mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2025-02-27 16:54:15 +01:00
OP-191: Merge from full-calibration branch. Import Eigen 2.0.15 to the GCS.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@3051 ebee16cc-31ac-478f-84a7-5cbb03baadba
This commit is contained in:
parent
f2a7f8e187
commit
bf191fed27
674
ground/openpilotgcs/src/libs/eigen/COPYING
Normal file
674
ground/openpilotgcs/src/libs/eigen/COPYING
Normal file
@ -0,0 +1,674 @@
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The GNU General Public License is a free, copyleft license for
|
||||
software and other kinds of works.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
the GNU General Public License is intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users. We, the Free Software Foundation, use the
|
||||
GNU General Public License for most of our software; it applies also to
|
||||
any other work released this way by its authors. You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to prevent others from denying you
|
||||
these rights or asking you to surrender the rights. Therefore, you have
|
||||
certain responsibilities if you distribute copies of the software, or if
|
||||
you modify it: responsibilities to respect the freedom of others.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must pass on to the recipients the same
|
||||
freedoms that you received. You must make sure that they, too, receive
|
||||
or can get the source code. And you must show them these terms so they
|
||||
know their rights.
|
||||
|
||||
Developers that use the GNU GPL protect your rights with two steps:
|
||||
(1) assert copyright on the software, and (2) offer you this License
|
||||
giving you legal permission to copy, distribute and/or modify it.
|
||||
|
||||
For the developers' and authors' protection, the GPL clearly explains
|
||||
that there is no warranty for this free software. For both users' and
|
||||
authors' sake, the GPL requires that modified versions be marked as
|
||||
changed, so that their problems will not be attributed erroneously to
|
||||
authors of previous versions.
|
||||
|
||||
Some devices are designed to deny users access to install or run
|
||||
modified versions of the software inside them, although the manufacturer
|
||||
can do so. This is fundamentally incompatible with the aim of
|
||||
protecting users' freedom to change the software. The systematic
|
||||
pattern of such abuse occurs in the area of products for individuals to
|
||||
use, which is precisely where it is most unacceptable. Therefore, we
|
||||
have designed this version of the GPL to prohibit the practice for those
|
||||
products. If such problems arise substantially in other domains, we
|
||||
stand ready to extend this provision to those domains in future versions
|
||||
of the GPL, as needed to protect the freedom of users.
|
||||
|
||||
Finally, every program is threatened constantly by software patents.
|
||||
States should not allow patents to restrict development and use of
|
||||
software on general-purpose computers, but in those that do, we wish to
|
||||
avoid the special danger that patents applied to a free program could
|
||||
make it effectively proprietary. To prevent this, the GPL assures that
|
||||
patents cannot be used to render the program non-free.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
13. Use with the GNU Affero General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU Affero General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the special requirements of the GNU Affero General Public License,
|
||||
section 13, concerning interaction through a network will apply to the
|
||||
combination as such.
|
||||
|
||||
14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program does terminal interaction, make it output a short
|
||||
notice like this when it starts in an interactive mode:
|
||||
|
||||
<program> Copyright (C) <year> <name of author>
|
||||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, your program's commands
|
||||
might be different; for a GUI interface, you would use an "about box".
|
||||
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU GPL, see
|
||||
<http://www.gnu.org/licenses/>.
|
||||
|
||||
The GNU General Public License does not permit incorporating your program
|
||||
into proprietary programs. If your program is a subroutine library, you
|
||||
may consider it more useful to permit linking proprietary applications with
|
||||
the library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License. But first, please read
|
||||
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
165
ground/openpilotgcs/src/libs/eigen/COPYING.LESSER
Normal file
165
ground/openpilotgcs/src/libs/eigen/COPYING.LESSER
Normal file
@ -0,0 +1,165 @@
|
||||
GNU LESSER GENERAL PUBLIC LICENSE
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
|
||||
This version of the GNU Lesser General Public License incorporates
|
||||
the terms and conditions of version 3 of the GNU General Public
|
||||
License, supplemented by the additional permissions listed below.
|
||||
|
||||
0. Additional Definitions.
|
||||
|
||||
As used herein, "this License" refers to version 3 of the GNU Lesser
|
||||
General Public License, and the "GNU GPL" refers to version 3 of the GNU
|
||||
General Public License.
|
||||
|
||||
"The Library" refers to a covered work governed by this License,
|
||||
other than an Application or a Combined Work as defined below.
|
||||
|
||||
An "Application" is any work that makes use of an interface provided
|
||||
by the Library, but which is not otherwise based on the Library.
|
||||
Defining a subclass of a class defined by the Library is deemed a mode
|
||||
of using an interface provided by the Library.
|
||||
|
||||
A "Combined Work" is a work produced by combining or linking an
|
||||
Application with the Library. The particular version of the Library
|
||||
with which the Combined Work was made is also called the "Linked
|
||||
Version".
|
||||
|
||||
The "Minimal Corresponding Source" for a Combined Work means the
|
||||
Corresponding Source for the Combined Work, excluding any source code
|
||||
for portions of the Combined Work that, considered in isolation, are
|
||||
based on the Application, and not on the Linked Version.
|
||||
|
||||
The "Corresponding Application Code" for a Combined Work means the
|
||||
object code and/or source code for the Application, including any data
|
||||
and utility programs needed for reproducing the Combined Work from the
|
||||
Application, but excluding the System Libraries of the Combined Work.
|
||||
|
||||
1. Exception to Section 3 of the GNU GPL.
|
||||
|
||||
You may convey a covered work under sections 3 and 4 of this License
|
||||
without being bound by section 3 of the GNU GPL.
|
||||
|
||||
2. Conveying Modified Versions.
|
||||
|
||||
If you modify a copy of the Library, and, in your modifications, a
|
||||
facility refers to a function or data to be supplied by an Application
|
||||
that uses the facility (other than as an argument passed when the
|
||||
facility is invoked), then you may convey a copy of the modified
|
||||
version:
|
||||
|
||||
a) under this License, provided that you make a good faith effort to
|
||||
ensure that, in the event an Application does not supply the
|
||||
function or data, the facility still operates, and performs
|
||||
whatever part of its purpose remains meaningful, or
|
||||
|
||||
b) under the GNU GPL, with none of the additional permissions of
|
||||
this License applicable to that copy.
|
||||
|
||||
3. Object Code Incorporating Material from Library Header Files.
|
||||
|
||||
The object code form of an Application may incorporate material from
|
||||
a header file that is part of the Library. You may convey such object
|
||||
code under terms of your choice, provided that, if the incorporated
|
||||
material is not limited to numerical parameters, data structure
|
||||
layouts and accessors, or small macros, inline functions and templates
|
||||
(ten or fewer lines in length), you do both of the following:
|
||||
|
||||
a) Give prominent notice with each copy of the object code that the
|
||||
Library is used in it and that the Library and its use are
|
||||
covered by this License.
|
||||
|
||||
b) Accompany the object code with a copy of the GNU GPL and this license
|
||||
document.
|
||||
|
||||
4. Combined Works.
|
||||
|
||||
You may convey a Combined Work under terms of your choice that,
|
||||
taken together, effectively do not restrict modification of the
|
||||
portions of the Library contained in the Combined Work and reverse
|
||||
engineering for debugging such modifications, if you also do each of
|
||||
the following:
|
||||
|
||||
a) Give prominent notice with each copy of the Combined Work that
|
||||
the Library is used in it and that the Library and its use are
|
||||
covered by this License.
|
||||
|
||||
b) Accompany the Combined Work with a copy of the GNU GPL and this license
|
||||
document.
|
||||
|
||||
c) For a Combined Work that displays copyright notices during
|
||||
execution, include the copyright notice for the Library among
|
||||
these notices, as well as a reference directing the user to the
|
||||
copies of the GNU GPL and this license document.
|
||||
|
||||
d) Do one of the following:
|
||||
|
||||
0) Convey the Minimal Corresponding Source under the terms of this
|
||||
License, and the Corresponding Application Code in a form
|
||||
suitable for, and under terms that permit, the user to
|
||||
recombine or relink the Application with a modified version of
|
||||
the Linked Version to produce a modified Combined Work, in the
|
||||
manner specified by section 6 of the GNU GPL for conveying
|
||||
Corresponding Source.
|
||||
|
||||
1) Use a suitable shared library mechanism for linking with the
|
||||
Library. A suitable mechanism is one that (a) uses at run time
|
||||
a copy of the Library already present on the user's computer
|
||||
system, and (b) will operate properly with a modified version
|
||||
of the Library that is interface-compatible with the Linked
|
||||
Version.
|
||||
|
||||
e) Provide Installation Information, but only if you would otherwise
|
||||
be required to provide such information under section 6 of the
|
||||
GNU GPL, and only to the extent that such information is
|
||||
necessary to install and execute a modified version of the
|
||||
Combined Work produced by recombining or relinking the
|
||||
Application with a modified version of the Linked Version. (If
|
||||
you use option 4d0, the Installation Information must accompany
|
||||
the Minimal Corresponding Source and Corresponding Application
|
||||
Code. If you use option 4d1, you must provide the Installation
|
||||
Information in the manner specified by section 6 of the GNU GPL
|
||||
for conveying Corresponding Source.)
|
||||
|
||||
5. Combined Libraries.
|
||||
|
||||
You may place library facilities that are a work based on the
|
||||
Library side by side in a single library together with other library
|
||||
facilities that are not Applications and are not covered by this
|
||||
License, and convey such a combined library under terms of your
|
||||
choice, if you do both of the following:
|
||||
|
||||
a) Accompany the combined library with a copy of the same work based
|
||||
on the Library, uncombined with any other library facilities,
|
||||
conveyed under the terms of this License.
|
||||
|
||||
b) Give prominent notice with the combined library that part of it
|
||||
is a work based on the Library, and explaining where to find the
|
||||
accompanying uncombined form of the same work.
|
||||
|
||||
6. Revised Versions of the GNU Lesser General Public License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions
|
||||
of the GNU Lesser General Public License from time to time. Such new
|
||||
versions will be similar in spirit to the present version, but may
|
||||
differ in detail to address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Library as you received it specifies that a certain numbered version
|
||||
of the GNU Lesser General Public License "or any later version"
|
||||
applies to it, you have the option of following the terms and
|
||||
conditions either of that published version or of any later version
|
||||
published by the Free Software Foundation. If the Library as you
|
||||
received it does not specify a version number of the GNU Lesser
|
||||
General Public License, you may choose any version of the GNU Lesser
|
||||
General Public License ever published by the Free Software Foundation.
|
||||
|
||||
If the Library as you received it specifies that a proxy can decide
|
||||
whether future versions of the GNU Lesser General Public License shall
|
||||
apply, that proxy's public statement of acceptance of any version is
|
||||
permanent authorization for you to choose that version for the
|
||||
Library.
|
39
ground/openpilotgcs/src/libs/eigen/Eigen/Array
Normal file
39
ground/openpilotgcs/src/libs/eigen/Eigen/Array
Normal file
@ -0,0 +1,39 @@
|
||||
#ifndef EIGEN_ARRAY_MODULE_H
|
||||
#define EIGEN_ARRAY_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
|
||||
#include "src/Core/util/DisableMSVCWarnings.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \defgroup Array_Module Array module
|
||||
* This module provides several handy features to manipulate matrices as simple array of values.
|
||||
* In addition to listed classes, it defines various methods of the Cwise interface
|
||||
* (accessible from MatrixBase::cwise()), including:
|
||||
* - matrix-scalar sum,
|
||||
* - coeff-wise comparison operators,
|
||||
* - sin, cos, sqrt, pow, exp, log, square, cube, inverse (reciprocal).
|
||||
*
|
||||
* This module also provides various MatrixBase methods, including:
|
||||
* - \ref MatrixBase::all() "all", \ref MatrixBase::any() "any",
|
||||
* - \ref MatrixBase::Random() "random matrix initialization"
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/Array>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/Array/CwiseOperators.h"
|
||||
#include "src/Array/Functors.h"
|
||||
#include "src/Array/BooleanRedux.h"
|
||||
#include "src/Array/Select.h"
|
||||
#include "src/Array/PartialRedux.h"
|
||||
#include "src/Array/Random.h"
|
||||
#include "src/Array/Norms.h"
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
#include "src/Core/util/EnableMSVCWarnings.h"
|
||||
|
||||
#endif // EIGEN_ARRAY_MODULE_H
|
31
ground/openpilotgcs/src/libs/eigen/Eigen/CMakeLists.txt
Normal file
31
ground/openpilotgcs/src/libs/eigen/Eigen/CMakeLists.txt
Normal file
@ -0,0 +1,31 @@
|
||||
set(Eigen_HEADERS Core LU Cholesky QR Geometry
|
||||
Sparse Array SVD LeastSquares
|
||||
QtAlignedMalloc StdVector NewStdVector
|
||||
Eigen Dense)
|
||||
|
||||
if(EIGEN_BUILD_LIB)
|
||||
set(Eigen_SRCS
|
||||
src/Core/CoreInstantiations.cpp
|
||||
src/Cholesky/CholeskyInstantiations.cpp
|
||||
src/QR/QrInstantiations.cpp
|
||||
)
|
||||
|
||||
add_library(Eigen2 SHARED ${Eigen_SRCS})
|
||||
|
||||
install(TARGETS Eigen2
|
||||
RUNTIME DESTINATION bin
|
||||
LIBRARY DESTINATION lib
|
||||
ARCHIVE DESTINATION lib)
|
||||
endif(EIGEN_BUILD_LIB)
|
||||
|
||||
if(CMAKE_COMPILER_IS_GNUCXX)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g1 -O2")
|
||||
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "${CMAKE_CXX_FLAGS_RELWITHDEBINFO} -g1 -O2")
|
||||
endif(CMAKE_COMPILER_IS_GNUCXX)
|
||||
|
||||
install(FILES
|
||||
${Eigen_HEADERS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen
|
||||
)
|
||||
|
||||
add_subdirectory(src)
|
65
ground/openpilotgcs/src/libs/eigen/Eigen/Cholesky
Normal file
65
ground/openpilotgcs/src/libs/eigen/Eigen/Cholesky
Normal file
@ -0,0 +1,65 @@
|
||||
#ifndef EIGEN_CHOLESKY_MODULE_H
|
||||
#define EIGEN_CHOLESKY_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
|
||||
#include "src/Core/util/DisableMSVCWarnings.h"
|
||||
|
||||
// Note that EIGEN_HIDE_HEAVY_CODE has to be defined per module
|
||||
#if (defined EIGEN_EXTERN_INSTANTIATIONS) && (EIGEN_EXTERN_INSTANTIATIONS>=2)
|
||||
#ifndef EIGEN_HIDE_HEAVY_CODE
|
||||
#define EIGEN_HIDE_HEAVY_CODE
|
||||
#endif
|
||||
#elif defined EIGEN_HIDE_HEAVY_CODE
|
||||
#undef EIGEN_HIDE_HEAVY_CODE
|
||||
#endif
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \defgroup Cholesky_Module Cholesky module
|
||||
*
|
||||
* \nonstableyet
|
||||
*
|
||||
* This module provides two variants of the Cholesky decomposition for selfadjoint (hermitian) matrices.
|
||||
* Those decompositions are accessible via the following MatrixBase methods:
|
||||
* - MatrixBase::llt(),
|
||||
* - MatrixBase::ldlt()
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/Cholesky>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/Array/CwiseOperators.h"
|
||||
#include "src/Array/Functors.h"
|
||||
#include "src/Cholesky/LLT.h"
|
||||
#include "src/Cholesky/LDLT.h"
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
#define EIGEN_CHOLESKY_MODULE_INSTANTIATE_TYPE(MATRIXTYPE,PREFIX) \
|
||||
PREFIX template class LLT<MATRIXTYPE>; \
|
||||
PREFIX template class LDLT<MATRIXTYPE>
|
||||
|
||||
#define EIGEN_CHOLESKY_MODULE_INSTANTIATE(PREFIX) \
|
||||
EIGEN_CHOLESKY_MODULE_INSTANTIATE_TYPE(Matrix2f,PREFIX); \
|
||||
EIGEN_CHOLESKY_MODULE_INSTANTIATE_TYPE(Matrix2d,PREFIX); \
|
||||
EIGEN_CHOLESKY_MODULE_INSTANTIATE_TYPE(Matrix3f,PREFIX); \
|
||||
EIGEN_CHOLESKY_MODULE_INSTANTIATE_TYPE(Matrix3d,PREFIX); \
|
||||
EIGEN_CHOLESKY_MODULE_INSTANTIATE_TYPE(Matrix4f,PREFIX); \
|
||||
EIGEN_CHOLESKY_MODULE_INSTANTIATE_TYPE(Matrix4d,PREFIX); \
|
||||
EIGEN_CHOLESKY_MODULE_INSTANTIATE_TYPE(MatrixXf,PREFIX); \
|
||||
EIGEN_CHOLESKY_MODULE_INSTANTIATE_TYPE(MatrixXd,PREFIX); \
|
||||
EIGEN_CHOLESKY_MODULE_INSTANTIATE_TYPE(MatrixXcf,PREFIX); \
|
||||
EIGEN_CHOLESKY_MODULE_INSTANTIATE_TYPE(MatrixXcd,PREFIX)
|
||||
|
||||
#ifdef EIGEN_EXTERN_INSTANTIATIONS
|
||||
|
||||
namespace Eigen {
|
||||
EIGEN_CHOLESKY_MODULE_INSTANTIATE(extern);
|
||||
} // namespace Eigen
|
||||
#endif
|
||||
|
||||
#include "src/Core/util/EnableMSVCWarnings.h"
|
||||
|
||||
#endif // EIGEN_CHOLESKY_MODULE_H
|
160
ground/openpilotgcs/src/libs/eigen/Eigen/Core
Normal file
160
ground/openpilotgcs/src/libs/eigen/Eigen/Core
Normal file
@ -0,0 +1,160 @@
|
||||
#ifndef EIGEN_CORE_H
|
||||
#define EIGEN_CORE_H
|
||||
|
||||
// first thing Eigen does: prevent MSVC from committing suicide
|
||||
#include "src/Core/util/DisableMSVCWarnings.h"
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#include <malloc.h> // for _aligned_malloc -- need it regardless of whether vectorization is enabled
|
||||
#if (_MSC_VER >= 1500) // 2008 or later
|
||||
// Remember that usage of defined() in a #define is undefined by the standard.
|
||||
// a user reported that in 64-bit mode, MSVC doesn't care to define _M_IX86_FP.
|
||||
#if (defined(_M_IX86_FP) && (_M_IX86_FP >= 2)) || defined(_M_X64)
|
||||
#define EIGEN_SSE2_ON_MSVC_2008_OR_LATER
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// FIXME: this check should not be against __QNXNTO__, which is also defined
|
||||
// while compiling with GCC for QNX target. Better solution is welcome!
|
||||
#if defined(__GNUC__) && !defined(__QNXNTO__)
|
||||
#define EIGEN_GNUC_AT_LEAST(x,y) ((__GNUC__>=x && __GNUC_MINOR__>=y) || __GNUC__>x)
|
||||
#else
|
||||
#define EIGEN_GNUC_AT_LEAST(x,y) 0
|
||||
#endif
|
||||
|
||||
// Remember that usage of defined() in a #define is undefined by the standard
|
||||
#if (defined __SSE2__) && ( (!defined __GNUC__) || EIGEN_GNUC_AT_LEAST(4,2) )
|
||||
#define EIGEN_SSE2_BUT_NOT_OLD_GCC
|
||||
#endif
|
||||
|
||||
#if !defined(EIGEN_DONT_VECTORIZE) && !defined(EIGEN_DONT_ALIGN)
|
||||
#if defined (EIGEN_SSE2_BUT_NOT_OLD_GCC) || defined(EIGEN_SSE2_ON_MSVC_2008_OR_LATER)
|
||||
#define EIGEN_VECTORIZE
|
||||
#define EIGEN_VECTORIZE_SSE
|
||||
#include <emmintrin.h>
|
||||
#include <xmmintrin.h>
|
||||
#ifdef __SSE3__
|
||||
#include <pmmintrin.h>
|
||||
#endif
|
||||
#ifdef __SSSE3__
|
||||
#include <tmmintrin.h>
|
||||
#endif
|
||||
#elif defined __ALTIVEC__
|
||||
#define EIGEN_VECTORIZE
|
||||
#define EIGEN_VECTORIZE_ALTIVEC
|
||||
#include <altivec.h>
|
||||
// We need to #undef all these ugly tokens defined in <altivec.h>
|
||||
// => use __vector instead of vector
|
||||
#undef bool
|
||||
#undef vector
|
||||
#undef pixel
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#include <cstdlib>
|
||||
#include <cmath>
|
||||
#include <complex>
|
||||
#include <cassert>
|
||||
#include <functional>
|
||||
#include <iosfwd>
|
||||
#include <cstring>
|
||||
#include <string>
|
||||
#include <limits>
|
||||
|
||||
#if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(EIGEN_NO_EXCEPTIONS)
|
||||
#define EIGEN_EXCEPTIONS
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_EXCEPTIONS
|
||||
#include <new>
|
||||
#endif
|
||||
|
||||
// this needs to be done after all possible windows C header includes and before any Eigen source includes
|
||||
// (system C++ includes are supposed to be able to deal with this already):
|
||||
// windows.h defines min and max macros which would make Eigen fail to compile.
|
||||
#if defined(min) || defined(max)
|
||||
#error The preprocessor symbols 'min' or 'max' are defined. If you are compiling on Windows, do #define NOMINMAX to prevent windows.h from defining these symbols.
|
||||
#endif
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
// we use size_t frequently and we'll never remember to prepend it with std:: everytime just to
|
||||
// ensure QNX/QCC support
|
||||
using std::size_t;
|
||||
|
||||
/** \defgroup Core_Module Core module
|
||||
* This is the main module of Eigen providing dense matrix and vector support
|
||||
* (both fixed and dynamic size) with all the features corresponding to a BLAS library
|
||||
* and much more...
