc3 = __SMLALDX(x3, c0, acc3);
}
if(k == 2u)
{
/* Read y[srcBLen - 5], y[srcBLen - 6] */
c0 = *(pb);
/* Read x[7], x[8] */
x3 = *(q31_t *) px++;
/* Read x[9] */
x2 = *(q31_t *) px++;
/* Perform the multiply-accumulates */
acc0 = __SMLALDX(x0, c0, acc0);
acc1 = __SMLALDX(x1, c0, acc1);
acc2 = __SMLALDX(x3, c0, acc2);
acc3 = __SMLALDX(x2, c0, acc3);
}
if(k == 3u)
{
/* Read y[srcBLen - 5], y[srcBLen - 6] */
c0 = *pb--;
/* Read x[7], x[8] */
x3 = *(q31_t *) px++;
/* Read x[9] */
x2 = *(q31_t *) px++;
/* Perform the multiply-accumulates */
acc0 = __SMLALDX(x0, c0, acc0);
acc1 = __SMLALDX(x1, c0, acc1);
acc2 = __SMLALDX(x3, c0, acc2);
acc3 = __SMLALDX(x2, c0, acc3);
#ifdef ARM_MATH_BIG_ENDIAN
/* Read y[srcBLen - 7] */
c0 = (*pb);
c0 = (c0) << 16;
#else
/* Read y[srcBLen - 7] */
c0 = (q15_t) (*pb >> 16);
#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
/* Read x[10] */
x3 = *(q31_t *) px++;
/* Perform the multiply-accumulates */
acc0 = __SMLALDX(x1, c0, acc0);
acc1 = __SMLALD(x2, c0, acc1);
acc2 = __SMLALDX(x2, c0, acc2);
acc3 = __SMLALDX(x3, c0, acc3);
}
/* Store the results in the accumulators in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pOut)++ =
__PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
*__SIMD32(pOut)++ =
__PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
#else
*__SIMD32(pOut)++ =
__PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
*__SIMD32(pOut)++ =
__PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + (count * 4u);
py = pSrc2;
pb = (q31_t *) (py - 1);
/* Increment the pointer pIn1 index, count by 1 */
count++;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = (uint32_t) blockSize2 % 0x4u;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += (q63_t) ((q31_t) * px++ * *py--);
sum += (q63_t) ((q31_t) * px++ * *py--);
sum += (q63_t) ((q31_t) * px++ * *py--);
sum += (q63_t) ((q31_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += (q63_t) ((q31_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (__SSAT(sum >> 15, 16));
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the pointer pIn1 index, count by 1 */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* If the srcBLen is not a multiple of 4,
* the blockSize2 loop cannot be unrolled by 4 */
blkCnt = (uint32_t) blockSize2;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* srcBLen number of MACS should be performed */
k = srcBLen;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += (q63_t) ((q31_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (__SSAT(sum >> 15, 16));
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
/* --------------------------
* Initializations of stage3
* -------------------------*/
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
* ....
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
* sum += x[srcALen-1] * y[srcBLen-1]
*/
/* In this stage the MAC operations are decreased by 1 for every iteration.