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/Core>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/Core/util/Macros.h"
|
||||
#include "src/Core/util/Constants.h"
|
||||
#include "src/Core/util/ForwardDeclarations.h"
|
||||
#include "src/Core/util/Meta.h"
|
||||
#include "src/Core/util/XprHelper.h"
|
||||
#include "src/Core/util/StaticAssert.h"
|
||||
#include "src/Core/util/Memory.h"
|
||||
|
||||
#include "src/Core/NumTraits.h"
|
||||
#include "src/Core/MathFunctions.h"
|
||||
#include "src/Core/GenericPacketMath.h"
|
||||
|
||||
#if defined EIGEN_VECTORIZE_SSE
|
||||
#include "src/Core/arch/SSE/PacketMath.h"
|
||||
#elif defined EIGEN_VECTORIZE_ALTIVEC
|
||||
#include "src/Core/arch/AltiVec/PacketMath.h"
|
||||
#endif
|
||||
|
||||
#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|
||||
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 16
|
||||
#endif
|
||||
|
||||
#include "src/Core/Functors.h"
|
||||
#include "src/Core/MatrixBase.h"
|
||||
#include "src/Core/Coeffs.h"
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN // work around Doxygen bug triggered by Assign.h r814874
|
||||
// at least confirmed with Doxygen 1.5.5 and 1.5.6
|
||||
#include "src/Core/Assign.h"
|
||||
#endif
|
||||
|
||||
#include "src/Core/MatrixStorage.h"
|
||||
#include "src/Core/NestByValue.h"
|
||||
#include "src/Core/Flagged.h"
|
||||
#include "src/Core/Matrix.h"
|
||||
#include "src/Core/Cwise.h"
|
||||
#include "src/Core/CwiseBinaryOp.h"
|
||||
#include "src/Core/CwiseUnaryOp.h"
|
||||
#include "src/Core/CwiseNullaryOp.h"
|
||||
#include "src/Core/Dot.h"
|
||||
#include "src/Core/Product.h"
|
||||
#include "src/Core/DiagonalProduct.h"
|
||||
#include "src/Core/SolveTriangular.h"
|
||||
#include "src/Core/MapBase.h"
|
||||
#include "src/Core/Map.h"
|
||||
#include "src/Core/Block.h"
|
||||
#include "src/Core/Minor.h"
|
||||
#include "src/Core/Transpose.h"
|
||||
#include "src/Core/DiagonalMatrix.h"
|
||||
#include "src/Core/DiagonalCoeffs.h"
|
||||
#include "src/Core/Sum.h"
|
||||
#include "src/Core/Redux.h"
|
||||
#include "src/Core/Visitor.h"
|
||||
#include "src/Core/Fuzzy.h"
|
||||
#include "src/Core/IO.h"
|
||||
#include "src/Core/Swap.h"
|
||||
#include "src/Core/CommaInitializer.h"
|
||||
#include "src/Core/Part.h"
|
||||
#include "src/Core/CacheFriendlyProduct.h"
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
#include "src/Core/util/EnableMSVCWarnings.h"
|
||||
|
||||
#endif // EIGEN_CORE_H
|
8
ground/openpilotgcs/src/libs/eigen/Eigen/Dense
Normal file
8
ground/openpilotgcs/src/libs/eigen/Eigen/Dense
Normal file
@ -0,0 +1,8 @@
|
||||
#include "Core"
|
||||
#include "Array"
|
||||
#include "LU"
|
||||
#include "Cholesky"
|
||||
#include "QR"
|
||||
#include "SVD"
|
||||
#include "Geometry"
|
||||
#include "LeastSquares"
|
2
ground/openpilotgcs/src/libs/eigen/Eigen/Eigen
Normal file
2
ground/openpilotgcs/src/libs/eigen/Eigen/Eigen
Normal file
@ -0,0 +1,2 @@
|
||||
#include "Dense"
|
||||
#include "Sparse"
|
51
ground/openpilotgcs/src/libs/eigen/Eigen/Geometry
Normal file
51
ground/openpilotgcs/src/libs/eigen/Eigen/Geometry
Normal file
@ -0,0 +1,51 @@
|
||||
#ifndef EIGEN_GEOMETRY_MODULE_H
|
||||
#define EIGEN_GEOMETRY_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
|
||||
#include "src/Core/util/DisableMSVCWarnings.h"
|
||||
|
||||
#include "Array"
|
||||
#include <limits>
|
||||
|
||||
#ifndef M_PI
|
||||
#define M_PI 3.14159265358979323846
|
||||
#endif
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \defgroup Geometry_Module Geometry module
|
||||
*
|
||||
* \nonstableyet
|
||||
*
|
||||
* This module provides support for:
|
||||
* - fixed-size homogeneous transformations
|
||||
* - translation, scaling, 2D and 3D rotations
|
||||
* - quaternions
|
||||
* - \ref MatrixBase::cross() "cross product"
|
||||
* - \ref MatrixBase::unitOrthogonal() "orthognal vector generation"
|
||||
* - some linear components: parametrized-lines and hyperplanes
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/Geometry>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/Geometry/OrthoMethods.h"
|
||||
#include "src/Geometry/RotationBase.h"
|
||||
#include "src/Geometry/Rotation2D.h"
|
||||
#include "src/Geometry/Quaternion.h"
|
||||
#include "src/Geometry/AngleAxis.h"
|
||||
#include "src/Geometry/EulerAngles.h"
|
||||
#include "src/Geometry/Transform.h"
|
||||
#include "src/Geometry/Translation.h"
|
||||
#include "src/Geometry/Scaling.h"
|
||||
#include "src/Geometry/Hyperplane.h"
|
||||
#include "src/Geometry/ParametrizedLine.h"
|
||||
#include "src/Geometry/AlignedBox.h"
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
#include "src/Core/util/EnableMSVCWarnings.h"
|
||||
|
||||
#endif // EIGEN_GEOMETRY_MODULE_H
|
29
ground/openpilotgcs/src/libs/eigen/Eigen/LU
Normal file
29
ground/openpilotgcs/src/libs/eigen/Eigen/LU
Normal file
@ -0,0 +1,29 @@
|
||||
#ifndef EIGEN_LU_MODULE_H
|
||||
#define EIGEN_LU_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
|
||||
#include "src/Core/util/DisableMSVCWarnings.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \defgroup LU_Module LU module
|
||||
* This module includes %LU decomposition and related notions such as matrix inversion and determinant.
|
||||
* This module defines the following MatrixBase methods:
|
||||
* - MatrixBase::inverse()
|
||||
* - MatrixBase::determinant()
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/LU>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/LU/LU.h"
|
||||
#include "src/LU/Determinant.h"
|
||||
#include "src/LU/Inverse.h"
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
#include "src/Core/util/EnableMSVCWarnings.h"
|
||||
|
||||
#endif // EIGEN_LU_MODULE_H
|
27
ground/openpilotgcs/src/libs/eigen/Eigen/LeastSquares
Normal file
27
ground/openpilotgcs/src/libs/eigen/Eigen/LeastSquares
Normal file
@ -0,0 +1,27 @@
|
||||
#ifndef EIGEN_REGRESSION_MODULE_H
|
||||
#define EIGEN_REGRESSION_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
|
||||
#include "src/Core/util/DisableMSVCWarnings.h"
|
||||
|
||||
#include "QR"
|
||||
#include "Geometry"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \defgroup LeastSquares_Module LeastSquares module
|
||||
* This module provides linear regression and related features.
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/LeastSquares>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/LeastSquares/LeastSquares.h"
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
#include "src/Core/util/EnableMSVCWarnings.h"
|
||||
|
||||
#endif // EIGEN_REGRESSION_MODULE_H
|
168
ground/openpilotgcs/src/libs/eigen/Eigen/NewStdVector
Normal file
168
ground/openpilotgcs/src/libs/eigen/Eigen/NewStdVector
Normal file
@ -0,0 +1,168 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_STDVECTOR_MODULE_H
|
||||
#define EIGEN_STDVECTOR_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
#include <vector>
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
// This one is needed to prevent reimplementing the whole std::vector.
|
||||
template <class T>
|
||||
class aligned_allocator_indirection : public aligned_allocator<T>
|
||||
{
|
||||
public:
|
||||
typedef std::size_t size_type;
|
||||
typedef std::ptrdiff_t difference_type;
|
||||
typedef T* pointer;
|
||||
typedef const T* const_pointer;
|
||||
typedef T& reference;
|
||||
typedef const T& const_reference;
|
||||
typedef T value_type;
|
||||
|
||||
template<class U>
|
||||
struct rebind
|
||||
{
|
||||
typedef aligned_allocator_indirection<U> other;
|
||||
};
|
||||
|
||||
aligned_allocator_indirection() throw() {}
|
||||
aligned_allocator_indirection(const aligned_allocator_indirection& ) throw() : aligned_allocator<T>() {}
|
||||
aligned_allocator_indirection(const aligned_allocator<T>& ) throw() {}
|
||||
template<class U>
|
||||
aligned_allocator_indirection(const aligned_allocator_indirection<U>& ) throw() {}
|
||||
template<class U>
|
||||
aligned_allocator_indirection(const aligned_allocator<U>& ) throw() {}
|
||||
~aligned_allocator_indirection() throw() {}
|
||||
};
|
||||
|
||||
#ifdef _MSC_VER
|
||||
|
||||
// sometimes, MSVC detects, at compile time, that the argument x
|
||||
// in std::vector::resize(size_t s,T x) won't be aligned and generate an error
|
||||
// even if this function is never called. Whence this little wrapper.
|
||||
#define EIGEN_WORKAROUND_MSVC_STD_VECTOR(T) Eigen::ei_workaround_msvc_std_vector<T>
|
||||
template<typename T> struct ei_workaround_msvc_std_vector : public T
|
||||
{
|
||||
inline ei_workaround_msvc_std_vector() : T() {}
|
||||
inline ei_workaround_msvc_std_vector(const T& other) : T(other) {}
|
||||
inline operator T& () { return *static_cast<T*>(this); }
|
||||
inline operator const T& () const { return *static_cast<const T*>(this); }
|
||||
template<typename OtherT>
|
||||
inline T& operator=(const OtherT& other)
|
||||
{ T::operator=(other); return *this; }
|
||||
inline ei_workaround_msvc_std_vector& operator=(const ei_workaround_msvc_std_vector& other)
|
||||
{ T::operator=(other); return *this; }
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
#define EIGEN_WORKAROUND_MSVC_STD_VECTOR(T) T
|
||||
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
namespace std {
|
||||
|
||||
#define EIGEN_STD_VECTOR_SPECIALIZATION_BODY \
|
||||
public: \
|
||||
typedef T value_type; \
|
||||
typedef typename vector_base::allocator_type allocator_type; \
|
||||
typedef typename vector_base::size_type size_type; \
|
||||
typedef typename vector_base::iterator iterator; \
|
||||
typedef typename vector_base::const_iterator const_iterator; \
|
||||
explicit vector(const allocator_type& a = allocator_type()) : vector_base(a) {} \
|
||||
template<typename InputIterator> \
|
||||
vector(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) \
|
||||
: vector_base(first, last, a) {} \
|
||||
vector(const vector& c) : vector_base(c) {} \
|
||||
explicit vector(size_type num, const value_type& val = value_type()) : vector_base(num, val) {} \
|
||||
vector(iterator start, iterator end) : vector_base(start, end) {} \
|
||||
vector& operator=(const vector& x) { \
|
||||
vector_base::operator=(x); \
|
||||
return *this; \
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
class vector<T,Eigen::aligned_allocator<T> >
|
||||
: public vector<EIGEN_WORKAROUND_MSVC_STD_VECTOR(T),
|
||||
Eigen::aligned_allocator_indirection<EIGEN_WORKAROUND_MSVC_STD_VECTOR(T)> >
|
||||
{
|
||||
typedef vector<EIGEN_WORKAROUND_MSVC_STD_VECTOR(T),
|
||||
Eigen::aligned_allocator_indirection<EIGEN_WORKAROUND_MSVC_STD_VECTOR(T)> > vector_base;
|
||||
EIGEN_STD_VECTOR_SPECIALIZATION_BODY
|
||||
|
||||
void resize(size_type new_size)
|
||||
{ resize(new_size, T()); }
|
||||
|
||||
#if defined(_VECTOR_)
|
||||
// workaround MSVC std::vector implementation
|
||||
void resize(size_type new_size, const value_type& x)
|
||||
{
|
||||
if (vector_base::size() < new_size)
|
||||
vector_base::_Insert_n(vector_base::end(), new_size - vector_base::size(), x);
|
||||
else if (new_size < vector_base::size())
|
||||
vector_base::erase(vector_base::begin() + new_size, vector_base::end());
|
||||
}
|
||||
void push_back(const value_type& x)
|
||||
{ vector_base::push_back(x); }
|
||||
using vector_base::insert;
|
||||
iterator insert(const_iterator position, const value_type& x)
|
||||
{ return vector_base::insert(position,x); }
|
||||
void insert(const_iterator position, size_type new_size, const value_type& x)
|
||||
{ vector_base::insert(position, new_size, x); }
|
||||
#elif defined(_GLIBCXX_VECTOR) && EIGEN_GNUC_AT_LEAST(4,2)
|
||||
// workaround GCC std::vector implementation
|
||||
void resize(size_type new_size, const value_type& x)
|
||||
{
|
||||
if (new_size < vector_base::size())
|
||||
vector_base::_M_erase_at_end(this->_M_impl._M_start + new_size);
|
||||
else
|
||||
vector_base::insert(vector_base::end(), new_size - vector_base::size(), x);
|
||||
}
|
||||
#elif defined(_GLIBCXX_VECTOR) && (!EIGEN_GNUC_AT_LEAST(4,1))
|
||||
// Note that before gcc-4.1 we already have: std::vector::resize(size_type,const T&),
|
||||
// no no need to workaround !
|
||||
using vector_base::resize;
|
||||
#else
|
||||
// either GCC 4.1 or non-GCC
|
||||
// default implementation which should always work.
|
||||
void resize(size_type new_size, const value_type& x)
|
||||
{
|
||||
if (new_size < vector_base::size())
|
||||
vector_base::erase(vector_base::begin() + new_size, vector_base::end());
|
||||
else if (new_size > vector_base::size())
|
||||
vector_base::insert(vector_base::end(), new_size - vector_base::size(), x);
|
||||
}
|
||||
#endif
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // EIGEN_STDVECTOR_MODULE_H
|
73
ground/openpilotgcs/src/libs/eigen/Eigen/QR
Normal file
73
ground/openpilotgcs/src/libs/eigen/Eigen/QR
Normal file
@ -0,0 +1,73 @@
|
||||
#ifndef EIGEN_QR_MODULE_H
|
||||
#define EIGEN_QR_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
|
||||
#include "src/Core/util/DisableMSVCWarnings.h"
|
||||
|
||||
#include "Cholesky"
|
||||
|
||||
// Note that EIGEN_HIDE_HEAVY_CODE has to be defined per module
|
||||
#if (defined EIGEN_EXTERN_INSTANTIATIONS) && (EIGEN_EXTERN_INSTANTIATIONS>=2)
|
||||
#ifndef EIGEN_HIDE_HEAVY_CODE
|
||||
#define EIGEN_HIDE_HEAVY_CODE
|
||||
#endif
|
||||
#elif defined EIGEN_HIDE_HEAVY_CODE
|
||||
#undef EIGEN_HIDE_HEAVY_CODE
|
||||
#endif
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \defgroup QR_Module QR module
|
||||
*
|
||||
* \nonstableyet
|
||||
*
|
||||
* This module mainly provides QR decomposition and an eigen value solver.
|
||||
* This module also provides some MatrixBase methods, including:
|
||||
* - MatrixBase::qr(),
|
||||
* - MatrixBase::eigenvalues(),
|
||||
* - MatrixBase::operatorNorm()
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/QR>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/QR/QR.h"
|
||||
#include "src/QR/Tridiagonalization.h"
|
||||
#include "src/QR/EigenSolver.h"
|
||||
#include "src/QR/SelfAdjointEigenSolver.h"
|
||||
#include "src/QR/HessenbergDecomposition.h"
|
||||
|
||||
// declare all classes for a given matrix type
|
||||
#define EIGEN_QR_MODULE_INSTANTIATE_TYPE(MATRIXTYPE,PREFIX) \
|
||||
PREFIX template class QR<MATRIXTYPE>; \
|
||||
PREFIX template class Tridiagonalization<MATRIXTYPE>; \
|
||||
PREFIX template class HessenbergDecomposition<MATRIXTYPE>; \
|
||||
PREFIX template class SelfAdjointEigenSolver<MATRIXTYPE>
|
||||
|
||||
// removed because it does not support complex yet
|
||||
// PREFIX template class EigenSolver<MATRIXTYPE>
|
||||
|
||||
// declare all class for all types
|
||||
#define EIGEN_QR_MODULE_INSTANTIATE(PREFIX) \
|
||||
EIGEN_QR_MODULE_INSTANTIATE_TYPE(Matrix2f,PREFIX); \
|
||||
EIGEN_QR_MODULE_INSTANTIATE_TYPE(Matrix2d,PREFIX); \
|
||||
EIGEN_QR_MODULE_INSTANTIATE_TYPE(Matrix3f,PREFIX); \
|
||||
EIGEN_QR_MODULE_INSTANTIATE_TYPE(Matrix3d,PREFIX); \
|
||||
EIGEN_QR_MODULE_INSTANTIATE_TYPE(Matrix4f,PREFIX); \
|
||||
EIGEN_QR_MODULE_INSTANTIATE_TYPE(Matrix4d,PREFIX); \
|
||||
EIGEN_QR_MODULE_INSTANTIATE_TYPE(MatrixXf,PREFIX); \
|
||||
EIGEN_QR_MODULE_INSTANTIATE_TYPE(MatrixXd,PREFIX); \
|
||||
EIGEN_QR_MODULE_INSTANTIATE_TYPE(MatrixXcf,PREFIX); \
|
||||
EIGEN_QR_MODULE_INSTANTIATE_TYPE(MatrixXcd,PREFIX)
|
||||
|
||||
#ifdef EIGEN_EXTERN_INSTANTIATIONS
|
||||
EIGEN_QR_MODULE_INSTANTIATE(extern);
|
||||
#endif // EIGEN_EXTERN_INSTANTIATIONS
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
#include "src/Core/util/EnableMSVCWarnings.h"
|
||||
|
||||
#endif // EIGEN_QR_MODULE_H
|
49
ground/openpilotgcs/src/libs/eigen/Eigen/QtAlignedMalloc
Normal file
49
ground/openpilotgcs/src/libs/eigen/Eigen/QtAlignedMalloc
Normal file
@ -0,0 +1,49 @@
|
||||
#ifndef EIGEN_QTMALLOC_MODULE_H
|
||||
#define EIGEN_QTMALLOC_MODULE_H
|
||||
|
||||
#if (!EIGEN_MALLOC_ALREADY_ALIGNED)
|
||||
|
||||
#ifdef QVECTOR_H
|
||||
#error You must include <Eigen/QtAlignedMalloc> before <QtCore/QVector>.
|
||||
#endif
|
||||
|
||||
#ifdef Q_DECL_IMPORT
|
||||
#define Q_DECL_IMPORT_ORIG Q_DECL_IMPORT
|
||||
#undef Q_DECL_IMPORT
|
||||
#define Q_DECL_IMPORT
|
||||
#else
|
||||
#define Q_DECL_IMPORT
|
||||
#endif
|
||||
|
||||
#include "Core"
|
||||
|
||||
#include <QtCore/QVector>
|
||||
|
||||
inline void *qMalloc(size_t size)
|
||||
{
|
||||
return Eigen::ei_aligned_malloc(size);
|
||||
}
|
||||
|
||||
inline void qFree(void *ptr)
|
||||
{
|
||||
Eigen::ei_aligned_free(ptr);
|
||||
}
|
||||
|
||||
inline void *qRealloc(void *ptr, size_t size)
|
||||
{
|
||||
void* newPtr = Eigen::ei_aligned_malloc(size);
|
||||
memcpy(newPtr, ptr, size);
|
||||
Eigen::ei_aligned_free(ptr);
|
||||
return newPtr;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef Q_DECL_IMPORT_ORIG
|
||||
#define Q_DECL_IMPORT Q_DECL_IMPORT_ORIG
|
||||
#undef Q_DECL_IMPORT_ORIG
|
||||
#else
|
||||
#undef Q_DECL_IMPORT
|
||||
#endif
|
||||
|
||||
#endif // EIGEN_QTMALLOC_MODULE_H
|
29
ground/openpilotgcs/src/libs/eigen/Eigen/SVD
Normal file
29
ground/openpilotgcs/src/libs/eigen/Eigen/SVD
Normal file
@ -0,0 +1,29 @@
|
||||
#ifndef EIGEN_SVD_MODULE_H
|
||||
#define EIGEN_SVD_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
|
||||
#include "src/Core/util/DisableMSVCWarnings.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \defgroup SVD_Module SVD module
|
||||
*
|
||||
* \nonstableyet
|
||||
*
|
||||
* This module provides SVD decomposition for (currently) real matrices.
|
||||
* This decomposition is accessible via the following MatrixBase method:
|
||||
* - MatrixBase::svd()
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/SVD>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/SVD/SVD.h"
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
#include "src/Core/util/EnableMSVCWarnings.h"
|
||||
|
||||
#endif // EIGEN_SVD_MODULE_H
|
132
ground/openpilotgcs/src/libs/eigen/Eigen/Sparse
Normal file
132
ground/openpilotgcs/src/libs/eigen/Eigen/Sparse
Normal file
@ -0,0 +1,132 @@
|
||||
#ifndef EIGEN_SPARSE_MODULE_H
|
||||
#define EIGEN_SPARSE_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
|
||||
#include "src/Core/util/DisableMSVCWarnings.h"
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <algorithm>
|
||||
|
||||
#ifdef EIGEN_GOOGLEHASH_SUPPORT
|
||||
#include <google/dense_hash_map>
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_CHOLMOD_SUPPORT
|
||||
extern "C" {
|
||||
#include "cholmod.h"
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_TAUCS_SUPPORT
|
||||
// taucs.h declares a lot of mess
|
||||
#define isnan
|
||||
#define finite
|
||||
#define isinf
|
||||
extern "C" {
|
||||
#include "taucs.h"
|
||||
}
|
||||
#undef isnan
|
||||
#undef finite
|
||||
#undef isinf
|
||||
|
||||
#ifdef min
|
||||
#undef min
|
||||
#endif
|
||||
#ifdef max
|
||||
#undef max
|
||||
#endif
|
||||
#ifdef complex
|
||||
#undef complex
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_SUPERLU_SUPPORT
|
||||
typedef int int_t;
|
||||
#include "superlu/slu_Cnames.h"
|
||||
#include "superlu/supermatrix.h"
|
||||
#include "superlu/slu_util.h"
|
||||
|
||||
namespace SuperLU_S {
|
||||
#include "superlu/slu_sdefs.h"
|
||||
}
|
||||
namespace SuperLU_D {
|
||||
#include "superlu/slu_ddefs.h"
|
||||
}
|
||||
namespace SuperLU_C {
|
||||
#include "superlu/slu_cdefs.h"
|
||||
}
|
||||
namespace SuperLU_Z {
|
||||
#include "superlu/slu_zdefs.h"
|
||||
}
|
||||
namespace Eigen { struct SluMatrix; }
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_UMFPACK_SUPPORT
|
||||
#include "umfpack.h"
|
||||
#endif
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \defgroup Sparse_Module Sparse module
|
||||
*
|
||||
* \nonstableyet
|
||||
*
|
||||
* See the \ref TutorialSparse "Sparse tutorial"
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/QR>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/Sparse/SparseUtil.h"
|
||||
#include "src/Sparse/SparseMatrixBase.h"
|
||||
#include "src/Sparse/CompressedStorage.h"
|
||||
#include "src/Sparse/AmbiVector.h"
|
||||
#include "src/Sparse/RandomSetter.h"
|
||||
#include "src/Sparse/SparseBlock.h"
|
||||
#include "src/Sparse/SparseMatrix.h"
|
||||
#include "src/Sparse/DynamicSparseMatrix.h"
|
||||
#include "src/Sparse/MappedSparseMatrix.h"
|
||||
#include "src/Sparse/SparseVector.h"
|
||||
#include "src/Sparse/CoreIterators.h"
|
||||
#include "src/Sparse/SparseTranspose.h"
|
||||
#include "src/Sparse/SparseCwise.h"
|
||||
#include "src/Sparse/SparseCwiseUnaryOp.h"
|
||||
#include "src/Sparse/SparseCwiseBinaryOp.h"
|
||||
#include "src/Sparse/SparseDot.h"
|
||||
#include "src/Sparse/SparseAssign.h"
|
||||
#include "src/Sparse/SparseRedux.h"
|
||||
#include "src/Sparse/SparseFuzzy.h"
|
||||
#include "src/Sparse/SparseFlagged.h"
|
||||
#include "src/Sparse/SparseProduct.h"
|
||||
#include "src/Sparse/SparseDiagonalProduct.h"
|
||||
#include "src/Sparse/TriangularSolver.h"
|
||||
#include "src/Sparse/SparseLLT.h"
|
||||
#include "src/Sparse/SparseLDLT.h"
|
||||
#include "src/Sparse/SparseLU.h"
|
||||
|
||||
#ifdef EIGEN_CHOLMOD_SUPPORT
|
||||
# include "src/Sparse/CholmodSupport.h"
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_TAUCS_SUPPORT
|
||||
# include "src/Sparse/TaucsSupport.h"
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_SUPERLU_SUPPORT
|
||||
# include "src/Sparse/SuperLUSupport.h"
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_UMFPACK_SUPPORT
|
||||
# include "src/Sparse/UmfPackSupport.h"
|
||||
#endif
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
#include "src/Core/util/EnableMSVCWarnings.h"
|
||||
|
||||
#endif // EIGEN_SPARSE_MODULE_H
|
147
ground/openpilotgcs/src/libs/eigen/Eigen/StdVector
Normal file
147
ground/openpilotgcs/src/libs/eigen/Eigen/StdVector
Normal file
@ -0,0 +1,147 @@
|
||||
#ifdef EIGEN_USE_NEW_STDVECTOR
|
||||
#include "NewStdVector"
|
||||
#else
|
||||
|
||||
#ifndef EIGEN_STDVECTOR_MODULE_H
|
||||
#define EIGEN_STDVECTOR_MODULE_H
|
||||
|
||||
#if defined(_GLIBCXX_VECTOR) || defined(_VECTOR_)
|
||||
#error you must include <Eigen/StdVector> before <vector>. Also note that <Eigen/Sparse> includes <vector>, so it must be included after <Eigen/StdVector> too.
|
||||
#endif
|
||||
|
||||
#ifndef EIGEN_GNUC_AT_LEAST
|
||||
#ifdef __GNUC__
|
||||
#define EIGEN_GNUC_AT_LEAST(x,y) ((__GNUC__>=x && __GNUC_MINOR__>=y) || __GNUC__>x)
|
||||
#else
|
||||
#define EIGEN_GNUC_AT_LEAST(x,y) 0
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define vector std_vector
|
||||
#include <vector>
|
||||
#undef vector
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<typename T> class aligned_allocator;
|
||||
|
||||
// meta programming to determine if a class has a given member
|
||||
struct ei_does_not_have_aligned_operator_new_marker_sizeof {int a[1];};
|
||||
struct ei_has_aligned_operator_new_marker_sizeof {int a[2];};
|
||||
|
||||
template<typename ClassType>
|
||||
struct ei_has_aligned_operator_new {
|
||||
template<typename T>
|
||||
static ei_has_aligned_operator_new_marker_sizeof
|
||||
test(T const *, typename T::ei_operator_new_marker_type const * = 0);
|
||||
static ei_does_not_have_aligned_operator_new_marker_sizeof
|
||||
test(...);
|
||||
|
||||
// note that the following indirection is needed for gcc-3.3
|
||||
enum {ret = sizeof(test(static_cast<ClassType*>(0)))
|
||||
== sizeof(ei_has_aligned_operator_new_marker_sizeof) };
|
||||
};
|
||||
|
||||
#ifdef _MSC_VER
|
||||
|
||||
// sometimes, MSVC detects, at compile time, that the argument x
|
||||
// in std::vector::resize(size_t s,T x) won't be aligned and generate an error
|
||||
// even if this function is never called. Whence this little wrapper.