The count variable holds the number of MAC operations performed */
count = srcBLen - 1u;
/* Working pointer of inputA */
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
px = pSrc1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
pIn2 = pSrc2 - 1u;
py = pIn2;
/* -------------------
* Stage3 process
* ------------------*/
/* For loop unrolling by 4, this stage is divided into two. */
/* First part of this stage computes the MAC operations greater than 4 */
/* Second part of this stage computes the MAC operations less than or equal to 4 */
/* The first part of the stage starts here */
j = count >> 2u;
while((j > 0u) && (blockSize3 > 0))
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied
* with y[srcBLen - 1], y[srcBLen - 2] respectively */
sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
/* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied
* with y[srcBLen - 3], y[srcBLen - 4] respectively */
sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
/* Decrement the loop counter */
k--;
}
/* For the next MAC operations, the pointer py is used without SIMD
* So, py is incremented by 1 */
py = py + 1u;
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */
sum = __SMLALD(*px++, *py--, sum);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
/* Update the inputA and inputB pointers for next MAC calculation */
px = ++pSrc1;
py = pIn2;
/* Decrement the MAC count */
count--;
/* Decrement the loop counter */
blockSize3--;
j--;
}
/* The second part of the stage starts here */
/* SIMD is not used for the next MAC operations,
* so pointer py is updated to read only one sample at a time */
py = py + 1u;
while(blockSize3 > 0)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count;
while(k > 0u)
{
/* Perform the multiply-accumulates */
/* sum += x[srcALen-1] * y[srcBLen-1] */
sum = __SMLALD(*px++, *py--, sum);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
/* Update the inputA and inputB pointers for next MAC calculation */
px = ++pSrc1;
py = pSrc2;
/* Decrement the MAC count */
count--;
/* Decrement the loop counter */
blockSize3--;
}
/* set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
#else
/* Run the below code for Cortex-M0 */
q15_t *pIn1 = pSrcA; /* inputA pointer */
q15_t *pIn2 = pSrcB; /* inputB pointer */
q63_t sum; /* Accumulator */
uint32_t i, j; /* loop counters */
arm_status status; /* status of Partial convolution */
/* Check for range of output samples to be calculated */
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
{
/* Set status as ARM_ARGUMENT_ERROR */
status = ARM_MATH_ARGUMENT_ERROR;
}
else
{
/* Loop to calculate convolution for output length number of values */
for (i = firstIndex; i <= (firstIndex + numPoints - 1); i++)
{
/* Initialize sum with zero to carry on MAC operations */
sum = 0;
/* Loop to perform MAC operations according to convolution equation */
for (j = 0; j <= i; j++)
{
/* Check the array limitations */
if(((i - j) < srcBLen) && (j < srcALen))
{
/* z[i] += x[i-j] * y[j] */
sum += ((q31_t) pIn1[j] * (pIn2[i - j]));
}
}
/* Store the output in the destination buffer */
pDst[i] = (q15_t) __SSAT((sum >> 15u), 16u);
}
/* set status as ARM_SUCCESS as there are no argument errors */
status = ARM_MATH_SUCCESS;
}
return (status);
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of PartialConv group
*/

View File

@ -0,0 +1,616 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_conv_partial_q31.c
*
* Description: Partial convolution of Q31 sequences.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
*
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup PartialConv
* @{
*/
/**
* @brief Partial convolution of Q31 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written.
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*
* See <code>arm_conv_partial_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.
*/
arm_status arm_conv_partial_q31(
q31_t * pSrcA,
uint32_t srcALen,
q31_t * pSrcB,
uint32_t srcBLen,
q31_t * pDst,
uint32_t firstIndex,
uint32_t numPoints)
{
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t *pIn1; /* inputA pointer */
q31_t *pIn2; /* inputB pointer */
q31_t *pOut = pDst; /* output pointer */
q31_t *px; /* Intermediate inputA pointer */
q31_t *py; /* Intermediate inputB pointer */
q31_t *pSrc1, *pSrc2; /* Intermediate pointers */
q63_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
q31_t x0, x1, x2, x3, c0;
uint32_t j, k, count, check, blkCnt;
int32_t blockSize1, blockSize2, blockSize3; /* loop counter */
arm_status status; /* status of Partial convolution */
/* Check for range of output samples to be calculated */
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
{
/* Set status as ARM_MATH_ARGUMENT_ERROR */
status = ARM_MATH_ARGUMENT_ERROR;
}
else
{
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
/* So srcBLen is always considered as shorter or equal to srcALen */
if(srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
pIn1 = pSrcA;
/* Initialization of inputB pointer */
pIn2 = pSrcB;
}
else
{
/* Initialization of inputA pointer */
pIn1 = pSrcB;
/* Initialization of inputB pointer */
pIn2 = pSrcA;
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
srcBLen = srcALen;
srcALen = j;
}
/* Conditions to check which loopCounter holds
* the first and last indices of the output samples to be calculated. */
check = firstIndex + numPoints;
blockSize3 = ((int32_t) check - (int32_t) srcALen);
blockSize3 = (blockSize3 > 0) ? blockSize3 : 0;
blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex);
blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1u)) ? blockSize1 :
(int32_t) numPoints) : 0;
blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) +
(int32_t) firstIndex);
blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
/* The function is internally
* divided into three stages according to the number of multiplications that has to be
* taken place between inputA samples and inputB samples. In the first stage of the
* algorithm, the multiplications increase by one for every iteration.
* In the second stage of the algorithm, srcBLen number of multiplications are done.
* In the third stage of the algorithm, the multiplications decrease by one
* for every iteration. */
/* Set the output pointer to point to the firstIndex
* of the output sample to be calculated. */
pOut = pDst + firstIndex;
/* --------------------------
* Initializations of stage1
* -------------------------*/
/* sum = x[0] * y[0]
* sum = x[0] * y[1] + x[1] * y[0]
* ....
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
*/
/* In this stage the MAC operations are increased by 1 for every iteration.
The count variable holds the number of MAC operations performed.
Since the partial convolution starts from firstIndex
Number of Macs to be performed is firstIndex + 1 */
count = 1u + firstIndex;
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + firstIndex;
py = pSrc2;
/* ------------------------
* Stage1 process
* ----------------------*/
/* The first loop starts here */
while(blockSize1 > 0)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* x[0] * y[srcBLen - 1] */
sum += (q63_t) * px++ * (*py--);
/* x[1] * y[srcBLen - 2] */
sum += (q63_t) * px++ * (*py--);
/* x[2] * y[srcBLen - 3] */
sum += (q63_t) * px++ * (*py--);
/* x[3] * y[srcBLen - 4] */
sum += (q63_t) * px++ * (*py--);
/* Decrement the loop counter */
k--;
}
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += (q63_t) * px++ * (*py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q31_t) (sum >> 31);
/* Update the inputA and inputB pointers for next MAC calculation */
py = ++pSrc2;
px = pIn1;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blockSize1--;
}
/* --------------------------
* Initializations of stage2
* ------------------------*/
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
* ....
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
*/
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* count is index by which the pointer pIn1 to be incremented */
count = 1u;
/* -------------------
* Stage2 process
* ------------------*/
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
* So, to loop unroll over blockSize2,
* srcBLen should be greater than or equal to 4 */
if(srcBLen >= 4u)
{
/* Loop unroll over blockSize2 */
blkCnt = ((uint32_t) blockSize2 >> 2u);
while(blkCnt > 0u)
{
/* Set all accumulators to zero */
acc0 = 0;
acc1 = 0;
acc2 = 0;
acc3 = 0;
/* read x[0], x[1], x[2] samples */
x0 = *(px++);
x1 = *(px++);
x2 = *(px++);
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
do
{
/* Read y[srcBLen - 1] sample */
c0 = *(py--);
/* Read x[3] sample */
x3 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[0] * y[srcBLen - 1] */
acc0 += (q63_t) x0 *c0;
/* acc1 += x[1] * y[srcBLen - 1] */
acc1 += (q63_t) x1 *c0;
/* acc2 += x[2] * y[srcBLen - 1] */
acc2 += (q63_t) x2 *c0;
/* acc3 += x[3] * y[srcBLen - 1] */
acc3 += (q63_t) x3 *c0;
/* Read y[srcBLen - 2] sample */
c0 = *(py--);
/* Read x[4] sample */
x0 = *(px++);
/* Perform the multiply-accumulate */
/* acc0 += x[1] * y[srcBLen - 2] */
acc0 += (q63_t) x1 *c0;
/* acc1 += x[2] * y[srcBLen - 2] */
acc1 += (q63_t) x2 *c0;
/* acc2 += x[3] * y[srcBLen - 2] */
acc2 += (q63_t) x3 *c0;
/* acc3 += x[4] * y[srcBLen - 2] */
acc3 += (q63_t) x0 *c0;
/* Read y[srcBLen - 3] sample */
c0 = *(py--);
/* Read x[5] sample */
x1 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[2] * y[srcBLen - 3] */
acc0 += (q63_t) x2 *c0;
/* acc1 += x[3] * y[srcBLen - 2] */
acc1 += (q63_t) x3 *c0;
/* acc2 += x[4] * y[srcBLen - 2] */
acc2 += (q63_t) x0 *c0;
/* acc3 += x[5] * y[srcBLen - 2] */
acc3 += (q63_t) x1 *c0;
/* Read y[srcBLen - 4] sample */
c0 = *(py--);
/* Read x[6] sample */
x2 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[3] * y[srcBLen - 4] */
acc0 += (q63_t) x3 *c0;
/* acc1 += x[4] * y[srcBLen - 4] */
acc1 += (q63_t) x0 *c0;
/* acc2 += x[5] * y[srcBLen - 4] */
acc2 += (q63_t) x1 *c0;
/* acc3 += x[6] * y[srcBLen - 4] */
acc3 += (q63_t) x2 *c0;
} while(--k);
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Read y[srcBLen - 5] sample */
c0 = *(py--);
/* Read x[7] sample */
x3 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[4] * y[srcBLen - 5] */
acc0 += (q63_t) x0 *c0;
/* acc1 += x[5] * y[srcBLen - 5] */
acc1 += (q63_t) x1 *c0;
/* acc2 += x[6] * y[srcBLen - 5] */