|
||||
#define _EIGEN_WORKAROUND_MSVC_STD_VECTOR(T) Eigen::ei_workaround_msvc_std_vector<T>
|
||||
template<typename T> struct ei_workaround_msvc_std_vector : public T
|
||||
{
|
||||
inline ei_workaround_msvc_std_vector() : T() {}
|
||||
inline ei_workaround_msvc_std_vector(const T& other) : T(other) {}
|
||||
inline operator T& () { return *static_cast<T*>(this); }
|
||||
inline operator const T& () const { return *static_cast<const T*>(this); }
|
||||
template<typename OtherT>
|
||||
inline T& operator=(const OtherT& other)
|
||||
{ T::operator=(other); return *this; }
|
||||
inline ei_workaround_msvc_std_vector& operator=(const ei_workaround_msvc_std_vector& other)
|
||||
{ T::operator=(other); return *this; }
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
#define _EIGEN_WORKAROUND_MSVC_STD_VECTOR(T) T
|
||||
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
namespace std {
|
||||
|
||||
#define EIGEN_STD_VECTOR_SPECIALIZATION_BODY \
|
||||
public: \
|
||||
typedef T value_type; \
|
||||
typedef typename vector_base::allocator_type allocator_type; \
|
||||
typedef typename vector_base::size_type size_type; \
|
||||
typedef typename vector_base::iterator iterator; \
|
||||
explicit vector(const allocator_type& __a = allocator_type()) : vector_base(__a) {} \
|
||||
vector(const vector& c) : vector_base(c) {} \
|
||||
vector(size_type num, const value_type& val = value_type()) : vector_base(num, val) {} \
|
||||
vector(iterator start, iterator end) : vector_base(start, end) {} \
|
||||
vector& operator=(const vector& __x) { \
|
||||
vector_base::operator=(__x); \
|
||||
return *this; \
|
||||
}
|
||||
|
||||
template<typename T,
|
||||
typename AllocT = std::allocator<T>,
|
||||
bool HasAlignedNew = Eigen::ei_has_aligned_operator_new<T>::ret>
|
||||
class vector : public std::std_vector<T,AllocT>
|
||||
{
|
||||
typedef std_vector<T, AllocT> vector_base;
|
||||
EIGEN_STD_VECTOR_SPECIALIZATION_BODY
|
||||
};
|
||||
|
||||
template<typename T,typename DummyAlloc>
|
||||
class vector<T,DummyAlloc,true>
|
||||
: public std::std_vector<_EIGEN_WORKAROUND_MSVC_STD_VECTOR(T),
|
||||
Eigen::aligned_allocator<_EIGEN_WORKAROUND_MSVC_STD_VECTOR(T)> >
|
||||
{
|
||||
typedef std_vector<_EIGEN_WORKAROUND_MSVC_STD_VECTOR(T),
|
||||
Eigen::aligned_allocator<_EIGEN_WORKAROUND_MSVC_STD_VECTOR(T)> > vector_base;
|
||||
EIGEN_STD_VECTOR_SPECIALIZATION_BODY
|
||||
|
||||
void resize(size_type __new_size)
|
||||
{ resize(__new_size, T()); }
|
||||
|
||||
#if defined(_VECTOR_)
|
||||
// workaround MSVC std::vector implementation
|
||||
void resize(size_type __new_size, const value_type& __x)
|
||||
{
|
||||
if (vector_base::size() < __new_size)
|
||||
vector_base::_Insert_n(vector_base::end(), __new_size - vector_base::size(), __x);
|
||||
else if (__new_size < vector_base::size())
|
||||
vector_base::erase(vector_base::begin() + __new_size, vector_base::end());
|
||||
}
|
||||
#elif defined(_GLIBCXX_VECTOR) && EIGEN_GNUC_AT_LEAST(4,2)
|
||||
// workaround GCC std::vector implementation
|
||||
void resize(size_type __new_size, const value_type& __x)
|
||||
{
|
||||
if (__new_size < vector_base::size())
|
||||
vector_base::_M_erase_at_end(this->_M_impl._M_start + __new_size);
|
||||
else
|
||||
vector_base::insert(vector_base::end(), __new_size - vector_base::size(), __x);
|
||||
}
|
||||
#elif defined(_GLIBCXX_VECTOR) && EIGEN_GNUC_AT_LEAST(4,1)
|
||||
void resize(size_type __new_size, const value_type& __x)
|
||||
{
|
||||
if (__new_size < vector_base::size())
|
||||
vector_base::erase(vector_base::begin() + __new_size, vector_base::end());
|
||||
else
|
||||
vector_base::insert(vector_base::end(), __new_size - vector_base::size(), __x);
|
||||
}
|
||||
#else
|
||||
// Before gcc-4.1 we already have: std::vector::resize(size_type,const T&),
|
||||
// so no need for a workaround !
|
||||
using vector_base::resize;
|
||||
#endif
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // EIGEN_STDVECTOR_MODULE_H
|
||||
|
||||
#endif // EIGEN_USE_NEW_STDVECTOR
|
@ -0,0 +1,145 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_ALLANDANY_H
|
||||
#define EIGEN_ALLANDANY_H
|
||||
|
||||
template<typename Derived, int UnrollCount>
|
||||
struct ei_all_unroller
|
||||
{
|
||||
enum {
|
||||
col = (UnrollCount-1) / Derived::RowsAtCompileTime,
|
||||
row = (UnrollCount-1) % Derived::RowsAtCompileTime
|
||||
};
|
||||
|
||||
inline static bool run(const Derived &mat)
|
||||
{
|
||||
return ei_all_unroller<Derived, UnrollCount-1>::run(mat) && mat.coeff(row, col);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_all_unroller<Derived, 1>
|
||||
{
|
||||
inline static bool run(const Derived &mat) { return mat.coeff(0, 0); }
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_all_unroller<Derived, Dynamic>
|
||||
{
|
||||
inline static bool run(const Derived &) { return false; }
|
||||
};
|
||||
|
||||
template<typename Derived, int UnrollCount>
|
||||
struct ei_any_unroller
|
||||
{
|
||||
enum {
|
||||
col = (UnrollCount-1) / Derived::RowsAtCompileTime,
|
||||
row = (UnrollCount-1) % Derived::RowsAtCompileTime
|
||||
};
|
||||
|
||||
inline static bool run(const Derived &mat)
|
||||
{
|
||||
return ei_any_unroller<Derived, UnrollCount-1>::run(mat) || mat.coeff(row, col);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_any_unroller<Derived, 1>
|
||||
{
|
||||
inline static bool run(const Derived &mat) { return mat.coeff(0, 0); }
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_any_unroller<Derived, Dynamic>
|
||||
{
|
||||
inline static bool run(const Derived &) { return false; }
|
||||
};
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns true if all coefficients are true
|
||||
*
|
||||
* \addexample CwiseAll \label How to check whether a point is inside a box (using operator< and all())
|
||||
*
|
||||
* Example: \include MatrixBase_all.cpp
|
||||
* Output: \verbinclude MatrixBase_all.out
|
||||
*
|
||||
* \sa MatrixBase::any(), Cwise::operator<()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline bool MatrixBase<Derived>::all() const
|
||||
{
|
||||
const bool unroll = SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost)
|
||||
<= EIGEN_UNROLLING_LIMIT;
|
||||
if(unroll)
|
||||
return ei_all_unroller<Derived,
|
||||
unroll ? int(SizeAtCompileTime) : Dynamic
|
||||
>::run(derived());
|
||||
else
|
||||
{
|
||||
for(int j = 0; j < cols(); ++j)
|
||||
for(int i = 0; i < rows(); ++i)
|
||||
if (!coeff(i, j)) return false;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns true if at least one coefficient is true
|
||||
*
|
||||
* \sa MatrixBase::all()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline bool MatrixBase<Derived>::any() const
|
||||
{
|
||||
const bool unroll = SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost)
|
||||
<= EIGEN_UNROLLING_LIMIT;
|
||||
if(unroll)
|
||||
return ei_any_unroller<Derived,
|
||||
unroll ? int(SizeAtCompileTime) : Dynamic
|
||||
>::run(derived());
|
||||
else
|
||||
{
|
||||
for(int j = 0; j < cols(); ++j)
|
||||
for(int i = 0; i < rows(); ++i)
|
||||
if (coeff(i, j)) return true;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns the number of coefficients which evaluate to true
|
||||
*
|
||||
* \sa MatrixBase::all(), MatrixBase::any()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline int MatrixBase<Derived>::count() const
|
||||
{
|
||||
return this->cast<bool>().template cast<int>().sum();
|
||||
}
|
||||
|
||||
#endif // EIGEN_ALLANDANY_H
|
@ -0,0 +1,6 @@
|
||||
FILE(GLOB Eigen_Array_SRCS "*.h")
|
||||
|
||||
INSTALL(FILES
|
||||
${Eigen_Array_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Array
|
||||
)
|
@ -0,0 +1,453 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_ARRAY_CWISE_OPERATORS_H
|
||||
#define EIGEN_ARRAY_CWISE_OPERATORS_H
|
||||
|
||||
// -- unary operators --
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise square root of *this.
|
||||
*
|
||||
* Example: \include Cwise_sqrt.cpp
|
||||
* Output: \verbinclude Cwise_sqrt.out
|
||||
*
|
||||
* \sa pow(), square()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_sqrt_op)
|
||||
Cwise<ExpressionType>::sqrt() const
|
||||
{
|
||||
return _expression();
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise exponential of *this.
|
||||
*
|
||||
* Example: \include Cwise_exp.cpp
|
||||
* Output: \verbinclude Cwise_exp.out
|
||||
*
|
||||
* \sa pow(), log(), sin(), cos()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_exp_op)
|
||||
Cwise<ExpressionType>::exp() const
|
||||
{
|
||||
return _expression();
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise logarithm of *this.
|
||||
*
|
||||
* Example: \include Cwise_log.cpp
|
||||
* Output: \verbinclude Cwise_log.out
|
||||
*
|
||||
* \sa exp()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_log_op)
|
||||
Cwise<ExpressionType>::log() const
|
||||
{
|
||||
return _expression();
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise cosine of *this.
|
||||
*
|
||||
* Example: \include Cwise_cos.cpp
|
||||
* Output: \verbinclude Cwise_cos.out
|
||||
*
|
||||
* \sa sin(), exp()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_cos_op)
|
||||
Cwise<ExpressionType>::cos() const
|
||||
{
|
||||
return _expression();
|
||||
}
|
||||
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise sine of *this.
|
||||
*
|
||||
* Example: \include Cwise_sin.cpp
|
||||
* Output: \verbinclude Cwise_sin.out
|
||||
*
|
||||
* \sa cos(), exp()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_sin_op)
|
||||
Cwise<ExpressionType>::sin() const
|
||||
{
|
||||
return _expression();
|
||||
}
|
||||
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise power of *this to the given exponent.
|
||||
*
|
||||
* Example: \include Cwise_pow.cpp
|
||||
* Output: \verbinclude Cwise_pow.out
|
||||
*
|
||||
* \sa exp(), log()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_pow_op)
|
||||
Cwise<ExpressionType>::pow(const Scalar& exponent) const
|
||||
{
|
||||
return EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_pow_op)(_expression(), ei_scalar_pow_op<Scalar>(exponent));
|
||||
}
|
||||
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise inverse of *this.
|
||||
*
|
||||
* Example: \include Cwise_inverse.cpp
|
||||
* Output: \verbinclude Cwise_inverse.out
|
||||
*
|
||||
* \sa operator/(), operator*()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_inverse_op)
|
||||
Cwise<ExpressionType>::inverse() const
|
||||
{
|
||||
return _expression();
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise square of *this.
|
||||
*
|
||||
* Example: \include Cwise_square.cpp
|
||||
* Output: \verbinclude Cwise_square.out
|
||||
*
|
||||
* \sa operator/(), operator*(), abs2()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_square_op)
|
||||
Cwise<ExpressionType>::square() const
|
||||
{
|
||||
return _expression();
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise cube of *this.
|
||||
*
|
||||
* Example: \include Cwise_cube.cpp
|
||||
* Output: \verbinclude Cwise_cube.out
|
||||
*
|
||||
* \sa square(), pow()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_cube_op)
|
||||
Cwise<ExpressionType>::cube() const
|
||||
{
|
||||
return _expression();
|
||||
}
|
||||
|
||||
|
||||
// -- binary operators --
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise \< operator of *this and \a other
|
||||
*
|
||||
* Example: \include Cwise_less.cpp
|
||||
* Output: \verbinclude Cwise_less.out
|
||||
*
|
||||
* \sa MatrixBase::all(), MatrixBase::any(), operator>(), operator<=()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
template<typename OtherDerived>
|
||||
inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less)
|
||||
Cwise<ExpressionType>::operator<(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
return EIGEN_CWISE_BINOP_RETURN_TYPE(std::less)(_expression(), other.derived());
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise \<= operator of *this and \a other
|
||||
*
|
||||
* Example: \include Cwise_less_equal.cpp
|
||||
* Output: \verbinclude Cwise_less_equal.out
|
||||
*
|
||||
* \sa MatrixBase::all(), MatrixBase::any(), operator>=(), operator<()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
template<typename OtherDerived>
|
||||
inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less_equal)
|
||||
Cwise<ExpressionType>::operator<=(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
return EIGEN_CWISE_BINOP_RETURN_TYPE(std::less_equal)(_expression(), other.derived());
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise \> operator of *this and \a other
|
||||
*
|
||||
* Example: \include Cwise_greater.cpp
|
||||
* Output: \verbinclude Cwise_greater.out
|
||||
*
|
||||
* \sa MatrixBase::all(), MatrixBase::any(), operator>=(), operator<()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
template<typename OtherDerived>
|
||||
inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater)
|
||||
Cwise<ExpressionType>::operator>(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
return EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater)(_expression(), other.derived());
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise \>= operator of *this and \a other
|
||||
*
|
||||
* Example: \include Cwise_greater_equal.cpp
|
||||
* Output: \verbinclude Cwise_greater_equal.out
|
||||
*
|
||||
* \sa MatrixBase::all(), MatrixBase::any(), operator>(), operator<=()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
template<typename OtherDerived>
|
||||
inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater_equal)
|
||||
Cwise<ExpressionType>::operator>=(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
return EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater_equal)(_expression(), other.derived());
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise == operator of *this and \a other
|
||||
*
|
||||
* \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
|
||||
* In order to check for equality between two vectors or matrices with floating-point coefficients, it is
|
||||
* generally a far better idea to use a fuzzy comparison as provided by MatrixBase::isApprox() and
|
||||
* MatrixBase::isMuchSmallerThan().
|
||||
*
|
||||
* Example: \include Cwise_equal_equal.cpp
|
||||
* Output: \verbinclude Cwise_equal_equal.out
|
||||
*
|
||||
* \sa MatrixBase::all(), MatrixBase::any(), MatrixBase::isApprox(), MatrixBase::isMuchSmallerThan()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
template<typename OtherDerived>
|
||||
inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::equal_to)
|
||||
Cwise<ExpressionType>::operator==(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
return EIGEN_CWISE_BINOP_RETURN_TYPE(std::equal_to)(_expression(), other.derived());
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise != operator of *this and \a other
|
||||
*
|
||||
* \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
|
||||
* In order to check for equality between two vectors or matrices with floating-point coefficients, it is
|
||||
* generally a far better idea to use a fuzzy comparison as provided by MatrixBase::isApprox() and
|
||||
* MatrixBase::isMuchSmallerThan().
|
||||
*
|
||||
* Example: \include Cwise_not_equal.cpp
|
||||
* Output: \verbinclude Cwise_not_equal.out
|
||||
*
|
||||
* \sa MatrixBase::all(), MatrixBase::any(), MatrixBase::isApprox(), MatrixBase::isMuchSmallerThan()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
template<typename OtherDerived>
|
||||
inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::not_equal_to)
|
||||
Cwise<ExpressionType>::operator!=(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
return EIGEN_CWISE_BINOP_RETURN_TYPE(std::not_equal_to)(_expression(), other.derived());
|
||||
}
|
||||
|
||||
// comparisons to scalar value
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise \< operator of *this and a scalar \a s
|
||||
*
|
||||
* \sa operator<(const MatrixBase<OtherDerived> &) const
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less)
|
||||
Cwise<ExpressionType>::operator<(Scalar s) const
|
||||
{
|
||||
return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less)(_expression(),
|
||||
typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise \<= operator of *this and a scalar \a s
|
||||
*
|
||||
* \sa operator<=(const MatrixBase<OtherDerived> &) const
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less_equal)
|
||||
Cwise<ExpressionType>::operator<=(Scalar s) const
|
||||
{
|
||||
return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less_equal)(_expression(),
|
||||
typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise \> operator of *this and a scalar \a s
|
||||
*
|
||||
* \sa operator>(const MatrixBase<OtherDerived> &) const
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater)
|
||||
Cwise<ExpressionType>::operator>(Scalar s) const
|
||||
{
|
||||
return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater)(_expression(),
|
||||
typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise \>= operator of *this and a scalar \a s
|
||||
*
|
||||
* \sa operator>=(const MatrixBase<OtherDerived> &) const
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater_equal)
|
||||
Cwise<ExpressionType>::operator>=(Scalar s) const
|
||||
{
|
||||
return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater_equal)(_expression(),
|
||||
typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise == operator of *this and a scalar \a s
|
||||
*
|
||||
* \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
|
||||
* In order to check for equality between two vectors or matrices with floating-point coefficients, it is
|
||||
* generally a far better idea to use a fuzzy comparison as provided by MatrixBase::isApprox() and
|
||||
* MatrixBase::isMuchSmallerThan().
|
||||
*
|
||||
* \sa operator==(const MatrixBase<OtherDerived> &) const
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::equal_to)
|
||||
Cwise<ExpressionType>::operator==(Scalar s) const
|
||||
{
|
||||
return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::equal_to)(_expression(),
|
||||
typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise != operator of *this and a scalar \a s
|
||||
*
|
||||
* \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
|
||||
* In order to check for equality between two vectors or matrices with floating-point coefficients, it is
|
||||
* generally a far better idea to use a fuzzy comparison as provided by MatrixBase::isApprox() and
|
||||
* MatrixBase::isMuchSmallerThan().
|
||||
*
|
||||
* \sa operator!=(const MatrixBase<OtherDerived> &) const
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::not_equal_to)
|
||||
Cwise<ExpressionType>::operator!=(Scalar s) const
|
||||
{
|
||||
return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::not_equal_to)(_expression(),
|
||||
typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
|
||||
}
|
||||
|
||||
// scalar addition
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of \c *this with each coeff incremented by the constant \a scalar
|
||||
*
|
||||
* Example: \include Cwise_plus.cpp
|
||||
* Output: \verbinclude Cwise_plus.out
|
||||
*
|
||||
* \sa operator+=(), operator-()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const typename Cwise<ExpressionType>::ScalarAddReturnType
|
||||
Cwise<ExpressionType>::operator+(const Scalar& scalar) const
|
||||
{
|
||||
return typename Cwise<ExpressionType>::ScalarAddReturnType(m_matrix, ei_scalar_add_op<Scalar>(scalar));
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* Adds the given \a scalar to each coeff of this expression.
|
||||
*
|
||||
* Example: \include Cwise_plus_equal.cpp
|
||||
* Output: \verbinclude Cwise_plus_equal.out
|
||||
*
|
||||
* \sa operator+(), operator-=()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline ExpressionType& Cwise<ExpressionType>::operator+=(const Scalar& scalar)
|
||||
{
|
||||
return m_matrix.const_cast_derived() = *this + scalar;
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of \c *this with each coeff decremented by the constant \a scalar
|
||||
*
|
||||
* Example: \include Cwise_minus.cpp
|
||||
* Output: \verbinclude Cwise_minus.out
|
||||
*
|
||||
* \sa operator+(), operator-=()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const typename Cwise<ExpressionType>::ScalarAddReturnType
|
||||
Cwise<ExpressionType>::operator-(const Scalar& scalar) const
|
||||
{
|
||||
return *this + (-scalar);
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* Substracts the given \a scalar from each coeff of this expression.
|
||||
*
|
||||
* Example: \include Cwise_minus_equal.cpp
|
||||
* Output: \verbinclude Cwise_minus_equal.out
|
||||
*
|
||||
* \sa operator+=(), operator-()
|
||||
*/
|
||||
|
||||
template<typename ExpressionType>
|
||||
inline ExpressionType& Cwise<ExpressionType>::operator-=(const Scalar& scalar)
|
||||
{
|
||||
return m_matrix.const_cast_derived() = *this - scalar;
|
||||
}
|
||||
|
||||
#endif // EIGEN_ARRAY_CWISE_OPERATORS_H
|
309
ground/openpilotgcs/src/libs/eigen/Eigen/src/Array/Functors.h
Normal file
309
ground/openpilotgcs/src/libs/eigen/Eigen/src/Array/Functors.h
Normal file
@ -0,0 +1,309 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_ARRAY_FUNCTORS_H
|
||||
#define EIGEN_ARRAY_FUNCTORS_H
|
||||
|
||||
/** \internal
|
||||
* \array_module
|
||||
*
|
||||
* \brief Template functor to add a scalar to a fixed other one
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Array::operator+
|
||||
*/
|
||||
/* If you wonder why doing the ei_pset1() in packetOp() is an optimization check ei_scalar_multiple_op */
|
||||
template<typename Scalar>
|
||||
struct ei_scalar_add_op {
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
// FIXME default copy constructors seems bugged with std::complex<>
|
||||
inline ei_scalar_add_op(const ei_scalar_add_op& other) : m_other(other.m_other) { }
|
||||
inline ei_scalar_add_op(const Scalar& other) : m_other(other) { }
|
||||
inline Scalar operator() (const Scalar& a) const { return a + m_other; }
|
||||
inline const PacketScalar packetOp(const PacketScalar& a) const
|
||||
{ return ei_padd(a, ei_pset1(m_other)); }
|
||||
const Scalar m_other;
|
||||
private:
|
||||
ei_scalar_add_op& operator=(const ei_scalar_add_op&);
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_add_op<Scalar> >
|
||||
{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = ei_packet_traits<Scalar>::size>1 }; };
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \array_module
|
||||
*
|
||||
* \brief Template functor to compute the square root of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::sqrt()
|
||||
*/
|
||||
template<typename Scalar> struct ei_scalar_sqrt_op EIGEN_EMPTY_STRUCT {
|
||||
inline const Scalar operator() (const Scalar& a) const { return ei_sqrt(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_sqrt_op<Scalar> >
|
||||
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \array_module
|
||||
*
|
||||
* \brief Template functor to compute the exponential of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::exp()
|
||||
*/
|
||||
template<typename Scalar> struct ei_scalar_exp_op EIGEN_EMPTY_STRUCT {
|
||||
inline const Scalar operator() (const Scalar& a) const { return ei_exp(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_exp_op<Scalar> >
|
||||
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \array_module
|
||||
*
|
||||
* \brief Template functor to compute the logarithm of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::log()
|
||||
*/
|
||||
template<typename Scalar> struct ei_scalar_log_op EIGEN_EMPTY_STRUCT {
|
||||
inline const Scalar operator() (const Scalar& a) const { return ei_log(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_log_op<Scalar> >
|
||||
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \array_module
|
||||
*
|
||||
* \brief Template functor to compute the cosine of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::cos()
|
||||
*/
|
||||
template<typename Scalar> struct ei_scalar_cos_op EIGEN_EMPTY_STRUCT {
|
||||
inline const Scalar operator() (const Scalar& a) const { return ei_cos(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_cos_op<Scalar> >
|
||||
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \array_module
|
||||
*
|
||||
* \brief Template functor to compute the sine of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::sin()
|
||||
*/
|
||||
template<typename Scalar> struct ei_scalar_sin_op EIGEN_EMPTY_STRUCT {
|
||||
inline const Scalar operator() (const Scalar& a) const { return ei_sin(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_sin_op<Scalar> >
|
||||
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \array_module
|
||||
*
|
||||
* \brief Template functor to raise a scalar to a power
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::pow
|
||||
*/
|
||||
template<typename Scalar>
|
||||
struct ei_scalar_pow_op {
|
||||
// FIXME default copy constructors seems bugged with std::complex<>
|
||||
inline ei_scalar_pow_op(const ei_scalar_pow_op& other) : m_exponent(other.m_exponent) { }
|
||||
inline ei_scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {}
|
||||
inline Scalar operator() (const Scalar& a) const { return ei_pow(a, m_exponent); }
|
||||
const Scalar m_exponent;
|
||||
private:
|
||||
ei_scalar_pow_op& operator=(const ei_scalar_pow_op&);
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_pow_op<Scalar> >
|
||||
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \array_module
|
||||
*
|
||||
* \brief Template functor to compute the inverse of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::inverse()
|
||||
*/
|
||||
template<typename Scalar>
|
||||
struct ei_scalar_inverse_op {
|
||||
inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
|
||||
template<typename PacketScalar>
|
||||
inline const PacketScalar packetOp(const PacketScalar& a) const
|
||||
{ return ei_pdiv(ei_pset1(Scalar(1)),a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_inverse_op<Scalar> >
|
||||
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = int(ei_packet_traits<Scalar>::size)>1 }; };
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \array_module
|
||||
*
|
||||
* \brief Template functor to compute the square of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::square()
|
||||
*/
|
||||
template<typename Scalar>
|
||||
struct ei_scalar_square_op {
|
||||
inline Scalar operator() (const Scalar& a) const { return a*a; }
|
||||
template<typename PacketScalar>
|
||||
inline const PacketScalar packetOp(const PacketScalar& a) const
|
||||
{ return ei_pmul(a,a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_square_op<Scalar> >
|
||||
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = int(ei_packet_traits<Scalar>::size)>1 }; };
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \array_module
|
||||
*
|
||||
* \brief Template functor to compute the cube of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::cube()
|
||||
*/
|
||||
template<typename Scalar>
|
||||
struct ei_scalar_cube_op {
|
||||
inline Scalar operator() (const Scalar& a) const { return a*a*a; }
|
||||
template<typename PacketScalar>
|
||||
inline const PacketScalar packetOp(const PacketScalar& a) const
|
||||
{ return ei_pmul(a,ei_pmul(a,a)); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_cube_op<Scalar> >
|
||||
{ enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = int(ei_packet_traits<Scalar>::size)>1 }; };
|
||||
|
||||
// default ei_functor_traits for STL functors:
|
||||
|
||||
template<typename T>
|
||||
struct ei_functor_traits<std::multiplies<T> >
|
||||
{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct ei_functor_traits<std::divides<T> >
|
||||
{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct ei_functor_traits<std::plus<T> >
|
||||
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct ei_functor_traits<std::minus<T> >
|
||||
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct ei_functor_traits<std::negate<T> >
|
||||
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct ei_functor_traits<std::logical_or<T> >
|
||||
{ enum { Cost = 1, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct ei_functor_traits<std::logical_and<T> >
|
||||
{ enum { Cost = 1, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct ei_functor_traits<std::logical_not<T> >
|
||||
{ enum { Cost = 1, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct ei_functor_traits<std::greater<T> >
|
||||
{ enum { Cost = 1, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct ei_functor_traits<std::less<T> >
|
||||
{ enum { Cost = 1, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct ei_functor_traits<std::greater_equal<T> >
|
||||
{ enum { Cost = 1, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct ei_functor_traits<std::less_equal<T> >
|
||||
{ enum { Cost = 1, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct ei_functor_traits<std::equal_to<T> >
|
||||
{ enum { Cost = 1, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct ei_functor_traits<std::not_equal_to<T> >
|
||||
{ enum { Cost = 1, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct ei_functor_traits<std::binder2nd<T> >
|
||||
{ enum { Cost = ei_functor_traits<T>::Cost, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct ei_functor_traits<std::binder1st<T> >
|
||||
{ enum { Cost = ei_functor_traits<T>::Cost, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct ei_functor_traits<std::unary_negate<T> >
|
||||
{ enum { Cost = 1 + ei_functor_traits<T>::Cost, PacketAccess = false }; };
|
||||
|
||||
template<typename T>
|
||||
struct ei_functor_traits<std::binary_negate<T> >
|
||||
{ enum { Cost = 1 + ei_functor_traits<T>::Cost, PacketAccess = false }; };
|
||||
|
||||
#ifdef EIGEN_STDEXT_SUPPORT
|
||||
|
||||
template<typename T0,typename T1>
|
||||
struct ei_functor_traits<std::project1st<T0,T1> >
|
||||
{ enum { Cost = 0, PacketAccess = false }; };
|
||||
|
||||
template<typename T0,typename T1>
|
||||
struct ei_functor_traits<std::project2nd<T0,T1> >
|
||||
{ enum { Cost = 0, PacketAccess = false }; };
|
||||
|
||||
template<typename T0,typename T1>
|
||||
struct ei_functor_traits<std::select2nd<std::pair<T0,T1> > >
|
||||
{ enum { Cost = 0, PacketAccess = false }; };
|
||||
|
||||
template<typename T0,typename T1>
|
||||
struct ei_functor_traits<std::select1st<std::pair<T0,T1> > >
|
||||
{ enum { Cost = 0, PacketAccess = false }; };
|
||||
|
||||
template<typename T0,typename T1>
|
||||
struct ei_functor_traits<std::unary_compose<T0,T1> >
|
||||
{ enum { Cost = ei_functor_traits<T0>::Cost + ei_functor_traits<T1>::Cost, PacketAccess = false }; };
|
||||
|
||||
template<typename T0,typename T1,typename T2>
|
||||
struct ei_functor_traits<std::binary_compose<T0,T1,T2> >
|
||||
{ enum { Cost = ei_functor_traits<T0>::Cost + ei_functor_traits<T1>::Cost + ei_functor_traits<T2>::Cost, PacketAccess = false }; };
|
||||
|
||||
#endif // EIGEN_STDEXT_SUPPORT
|
||||
|
||||
#endif // EIGEN_ARRAY_FUNCTORS_H
|
80
ground/openpilotgcs/src/libs/eigen/Eigen/src/Array/Norms.h
Normal file
80
ground/openpilotgcs/src/libs/eigen/Eigen/src/Array/Norms.h
Normal file
@ -0,0 +1,80 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_ARRAY_NORMS_H
|
||||
#define EIGEN_ARRAY_NORMS_H
|
||||
|
||||
template<typename Derived, int p>
|
||||
struct ei_lpNorm_selector
|
||||
{
|
||||
typedef typename NumTraits<typename ei_traits<Derived>::Scalar>::Real RealScalar;
|
||||
inline static RealScalar run(const MatrixBase<Derived>& m)
|
||||
{
|
||||
return ei_pow(m.cwise().abs().cwise().pow(p).sum(), RealScalar(1)/p);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_lpNorm_selector<Derived, 1>
|
||||
{
|
||||
inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
|
||||
{
|
||||
return m.cwise().abs().sum();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_lpNorm_selector<Derived, 2>
|
||||
{
|
||||
inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
|
||||
{
|
||||
return m.norm();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_lpNorm_selector<Derived, Infinity>
|
||||
{
|
||||
inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
|
||||
{
|
||||
return m.cwise().abs().maxCoeff();
|
||||
}
|
||||
};
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
|
||||
* of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^p\infty \f$
|
||||
* norm, that is the maximum of the absolute values of the coefficients of *this.
|
||||
*
|
||||
* \sa norm()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<int p>
|
||||
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::lpNorm() const
|
||||
{
|
||||
return ei_lpNorm_selector<Derived, p>::run(*this);
|
||||
}
|
||||
|
||||
#endif // EIGEN_ARRAY_NORMS_H
|
@ -0,0 +1,349 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_PARTIAL_REDUX_H
|
||||
#define EIGEN_PARTIAL_REDUX_H
|
||||
|
||||
/** \array_module \ingroup Array
|
||||
*
|
||||
* \class PartialReduxExpr
|
||||
*
|
||||
* \brief Generic expression of a partially reduxed matrix
|
||||
*
|
||||
* \param MatrixType the type of the matrix we are applying the redux operation
|
||||
* \param MemberOp type of the member functor
|
||||
* \param Direction indicates the direction of the redux (Vertical or Horizontal)
|
||||
*
|
||||
* This class represents an expression of a partial redux operator of a matrix.
|
||||
* It is the return type of PartialRedux functions,
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* \sa class PartialRedux
|
||||
*/
|
||||
|
||||
template< typename MatrixType, typename MemberOp, int Direction>
|
||||
class PartialReduxExpr;
|
||||
|
||||
template<typename MatrixType, typename MemberOp, int Direction>
|
||||
struct ei_traits<PartialReduxExpr<MatrixType, MemberOp, Direction> >
|
||||
{
|
||||
typedef typename MemberOp::result_type Scalar;
|
||||
typedef typename MatrixType::Scalar InputScalar;
|
||||
typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
|
||||
typedef typename ei_cleantype<MatrixTypeNested>::type _MatrixTypeNested;
|
||||
enum {
|
||||
RowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::MaxColsAtCompileTime,
|
||||
Flags = (unsigned int)_MatrixTypeNested::Flags & HereditaryBits,
|
||||
TraversalSize = Direction==Vertical ? RowsAtCompileTime : ColsAtCompileTime
|
||||
};
|
||||
#if EIGEN_GNUC_AT_LEAST(3,4)
|
||||
typedef typename MemberOp::template Cost<InputScalar,int(TraversalSize)> CostOpType;
|
||||
#else
|
||||
typedef typename MemberOp::template Cost<InputScalar,TraversalSize> CostOpType;
|
||||
#endif
|
||||
enum {
|
||||
CoeffReadCost = TraversalSize * ei_traits<_MatrixTypeNested>::CoeffReadCost + int(CostOpType::value)
|
||||
};
|
||||
};
|
||||
|
||||
template< typename MatrixType, typename MemberOp, int Direction>
|
||||
class PartialReduxExpr : ei_no_assignment_operator,
|
||||
public MatrixBase<PartialReduxExpr<MatrixType, MemberOp, Direction> >
|
||||
{
|
||||
public:
|
||||
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(PartialReduxExpr)
|
||||
typedef typename ei_traits<PartialReduxExpr>::MatrixTypeNested MatrixTypeNested;
|
||||
typedef typename ei_traits<PartialReduxExpr>::_MatrixTypeNested _MatrixTypeNested;
|
||||
|
||||
PartialReduxExpr(const MatrixType& mat, const MemberOp& func = MemberOp())
|
||||
: m_matrix(mat), m_functor(func) {}
|
||||
|
||||
int rows() const { return (Direction==Vertical ? 1 : m_matrix.rows()); }
|
||||
int cols() const { return (Direction==Horizontal ? 1 : m_matrix.cols()); }
|
||||
|
||||
const Scalar coeff(int i, int j) const
|
||||
{
|
||||
if (Direction==Vertical)
|
||||
return m_functor(m_matrix.col(j));
|
||||
else
|
||||
return m_functor(m_matrix.row(i));
|
||||
}
|
||||
|
||||
protected:
|
||||
const MatrixTypeNested m_matrix;
|
||||
const MemberOp m_functor;
|
||||
};
|
||||
|
||||
#define EIGEN_MEMBER_FUNCTOR(MEMBER,COST) \
|
||||
template <typename ResultType> \
|
||||
struct ei_member_##MEMBER EIGEN_EMPTY_STRUCT { \
|
||||
typedef ResultType result_type; \
|
||||
template<typename Scalar, int Size> struct Cost \
|
||||
{ enum { value = COST }; }; \
|
||||
template<typename Derived> \
|
||||
inline ResultType operator()(const MatrixBase<Derived>& mat) const \
|
||||
{ return mat.MEMBER(); } \
|
||||
}
|
||||
|
||||
EIGEN_MEMBER_FUNCTOR(squaredNorm, Size * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(norm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(sum, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(minCoeff, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(maxCoeff, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(all, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(any, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(count, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
|
||||
/** \internal */
|
||||
template <typename BinaryOp, typename Scalar>
|
||||
struct ei_member_redux {
|
||||
typedef typename ei_result_of<
|
||||
BinaryOp(Scalar)
|
||||
>::type result_type;
|
||||
template<typename _Scalar, int Size> struct Cost
|
||||
{ enum { value = (Size-1) * ei_functor_traits<BinaryOp>::Cost }; };
|
||||
ei_member_redux(const BinaryOp func) : m_functor(func) {}
|
||||
template<typename Derived>
|
||||
inline result_type operator()(const MatrixBase<Derived>& mat) const
|
||||
{ return mat.redux(m_functor); }
|
||||
const BinaryOp m_functor;
|
||||
private:
|
||||
ei_member_redux& operator=(const ei_member_redux&);
|
||||
};
|
||||
|
||||
/** \array_module \ingroup Array
|
||||
*
|
||||
* \class PartialRedux
|
||||
*
|
||||
* \brief Pseudo expression providing partial reduction operations
|
||||
*
|
||||
* \param ExpressionType the type of the object on which to do partial reductions
|
||||
* \param Direction indicates the direction of the redux (Vertical or Horizontal)
|
||||
*
|
||||
* This class represents a pseudo expression with partial reduction features.
|
||||
* It is the return type of MatrixBase::colwise() and MatrixBase::rowwise()
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* Example: \include MatrixBase_colwise.cpp
|
||||
* Output: \verbinclude MatrixBase_colwise.out
|
||||
*
|
||||
* \sa MatrixBase::colwise(), MatrixBase::rowwise(), class PartialReduxExpr
|
||||
*/
|
||||
template<typename ExpressionType, int Direction> class PartialRedux
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename ei_traits<ExpressionType>::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef typename ei_meta_if<ei_must_nest_by_value<ExpressionType>::ret,
|
||||
ExpressionType, const ExpressionType&>::ret ExpressionTypeNested;
|
||||
|
||||
template<template<typename _Scalar> class Functor,
|
||||
typename Scalar = typename ei_traits<ExpressionType>::Scalar> struct ReturnType
|
||||
{
|
||||
typedef PartialReduxExpr<ExpressionType,
|
||||
Functor<Scalar>,
|
||||
Direction
|
||||
> Type;
|
||||
};
|
||||
|
||||
template<typename BinaryOp> struct ReduxReturnType
|
||||
{
|
||||
typedef PartialReduxExpr<ExpressionType,
|
||||
ei_member_redux<BinaryOp,typename ei_traits<ExpressionType>::Scalar>,
|
||||
Direction
|
||||
> Type;
|
||||
};
|
||||
|
||||
typedef typename ExpressionType::PlainMatrixType CrossReturnType;
|
||||
|
||||
inline PartialRedux(const ExpressionType& matrix) : m_matrix(matrix) {}
|
||||
|
||||
/** \internal */
|
||||
inline const ExpressionType& _expression() const { return m_matrix; }
|
||||
|
||||
template<typename BinaryOp>
|
||||
const typename ReduxReturnType<BinaryOp>::Type
|
||||
redux(const BinaryOp& func = BinaryOp()) const;
|
||||
|
||||
/** \returns a row (or column) vector expression of the smallest coefficient
|
||||
* of each column (or row) of the referenced expression.
|
||||
*
|
||||
* Example: \include PartialRedux_minCoeff.cpp
|
||||
* Output: \verbinclude PartialRedux_minCoeff.out
|
||||
*
|
||||
* \sa MatrixBase::minCoeff() */
|
||||
const typename ReturnType<ei_member_minCoeff>::Type minCoeff() const
|
||||
{ return _expression(); }
|
||||
|
||||
/** \returns a row (or column) vector expression of the largest coefficient
|
||||
* of each column (or row) of the referenced expression.
|
||||
*
|
||||
* Example: \include PartialRedux_maxCoeff.cpp
|
||||
* Output: \verbinclude PartialRedux_maxCoeff.out
|
||||
*
|
||||
* \sa MatrixBase::maxCoeff() */
|
||||
const typename ReturnType<ei_member_maxCoeff>::Type maxCoeff() const
|
||||
{ return _expression(); }
|
||||
|
||||
/** \returns a row (or column) vector expression of the squared norm
|
||||
* of each column (or row) of the referenced expression.
|
||||
*
|
||||
* Example: \include PartialRedux_squaredNorm.cpp
|
||||
* Output: \verbinclude PartialRedux_squaredNorm.out
|
||||
*
|
||||
* \sa MatrixBase::squaredNorm() */
|
||||
const typename ReturnType<ei_member_squaredNorm,RealScalar>::Type squaredNorm() const
|
||||
{ return _expression(); }
|
||||
|
||||
/** \returns a row (or column) vector expression of the norm
|
||||
* of each column (or row) of the referenced expression.
|
||||
*
|
||||
* Example: \include PartialRedux_norm.cpp
|
||||
* Output: \verbinclude PartialRedux_norm.out
|
||||
*
|
||||
* \sa MatrixBase::norm() */
|
||||
const typename ReturnType<ei_member_norm,RealScalar>::Type norm() const
|
||||
{ return _expression(); }
|
||||
|
||||
/** \returns a row (or column) vector expression of the sum
|
||||
* of each column (or row) of the referenced expression.
|
||||
*
|
||||
* Example: \include PartialRedux_sum.cpp
|
||||
* Output: \verbinclude PartialRedux_sum.out
|
||||
*
|
||||
* \sa MatrixBase::sum() */
|
||||
const typename ReturnType<ei_member_sum>::Type sum() const
|
||||
{ return _expression(); }
|
||||
|
||||
/** \returns a row (or column) vector expression representing
|
||||
* whether \b all coefficients of each respective column (or row) are \c true.
|
||||
*
|
||||
* \sa MatrixBase::all() */
|
||||
const typename ReturnType<ei_member_all>::Type all() const
|
||||
{ return _expression(); }
|
||||
|
||||
/** \returns a row (or column) vector expression representing
|
||||
* whether \b at \b least one coefficient of each respective column (or row) is \c true.
|
||||
*
|
||||
* \sa MatrixBase::any() */
|
||||
const typename ReturnType<ei_member_any>::Type any() const
|
||||
{ return _expression(); }
|
||||
|
||||
/** \returns a row (or column) vector expression representing
|
||||
* the number of \c true coefficients of each respective column (or row).
|
||||
*
|
||||
* Example: \include PartialRedux_count.cpp
|
||||
* Output: \verbinclude PartialRedux_count.out
|
||||
*
|
||||
* \sa MatrixBase::count() */
|
||||
const PartialReduxExpr<ExpressionType, ei_member_count<int>, Direction> count() const
|
||||
{ return _expression(); }
|
||||
|
||||
/** \returns a 3x3 matrix expression of the cross product
|
||||
* of each column or row of the referenced expression with the \a other vector.
|
||||
*
|
||||
* \geometry_module
|
||||
*
|
||||
* \sa MatrixBase::cross() */
|
||||
template<typename OtherDerived>
|
||||
const CrossReturnType cross(const MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(CrossReturnType,3,3)
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3)
|
||||
EIGEN_STATIC_ASSERT((ei_is_same_type<Scalar, typename OtherDerived::Scalar>::ret),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
|
||||
if(Direction==Vertical)
|
||||
return (CrossReturnType()
|
||||
<< _expression().col(0).cross(other),
|
||||
_expression().col(1).cross(other),
|
||||
_expression().col(2).cross(other)).finished();
|
||||
else
|
||||
return (CrossReturnType()
|
||||
<< _expression().row(0).cross(other),
|
||||
_expression().row(1).cross(other),
|
||||
_expression().row(2).cross(other)).finished();
|
||||
}
|
||||
|
||||
protected:
|
||||
ExpressionTypeNested m_matrix;
|
||||
|
||||
private:
|
||||
PartialRedux& operator=(const PartialRedux&);
|
||||
};
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns a PartialRedux wrapper of *this providing additional partial reduction operations
|
||||
*
|
||||
* Example: \include MatrixBase_colwise.cpp
|
||||
* Output: \verbinclude MatrixBase_colwise.out
|
||||
*
|
||||
* \sa rowwise(), class PartialRedux
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const PartialRedux<Derived,Vertical>
|
||||
MatrixBase<Derived>::colwise() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns a PartialRedux wrapper of *this providing additional partial reduction operations
|
||||
*
|
||||
* Example: \include MatrixBase_rowwise.cpp
|
||||
* Output: \verbinclude MatrixBase_rowwise.out
|
||||
*
|
||||
* \sa colwise(), class PartialRedux
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const PartialRedux<Derived,Horizontal>
|
||||
MatrixBase<Derived>::rowwise() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \returns a row or column vector expression of \c *this reduxed by \a func
|
||||
*
|
||||
* The template parameter \a BinaryOp is the type of the functor
|
||||
* of the custom redux operator. Note that func must be an associative operator.
|
||||
*
|
||||
* \sa class PartialRedux, MatrixBase::colwise(), MatrixBase::rowwise()
|
||||
*/
|
||||
template<typename ExpressionType, int Direction>
|
||||
template<typename BinaryOp>
|
||||
const typename PartialRedux<ExpressionType,Direction>::template ReduxReturnType<BinaryOp>::Type
|
||||
PartialRedux<ExpressionType,Direction>::redux(const BinaryOp& func) const
|
||||
{
|
||||
return typename ReduxReturnType<BinaryOp>::Type(_expression(), func);
|
||||
}
|
||||
|
||||
#endif // EIGEN_PARTIAL_REDUX_H
|
156
ground/openpilotgcs/src/libs/eigen/Eigen/src/Array/Random.h
Normal file
156
ground/openpilotgcs/src/libs/eigen/Eigen/src/Array/Random.h
Normal file
@ -0,0 +1,156 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_RANDOM_H
|
||||
#define EIGEN_RANDOM_H
|
||||
|
||||
template<typename Scalar> struct ei_scalar_random_op EIGEN_EMPTY_STRUCT {
|
||||
inline ei_scalar_random_op(void) {}
|
||||
inline const Scalar operator() (int, int) const { return ei_random<Scalar>(); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_random_op<Scalar> >
|
||||
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false, IsRepeatable = false }; };
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns a random matrix (not an expression, the matrix is immediately evaluated).
|
||||
*
|
||||
* The parameters \a rows and \a cols are the number of rows and of columns of
|
||||
* the returned matrix. Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
|
||||
* it is redundant to pass \a rows and \a cols as arguments, so ei_random() should be used
|
||||
* instead.
|
||||
*
|
||||
* \addexample RandomExample \label How to create a matrix with random coefficients
|
||||
*
|
||||
* Example: \include MatrixBase_random_int_int.cpp
|
||||
* Output: \verbinclude MatrixBase_random_int_int.out
|
||||
*
|
||||
* \sa MatrixBase::setRandom(), MatrixBase::Random(int), MatrixBase::Random()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const CwiseNullaryOp<ei_scalar_random_op<typename ei_traits<Derived>::Scalar>, Derived>
|
||||
MatrixBase<Derived>::Random(int rows, int cols)
|
||||
{
|
||||
return NullaryExpr(rows, cols, ei_scalar_random_op<Scalar>());
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns a random vector (not an expression, the vector is immediately evaluated).
|
||||
*
|
||||
* The parameter \a size is the size of the returned vector.
|
||||
* Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
|
||||
* it is redundant to pass \a size as argument, so ei_random() should be used
|
||||
* instead.
|
||||
*
|
||||
* Example: \include MatrixBase_random_int.cpp
|
||||
* Output: \verbinclude MatrixBase_random_int.out
|
||||
*
|
||||
* \sa MatrixBase::setRandom(), MatrixBase::Random(int,int), MatrixBase::Random()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const CwiseNullaryOp<ei_scalar_random_op<typename ei_traits<Derived>::Scalar>, Derived>
|
||||
MatrixBase<Derived>::Random(int size)
|
||||
{
|
||||
return NullaryExpr(size, ei_scalar_random_op<Scalar>());
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns a fixed-size random matrix or vector
|
||||
* (not an expression, the matrix is immediately evaluated).
|
||||
*
|
||||
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
|
||||
* need to use the variants taking size arguments.
|
||||
*
|
||||
* Example: \include MatrixBase_random.cpp
|
||||
* Output: \verbinclude MatrixBase_random.out
|
||||
*
|
||||
* \sa MatrixBase::setRandom(), MatrixBase::Random(int,int), MatrixBase::Random(int)
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const CwiseNullaryOp<ei_scalar_random_op<typename ei_traits<Derived>::Scalar>, Derived>
|
||||
MatrixBase<Derived>::Random()
|
||||
{
|
||||
return NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, ei_scalar_random_op<Scalar>());
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* Sets all coefficients in this expression to random values.
|
||||
*
|
||||
* Example: \include MatrixBase_setRandom.cpp
|
||||
* Output: \verbinclude MatrixBase_setRandom.out
|
||||
*
|
||||
* \sa class CwiseNullaryOp, setRandom(int), setRandom(int,int)
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline Derived& MatrixBase<Derived>::setRandom()
|
||||
{
|
||||
return *this = Random(rows(), cols());
|
||||
}
|
||||
|
||||
/** Resizes to the given \a size, and sets all coefficients in this expression to random values.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* Example: \include Matrix_setRandom_int.cpp
|
||||
* Output: \verbinclude Matrix_setRandom_int.out
|
||||
*
|
||||
* \sa MatrixBase::setRandom(), setRandom(int,int), class CwiseNullaryOp, MatrixBase::Random()
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
|
||||
Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setRandom(int size)
|
||||
{
|
||||
resize(size);
|
||||
return setRandom();
|
||||
}
|
||||
|
||||
/** Resizes to the given size, and sets all coefficients in this expression to random values.