acc2 += (q63_t) x2 *c0;
/* acc3 += x[7] * y[srcBLen - 5] */
acc3 += (q63_t) x3 *c0;
/* Reuse the present samples for the next MAC */
x0 = x1;
x1 = x2;
x2 = x3;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q31_t) (acc0 >> 31);
*pOut++ = (q31_t) (acc1 >> 31);
*pOut++ = (q31_t) (acc2 >> 31);
*pOut++ = (q31_t) (acc3 >> 31);
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + (count * 4u);
py = pSrc2;
/* Increment the pointer pIn1 index, count by 1 */
count++;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = (uint32_t) blockSize2 % 0x4u;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += (q63_t) * px++ * (*py--);
sum += (q63_t) * px++ * (*py--);
sum += (q63_t) * px++ * (*py--);
sum += (q63_t) * px++ * (*py--);
/* Decrement the loop counter */
k--;
}
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += (q63_t) * px++ * (*py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q31_t) (sum >> 31);
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* If the srcBLen is not a multiple of 4,
* the blockSize2 loop cannot be unrolled by 4 */
blkCnt = (uint32_t) blockSize2;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* srcBLen number of MACS should be performed */
k = srcBLen;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += (q63_t) * px++ * (*py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q31_t) (sum >> 31);
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
/* --------------------------
* Initializations of stage3
* -------------------------*/
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
* ....
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
* sum += x[srcALen-1] * y[srcBLen-1]
*/
/* In this stage the MAC operations are decreased by 1 for every iteration.
The blockSize3 variable holds the number of MAC operations performed */
count = srcBLen - 1u;
/* Working pointer of inputA */
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
px = pSrc1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* -------------------
* Stage3 process
* ------------------*/
while(blockSize3 > 0)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
sum += (q63_t) * px++ * (*py--);
sum += (q63_t) * px++ * (*py--);
sum += (q63_t) * px++ * (*py--);
sum += (q63_t) * px++ * (*py--);
/* Decrement the loop counter */
k--;
}
/* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += (q63_t) * px++ * (*py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q31_t) (sum >> 31);
/* Update the inputA and inputB pointers for next MAC calculation */
px = ++pSrc1;
py = pSrc2;
/* Decrement the MAC count */
count--;
/* Decrement the loop counter */
blockSize3--;
}
/* set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
#else
/* Run the below code for Cortex-M0 */
q31_t *pIn1 = pSrcA; /* inputA pointer */
q31_t *pIn2 = pSrcB; /* inputB pointer */
q63_t sum; /* Accumulator */
uint32_t i, j; /* loop counters */
arm_status status; /* status of Partial convolution */
/* Check for range of output samples to be calculated */
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
{
/* Set status as ARM_ARGUMENT_ERROR */
status = ARM_MATH_ARGUMENT_ERROR;
}
else
{
/* Loop to calculate convolution for output length number of values */
for (i = firstIndex; i <= (firstIndex + numPoints - 1); i++)
{
/* Initialize sum with zero to carry on MAC operations */
sum = 0;
/* Loop to perform MAC operations according to convolution equation */
for (j = 0; j <= i; j++)
{
/* Check the array limitations */
if(((i - j) < srcBLen) && (j < srcALen))
{
/* z[i] += x[i-j] * y[j] */
sum += ((q63_t) pIn1[j] * (pIn2[i - j]));
}
}
/* Store the output in the destination buffer */
pDst[i] = (q31_t) (sum >> 31u);
}
/* set status as ARM_SUCCESS as there are no argument errors */
status = ARM_MATH_SUCCESS;
}
return (status);
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of PartialConv group
*/

View File

@ -0,0 +1,723 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_conv_partial_q7.c
*
* Description: Partial convolution of Q7 sequences.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
*
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup PartialConv
* @{
*/
/**
* @brief Partial convolution of Q7 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written.
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*
*/
arm_status arm_conv_partial_q7(
q7_t * pSrcA,
uint32_t srcALen,
q7_t * pSrcB,
uint32_t srcBLen,
q7_t * pDst,
uint32_t firstIndex,
uint32_t numPoints)
{
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q7_t *pIn1; /* inputA pointer */
q7_t *pIn2; /* inputB pointer */
q7_t *pOut = pDst; /* output pointer */
q7_t *px; /* Intermediate inputA pointer */
q7_t *py; /* Intermediate inputB pointer */
q7_t *pSrc1, *pSrc2; /* Intermediate pointers */
q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
q31_t input1, input2;
q15_t in1, in2;
q7_t x0, x1, x2, x3, c0, c1;
uint32_t j, k, count, check, blkCnt;
int32_t blockSize1, blockSize2, blockSize3; /* loop counter */
arm_status status;
/* Check for range of output samples to be calculated */
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
{
/* Set status as ARM_MATH_ARGUMENT_ERROR */
status = ARM_MATH_ARGUMENT_ERROR;
}
else
{
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
/* So srcBLen is always considered as shorter or equal to srcALen */
if(srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
pIn1 = pSrcA;
/* Initialization of inputB pointer */
pIn2 = pSrcB;
}
else
{
/* Initialization of inputA pointer */
pIn1 = pSrcB;
/* Initialization of inputB pointer */
pIn2 = pSrcA;
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
srcBLen = srcALen;
srcALen = j;
}
/* Conditions to check which loopCounter holds
* the first and last indices of the output samples to be calculated. */
check = firstIndex + numPoints;
blockSize3 = ((int32_t) check - (int32_t) srcALen);
blockSize3 = (blockSize3 > 0) ? blockSize3 : 0;
blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex);
blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1u)) ? blockSize1 :
(int32_t) numPoints) : 0;
blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) +
(int32_t) firstIndex);
blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
/* The function is internally
* divided into three stages according to the number of multiplications that has to be
* taken place between inputA samples and inputB samples. In the first stage of the
* algorithm, the multiplications increase by one for every iteration.
* In the second stage of the algorithm, srcBLen number of multiplications are done.
* In the third stage of the algorithm, the multiplications decrease by one
* for every iteration. */
/* Set the output pointer to point to the firstIndex
* of the output sample to be calculated. */
pOut = pDst + firstIndex;
/* --------------------------
* Initializations of stage1
* -------------------------*/
/* sum = x[0] * y[0]
* sum = x[0] * y[1] + x[1] * y[0]
* ....
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
*/
/* In this stage the MAC operations are increased by 1 for every iteration.
The count variable holds the number of MAC operations performed.
Since the partial convolution starts from from firstIndex
Number of Macs to be performed is firstIndex + 1 */
count = 1u + firstIndex;
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + firstIndex;
py = pSrc2;
/* ------------------------
* Stage1 process
* ----------------------*/
/* The first stage starts here */
while(blockSize1 > 0)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* x[0] , x[1] */
in1 = (q15_t) * px++;
in2 = (q15_t) * px++;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* y[srcBLen - 1] , y[srcBLen - 2] */
in1 = (q15_t) * py--;
in2 = (q15_t) * py--;
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* x[0] * y[srcBLen - 1] */
/* x[1] * y[srcBLen - 2] */
sum = __SMLAD(input1, input2, sum);
/* x[2] , x[3] */
in1 = (q15_t) * px++;
in2 = (q15_t) * px++;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* y[srcBLen - 3] , y[srcBLen - 4] */
in1 = (q15_t) * py--;
in2 = (q15_t) * py--;
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* x[2] * y[srcBLen - 3] */
/* x[3] * y[srcBLen - 4] */
sum = __SMLAD(input1, input2, sum);
/* Decrement the loop counter */
k--;
}
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += ((q31_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q7_t) (__SSAT(sum >> 7, 8));
/* Update the inputA and inputB pointers for next MAC calculation */
py = ++pSrc2;
px = pIn1;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blockSize1--;
}
/* --------------------------
* Initializations of stage2
* ------------------------*/
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
* ....