|
||||
*
|
||||
* \param rows the new number of rows
|
||||
* \param cols the new number of columns
|
||||
*
|
||||
* Example: \include Matrix_setRandom_int_int.cpp
|
||||
* Output: \verbinclude Matrix_setRandom_int_int.out
|
||||
*
|
||||
* \sa MatrixBase::setRandom(), setRandom(int), class CwiseNullaryOp, MatrixBase::Random()
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
|
||||
Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setRandom(int rows, int cols)
|
||||
{
|
||||
resize(rows, cols);
|
||||
return setRandom();
|
||||
}
|
||||
|
||||
#endif // EIGEN_RANDOM_H
|
159
ground/openpilotgcs/src/libs/eigen/Eigen/src/Array/Select.h
Normal file
159
ground/openpilotgcs/src/libs/eigen/Eigen/src/Array/Select.h
Normal file
@ -0,0 +1,159 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_SELECT_H
|
||||
#define EIGEN_SELECT_H
|
||||
|
||||
/** \array_module \ingroup Array
|
||||
*
|
||||
* \class Select
|
||||
*
|
||||
* \brief Expression of a coefficient wise version of the C++ ternary operator ?:
|
||||
*
|
||||
* \param ConditionMatrixType the type of the \em condition expression which must be a boolean matrix
|
||||
* \param ThenMatrixType the type of the \em then expression
|
||||
* \param ElseMatrixType the type of the \em else expression
|
||||
*
|
||||
* This class represents an expression of a coefficient wise version of the C++ ternary operator ?:.
|
||||
* It is the return type of MatrixBase::select() and most of the time this is the only way it is used.
|
||||
*
|
||||
* \sa MatrixBase::select(const MatrixBase<ThenDerived>&, const MatrixBase<ElseDerived>&) const
|
||||
*/
|
||||
|
||||
template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType>
|
||||
struct ei_traits<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
|
||||
{
|
||||
typedef typename ei_traits<ThenMatrixType>::Scalar Scalar;
|
||||
typedef typename ConditionMatrixType::Nested ConditionMatrixNested;
|
||||
typedef typename ThenMatrixType::Nested ThenMatrixNested;
|
||||
typedef typename ElseMatrixType::Nested ElseMatrixNested;
|
||||
enum {
|
||||
RowsAtCompileTime = ConditionMatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = ConditionMatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = ConditionMatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = ConditionMatrixType::MaxColsAtCompileTime,
|
||||
Flags = (unsigned int)ThenMatrixType::Flags & ElseMatrixType::Flags & HereditaryBits,
|
||||
CoeffReadCost = ei_traits<typename ei_cleantype<ConditionMatrixNested>::type>::CoeffReadCost
|
||||
+ EIGEN_ENUM_MAX(ei_traits<typename ei_cleantype<ThenMatrixNested>::type>::CoeffReadCost,
|
||||
ei_traits<typename ei_cleantype<ElseMatrixNested>::type>::CoeffReadCost)
|
||||
};
|
||||
};
|
||||
|
||||
template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType>
|
||||
class Select : ei_no_assignment_operator,
|
||||
public MatrixBase<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
|
||||
{
|
||||
public:
|
||||
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(Select)
|
||||
|
||||
Select(const ConditionMatrixType& conditionMatrix,
|
||||
const ThenMatrixType& thenMatrix,
|
||||
const ElseMatrixType& elseMatrix)
|
||||
: m_condition(conditionMatrix), m_then(thenMatrix), m_else(elseMatrix)
|
||||
{
|
||||
ei_assert(m_condition.rows() == m_then.rows() && m_condition.rows() == m_else.rows());
|
||||
ei_assert(m_condition.cols() == m_then.cols() && m_condition.cols() == m_else.cols());
|
||||
}
|
||||
|
||||
int rows() const { return m_condition.rows(); }
|
||||
int cols() const { return m_condition.cols(); }
|
||||
|
||||
const Scalar coeff(int i, int j) const
|
||||
{
|
||||
if (m_condition.coeff(i,j))
|
||||
return m_then.coeff(i,j);
|
||||
else
|
||||
return m_else.coeff(i,j);
|
||||
}
|
||||
|
||||
const Scalar coeff(int i) const
|
||||
{
|
||||
if (m_condition.coeff(i))
|
||||
return m_then.coeff(i);
|
||||
else
|
||||
return m_else.coeff(i);
|
||||
}
|
||||
|
||||
protected:
|
||||
const typename ConditionMatrixType::Nested m_condition;
|
||||
const typename ThenMatrixType::Nested m_then;
|
||||
const typename ElseMatrixType::Nested m_else;
|
||||
};
|
||||
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns a matrix where each coefficient (i,j) is equal to \a thenMatrix(i,j)
|
||||
* if \c *this(i,j), and \a elseMatrix(i,j) otherwise.
|
||||
*
|
||||
* Example: \include MatrixBase_select.cpp
|
||||
* Output: \verbinclude MatrixBase_select.out
|
||||
*
|
||||
* \sa class Select
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename ThenDerived,typename ElseDerived>
|
||||
inline const Select<Derived,ThenDerived,ElseDerived>
|
||||
MatrixBase<Derived>::select(const MatrixBase<ThenDerived>& thenMatrix,
|
||||
const MatrixBase<ElseDerived>& elseMatrix) const
|
||||
{
|
||||
return Select<Derived,ThenDerived,ElseDerived>(derived(), thenMatrix.derived(), elseMatrix.derived());
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* Version of MatrixBase::select(const MatrixBase&, const MatrixBase&) with
|
||||
* the \em else expression being a scalar value.
|
||||
*
|
||||
* \sa MatrixBase::select(const MatrixBase<ThenDerived>&, const MatrixBase<ElseDerived>&) const, class Select
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename ThenDerived>
|
||||
inline const Select<Derived,ThenDerived, NestByValue<typename ThenDerived::ConstantReturnType> >
|
||||
MatrixBase<Derived>::select(const MatrixBase<ThenDerived>& thenMatrix,
|
||||
typename ThenDerived::Scalar elseScalar) const
|
||||
{
|
||||
return Select<Derived,ThenDerived,NestByValue<typename ThenDerived::ConstantReturnType> >(
|
||||
derived(), thenMatrix.derived(), ThenDerived::Constant(rows(),cols(),elseScalar));
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* Version of MatrixBase::select(const MatrixBase&, const MatrixBase&) with
|
||||
* the \em then expression being a scalar value.
|
||||
*
|
||||
* \sa MatrixBase::select(const MatrixBase<ThenDerived>&, const MatrixBase<ElseDerived>&) const, class Select
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename ElseDerived>
|
||||
inline const Select<Derived, NestByValue<typename ElseDerived::ConstantReturnType>, ElseDerived >
|
||||
MatrixBase<Derived>::select(typename ElseDerived::Scalar thenScalar,
|
||||
const MatrixBase<ElseDerived>& elseMatrix) const
|
||||
{
|
||||
return Select<Derived,NestByValue<typename ElseDerived::ConstantReturnType>,ElseDerived>(
|
||||
derived(), ElseDerived::Constant(rows(),cols(),thenScalar), elseMatrix.derived());
|
||||
}
|
||||
|
||||
#endif // EIGEN_SELECT_H
|
@ -0,0 +1,6 @@
|
||||
FILE(GLOB Eigen_Cholesky_SRCS "*.h")
|
||||
|
||||
INSTALL(FILES
|
||||
${Eigen_Cholesky_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Cholesky
|
||||
)
|
@ -0,0 +1,35 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_EXTERN_INSTANTIATIONS
|
||||
#define EIGEN_EXTERN_INSTANTIATIONS
|
||||
#endif
|
||||
#include "../../Core"
|
||||
#undef EIGEN_EXTERN_INSTANTIATIONS
|
||||
|
||||
#include "../../Cholesky"
|
||||
|
||||
namespace Eigen {
|
||||
EIGEN_CHOLESKY_MODULE_INSTANTIATE();
|
||||
}
|
192
ground/openpilotgcs/src/libs/eigen/Eigen/src/Cholesky/LDLT.h
Normal file
192
ground/openpilotgcs/src/libs/eigen/Eigen/src/Cholesky/LDLT.h
Normal file
@ -0,0 +1,192 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_LDLT_H
|
||||
#define EIGEN_LDLT_H
|
||||
|
||||
/** \ingroup cholesky_Module
|
||||
*
|
||||
* \class LDLT
|
||||
*
|
||||
* \brief Robust Cholesky decomposition of a matrix and associated features
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the LDL^T Cholesky decomposition
|
||||
*
|
||||
* This class performs a Cholesky decomposition without square root of a symmetric, positive definite
|
||||
* matrix A such that A = L D L^* = U^* D U, where L is lower triangular with a unit diagonal
|
||||
* and D is a diagonal matrix.
|
||||
*
|
||||
* Compared to a standard Cholesky decomposition, avoiding the square roots allows for faster and more
|
||||
* stable computation.
|
||||
*
|
||||
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
|
||||
* the strict lower part does not have to store correct values.
|
||||
*
|
||||
* \sa MatrixBase::ldlt(), class LLT
|
||||
*/
|
||||
template<typename MatrixType> class LDLT
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||
|
||||
LDLT(const MatrixType& matrix)
|
||||
: m_matrix(matrix.rows(), matrix.cols())
|
||||
{
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
/** \returns the lower triangular matrix L */
|
||||
inline Part<MatrixType, UnitLowerTriangular> matrixL(void) const { return m_matrix; }
|
||||
|
||||
/** \returns the coefficients of the diagonal matrix D */
|
||||
inline DiagonalCoeffs<MatrixType> vectorD(void) const { return m_matrix.diagonal(); }
|
||||
|
||||
/** \returns true if the matrix is positive definite */
|
||||
inline bool isPositiveDefinite(void) const { return m_isPositiveDefinite; }
|
||||
|
||||
template<typename RhsDerived, typename ResultType>
|
||||
bool solve(const MatrixBase<RhsDerived> &b, ResultType *result) const;
|
||||
|
||||
template<typename Derived>
|
||||
bool solveInPlace(MatrixBase<Derived> &bAndX) const;
|
||||
|
||||
void compute(const MatrixType& matrix);
|
||||
|
||||
protected:
|
||||
/** \internal
|
||||
* Used to compute and store the cholesky decomposition A = L D L^* = U^* D U.
|
||||
* The strict upper part is used during the decomposition, the strict lower
|
||||
* part correspond to the coefficients of L (its diagonal is equal to 1 and
|
||||
* is not stored), and the diagonal entries correspond to D.
|
||||
*/
|
||||
MatrixType m_matrix;
|
||||
|
||||
bool m_isPositiveDefinite;
|
||||
};
|
||||
|
||||
/** Compute / recompute the LLT decomposition A = L D L^* = U^* D U of \a matrix
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
void LDLT<MatrixType>::compute(const MatrixType& a)
|
||||
{
|
||||
assert(a.rows()==a.cols());
|
||||
const int size = a.rows();
|
||||
m_matrix.resize(size, size);
|
||||
m_isPositiveDefinite = true; // always true. This decomposition is not rank-revealing anyway.
|
||||
|
||||
if (size<=1)
|
||||
{
|
||||
m_matrix = a;
|
||||
return;
|
||||
}
|
||||
|
||||
// Let's preallocate a temporay vector to evaluate the matrix-vector product into it.
|
||||
// Unlike the standard LLT decomposition, here we cannot evaluate it to the destination
|
||||
// matrix because it a sub-row which is not compatible suitable for efficient packet evaluation.
|
||||
// (at least if we assume the matrix is col-major)
|
||||
Matrix<Scalar,MatrixType::RowsAtCompileTime,1> _temporary(size);
|
||||
|
||||
// Note that, in this algorithm the rows of the strict upper part of m_matrix is used to store
|
||||
// column vector, thus the strange .conjugate() and .transpose()...
|
||||
|
||||
m_matrix.row(0) = a.row(0).conjugate();
|
||||
m_matrix.col(0).end(size-1) = m_matrix.row(0).end(size-1) / m_matrix.coeff(0,0);
|
||||
for (int j = 1; j < size; ++j)
|
||||
{
|
||||
RealScalar tmp = ei_real(a.coeff(j,j) - (m_matrix.row(j).start(j) * m_matrix.col(j).start(j).conjugate()).coeff(0,0));
|
||||
m_matrix.coeffRef(j,j) = tmp;
|
||||
|
||||
int endSize = size-j-1;
|
||||
if (endSize>0)
|
||||
{
|
||||
_temporary.end(endSize) = ( m_matrix.block(j+1,0, endSize, j)
|
||||
* m_matrix.col(j).start(j).conjugate() ).lazy();
|
||||
|
||||
m_matrix.row(j).end(endSize) = a.row(j).end(endSize).conjugate()
|
||||
- _temporary.end(endSize).transpose();
|
||||
|
||||
if(tmp != RealScalar(0))
|
||||
m_matrix.col(j).end(endSize) = m_matrix.row(j).end(endSize) / tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
|
||||
* The result is stored in \a result
|
||||
*
|
||||
* \returns true in case of success, false otherwise.
|
||||
*
|
||||
* In other words, it computes \f$ b = A^{-1} b \f$ with
|
||||
* \f$ {L^{*}}^{-1} D^{-1} L^{-1} b \f$ from right to left.
|
||||
*
|
||||
* \sa LDLT::solveInPlace(), MatrixBase::ldlt()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
template<typename RhsDerived, typename ResultType>
|
||||
bool LDLT<MatrixType>
|
||||
::solve(const MatrixBase<RhsDerived> &b, ResultType *result) const
|
||||
{
|
||||
const int size = m_matrix.rows();
|
||||
ei_assert(size==b.rows() && "LLT::solve(): invalid number of rows of the right hand side matrix b");
|
||||
*result = b;
|
||||
return solveInPlace(*result);
|
||||
}
|
||||
|
||||
/** This is the \em in-place version of solve().
|
||||
*
|
||||
* \param bAndX represents both the right-hand side matrix b and result x.
|
||||
*
|
||||
* This version avoids a copy when the right hand side matrix b is not
|
||||
* needed anymore.
|
||||
*
|
||||
* \sa LDLT::solve(), MatrixBase::ldlt()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
template<typename Derived>
|
||||
bool LDLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
|
||||
{
|
||||
const int size = m_matrix.rows();
|
||||
ei_assert(size==bAndX.rows());
|
||||
if (!m_isPositiveDefinite)
|
||||
return false;
|
||||
matrixL().solveTriangularInPlace(bAndX);
|
||||
bAndX = (m_matrix.cwise().inverse().template part<Diagonal>() * bAndX).lazy();
|
||||
m_matrix.adjoint().template part<UnitUpperTriangular>().solveTriangularInPlace(bAndX);
|
||||
return true;
|
||||
}
|
||||
|
||||
/** \cholesky_module
|
||||
* \returns the Cholesky decomposition without square root of \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const LDLT<typename MatrixBase<Derived>::PlainMatrixType>
|
||||
MatrixBase<Derived>::ldlt() const
|
||||
{
|
||||
return LDLT<PlainMatrixType>(derived());
|
||||
}
|
||||
|
||||
#endif // EIGEN_LDLT_H
|
220
ground/openpilotgcs/src/libs/eigen/Eigen/src/Cholesky/LLT.h
Normal file
220
ground/openpilotgcs/src/libs/eigen/Eigen/src/Cholesky/LLT.h
Normal file
@ -0,0 +1,220 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_LLT_H
|
||||
#define EIGEN_LLT_H
|
||||
|
||||
/** \ingroup cholesky_Module
|
||||
*
|
||||
* \class LLT
|
||||
*
|
||||
* \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
|
||||
*
|
||||
* This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
|
||||
* matrix A such that A = LL^* = U^*U, where L is lower triangular.
|
||||
*
|
||||
* While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b,
|
||||
* for that purpose, we recommend the Cholesky decomposition without square root which is more stable
|
||||
* and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
|
||||
* situations like generalised eigen problems with hermitian matrices.
|
||||
*
|
||||
* Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices,
|
||||
* use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
|
||||
* has a solution.
|
||||
*
|
||||
* \sa MatrixBase::llt(), class LDLT
|
||||
*/
|
||||
/* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
|
||||
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
|
||||
* the strict lower part does not have to store correct values.
|
||||
*/
|
||||
template<typename MatrixType> class LLT
|
||||
{
|
||||
private:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||
|
||||
enum {
|
||||
PacketSize = ei_packet_traits<Scalar>::size,
|
||||
AlignmentMask = int(PacketSize)-1
|
||||
};
|
||||
|
||||
public:
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via LLT::compute(const MatrixType&).
|
||||
*/
|
||||
LLT() : m_matrix(), m_isInitialized(false) {}
|
||||
|
||||
LLT(const MatrixType& matrix)
|
||||
: m_matrix(matrix.rows(), matrix.cols()),
|
||||
m_isInitialized(false)
|
||||
{
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
/** \returns the lower triangular matrix L */
|
||||
inline Part<MatrixType, LowerTriangular> matrixL(void) const
|
||||
{
|
||||
ei_assert(m_isInitialized && "LLT is not initialized.");
|
||||
return m_matrix;
|
||||
}
|
||||
|
||||
/** \deprecated */
|
||||
inline bool isPositiveDefinite(void) const { return m_isInitialized && m_isPositiveDefinite; }
|
||||
|
||||
template<typename RhsDerived, typename ResultType>
|
||||
bool solve(const MatrixBase<RhsDerived> &b, ResultType *result) const;
|
||||
|
||||
template<typename Derived>
|
||||
bool solveInPlace(MatrixBase<Derived> &bAndX) const;
|
||||
|
||||
void compute(const MatrixType& matrix);
|
||||
|
||||
protected:
|
||||
/** \internal
|
||||
* Used to compute and store L
|
||||
* The strict upper part is not used and even not initialized.
|
||||
*/
|
||||
MatrixType m_matrix;
|
||||
bool m_isInitialized;
|
||||
bool m_isPositiveDefinite;
|
||||
};
|
||||
|
||||
/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
void LLT<MatrixType>::compute(const MatrixType& a)
|
||||
{
|
||||
assert(a.rows()==a.cols());
|
||||
m_isPositiveDefinite = true;
|
||||
const int size = a.rows();
|
||||
m_matrix.resize(size, size);
|
||||
// The biggest overall is the point of reference to which further diagonals
|
||||
// are compared; if any diagonal is negligible compared
|
||||
// to the largest overall, the algorithm bails. This cutoff is suggested
|
||||
// in "Analysis of the Cholesky Decomposition of a Semi-definite Matrix" by
|
||||
// Nicholas J. Higham. Also see "Accuracy and Stability of Numerical
|
||||
// Algorithms" page 217, also by Higham.
|
||||
const RealScalar cutoff = machine_epsilon<Scalar>() * size * a.diagonal().cwise().abs().maxCoeff();
|
||||
RealScalar x;
|
||||
x = ei_real(a.coeff(0,0));
|
||||
m_matrix.coeffRef(0,0) = ei_sqrt(x);
|
||||
if(size==1)
|
||||
{
|
||||
m_isInitialized = true;
|
||||
return;
|
||||
}
|
||||
if(ei_real(m_matrix.coeff(0,0))>0)
|
||||
m_matrix.col(0).end(size-1) = a.row(0).end(size-1).adjoint() / ei_real(m_matrix.coeff(0,0));
|
||||
for (int j = 1; j < size; ++j)
|
||||
{
|
||||
x = ei_real(a.coeff(j,j)) - m_matrix.row(j).start(j).squaredNorm();
|
||||
if (x <= cutoff)
|
||||
{
|
||||
m_isPositiveDefinite = false;
|
||||
continue;
|
||||
}
|
||||
|
||||
m_matrix.coeffRef(j,j) = x = ei_sqrt(x);
|
||||
|
||||
int endSize = size-j-1;
|
||||
if (endSize>0) {
|
||||
// Note that when all matrix columns have good alignment, then the following
|
||||
// product is guaranteed to be optimal with respect to alignment.
|
||||
m_matrix.col(j).end(endSize) =
|
||||
(m_matrix.block(j+1, 0, endSize, j) * m_matrix.row(j).start(j).adjoint()).lazy();
|
||||
|
||||
// FIXME could use a.col instead of a.row
|
||||
m_matrix.col(j).end(endSize) = (a.row(j).end(endSize).adjoint()
|
||||
- m_matrix.col(j).end(endSize) ) / x;
|
||||
}
|
||||
}
|
||||
|
||||
m_isInitialized = true;
|
||||
}
|
||||
|
||||
/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
|
||||
* The result is stored in \a result
|
||||
*
|
||||
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
|
||||
*
|
||||
* In other words, it computes \f$ b = A^{-1} b \f$ with
|
||||
* \f$ {L^{*}}^{-1} L^{-1} b \f$ from right to left.
|
||||
*
|
||||
* Example: \include LLT_solve.cpp
|
||||
* Output: \verbinclude LLT_solve.out
|
||||
*
|
||||
* \sa LLT::solveInPlace(), MatrixBase::llt()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
template<typename RhsDerived, typename ResultType>
|
||||
bool LLT<MatrixType>::solve(const MatrixBase<RhsDerived> &b, ResultType *result) const
|
||||
{
|
||||
ei_assert(m_isInitialized && "LLT is not initialized.");
|
||||
const int size = m_matrix.rows();
|
||||
ei_assert(size==b.rows() && "LLT::solve(): invalid number of rows of the right hand side matrix b");
|
||||
return solveInPlace((*result) = b);
|
||||
}
|
||||
|
||||
/** This is the \em in-place version of solve().
|
||||
*
|
||||
* \param bAndX represents both the right-hand side matrix b and result x.
|
||||
*
|
||||
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
|
||||
*
|
||||
* This version avoids a copy when the right hand side matrix b is not
|
||||
* needed anymore.
|
||||
*
|
||||
* \sa LLT::solve(), MatrixBase::llt()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
template<typename Derived>
|
||||
bool LLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
|
||||
{
|
||||
ei_assert(m_isInitialized && "LLT is not initialized.");
|
||||
const int size = m_matrix.rows();
|
||||
ei_assert(size==bAndX.rows());
|
||||
matrixL().solveTriangularInPlace(bAndX);
|
||||
m_matrix.adjoint().template part<UpperTriangular>().solveTriangularInPlace(bAndX);
|
||||
return true;
|
||||
}
|
||||
|
||||
/** \cholesky_module
|
||||
* \returns the LLT decomposition of \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const LLT<typename MatrixBase<Derived>::PlainMatrixType>
|
||||
MatrixBase<Derived>::llt() const
|
||||
{
|
||||
return LLT<PlainMatrixType>(derived());
|
||||
}
|
||||
|
||||
#endif // EIGEN_LLT_H
|
470
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Assign.h
Normal file
470
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Assign.h
Normal file
@ -0,0 +1,470 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2007 Michael Olbrich <michael.olbrich@gmx.net>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_ASSIGN_H
|
||||
#define EIGEN_ASSIGN_H
|
||||
|
||||
/***************************************************************************
|
||||
* Part 1 : the logic deciding a strategy for vectorization and unrolling
|
||||
***************************************************************************/
|
||||
|
||||
template <typename Derived, typename OtherDerived>
|
||||
struct ei_assign_traits
|
||||
{
|
||||
public:
|
||||
enum {
|
||||
DstIsAligned = Derived::Flags & AlignedBit,
|
||||
SrcIsAligned = OtherDerived::Flags & AlignedBit,
|
||||
SrcAlignment = DstIsAligned && SrcIsAligned ? Aligned : Unaligned
|
||||
};
|
||||
|
||||
private:
|
||||
enum {
|
||||
InnerSize = int(Derived::Flags)&RowMajorBit
|
||||
? Derived::ColsAtCompileTime
|
||||
: Derived::RowsAtCompileTime,
|
||||
InnerMaxSize = int(Derived::Flags)&RowMajorBit
|
||||
? Derived::MaxColsAtCompileTime
|
||||
: Derived::MaxRowsAtCompileTime,
|
||||
PacketSize = ei_packet_traits<typename Derived::Scalar>::size
|
||||
};
|
||||
|
||||
enum {
|
||||
MightVectorize = (int(Derived::Flags) & int(OtherDerived::Flags) & ActualPacketAccessBit)
|
||||
&& ((int(Derived::Flags)&RowMajorBit)==(int(OtherDerived::Flags)&RowMajorBit)),
|
||||
MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0
|
||||
&& int(DstIsAligned) && int(SrcIsAligned),
|
||||
MayLinearVectorize = MightVectorize && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit),
|
||||
MaySliceVectorize = MightVectorize && int(InnerMaxSize)>=3*PacketSize /* slice vectorization can be slow, so we only
|
||||
want it if the slices are big, which is indicated by InnerMaxSize rather than InnerSize, think of the case
|
||||
of a dynamic block in a fixed-size matrix */
|
||||
};
|
||||
|
||||
public:
|
||||
enum {
|
||||
Vectorization = int(MayInnerVectorize) ? int(InnerVectorization)
|
||||
: int(MayLinearVectorize) ? int(LinearVectorization)
|
||||
: int(MaySliceVectorize) ? int(SliceVectorization)
|
||||
: int(NoVectorization)
|
||||
};
|
||||
|
||||
private:
|
||||
enum {
|
||||
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Vectorization) == int(NoVectorization) ? 1 : int(PacketSize)),
|
||||
MayUnrollCompletely = int(Derived::SizeAtCompileTime) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit),
|
||||
MayUnrollInner = int(InnerSize * OtherDerived::CoeffReadCost) <= int(UnrollingLimit)
|
||||
};
|
||||
|
||||
public:
|
||||
enum {
|
||||
Unrolling = (int(Vectorization) == int(InnerVectorization) || int(Vectorization) == int(NoVectorization))
|
||||
? (
|
||||
int(MayUnrollCompletely) ? int(CompleteUnrolling)
|
||||
: int(MayUnrollInner) ? int(InnerUnrolling)
|
||||
: int(NoUnrolling)
|
||||
)
|
||||
: int(Vectorization) == int(LinearVectorization)
|
||||
? ( int(MayUnrollCompletely) && int(DstIsAligned) ? int(CompleteUnrolling) : int(NoUnrolling) )
|
||||
: int(NoUnrolling)
|
||||
};
|
||||
|
||||
#ifdef EIGEN_DEBUG_ASSIGN
|
||||
#define EIGEN_DEBUG_VAR(x) std::cerr << #x << " = " << x << std::endl;
|
||||
static void debug()
|
||||
{
|
||||
EIGEN_DEBUG_VAR(DstIsAligned)
|
||||
EIGEN_DEBUG_VAR(SrcIsAligned)
|
||||
EIGEN_DEBUG_VAR(SrcAlignment)
|
||||
EIGEN_DEBUG_VAR(InnerSize)
|
||||
EIGEN_DEBUG_VAR(InnerMaxSize)
|
||||
EIGEN_DEBUG_VAR(PacketSize)
|
||||
EIGEN_DEBUG_VAR(MightVectorize)
|
||||
EIGEN_DEBUG_VAR(MayInnerVectorize)
|
||||
EIGEN_DEBUG_VAR(MayLinearVectorize)
|
||||
EIGEN_DEBUG_VAR(MaySliceVectorize)
|
||||
EIGEN_DEBUG_VAR(Vectorization)
|
||||
EIGEN_DEBUG_VAR(UnrollingLimit)
|
||||
EIGEN_DEBUG_VAR(MayUnrollCompletely)
|
||||
EIGEN_DEBUG_VAR(MayUnrollInner)
|
||||
EIGEN_DEBUG_VAR(Unrolling)
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 2 : meta-unrollers
|
||||
***************************************************************************/
|
||||
|
||||
/***********************
|
||||
*** No vectorization ***
|
||||
***********************/
|
||||
|
||||
template<typename Derived1, typename Derived2, int Index, int Stop>
|
||||
struct ei_assign_novec_CompleteUnrolling
|
||||
{
|
||||
enum {
|
||||
row = int(Derived1::Flags)&RowMajorBit
|
||||
? Index / int(Derived1::ColsAtCompileTime)
|
||||
: Index % Derived1::RowsAtCompileTime,
|
||||
col = int(Derived1::Flags)&RowMajorBit
|
||||
? Index % int(Derived1::ColsAtCompileTime)
|
||||
: Index / Derived1::RowsAtCompileTime
|
||||
};
|
||||
|
||||
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
dst.copyCoeff(row, col, src);
|
||||
ei_assign_novec_CompleteUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Stop>
|
||||
struct ei_assign_novec_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(Derived1 &, const Derived2 &) {}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Index, int Stop>
|
||||
struct ei_assign_novec_InnerUnrolling
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src, int row_or_col)
|
||||
{
|
||||
const bool rowMajor = int(Derived1::Flags)&RowMajorBit;
|
||||
const int row = rowMajor ? row_or_col : Index;
|
||||
const int col = rowMajor ? Index : row_or_col;
|
||||
dst.copyCoeff(row, col, src);
|
||||
ei_assign_novec_InnerUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src, row_or_col);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Stop>
|
||||
struct ei_assign_novec_InnerUnrolling<Derived1, Derived2, Stop, Stop>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(Derived1 &, const Derived2 &, int) {}
|
||||
};
|
||||
|
||||
/**************************
|
||||
*** Inner vectorization ***
|
||||
**************************/
|
||||
|
||||
template<typename Derived1, typename Derived2, int Index, int Stop>
|
||||
struct ei_assign_innervec_CompleteUnrolling
|
||||
{
|
||||
enum {
|
||||
row = int(Derived1::Flags)&RowMajorBit
|
||||
? Index / int(Derived1::ColsAtCompileTime)
|
||||
: Index % Derived1::RowsAtCompileTime,
|
||||
col = int(Derived1::Flags)&RowMajorBit
|
||||
? Index % int(Derived1::ColsAtCompileTime)
|
||||
: Index / Derived1::RowsAtCompileTime,
|
||||
SrcAlignment = ei_assign_traits<Derived1,Derived2>::SrcAlignment
|
||||
};
|
||||
|
||||
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
dst.template copyPacket<Derived2, Aligned, SrcAlignment>(row, col, src);
|
||||
ei_assign_innervec_CompleteUnrolling<Derived1, Derived2,
|
||||
Index+ei_packet_traits<typename Derived1::Scalar>::size, Stop>::run(dst, src);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Stop>
|
||||
struct ei_assign_innervec_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(Derived1 &, const Derived2 &) {}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Index, int Stop>
|
||||
struct ei_assign_innervec_InnerUnrolling
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src, int row_or_col)
|
||||
{
|
||||
const int row = int(Derived1::Flags)&RowMajorBit ? row_or_col : Index;
|
||||
const int col = int(Derived1::Flags)&RowMajorBit ? Index : row_or_col;
|
||||
dst.template copyPacket<Derived2, Aligned, Aligned>(row, col, src);
|
||||
ei_assign_innervec_InnerUnrolling<Derived1, Derived2,
|
||||
Index+ei_packet_traits<typename Derived1::Scalar>::size, Stop>::run(dst, src, row_or_col);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Stop>
|
||||
struct ei_assign_innervec_InnerUnrolling<Derived1, Derived2, Stop, Stop>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(Derived1 &, const Derived2 &, int) {}
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 3 : implementation of all cases
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Derived1, typename Derived2,
|
||||
int Vectorization = ei_assign_traits<Derived1, Derived2>::Vectorization,
|
||||
int Unrolling = ei_assign_traits<Derived1, Derived2>::Unrolling>
|
||||
struct ei_assign_impl;
|
||||
|
||||
/***********************
|
||||
*** No vectorization ***
|
||||
***********************/
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
struct ei_assign_impl<Derived1, Derived2, NoVectorization, NoUnrolling>
|
||||
{
|
||||
inline static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
const int innerSize = dst.innerSize();
|
||||
const int outerSize = dst.outerSize();
|
||||
for(int j = 0; j < outerSize; ++j)
|
||||
for(int i = 0; i < innerSize; ++i)
|
||||
{
|
||||
if(int(Derived1::Flags)&RowMajorBit)
|
||||
dst.copyCoeff(j, i, src);
|
||||
else
|
||||
dst.copyCoeff(i, j, src);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
struct ei_assign_impl<Derived1, Derived2, NoVectorization, CompleteUnrolling>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
ei_assign_novec_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
|
||||
::run(dst, src);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
struct ei_assign_impl<Derived1, Derived2, NoVectorization, InnerUnrolling>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
const bool rowMajor = int(Derived1::Flags)&RowMajorBit;
|
||||
const int innerSize = rowMajor ? Derived1::ColsAtCompileTime : Derived1::RowsAtCompileTime;
|
||||
const int outerSize = dst.outerSize();
|
||||
for(int j = 0; j < outerSize; ++j)
|
||||
ei_assign_novec_InnerUnrolling<Derived1, Derived2, 0, innerSize>
|
||||
::run(dst, src, j);
|
||||
}
|
||||
};
|
||||
|
||||
/**************************
|
||||
*** Inner vectorization ***
|
||||
**************************/
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
struct ei_assign_impl<Derived1, Derived2, InnerVectorization, NoUnrolling>
|
||||
{
|
||||
inline static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
const int innerSize = dst.innerSize();
|
||||
const int outerSize = dst.outerSize();
|
||||
const int packetSize = ei_packet_traits<typename Derived1::Scalar>::size;
|
||||
for(int j = 0; j < outerSize; ++j)
|
||||
for(int i = 0; i < innerSize; i+=packetSize)
|
||||
{
|
||||
if(int(Derived1::Flags)&RowMajorBit)
|
||||
dst.template copyPacket<Derived2, Aligned, Aligned>(j, i, src);
|
||||
else
|
||||
dst.template copyPacket<Derived2, Aligned, Aligned>(i, j, src);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
struct ei_assign_impl<Derived1, Derived2, InnerVectorization, CompleteUnrolling>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
ei_assign_innervec_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
|
||||
::run(dst, src);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
struct ei_assign_impl<Derived1, Derived2, InnerVectorization, InnerUnrolling>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
const bool rowMajor = int(Derived1::Flags)&RowMajorBit;
|
||||
const int innerSize = rowMajor ? Derived1::ColsAtCompileTime : Derived1::RowsAtCompileTime;
|
||||
const int outerSize = dst.outerSize();
|
||||
for(int j = 0; j < outerSize; ++j)
|
||||
ei_assign_innervec_InnerUnrolling<Derived1, Derived2, 0, innerSize>
|
||||
::run(dst, src, j);
|
||||
}
|
||||
};
|
||||
|
||||
/***************************
|
||||
*** Linear vectorization ***
|
||||
***************************/
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
struct ei_assign_impl<Derived1, Derived2, LinearVectorization, NoUnrolling>
|
||||
{
|
||||
inline static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
const int size = dst.size();
|
||||
const int packetSize = ei_packet_traits<typename Derived1::Scalar>::size;
|
||||
const int alignedStart = ei_assign_traits<Derived1,Derived2>::DstIsAligned ? 0
|
||||
: ei_alignmentOffset(&dst.coeffRef(0), size);
|
||||
const int alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize;
|
||||
|
||||
for(int index = 0; index < alignedStart; ++index)
|
||||
dst.copyCoeff(index, src);
|
||||
|
||||
for(int index = alignedStart; index < alignedEnd; index += packetSize)
|
||||
{
|
||||
dst.template copyPacket<Derived2, Aligned, ei_assign_traits<Derived1,Derived2>::SrcAlignment>(index, src);
|
||||
}
|
||||
|
||||
for(int index = alignedEnd; index < size; ++index)
|
||||
dst.copyCoeff(index, src);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
struct ei_assign_impl<Derived1, Derived2, LinearVectorization, CompleteUnrolling>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
const int size = Derived1::SizeAtCompileTime;
|
||||
const int packetSize = ei_packet_traits<typename Derived1::Scalar>::size;
|
||||
const int alignedSize = (size/packetSize)*packetSize;
|
||||
|
||||
ei_assign_innervec_CompleteUnrolling<Derived1, Derived2, 0, alignedSize>::run(dst, src);
|
||||
ei_assign_novec_CompleteUnrolling<Derived1, Derived2, alignedSize, size>::run(dst, src);
|
||||
}
|
||||
};
|
||||
|
||||
/**************************
|
||||
*** Slice vectorization ***
|
||||
***************************/
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
struct ei_assign_impl<Derived1, Derived2, SliceVectorization, NoUnrolling>
|
||||
{
|
||||
inline static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
const int packetSize = ei_packet_traits<typename Derived1::Scalar>::size;
|
||||
const int packetAlignedMask = packetSize - 1;
|
||||
const int innerSize = dst.innerSize();
|
||||
const int outerSize = dst.outerSize();
|
||||
const int alignedStep = (packetSize - dst.stride() % packetSize) & packetAlignedMask;
|
||||
int alignedStart = ei_assign_traits<Derived1,Derived2>::DstIsAligned ? 0
|
||||
: ei_alignmentOffset(&dst.coeffRef(0,0), innerSize);
|
||||
|
||||
for(int i = 0; i < outerSize; ++i)
|
||||
{
|
||||
const int alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask);
|
||||
|
||||
// do the non-vectorizable part of the assignment
|
||||
for (int index = 0; index<alignedStart ; ++index)
|
||||
{
|
||||
if(Derived1::Flags&RowMajorBit)
|
||||
dst.copyCoeff(i, index, src);
|
||||
else
|
||||
dst.copyCoeff(index, i, src);
|
||||
}
|
||||
|
||||
// do the vectorizable part of the assignment
|
||||
for (int index = alignedStart; index<alignedEnd; index+=packetSize)
|
||||
{
|
||||
if(Derived1::Flags&RowMajorBit)
|
||||
dst.template copyPacket<Derived2, Aligned, Unaligned>(i, index, src);
|
||||
else
|
||||
dst.template copyPacket<Derived2, Aligned, Unaligned>(index, i, src);
|
||||
}
|
||||
|
||||
// do the non-vectorizable part of the assignment
|
||||
for (int index = alignedEnd; index<innerSize ; ++index)
|
||||
{
|
||||
if(Derived1::Flags&RowMajorBit)
|
||||
dst.copyCoeff(i, index, src);
|
||||
else
|
||||
dst.copyCoeff(index, i, src);
|
||||
}
|
||||
|
||||
alignedStart = std::min<int>((alignedStart+alignedStep)%packetSize, innerSize);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 4 : implementation of MatrixBase methods
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>
|
||||
::lazyAssign(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
#ifdef EIGEN_DEBUG_ASSIGN
|
||||
ei_assign_traits<Derived, OtherDerived>::debug();
|
||||
#endif
|
||||
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived,OtherDerived)
|
||||
EIGEN_STATIC_ASSERT((ei_is_same_type<typename Derived::Scalar, typename OtherDerived::Scalar>::ret),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
ei_assert(rows() == other.rows() && cols() == other.cols());
|
||||
ei_assign_impl<Derived, OtherDerived>::run(derived(),other.derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived, typename OtherDerived,
|
||||
bool EvalBeforeAssigning = (int(OtherDerived::Flags) & EvalBeforeAssigningBit) != 0,
|
||||
bool NeedToTranspose = Derived::IsVectorAtCompileTime
|
||||
&& OtherDerived::IsVectorAtCompileTime
|
||||
&& int(Derived::RowsAtCompileTime) == int(OtherDerived::ColsAtCompileTime)
|
||||
&& int(Derived::ColsAtCompileTime) == int(OtherDerived::RowsAtCompileTime)
|
||||
&& int(Derived::SizeAtCompileTime) != 1>
|
||||
struct ei_assign_selector;
|
||||
|
||||
template<typename Derived, typename OtherDerived>
|
||||
struct ei_assign_selector<Derived,OtherDerived,false,false> {
|
||||
EIGEN_STRONG_INLINE static Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.derived()); }
|
||||
};
|
||||
template<typename Derived, typename OtherDerived>
|
||||
struct ei_assign_selector<Derived,OtherDerived,true,false> {
|
||||
EIGEN_STRONG_INLINE static Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.eval()); }
|
||||
};
|
||||
template<typename Derived, typename OtherDerived>
|
||||
struct ei_assign_selector<Derived,OtherDerived,false,true> {
|
||||
EIGEN_STRONG_INLINE static Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose()); }
|
||||
};
|
||||
template<typename Derived, typename OtherDerived>
|
||||
struct ei_assign_selector<Derived,OtherDerived,true,true> {
|
||||
EIGEN_STRONG_INLINE static Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose().eval()); }
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>
|
||||
::operator=(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
return ei_assign_selector<Derived,OtherDerived>::run(derived(), other.derived());
|
||||
}
|
||||
|
||||
#endif // EIGEN_ASSIGN_H
|
752
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Block.h
Normal file
752
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Block.h
Normal file
@ -0,0 +1,752 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_BLOCK_H
|
||||
#define EIGEN_BLOCK_H
|
||||
|
||||
/** \class Block
|
||||
*
|
||||
* \brief Expression of a fixed-size or dynamic-size block
|
||||
*
|
||||
* \param MatrixType the type of the object in which we are taking a block
|
||||
* \param BlockRows the number of rows of the block we are taking at compile time (optional)
|
||||
* \param BlockCols the number of columns of the block we are taking at compile time (optional)
|
||||
* \param _PacketAccess allows to enforce aligned loads and stores if set to ForceAligned.
|
||||
* The default is AsRequested. This parameter is internaly used by Eigen
|
||||
* in expressions such as \code mat.block() += other; \endcode and most of
|
||||
* the time this is the only way it is used.
|
||||
* \param _DirectAccessStatus \internal used for partial specialization
|
||||
*
|
||||
* This class represents an expression of either a fixed-size or dynamic-size block. It is the return
|
||||
* type of MatrixBase::block(int,int,int,int) and MatrixBase::block<int,int>(int,int) and
|
||||
* most of the time this is the only way it is used.
|
||||
*
|
||||
* However, if you want to directly maniputate block expressions,
|
||||
* for instance if you want to write a function returning such an expression, you
|
||||
* will need to use this class.
|
||||
*
|
||||
* Here is an example illustrating the dynamic case:
|
||||
* \include class_Block.cpp
|
||||
* Output: \verbinclude class_Block.out
|
||||
*
|
||||
* \note Even though this expression has dynamic size, in the case where \a MatrixType
|
||||
* has fixed size, this expression inherits a fixed maximal size which means that evaluating
|
||||
* it does not cause a dynamic memory allocation.
|
||||
*
|
||||
* Here is an example illustrating the fixed-size case:
|
||||
* \include class_FixedBlock.cpp
|
||||
* Output: \verbinclude class_FixedBlock.out
|
||||
*
|
||||
* \sa MatrixBase::block(int,int,int,int), MatrixBase::block(int,int), class VectorBlock
|
||||
*/
|
||||
|
||||
template<typename MatrixType, int BlockRows, int BlockCols, int _PacketAccess, int _DirectAccessStatus>
|
||||
struct ei_traits<Block<MatrixType, BlockRows, BlockCols, _PacketAccess, _DirectAccessStatus> >
|
||||
{
|
||||
typedef typename ei_traits<MatrixType>::Scalar Scalar;
|
||||
typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
|
||||
typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
|
||||
enum{
|
||||
RowsAtCompileTime = ei_traits<MatrixType>::RowsAtCompileTime == 1 ? 1 : BlockRows,
|
||||
ColsAtCompileTime = ei_traits<MatrixType>::ColsAtCompileTime == 1 ? 1 : BlockCols,
|
||||
MaxRowsAtCompileTime = RowsAtCompileTime == 1 ? 1
|
||||
: (BlockRows==Dynamic ? int(ei_traits<MatrixType>::MaxRowsAtCompileTime) : BlockRows),
|
||||
MaxColsAtCompileTime = ColsAtCompileTime == 1 ? 1
|
||||
: (BlockCols==Dynamic ? int(ei_traits<MatrixType>::MaxColsAtCompileTime) : BlockCols),
|
||||
RowMajor = int(ei_traits<MatrixType>::Flags)&RowMajorBit,
|
||||
InnerSize = RowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
|
||||
InnerMaxSize = RowMajor ? int(MaxColsAtCompileTime) : int(MaxRowsAtCompileTime),
|
||||
MaskPacketAccessBit = (InnerMaxSize == Dynamic || (InnerSize >= ei_packet_traits<Scalar>::size))
|
||||
? PacketAccessBit : 0,
|
||||
FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1) ? LinearAccessBit : 0,
|
||||
Flags = (ei_traits<MatrixType>::Flags & (HereditaryBits | MaskPacketAccessBit | DirectAccessBit)) | FlagsLinearAccessBit,
|
||||
CoeffReadCost = ei_traits<MatrixType>::CoeffReadCost,
|
||||
PacketAccess = _PacketAccess
|
||||
};
|
||||
typedef typename ei_meta_if<int(PacketAccess)==ForceAligned,
|
||||
Block<MatrixType, BlockRows, BlockCols, _PacketAccess, _DirectAccessStatus>&,
|
||||
Block<MatrixType, BlockRows, BlockCols, ForceAligned, _DirectAccessStatus> >::ret AlignedDerivedType;
|
||||
};
|
||||
|
||||
template<typename MatrixType, int BlockRows, int BlockCols, int PacketAccess, int _DirectAccessStatus> class Block
|
||||
: public MatrixBase<Block<MatrixType, BlockRows, BlockCols, PacketAccess, _DirectAccessStatus> >
|
||||
{
|
||||
public:
|
||||
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(Block)
|
||||
|
||||
class InnerIterator;
|
||||
|
||||
/** Column or Row constructor
|
||||
*/
|
||||
inline Block(const MatrixType& matrix, int i)
|
||||
: m_matrix(matrix),
|
||||
// It is a row if and only if BlockRows==1 and BlockCols==MatrixType::ColsAtCompileTime,
|
||||
// and it is a column if and only if BlockRows==MatrixType::RowsAtCompileTime and BlockCols==1,
|
||||
// all other cases are invalid.
|
||||
// The case a 1x1 matrix seems ambiguous, but the result is the same anyway.
|
||||
m_startRow( (BlockRows==1) && (BlockCols==MatrixType::ColsAtCompileTime) ? i : 0),
|
||||
m_startCol( (BlockRows==MatrixType::RowsAtCompileTime) && (BlockCols==1) ? i : 0),
|
||||
m_blockRows(matrix.rows()), // if it is a row, then m_blockRows has a fixed-size of 1, so no pb to try to overwrite it
|
||||
m_blockCols(matrix.cols()) // same for m_blockCols
|
||||
{
|
||||
ei_assert( (i>=0) && (
|
||||
((BlockRows==1) && (BlockCols==MatrixType::ColsAtCompileTime) && i<matrix.rows())
|
||||
||((BlockRows==MatrixType::RowsAtCompileTime) && (BlockCols==1) && i<matrix.cols())));
|
||||
}
|
||||
|
||||
/** Fixed-size constructor
|
||||
*/
|
||||
inline Block(const MatrixType& matrix, int startRow, int startCol)
|
||||
: m_matrix(matrix), m_startRow(startRow), m_startCol(startCol),
|
||||
m_blockRows(matrix.rows()), m_blockCols(matrix.cols())
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic,THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE)
|
||||
ei_assert(startRow >= 0 && BlockRows >= 1 && startRow + BlockRows <= matrix.rows()
|
||||
&& startCol >= 0 && BlockCols >= 1 && startCol + BlockCols <= matrix.cols());
|
||||
}
|
||||
|
||||
/** Dynamic-size constructor
|
||||
*/
|
||||
inline Block(const MatrixType& matrix,
|
||||
int startRow, int startCol,
|
||||
int blockRows, int blockCols)
|
||||
: m_matrix(matrix), m_startRow(startRow), m_startCol(startCol),
|
||||
m_blockRows(blockRows), m_blockCols(blockCols)
|
||||
{
|
||||
ei_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==blockRows)
|
||||
&& (ColsAtCompileTime==Dynamic || ColsAtCompileTime==blockCols));
|
||||
ei_assert(startRow >= 0 && blockRows >= 1 && startRow + blockRows <= matrix.rows()
|
||||
&& startCol >= 0 && blockCols >= 1 && startCol + blockCols <= matrix.cols());
|
||||
}
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block)
|
||||
|
||||
inline int rows() const { return m_blockRows.value(); }
|
||||
inline int cols() const { return m_blockCols.value(); }
|
||||
|
||||
inline Scalar& coeffRef(int row, int col)
|
||||
{
|
||||
return m_matrix.const_cast_derived()
|
||||
.coeffRef(row + m_startRow.value(), col + m_startCol.value());
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int row, int col) const
|
||||
{
|
||||
return m_matrix.coeff(row + m_startRow.value(), col + m_startCol.value());
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(int index)
|
||||
{
|
||||
return m_matrix.const_cast_derived()
|
||||
.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
|
||||
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int index) const
|
||||
{
|
||||
return m_matrix
|
||||
.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
|
||||
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline PacketScalar packet(int row, int col) const
|
||||
{
|
||||
return m_matrix.template packet<Unaligned>
|
||||
(row + m_startRow.value(), col + m_startCol.value());
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(int row, int col, const PacketScalar& x)
|
||||
{
|
||||
m_matrix.const_cast_derived().template writePacket<Unaligned>
|
||||
(row + m_startRow.value(), col + m_startCol.value(), x);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline PacketScalar packet(int index) const
|
||||
{
|
||||
return m_matrix.template packet<Unaligned>
|
||||
(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
|
||||
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(int index, const PacketScalar& x)
|
||||
{
|
||||
m_matrix.const_cast_derived().template writePacket<Unaligned>
|
||||
(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
|
||||
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0), x);
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
const typename MatrixType::Nested m_matrix;
|
||||
const ei_int_if_dynamic<MatrixType::RowsAtCompileTime == 1 ? 0 : Dynamic> m_startRow;
|
||||
const ei_int_if_dynamic<MatrixType::ColsAtCompileTime == 1 ? 0 : Dynamic> m_startCol;
|
||||
const ei_int_if_dynamic<RowsAtCompileTime> m_blockRows;
|
||||
const ei_int_if_dynamic<ColsAtCompileTime> m_blockCols;
|
||||
};
|
||||
|
||||
/** \internal */
|
||||
template<typename MatrixType, int BlockRows, int BlockCols, int PacketAccess>
|
||||
class Block<MatrixType,BlockRows,BlockCols,PacketAccess,HasDirectAccess>
|
||||
: public MapBase<Block<MatrixType, BlockRows, BlockCols,PacketAccess,HasDirectAccess> >
|
||||
{
|
||||
public:
|
||||
|
||||
_EIGEN_GENERIC_PUBLIC_INTERFACE(Block, MapBase<Block>)
|
||||
|
||||
class InnerIterator;
|
||||
typedef typename ei_traits<Block>::AlignedDerivedType AlignedDerivedType;
|
||||
friend class Block<MatrixType,BlockRows,BlockCols,PacketAccess==int(AsRequested)?ForceAligned:AsRequested,HasDirectAccess>;
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block)
|
||||
|
||||
AlignedDerivedType _convertToForceAligned()
|
||||
{
|
||||
return Block<MatrixType,BlockRows,BlockCols,ForceAligned,HasDirectAccess>
|
||||
(m_matrix, Base::m_data, Base::m_rows.value(), Base::m_cols.value());
|
||||
}
|
||||
|
||||
/** Column or Row constructor
|
||||
*/
|
||||
inline Block(const MatrixType& matrix, int i)
|
||||
: Base(&matrix.const_cast_derived().coeffRef(
|
||||
(BlockRows==1) && (BlockCols==MatrixType::ColsAtCompileTime) ? i : 0,
|
||||
(BlockRows==MatrixType::RowsAtCompileTime) && (BlockCols==1) ? i : 0),
|
||||
BlockRows==1 ? 1 : matrix.rows(),
|
||||
BlockCols==1 ? 1 : matrix.cols()),
|
||||
m_matrix(matrix)
|
||||
{
|
||||
ei_assert( (i>=0) && (
|
||||
((BlockRows==1) && (BlockCols==MatrixType::ColsAtCompileTime) && i<matrix.rows())
|
||||
||((BlockRows==MatrixType::RowsAtCompileTime) && (BlockCols==1) && i<matrix.cols())));
|
||||
}
|
||||
|
||||
/** Fixed-size constructor
|
||||
*/
|
||||
inline Block(const MatrixType& matrix, int startRow, int startCol)
|
||||
: Base(&matrix.const_cast_derived().coeffRef(startRow,startCol)), m_matrix(matrix)
|
||||
{
|
||||
ei_assert(startRow >= 0 && BlockRows >= 1 && startRow + BlockRows <= matrix.rows()
|
||||
&& startCol >= 0 && BlockCols >= 1 && startCol + BlockCols <= matrix.cols());
|
||||
}
|
||||
|
||||
/** Dynamic-size constructor
|
||||
*/
|
||||
inline Block(const MatrixType& matrix,
|
||||
int startRow, int startCol,
|
||||
int blockRows, int blockCols)
|
||||
: Base(&matrix.const_cast_derived().coeffRef(startRow,startCol), blockRows, blockCols),
|
||||
m_matrix(matrix)
|
||||
{
|
||||
ei_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==blockRows)
|
||||
&& (ColsAtCompileTime==Dynamic || ColsAtCompileTime==blockCols));
|
||||
ei_assert(startRow >= 0 && blockRows >= 1 && startRow + blockRows <= matrix.rows()
|
||||
&& startCol >= 0 && blockCols >= 1 && startCol + blockCols <= matrix.cols());
|
||||
}
|
||||
|
||||
inline int stride(void) const { return m_matrix.stride(); }
|
||||
|
||||
protected:
|
||||
|
||||
/** \internal used by allowAligned() */
|
||||
inline Block(const MatrixType& matrix, const Scalar* data, int blockRows, int blockCols)
|
||||
: Base(data, blockRows, blockCols), m_matrix(matrix)
|
||||
{}
|
||||
|
||||
const typename MatrixType::Nested m_matrix;
|
||||
};
|
||||
|
||||
/** \returns a dynamic-size expression of a block in *this.