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
*/
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* count is index by which the pointer pIn1 to be incremented */
count = 1u;
/* -------------------
* Stage2 process
* ------------------*/
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
* So, to loop unroll over blockSize2,
* srcBLen should be greater than or equal to 4 */
if(srcBLen >= 4u)
{
/* Loop unroll over blockSize2, by 4 */
blkCnt = ((uint32_t) blockSize2 >> 2u);
while(blkCnt > 0u)
{
/* Set all accumulators to zero */
acc0 = 0;
acc1 = 0;
acc2 = 0;
acc3 = 0;
/* read x[0], x[1], x[2] samples */
x0 = *(px++);
x1 = *(px++);
x2 = *(px++);
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
do
{
/* Read y[srcBLen - 1] sample */
c0 = *(py--);
/* Read y[srcBLen - 2] sample */
c1 = *(py--);
/* Read x[3] sample */
x3 = *(px++);
/* x[0] and x[1] are packed */
in1 = (q15_t) x0;
in2 = (q15_t) x1;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* y[srcBLen - 1] and y[srcBLen - 2] are packed */
in1 = (q15_t) c0;
in2 = (q15_t) c1;
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
acc0 = __SMLAD(input1, input2, acc0);
/* x[1] and x[2] are packed */
in1 = (q15_t) x1;
in2 = (q15_t) x2;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
acc1 = __SMLAD(input1, input2, acc1);
/* x[2] and x[3] are packed */
in1 = (q15_t) x2;
in2 = (q15_t) x3;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
acc2 = __SMLAD(input1, input2, acc2);
/* Read x[4] sample */
x0 = *(px++);
/* x[3] and x[4] are packed */
in1 = (q15_t) x3;
in2 = (q15_t) x0;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
acc3 = __SMLAD(input1, input2, acc3);
/* Read y[srcBLen - 3] sample */
c0 = *(py--);
/* Read y[srcBLen - 4] sample */
c1 = *(py--);
/* Read x[5] sample */
x1 = *(px++);
/* x[2] and x[3] are packed */
in1 = (q15_t) x2;
in2 = (q15_t) x3;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* y[srcBLen - 3] and y[srcBLen - 4] are packed */
in1 = (q15_t) c0;
in2 = (q15_t) c1;
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
acc0 = __SMLAD(input1, input2, acc0);
/* x[3] and x[4] are packed */
in1 = (q15_t) x3;
in2 = (q15_t) x0;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
acc1 = __SMLAD(input1, input2, acc1);
/* x[4] and x[5] are packed */
in1 = (q15_t) x0;
in2 = (q15_t) x1;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
acc2 = __SMLAD(input1, input2, acc2);
/* Read x[6] sample */
x2 = *(px++);
/* x[5] and x[6] are packed */
in1 = (q15_t) x1;
in2 = (q15_t) x2;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
acc3 = __SMLAD(input1, input2, acc3);
} while(--k);
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Read y[srcBLen - 5] sample */
c0 = *(py--);
/* Read x[7] sample */
x3 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[4] * y[srcBLen - 5] */
acc0 += ((q31_t) x0 * c0);
/* acc1 += x[5] * y[srcBLen - 5] */
acc1 += ((q31_t) x1 * c0);
/* acc2 += x[6] * y[srcBLen - 5] */
acc2 += ((q31_t) x2 * c0);
/* acc3 += x[7] * y[srcBLen - 5] */
acc3 += ((q31_t) x3 * c0);
/* Reuse the present samples for the next MAC */
x0 = x1;
x1 = x2;
x2 = x3;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q7_t) (__SSAT(acc0 >> 7, 8));
*pOut++ = (q7_t) (__SSAT(acc1 >> 7, 8));
*pOut++ = (q7_t) (__SSAT(acc2 >> 7, 8));
*pOut++ = (q7_t) (__SSAT(acc3 >> 7, 8));
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count * 4u;
py = pSrc2;
/* Increment the pointer pIn1 index, count by 1 */
count++;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = (uint32_t) blockSize2 % 0x4u;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Reading two inputs of SrcA buffer and packing */
in1 = (q15_t) * px++;
in2 = (q15_t) * px++;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* Reading two inputs of SrcB buffer and packing */
in1 = (q15_t) * py--;
in2 = (q15_t) * py--;
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* Perform the multiply-accumulates */
sum = __SMLAD(input1, input2, sum);
/* Reading two inputs of SrcA buffer and packing */
in1 = (q15_t) * px++;
in2 = (q15_t) * px++;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* Reading two inputs of SrcB buffer and packing */
in1 = (q15_t) * py--;
in2 = (q15_t) * py--;
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* Perform the multiply-accumulates */
sum = __SMLAD(input1, input2, sum);
/* Decrement the loop counter */
k--;
}
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += ((q31_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q7_t) (__SSAT(sum >> 7, 8));
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the pointer pIn1 index, count by 1 */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* If the srcBLen is not a multiple of 4,
* the blockSize2 loop cannot be unrolled by 4 */
blkCnt = (uint32_t) blockSize2;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* srcBLen number of MACS should be performed */
k = srcBLen;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += ((q31_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q7_t) (__SSAT(sum >> 7, 8));
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
/* --------------------------
* Initializations of stage3
* -------------------------*/
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
* ....
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
* sum += x[srcALen-1] * y[srcBLen-1]
*/
/* In this stage the MAC operations are decreased by 1 for every iteration.
The count variable holds the number of MAC operations performed */
count = srcBLen - 1u;
/* Working pointer of inputA */
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
px = pSrc1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* -------------------
* Stage3 process
* ------------------*/
while(blockSize3 > 0)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Reading two inputs, x[srcALen - srcBLen + 1] and x[srcALen - srcBLen + 2] of SrcA buffer and packing */
in1 = (q15_t) * px++;
in2 = (q15_t) * px++;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* Reading two inputs, y[srcBLen - 1] and y[srcBLen - 2] of SrcB buffer and packing */
in1 = (q15_t) * py--;
in2 = (q15_t) * py--;
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
/* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
sum = __SMLAD(input1, input2, sum);
/* Reading two inputs, x[srcALen - srcBLen + 3] and x[srcALen - srcBLen + 4] of SrcA buffer and packing */
in1 = (q15_t) * px++;
in2 = (q15_t) * px++;
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* Reading two inputs, y[srcBLen - 3] and y[srcBLen - 4] of SrcB buffer and packing */
in1 = (q15_t) * py--;
in2 = (q15_t) * py--;
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
/* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
/* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
sum = __SMLAD(input1, input2, sum);
/* Decrement the loop counter */
k--;
}
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
/* sum += x[srcALen-1] * y[srcBLen-1] */
sum += ((q31_t) * px++ * *py--);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q7_t) (__SSAT(sum >> 7, 8));
/* Update the inputA and inputB pointers for next MAC calculation */
px = ++pSrc1;
py = pSrc2;
/* Decrement the MAC count */
count--;
/* Decrement the loop counter */
blockSize3--;
}
/* set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
#else
/* Run the below code for Cortex-M0 */
q7_t *pIn1 = pSrcA; /* inputA pointer */
q7_t *pIn2 = pSrcB; /* inputB pointer */
q31_t sum; /* Accumulator */
uint32_t i, j; /* loop counters */
arm_status status; /* status of Partial convolution */
/* Check for range of output samples to be calculated */
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
{
/* Set status as ARM_ARGUMENT_ERROR */
status = ARM_MATH_ARGUMENT_ERROR;
}
else
{
/* Loop to calculate convolution for output length number of values */
for (i = firstIndex; i <= (firstIndex + numPoints - 1); i++)
{
/* Initialize sum with zero to carry on MAC operations */
sum = 0;
/* Loop to perform MAC operations according to convolution equation */
for (j = 0; j <= i; j++)
{
/* Check the array limitations */
if(((i - j) < srcBLen) && (j < srcALen))
{
/* z[i] += x[i-j] * y[j] */
sum += ((q15_t) pIn1[j] * (pIn2[i - j]));
}
}
/* Store the output in the destination buffer */
pDst[i] = (q7_t) __SSAT((sum >> 7u), 8u);
}
/* set status as ARM_SUCCESS as there are no argument errors */
status = ARM_MATH_SUCCESS;
}
return (status);
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of PartialConv group
*/

Some files were not shown because too many files have changed in this diff Show More