|
||||
*
|
||||
* \param startRow the first row in the block
|
||||
* \param startCol the first column in the block
|
||||
* \param blockRows the number of rows in the block
|
||||
* \param blockCols the number of columns in the block
|
||||
*
|
||||
* \addexample BlockIntIntIntInt \label How to reference a sub-matrix (dynamic-size)
|
||||
*
|
||||
* Example: \include MatrixBase_block_int_int_int_int.cpp
|
||||
* Output: \verbinclude MatrixBase_block_int_int_int_int.out
|
||||
*
|
||||
* \note Even though the returned expression has dynamic size, in the case
|
||||
* when it is applied to a fixed-size matrix, it inherits a fixed maximal size,
|
||||
* which means that evaluating it does not cause a dynamic memory allocation.
|
||||
*
|
||||
* \sa class Block, block(int,int)
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename BlockReturnType<Derived>::Type MatrixBase<Derived>
|
||||
::block(int startRow, int startCol, int blockRows, int blockCols)
|
||||
{
|
||||
return typename BlockReturnType<Derived>::Type(derived(), startRow, startCol, blockRows, blockCols);
|
||||
}
|
||||
|
||||
/** This is the const version of block(int,int,int,int). */
|
||||
template<typename Derived>
|
||||
inline const typename BlockReturnType<Derived>::Type MatrixBase<Derived>
|
||||
::block(int startRow, int startCol, int blockRows, int blockCols) const
|
||||
{
|
||||
return typename BlockReturnType<Derived>::Type(derived(), startRow, startCol, blockRows, blockCols);
|
||||
}
|
||||
|
||||
/** \returns a dynamic-size expression of a segment (i.e. a vector block) in *this.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \addexample SegmentIntInt \label How to reference a sub-vector (dynamic size)
|
||||
*
|
||||
* \param start the first coefficient in the segment
|
||||
* \param size the number of coefficients in the segment
|
||||
*
|
||||
* Example: \include MatrixBase_segment_int_int.cpp
|
||||
* Output: \verbinclude MatrixBase_segment_int_int.out
|
||||
*
|
||||
* \note Even though the returned expression has dynamic size, in the case
|
||||
* when it is applied to a fixed-size vector, it inherits a fixed maximal size,
|
||||
* which means that evaluating it does not cause a dynamic memory allocation.
|
||||
*
|
||||
* \sa class Block, segment(int)
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename BlockReturnType<Derived>::SubVectorType MatrixBase<Derived>
|
||||
::segment(int start, int size)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return typename BlockReturnType<Derived>::SubVectorType(derived(), RowsAtCompileTime == 1 ? 0 : start,
|
||||
ColsAtCompileTime == 1 ? 0 : start,
|
||||
RowsAtCompileTime == 1 ? 1 : size,
|
||||
ColsAtCompileTime == 1 ? 1 : size);
|
||||
}
|
||||
|
||||
/** This is the const version of segment(int,int).*/
|
||||
template<typename Derived>
|
||||
inline const typename BlockReturnType<Derived>::SubVectorType
|
||||
MatrixBase<Derived>::segment(int start, int size) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return typename BlockReturnType<Derived>::SubVectorType(derived(), RowsAtCompileTime == 1 ? 0 : start,
|
||||
ColsAtCompileTime == 1 ? 0 : start,
|
||||
RowsAtCompileTime == 1 ? 1 : size,
|
||||
ColsAtCompileTime == 1 ? 1 : size);
|
||||
}
|
||||
|
||||
/** \returns a dynamic-size expression of the first coefficients of *this.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \param size the number of coefficients in the block
|
||||
*
|
||||
* \addexample BlockInt \label How to reference a sub-vector (fixed-size)
|
||||
*
|
||||
* Example: \include MatrixBase_start_int.cpp
|
||||
* Output: \verbinclude MatrixBase_start_int.out
|
||||
*
|
||||
* \note Even though the returned expression has dynamic size, in the case
|
||||
* when it is applied to a fixed-size vector, it inherits a fixed maximal size,
|
||||
* which means that evaluating it does not cause a dynamic memory allocation.
|
||||
*
|
||||
* \sa class Block, block(int,int)
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename BlockReturnType<Derived,Dynamic>::SubVectorType
|
||||
MatrixBase<Derived>::start(int size)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return Block<Derived,
|
||||
RowsAtCompileTime == 1 ? 1 : Dynamic,
|
||||
ColsAtCompileTime == 1 ? 1 : Dynamic>
|
||||
(derived(), 0, 0,
|
||||
RowsAtCompileTime == 1 ? 1 : size,
|
||||
ColsAtCompileTime == 1 ? 1 : size);
|
||||
}
|
||||
|
||||
/** This is the const version of start(int).*/
|
||||
template<typename Derived>
|
||||
inline const typename BlockReturnType<Derived,Dynamic>::SubVectorType
|
||||
MatrixBase<Derived>::start(int size) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return Block<Derived,
|
||||
RowsAtCompileTime == 1 ? 1 : Dynamic,
|
||||
ColsAtCompileTime == 1 ? 1 : Dynamic>
|
||||
(derived(), 0, 0,
|
||||
RowsAtCompileTime == 1 ? 1 : size,
|
||||
ColsAtCompileTime == 1 ? 1 : size);
|
||||
}
|
||||
|
||||
/** \returns a dynamic-size expression of the last coefficients of *this.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \param size the number of coefficients in the block
|
||||
*
|
||||
* \addexample BlockEnd \label How to reference the end of a vector (fixed-size)
|
||||
*
|
||||
* Example: \include MatrixBase_end_int.cpp
|
||||
* Output: \verbinclude MatrixBase_end_int.out
|
||||
*
|
||||
* \note Even though the returned expression has dynamic size, in the case
|
||||
* when it is applied to a fixed-size vector, it inherits a fixed maximal size,
|
||||
* which means that evaluating it does not cause a dynamic memory allocation.
|
||||
*
|
||||
* \sa class Block, block(int,int)
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename BlockReturnType<Derived,Dynamic>::SubVectorType
|
||||
MatrixBase<Derived>::end(int size)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return Block<Derived,
|
||||
RowsAtCompileTime == 1 ? 1 : Dynamic,
|
||||
ColsAtCompileTime == 1 ? 1 : Dynamic>
|
||||
(derived(),
|
||||
RowsAtCompileTime == 1 ? 0 : rows() - size,
|
||||
ColsAtCompileTime == 1 ? 0 : cols() - size,
|
||||
RowsAtCompileTime == 1 ? 1 : size,
|
||||
ColsAtCompileTime == 1 ? 1 : size);
|
||||
}
|
||||
|
||||
/** This is the const version of end(int).*/
|
||||
template<typename Derived>
|
||||
inline const typename BlockReturnType<Derived,Dynamic>::SubVectorType
|
||||
MatrixBase<Derived>::end(int size) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return Block<Derived,
|
||||
RowsAtCompileTime == 1 ? 1 : Dynamic,
|
||||
ColsAtCompileTime == 1 ? 1 : Dynamic>
|
||||
(derived(),
|
||||
RowsAtCompileTime == 1 ? 0 : rows() - size,
|
||||
ColsAtCompileTime == 1 ? 0 : cols() - size,
|
||||
RowsAtCompileTime == 1 ? 1 : size,
|
||||
ColsAtCompileTime == 1 ? 1 : size);
|
||||
}
|
||||
|
||||
/** \returns a fixed-size expression of a segment (i.e. a vector block) in \c *this
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* The template parameter \a Size is the number of coefficients in the block
|
||||
*
|
||||
* \param start the index of the first element of the sub-vector
|
||||
*
|
||||
* Example: \include MatrixBase_template_int_segment.cpp
|
||||
* Output: \verbinclude MatrixBase_template_int_segment.out
|
||||
*
|
||||
* \sa class Block
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<int Size>
|
||||
inline typename BlockReturnType<Derived,Size>::SubVectorType
|
||||
MatrixBase<Derived>::segment(int start)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return Block<Derived, (RowsAtCompileTime == 1 ? 1 : Size),
|
||||
(ColsAtCompileTime == 1 ? 1 : Size)>
|
||||
(derived(), RowsAtCompileTime == 1 ? 0 : start,
|
||||
ColsAtCompileTime == 1 ? 0 : start);
|
||||
}
|
||||
|
||||
/** This is the const version of segment<int>(int).*/
|
||||
template<typename Derived>
|
||||
template<int Size>
|
||||
inline const typename BlockReturnType<Derived,Size>::SubVectorType
|
||||
MatrixBase<Derived>::segment(int start) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return Block<Derived, (RowsAtCompileTime == 1 ? 1 : Size),
|
||||
(ColsAtCompileTime == 1 ? 1 : Size)>
|
||||
(derived(), RowsAtCompileTime == 1 ? 0 : start,
|
||||
ColsAtCompileTime == 1 ? 0 : start);
|
||||
}
|
||||
|
||||
/** \returns a fixed-size expression of the first coefficients of *this.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* The template parameter \a Size is the number of coefficients in the block
|
||||
*
|
||||
* \addexample BlockStart \label How to reference the start of a vector (fixed-size)
|
||||
*
|
||||
* Example: \include MatrixBase_template_int_start.cpp
|
||||
* Output: \verbinclude MatrixBase_template_int_start.out
|
||||
*
|
||||
* \sa class Block
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<int Size>
|
||||
inline typename BlockReturnType<Derived,Size>::SubVectorType
|
||||
MatrixBase<Derived>::start()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return Block<Derived, (RowsAtCompileTime == 1 ? 1 : Size),
|
||||
(ColsAtCompileTime == 1 ? 1 : Size)>(derived(), 0, 0);
|
||||
}
|
||||
|
||||
/** This is the const version of start<int>().*/
|
||||
template<typename Derived>
|
||||
template<int Size>
|
||||
inline const typename BlockReturnType<Derived,Size>::SubVectorType
|
||||
MatrixBase<Derived>::start() const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return Block<Derived, (RowsAtCompileTime == 1 ? 1 : Size),
|
||||
(ColsAtCompileTime == 1 ? 1 : Size)>(derived(), 0, 0);
|
||||
}
|
||||
|
||||
/** \returns a fixed-size expression of the last coefficients of *this.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* The template parameter \a Size is the number of coefficients in the block
|
||||
*
|
||||
* Example: \include MatrixBase_template_int_end.cpp
|
||||
* Output: \verbinclude MatrixBase_template_int_end.out
|
||||
*
|
||||
* \sa class Block
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<int Size>
|
||||
inline typename BlockReturnType<Derived,Size>::SubVectorType
|
||||
MatrixBase<Derived>::end()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return Block<Derived, RowsAtCompileTime == 1 ? 1 : Size,
|
||||
ColsAtCompileTime == 1 ? 1 : Size>
|
||||
(derived(),
|
||||
RowsAtCompileTime == 1 ? 0 : rows() - Size,
|
||||
ColsAtCompileTime == 1 ? 0 : cols() - Size);
|
||||
}
|
||||
|
||||
/** This is the const version of end<int>.*/
|
||||
template<typename Derived>
|
||||
template<int Size>
|
||||
inline const typename BlockReturnType<Derived,Size>::SubVectorType
|
||||
MatrixBase<Derived>::end() const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return Block<Derived, RowsAtCompileTime == 1 ? 1 : Size,
|
||||
ColsAtCompileTime == 1 ? 1 : Size>
|
||||
(derived(),
|
||||
RowsAtCompileTime == 1 ? 0 : rows() - Size,
|
||||
ColsAtCompileTime == 1 ? 0 : cols() - Size);
|
||||
}
|
||||
|
||||
/** \returns a dynamic-size expression of a corner of *this.
|
||||
*
|
||||
* \param type the type of corner. Can be \a Eigen::TopLeft, \a Eigen::TopRight,
|
||||
* \a Eigen::BottomLeft, \a Eigen::BottomRight.
|
||||
* \param cRows the number of rows in the corner
|
||||
* \param cCols the number of columns in the corner
|
||||
*
|
||||
* \addexample BlockCornerDynamicSize \label How to reference a sub-corner of a matrix
|
||||
*
|
||||
* Example: \include MatrixBase_corner_enum_int_int.cpp
|
||||
* Output: \verbinclude MatrixBase_corner_enum_int_int.out
|
||||
*
|
||||
* \note Even though the returned expression has dynamic size, in the case
|
||||
* when it is applied to a fixed-size matrix, it inherits a fixed maximal size,
|
||||
* which means that evaluating it does not cause a dynamic memory allocation.
|
||||
*
|
||||
* \sa class Block, block(int,int,int,int)
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename BlockReturnType<Derived>::Type MatrixBase<Derived>
|
||||
::corner(CornerType type, int cRows, int cCols)
|
||||
{
|
||||
switch(type)
|
||||
{
|
||||
default:
|
||||
ei_assert(false && "Bad corner type.");
|
||||
case TopLeft:
|
||||
return typename BlockReturnType<Derived>::Type(derived(), 0, 0, cRows, cCols);
|
||||
case TopRight:
|
||||
return typename BlockReturnType<Derived>::Type(derived(), 0, cols() - cCols, cRows, cCols);
|
||||
case BottomLeft:
|
||||
return typename BlockReturnType<Derived>::Type(derived(), rows() - cRows, 0, cRows, cCols);
|
||||
case BottomRight:
|
||||
return typename BlockReturnType<Derived>::Type(derived(), rows() - cRows, cols() - cCols, cRows, cCols);
|
||||
}
|
||||
}
|
||||
|
||||
/** This is the const version of corner(CornerType, int, int).*/
|
||||
template<typename Derived>
|
||||
inline const typename BlockReturnType<Derived>::Type
|
||||
MatrixBase<Derived>::corner(CornerType type, int cRows, int cCols) const
|
||||
{
|
||||
switch(type)
|
||||
{
|
||||
default:
|
||||
ei_assert(false && "Bad corner type.");
|
||||
case TopLeft:
|
||||
return typename BlockReturnType<Derived>::Type(derived(), 0, 0, cRows, cCols);
|
||||
case TopRight:
|
||||
return typename BlockReturnType<Derived>::Type(derived(), 0, cols() - cCols, cRows, cCols);
|
||||
case BottomLeft:
|
||||
return typename BlockReturnType<Derived>::Type(derived(), rows() - cRows, 0, cRows, cCols);
|
||||
case BottomRight:
|
||||
return typename BlockReturnType<Derived>::Type(derived(), rows() - cRows, cols() - cCols, cRows, cCols);
|
||||
}
|
||||
}
|
||||
|
||||
/** \returns a fixed-size expression of a corner of *this.
|
||||
*
|
||||
* \param type the type of corner. Can be \a Eigen::TopLeft, \a Eigen::TopRight,
|
||||
* \a Eigen::BottomLeft, \a Eigen::BottomRight.
|
||||
*
|
||||
* The template parameters CRows and CCols arethe number of rows and columns in the corner.
|
||||
*
|
||||
* Example: \include MatrixBase_template_int_int_corner_enum.cpp
|
||||
* Output: \verbinclude MatrixBase_template_int_int_corner_enum.out
|
||||
*
|
||||
* \sa class Block, block(int,int,int,int)
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<int CRows, int CCols>
|
||||
inline typename BlockReturnType<Derived, CRows, CCols>::Type
|
||||
MatrixBase<Derived>::corner(CornerType type)
|
||||
{
|
||||
switch(type)
|
||||
{
|
||||
default:
|
||||
ei_assert(false && "Bad corner type.");
|
||||
case TopLeft:
|
||||
return Block<Derived, CRows, CCols>(derived(), 0, 0);
|
||||
case TopRight:
|
||||
return Block<Derived, CRows, CCols>(derived(), 0, cols() - CCols);
|
||||
case BottomLeft:
|
||||
return Block<Derived, CRows, CCols>(derived(), rows() - CRows, 0);
|
||||
case BottomRight:
|
||||
return Block<Derived, CRows, CCols>(derived(), rows() - CRows, cols() - CCols);
|
||||
}
|
||||
}
|
||||
|
||||
/** This is the const version of corner<int, int>(CornerType).*/
|
||||
template<typename Derived>
|
||||
template<int CRows, int CCols>
|
||||
inline const typename BlockReturnType<Derived, CRows, CCols>::Type
|
||||
MatrixBase<Derived>::corner(CornerType type) const
|
||||
{
|
||||
switch(type)
|
||||
{
|
||||
default:
|
||||
ei_assert(false && "Bad corner type.");
|
||||
case TopLeft:
|
||||
return Block<Derived, CRows, CCols>(derived(), 0, 0);
|
||||
case TopRight:
|
||||
return Block<Derived, CRows, CCols>(derived(), 0, cols() - CCols);
|
||||
case BottomLeft:
|
||||
return Block<Derived, CRows, CCols>(derived(), rows() - CRows, 0);
|
||||
case BottomRight:
|
||||
return Block<Derived, CRows, CCols>(derived(), rows() - CRows, cols() - CCols);
|
||||
}
|
||||
}
|
||||
|
||||
/** \returns a fixed-size expression of a block in *this.
|
||||
*
|
||||
* The template parameters \a BlockRows and \a BlockCols are the number of
|
||||
* rows and columns in the block.
|
||||
*
|
||||
* \param startRow the first row in the block
|
||||
* \param startCol the first column in the block
|
||||
*
|
||||
* \addexample BlockSubMatrixFixedSize \label How to reference a sub-matrix (fixed-size)
|
||||
*
|
||||
* Example: \include MatrixBase_block_int_int.cpp
|
||||
* Output: \verbinclude MatrixBase_block_int_int.out
|
||||
*
|
||||
* \note since block is a templated member, the keyword template has to be used
|
||||
* if the matrix type is also a template parameter: \code m.template block<3,3>(1,1); \endcode
|
||||
*
|
||||
* \sa class Block, block(int,int,int,int)
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<int BlockRows, int BlockCols>
|
||||
inline typename BlockReturnType<Derived, BlockRows, BlockCols>::Type
|
||||
MatrixBase<Derived>::block(int startRow, int startCol)
|
||||
{
|
||||
return Block<Derived, BlockRows, BlockCols>(derived(), startRow, startCol);
|
||||
}
|
||||
|
||||
/** This is the const version of block<>(int, int). */
|
||||
template<typename Derived>
|
||||
template<int BlockRows, int BlockCols>
|
||||
inline const typename BlockReturnType<Derived, BlockRows, BlockCols>::Type
|
||||
MatrixBase<Derived>::block(int startRow, int startCol) const
|
||||
{
|
||||
return Block<Derived, BlockRows, BlockCols>(derived(), startRow, startCol);
|
||||
}
|
||||
|
||||
/** \returns an expression of the \a i-th column of *this. Note that the numbering starts at 0.
|
||||
*
|
||||
* \addexample BlockColumn \label How to reference a single column of a matrix
|
||||
*
|
||||
* Example: \include MatrixBase_col.cpp
|
||||
* Output: \verbinclude MatrixBase_col.out
|
||||
*
|
||||
* \sa row(), class Block */
|
||||
template<typename Derived>
|
||||
inline typename MatrixBase<Derived>::ColXpr
|
||||
MatrixBase<Derived>::col(int i)
|
||||
{
|
||||
return ColXpr(derived(), i);
|
||||
}
|
||||
|
||||
/** This is the const version of col(). */
|
||||
template<typename Derived>
|
||||
inline const typename MatrixBase<Derived>::ColXpr
|
||||
MatrixBase<Derived>::col(int i) const
|
||||
{
|
||||
return ColXpr(derived(), i);
|
||||
}
|
||||
|
||||
/** \returns an expression of the \a i-th row of *this. Note that the numbering starts at 0.
|
||||
*
|
||||
* \addexample BlockRow \label How to reference a single row of a matrix
|
||||
*
|
||||
* Example: \include MatrixBase_row.cpp
|
||||
* Output: \verbinclude MatrixBase_row.out
|
||||
*
|
||||
* \sa col(), class Block */
|
||||
template<typename Derived>
|
||||
inline typename MatrixBase<Derived>::RowXpr
|
||||
MatrixBase<Derived>::row(int i)
|
||||
{
|
||||
return RowXpr(derived(), i);
|
||||
}
|
||||
|
||||
/** This is the const version of row(). */
|
||||
template<typename Derived>
|
||||
inline const typename MatrixBase<Derived>::RowXpr
|
||||
MatrixBase<Derived>::row(int i) const
|
||||
{
|
||||
return RowXpr(derived(), i);
|
||||
}
|
||||
|
||||
#endif // EIGEN_BLOCK_H
|
@ -0,0 +1,9 @@
|
||||
FILE(GLOB Eigen_Core_SRCS "*.h")
|
||||
|
||||
INSTALL(FILES
|
||||
${Eigen_Core_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core
|
||||
)
|
||||
|
||||
ADD_SUBDIRECTORY(util)
|
||||
ADD_SUBDIRECTORY(arch)
|
@ -0,0 +1,753 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_CACHE_FRIENDLY_PRODUCT_H
|
||||
#define EIGEN_CACHE_FRIENDLY_PRODUCT_H
|
||||
|
||||
template <int L2MemorySize,typename Scalar>
|
||||
struct ei_L2_block_traits {
|
||||
enum {width = 8 * ei_meta_sqrt<L2MemorySize/(64*sizeof(Scalar))>::ret };
|
||||
};
|
||||
|
||||
#ifndef EIGEN_EXTERN_INSTANTIATIONS
|
||||
|
||||
template<typename Scalar>
|
||||
void ei_cache_friendly_product(
|
||||
int _rows, int _cols, int depth,
|
||||
bool _lhsRowMajor, const Scalar* _lhs, int _lhsStride,
|
||||
bool _rhsRowMajor, const Scalar* _rhs, int _rhsStride,
|
||||
bool resRowMajor, Scalar* res, int resStride)
|
||||
{
|
||||
const Scalar* EIGEN_RESTRICT lhs;
|
||||
const Scalar* EIGEN_RESTRICT rhs;
|
||||
int lhsStride, rhsStride, rows, cols;
|
||||
bool lhsRowMajor;
|
||||
|
||||
if (resRowMajor)
|
||||
{
|
||||
lhs = _rhs;
|
||||
rhs = _lhs;
|
||||
lhsStride = _rhsStride;
|
||||
rhsStride = _lhsStride;
|
||||
cols = _rows;
|
||||
rows = _cols;
|
||||
lhsRowMajor = !_rhsRowMajor;
|
||||
ei_assert(_lhsRowMajor);
|
||||
}
|
||||
else
|
||||
{
|
||||
lhs = _lhs;
|
||||
rhs = _rhs;
|
||||
lhsStride = _lhsStride;
|
||||
rhsStride = _rhsStride;
|
||||
rows = _rows;
|
||||
cols = _cols;
|
||||
lhsRowMajor = _lhsRowMajor;
|
||||
ei_assert(!_rhsRowMajor);
|
||||
}
|
||||
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketType;
|
||||
|
||||
enum {
|
||||
PacketSize = sizeof(PacketType)/sizeof(Scalar),
|
||||
#if (defined __i386__)
|
||||
// i386 architecture provides only 8 xmm registers,
|
||||
// so let's reduce the max number of rows processed at once.
|
||||
MaxBlockRows = 4,
|
||||
MaxBlockRows_ClampingMask = 0xFFFFFC,
|
||||
#else
|
||||
MaxBlockRows = 8,
|
||||
MaxBlockRows_ClampingMask = 0xFFFFF8,
|
||||
#endif
|
||||
// maximal size of the blocks fitted in L2 cache
|
||||
MaxL2BlockSize = ei_L2_block_traits<EIGEN_TUNE_FOR_CPU_CACHE_SIZE,Scalar>::width
|
||||
};
|
||||
|
||||
const bool resIsAligned = (PacketSize==1) || (((resStride%PacketSize) == 0) && (std::size_t(res)%16==0));
|
||||
|
||||
const int remainingSize = depth % PacketSize;
|
||||
const int size = depth - remainingSize; // third dimension of the product clamped to packet boundaries
|
||||
const int l2BlockRows = MaxL2BlockSize > rows ? rows : MaxL2BlockSize;
|
||||
const int l2BlockCols = MaxL2BlockSize > cols ? cols : MaxL2BlockSize;
|
||||
const int l2BlockSize = MaxL2BlockSize > size ? size : MaxL2BlockSize;
|
||||
const int l2BlockSizeAligned = (1 + std::max(l2BlockSize,l2BlockCols)/PacketSize)*PacketSize;
|
||||
const bool needRhsCopy = (PacketSize>1) && ((rhsStride%PacketSize!=0) || (std::size_t(rhs)%16!=0));
|
||||
Scalar* EIGEN_RESTRICT block = 0;
|
||||
const int allocBlockSize = l2BlockRows*size;
|
||||
block = ei_aligned_stack_new(Scalar, allocBlockSize);
|
||||
Scalar* EIGEN_RESTRICT rhsCopy
|
||||
= ei_aligned_stack_new(Scalar, l2BlockSizeAligned*l2BlockSizeAligned);
|
||||
|
||||
// loops on each L2 cache friendly blocks of the result
|
||||
for(int l2i=0; l2i<rows; l2i+=l2BlockRows)
|
||||
{
|
||||
const int l2blockRowEnd = std::min(l2i+l2BlockRows, rows);
|
||||
const int l2blockRowEndBW = l2blockRowEnd & MaxBlockRows_ClampingMask; // end of the rows aligned to bw
|
||||
const int l2blockRemainingRows = l2blockRowEnd - l2blockRowEndBW; // number of remaining rows
|
||||
//const int l2blockRowEndBWPlusOne = l2blockRowEndBW + (l2blockRemainingRows?0:MaxBlockRows);
|
||||
|
||||
// build a cache friendly blocky matrix
|
||||
int count = 0;
|
||||
|
||||
// copy l2blocksize rows of m_lhs to blocks of ps x bw
|
||||
for(int l2k=0; l2k<size; l2k+=l2BlockSize)
|
||||
{
|
||||
const int l2blockSizeEnd = std::min(l2k+l2BlockSize, size);
|
||||
|
||||
for (int i = l2i; i<l2blockRowEndBW/*PlusOne*/; i+=MaxBlockRows)
|
||||
{
|
||||
// TODO merge the "if l2blockRemainingRows" using something like:
|
||||
// const int blockRows = std::min(i+MaxBlockRows, rows) - i;
|
||||
|
||||
for (int k=l2k; k<l2blockSizeEnd; k+=PacketSize)
|
||||
{
|
||||
// TODO write these loops using meta unrolling
|
||||
// negligible for large matrices but useful for small ones
|
||||
if (lhsRowMajor)
|
||||
{
|
||||
for (int w=0; w<MaxBlockRows; ++w)
|
||||
for (int s=0; s<PacketSize; ++s)
|
||||
block[count++] = lhs[(i+w)*lhsStride + (k+s)];
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int w=0; w<MaxBlockRows; ++w)
|
||||
for (int s=0; s<PacketSize; ++s)
|
||||
block[count++] = lhs[(i+w) + (k+s)*lhsStride];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (l2blockRemainingRows>0)
|
||||
{
|
||||
for (int k=l2k; k<l2blockSizeEnd; k+=PacketSize)
|
||||
{
|
||||
if (lhsRowMajor)
|
||||
{
|
||||
for (int w=0; w<l2blockRemainingRows; ++w)
|
||||
for (int s=0; s<PacketSize; ++s)
|
||||
block[count++] = lhs[(l2blockRowEndBW+w)*lhsStride + (k+s)];
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int w=0; w<l2blockRemainingRows; ++w)
|
||||
for (int s=0; s<PacketSize; ++s)
|
||||
block[count++] = lhs[(l2blockRowEndBW+w) + (k+s)*lhsStride];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for(int l2j=0; l2j<cols; l2j+=l2BlockCols)
|
||||
{
|
||||
int l2blockColEnd = std::min(l2j+l2BlockCols, cols);
|
||||
|
||||
for(int l2k=0; l2k<size; l2k+=l2BlockSize)
|
||||
{
|
||||
// acumulate bw rows of lhs time a single column of rhs to a bw x 1 block of res
|
||||
int l2blockSizeEnd = std::min(l2k+l2BlockSize, size);
|
||||
|
||||
// if not aligned, copy the rhs block
|
||||
if (needRhsCopy)
|
||||
for(int l1j=l2j; l1j<l2blockColEnd; l1j+=1)
|
||||
{
|
||||
ei_internal_assert(l2BlockSizeAligned*(l1j-l2j)+(l2blockSizeEnd-l2k) < l2BlockSizeAligned*l2BlockSizeAligned);
|
||||
std::memcpy(rhsCopy+l2BlockSizeAligned*(l1j-l2j),&(rhs[l1j*rhsStride+l2k]),(l2blockSizeEnd-l2k)*sizeof(Scalar));
|
||||
}
|
||||
|
||||
// for each bw x 1 result's block
|
||||
for(int l1i=l2i; l1i<l2blockRowEndBW; l1i+=MaxBlockRows)
|
||||
{
|
||||
int offsetblock = l2k * (l2blockRowEnd-l2i) + (l1i-l2i)*(l2blockSizeEnd-l2k) - l2k*MaxBlockRows;
|
||||
const Scalar* EIGEN_RESTRICT localB = &block[offsetblock];
|
||||
|
||||
for(int l1j=l2j; l1j<l2blockColEnd; l1j+=1)
|
||||
{
|
||||
const Scalar* EIGEN_RESTRICT rhsColumn;
|
||||
if (needRhsCopy)
|
||||
rhsColumn = &(rhsCopy[l2BlockSizeAligned*(l1j-l2j)-l2k]);
|
||||
else
|
||||
rhsColumn = &(rhs[l1j*rhsStride]);
|
||||
|
||||
PacketType dst[MaxBlockRows];
|
||||
dst[3] = dst[2] = dst[1] = dst[0] = ei_pset1(Scalar(0.));
|
||||
if (MaxBlockRows==8)
|
||||
dst[7] = dst[6] = dst[5] = dst[4] = dst[0];
|
||||
|
||||
PacketType tmp;
|
||||
|
||||
for(int k=l2k; k<l2blockSizeEnd; k+=PacketSize)
|
||||
{
|
||||
tmp = ei_ploadu(&rhsColumn[k]);
|
||||
PacketType A0, A1, A2, A3, A4, A5;
|
||||
A0 = ei_pload(localB + k*MaxBlockRows);
|
||||
A1 = ei_pload(localB + k*MaxBlockRows+1*PacketSize);
|
||||
A2 = ei_pload(localB + k*MaxBlockRows+2*PacketSize);
|
||||
A3 = ei_pload(localB + k*MaxBlockRows+3*PacketSize);
|
||||
if (MaxBlockRows==8) A4 = ei_pload(localB + k*MaxBlockRows+4*PacketSize);
|
||||
if (MaxBlockRows==8) A5 = ei_pload(localB + k*MaxBlockRows+5*PacketSize);
|
||||
dst[0] = ei_pmadd(tmp, A0, dst[0]);
|
||||
if (MaxBlockRows==8) A0 = ei_pload(localB + k*MaxBlockRows+6*PacketSize);
|
||||
dst[1] = ei_pmadd(tmp, A1, dst[1]);
|
||||
if (MaxBlockRows==8) A1 = ei_pload(localB + k*MaxBlockRows+7*PacketSize);
|
||||
dst[2] = ei_pmadd(tmp, A2, dst[2]);
|
||||
dst[3] = ei_pmadd(tmp, A3, dst[3]);
|
||||
if (MaxBlockRows==8)
|
||||
{
|
||||
dst[4] = ei_pmadd(tmp, A4, dst[4]);
|
||||
dst[5] = ei_pmadd(tmp, A5, dst[5]);
|
||||
dst[6] = ei_pmadd(tmp, A0, dst[6]);
|
||||
dst[7] = ei_pmadd(tmp, A1, dst[7]);
|
||||
}
|
||||
}
|
||||
|
||||
Scalar* EIGEN_RESTRICT localRes = &(res[l1i + l1j*resStride]);
|
||||
|
||||
if (PacketSize>1 && resIsAligned)
|
||||
{
|
||||
// the result is aligned: let's do packet reduction
|
||||
ei_pstore(&(localRes[0]), ei_padd(ei_pload(&(localRes[0])), ei_preduxp(&dst[0])));
|
||||
if (PacketSize==2)
|
||||
ei_pstore(&(localRes[2]), ei_padd(ei_pload(&(localRes[2])), ei_preduxp(&(dst[2]))));
|
||||
if (MaxBlockRows==8)
|
||||
{
|
||||
ei_pstore(&(localRes[4]), ei_padd(ei_pload(&(localRes[4])), ei_preduxp(&(dst[4]))));
|
||||
if (PacketSize==2)
|
||||
ei_pstore(&(localRes[6]), ei_padd(ei_pload(&(localRes[6])), ei_preduxp(&(dst[6]))));
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// not aligned => per coeff packet reduction
|
||||
localRes[0] += ei_predux(dst[0]);
|
||||
localRes[1] += ei_predux(dst[1]);
|
||||
localRes[2] += ei_predux(dst[2]);
|
||||
localRes[3] += ei_predux(dst[3]);
|
||||
if (MaxBlockRows==8)
|
||||
{
|
||||
localRes[4] += ei_predux(dst[4]);
|
||||
localRes[5] += ei_predux(dst[5]);
|
||||
localRes[6] += ei_predux(dst[6]);
|
||||
localRes[7] += ei_predux(dst[7]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (l2blockRemainingRows>0)
|
||||
{
|
||||
int offsetblock = l2k * (l2blockRowEnd-l2i) + (l2blockRowEndBW-l2i)*(l2blockSizeEnd-l2k) - l2k*l2blockRemainingRows;
|
||||
const Scalar* localB = &block[offsetblock];
|
||||
|
||||
for(int l1j=l2j; l1j<l2blockColEnd; l1j+=1)
|
||||
{
|
||||
const Scalar* EIGEN_RESTRICT rhsColumn;
|
||||
if (needRhsCopy)
|
||||
rhsColumn = &(rhsCopy[l2BlockSizeAligned*(l1j-l2j)-l2k]);
|
||||
else
|
||||
rhsColumn = &(rhs[l1j*rhsStride]);
|
||||
|
||||
PacketType dst[MaxBlockRows];
|
||||
dst[3] = dst[2] = dst[1] = dst[0] = ei_pset1(Scalar(0.));
|
||||
if (MaxBlockRows==8)
|
||||
dst[7] = dst[6] = dst[5] = dst[4] = dst[0];
|
||||
|
||||
// let's declare a few other temporary registers
|
||||
PacketType tmp;
|
||||
|
||||
for(int k=l2k; k<l2blockSizeEnd; k+=PacketSize)
|
||||
{
|
||||
tmp = ei_pload(&rhsColumn[k]);
|
||||
|
||||
dst[0] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows ])), dst[0]);
|
||||
if (l2blockRemainingRows>=2) dst[1] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+ PacketSize])), dst[1]);
|
||||
if (l2blockRemainingRows>=3) dst[2] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+2*PacketSize])), dst[2]);
|
||||
if (l2blockRemainingRows>=4) dst[3] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+3*PacketSize])), dst[3]);
|
||||
if (MaxBlockRows==8)
|
||||
{
|
||||
if (l2blockRemainingRows>=5) dst[4] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+4*PacketSize])), dst[4]);
|
||||
if (l2blockRemainingRows>=6) dst[5] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+5*PacketSize])), dst[5]);
|
||||
if (l2blockRemainingRows>=7) dst[6] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+6*PacketSize])), dst[6]);
|
||||
if (l2blockRemainingRows>=8) dst[7] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+7*PacketSize])), dst[7]);
|
||||
}
|
||||
}
|
||||
|
||||
Scalar* EIGEN_RESTRICT localRes = &(res[l2blockRowEndBW + l1j*resStride]);
|
||||
|
||||
// process the remaining rows once at a time
|
||||
localRes[0] += ei_predux(dst[0]);
|
||||
if (l2blockRemainingRows>=2) localRes[1] += ei_predux(dst[1]);
|
||||
if (l2blockRemainingRows>=3) localRes[2] += ei_predux(dst[2]);
|
||||
if (l2blockRemainingRows>=4) localRes[3] += ei_predux(dst[3]);
|
||||
if (MaxBlockRows==8)
|
||||
{
|
||||
if (l2blockRemainingRows>=5) localRes[4] += ei_predux(dst[4]);
|
||||
if (l2blockRemainingRows>=6) localRes[5] += ei_predux(dst[5]);
|
||||
if (l2blockRemainingRows>=7) localRes[6] += ei_predux(dst[6]);
|
||||
if (l2blockRemainingRows>=8) localRes[7] += ei_predux(dst[7]);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (PacketSize>1 && remainingSize)
|
||||
{
|
||||
if (lhsRowMajor)
|
||||
{
|
||||
for (int j=0; j<cols; ++j)
|
||||
for (int i=0; i<rows; ++i)
|
||||
{
|
||||
Scalar tmp = lhs[i*lhsStride+size] * rhs[j*rhsStride+size];
|
||||
// FIXME this loop get vectorized by the compiler !
|
||||
for (int k=1; k<remainingSize; ++k)
|
||||
tmp += lhs[i*lhsStride+size+k] * rhs[j*rhsStride+size+k];
|
||||
res[i+j*resStride] += tmp;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int j=0; j<cols; ++j)
|
||||
for (int i=0; i<rows; ++i)
|
||||
{
|
||||
Scalar tmp = lhs[i+size*lhsStride] * rhs[j*rhsStride+size];
|
||||
for (int k=1; k<remainingSize; ++k)
|
||||
tmp += lhs[i+(size+k)*lhsStride] * rhs[j*rhsStride+size+k];
|
||||
res[i+j*resStride] += tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ei_aligned_stack_delete(Scalar, block, allocBlockSize);
|
||||
ei_aligned_stack_delete(Scalar, rhsCopy, l2BlockSizeAligned*l2BlockSizeAligned);
|
||||
}
|
||||
|
||||
#endif // EIGEN_EXTERN_INSTANTIATIONS
|
||||
|
||||
/* Optimized col-major matrix * vector product:
|
||||
* This algorithm processes 4 columns at onces that allows to both reduce
|
||||
* the number of load/stores of the result by a factor 4 and to reduce
|
||||
* the instruction dependency. Moreover, we know that all bands have the
|
||||
* same alignment pattern.
|
||||
* TODO: since rhs gets evaluated only once, no need to evaluate it
|
||||
*/
|
||||
template<typename Scalar, typename RhsType>
|
||||
EIGEN_DONT_INLINE void ei_cache_friendly_product_colmajor_times_vector(
|
||||
int size,
|
||||
const Scalar* lhs, int lhsStride,
|
||||
const RhsType& rhs,
|
||||
Scalar* res)
|
||||
{
|
||||
#ifdef _EIGEN_ACCUMULATE_PACKETS
|
||||
#error _EIGEN_ACCUMULATE_PACKETS has already been defined
|
||||
#endif
|
||||
#define _EIGEN_ACCUMULATE_PACKETS(A0,A13,A2) \
|
||||
ei_pstore(&res[j], \
|
||||
ei_padd(ei_pload(&res[j]), \
|
||||
ei_padd( \
|
||||
ei_padd(ei_pmul(ptmp0,EIGEN_CAT(ei_ploa , A0)(&lhs0[j])), \
|
||||
ei_pmul(ptmp1,EIGEN_CAT(ei_ploa , A13)(&lhs1[j]))), \
|
||||
ei_padd(ei_pmul(ptmp2,EIGEN_CAT(ei_ploa , A2)(&lhs2[j])), \
|
||||
ei_pmul(ptmp3,EIGEN_CAT(ei_ploa , A13)(&lhs3[j]))) )))
|
||||
|
||||
typedef typename ei_packet_traits<Scalar>::type Packet;
|
||||
const int PacketSize = sizeof(Packet)/sizeof(Scalar);
|
||||
|
||||
enum { AllAligned = 0, EvenAligned, FirstAligned, NoneAligned };
|
||||
const int columnsAtOnce = 4;
|
||||
const int peels = 2;
|
||||
const int PacketAlignedMask = PacketSize-1;
|
||||
const int PeelAlignedMask = PacketSize*peels-1;
|
||||
|
||||
// How many coeffs of the result do we have to skip to be aligned.
|
||||
// Here we assume data are at least aligned on the base scalar type that is mandatory anyway.
|
||||
const int alignedStart = ei_alignmentOffset(res,size);
|
||||
const int alignedSize = PacketSize>1 ? alignedStart + ((size-alignedStart) & ~PacketAlignedMask) : 0;
|
||||
const int peeledSize = peels>1 ? alignedStart + ((alignedSize-alignedStart) & ~PeelAlignedMask) : alignedStart;
|
||||
|
||||
const int alignmentStep = PacketSize>1 ? (PacketSize - lhsStride % PacketSize) & PacketAlignedMask : 0;
|
||||
int alignmentPattern = alignmentStep==0 ? AllAligned
|
||||
: alignmentStep==(PacketSize/2) ? EvenAligned
|
||||
: FirstAligned;
|
||||
|
||||
// we cannot assume the first element is aligned because of sub-matrices
|
||||
const int lhsAlignmentOffset = ei_alignmentOffset(lhs,size);
|
||||
|
||||
// find how many columns do we have to skip to be aligned with the result (if possible)
|
||||
int skipColumns = 0;
|
||||
if (PacketSize>1)
|
||||
{
|
||||
ei_internal_assert(std::size_t(lhs+lhsAlignmentOffset)%sizeof(Packet)==0 || size<PacketSize);
|
||||
|
||||
while (skipColumns<PacketSize &&
|
||||
alignedStart != ((lhsAlignmentOffset + alignmentStep*skipColumns)%PacketSize))
|
||||
++skipColumns;
|
||||
if (skipColumns==PacketSize)
|
||||
{
|
||||
// nothing can be aligned, no need to skip any column
|
||||
alignmentPattern = NoneAligned;
|
||||
skipColumns = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
skipColumns = std::min(skipColumns,rhs.size());
|
||||
// note that the skiped columns are processed later.
|
||||
}
|
||||
|
||||
ei_internal_assert((alignmentPattern==NoneAligned) || (std::size_t(lhs+alignedStart+lhsStride*skipColumns)%sizeof(Packet))==0);
|
||||
}
|
||||
|
||||
int offset1 = (FirstAligned && alignmentStep==1?3:1);
|
||||
int offset3 = (FirstAligned && alignmentStep==1?1:3);
|
||||
|
||||
int columnBound = ((rhs.size()-skipColumns)/columnsAtOnce)*columnsAtOnce + skipColumns;
|
||||
for (int i=skipColumns; i<columnBound; i+=columnsAtOnce)
|
||||
{
|
||||
Packet ptmp0 = ei_pset1(rhs[i]), ptmp1 = ei_pset1(rhs[i+offset1]),
|
||||
ptmp2 = ei_pset1(rhs[i+2]), ptmp3 = ei_pset1(rhs[i+offset3]);
|
||||
|
||||
// this helps a lot generating better binary code
|
||||
const Scalar *lhs0 = lhs + i*lhsStride, *lhs1 = lhs + (i+offset1)*lhsStride,
|
||||
*lhs2 = lhs + (i+2)*lhsStride, *lhs3 = lhs + (i+offset3)*lhsStride;
|
||||
|
||||
if (PacketSize>1)
|
||||
{
|
||||
/* explicit vectorization */
|
||||
// process initial unaligned coeffs
|
||||
for (int j=0; j<alignedStart; ++j)
|
||||
res[j] += ei_pfirst(ptmp0)*lhs0[j] + ei_pfirst(ptmp1)*lhs1[j] + ei_pfirst(ptmp2)*lhs2[j] + ei_pfirst(ptmp3)*lhs3[j];
|
||||
|
||||
if (alignedSize>alignedStart)
|
||||
{
|
||||
switch(alignmentPattern)
|
||||
{
|
||||
case AllAligned:
|
||||
for (int j = alignedStart; j<alignedSize; j+=PacketSize)
|
||||
_EIGEN_ACCUMULATE_PACKETS(d,d,d);
|
||||
break;
|
||||
case EvenAligned:
|
||||
for (int j = alignedStart; j<alignedSize; j+=PacketSize)
|
||||
_EIGEN_ACCUMULATE_PACKETS(d,du,d);
|
||||
break;
|
||||
case FirstAligned:
|
||||
if(peels>1)
|
||||
{
|
||||
Packet A00, A01, A02, A03, A10, A11, A12, A13;
|
||||
|
||||
A01 = ei_pload(&lhs1[alignedStart-1]);
|
||||
A02 = ei_pload(&lhs2[alignedStart-2]);
|
||||
A03 = ei_pload(&lhs3[alignedStart-3]);
|
||||
|
||||
for (int j = alignedStart; j<peeledSize; j+=peels*PacketSize)
|
||||
{
|
||||
A11 = ei_pload(&lhs1[j-1+PacketSize]); ei_palign<1>(A01,A11);
|
||||
A12 = ei_pload(&lhs2[j-2+PacketSize]); ei_palign<2>(A02,A12);
|
||||
A13 = ei_pload(&lhs3[j-3+PacketSize]); ei_palign<3>(A03,A13);
|
||||
|
||||
A00 = ei_pload (&lhs0[j]);
|
||||
A10 = ei_pload (&lhs0[j+PacketSize]);
|
||||
A00 = ei_pmadd(ptmp0, A00, ei_pload(&res[j]));
|
||||
A10 = ei_pmadd(ptmp0, A10, ei_pload(&res[j+PacketSize]));
|
||||
|
||||
A00 = ei_pmadd(ptmp1, A01, A00);
|
||||
A01 = ei_pload(&lhs1[j-1+2*PacketSize]); ei_palign<1>(A11,A01);
|
||||
A00 = ei_pmadd(ptmp2, A02, A00);
|
||||
A02 = ei_pload(&lhs2[j-2+2*PacketSize]); ei_palign<2>(A12,A02);
|
||||
A00 = ei_pmadd(ptmp3, A03, A00);
|
||||
ei_pstore(&res[j],A00);
|
||||
A03 = ei_pload(&lhs3[j-3+2*PacketSize]); ei_palign<3>(A13,A03);
|
||||
A10 = ei_pmadd(ptmp1, A11, A10);
|
||||
A10 = ei_pmadd(ptmp2, A12, A10);
|
||||
A10 = ei_pmadd(ptmp3, A13, A10);
|
||||
ei_pstore(&res[j+PacketSize],A10);
|
||||
}
|
||||
}
|
||||
for (int j = peeledSize; j<alignedSize; j+=PacketSize)
|
||||
_EIGEN_ACCUMULATE_PACKETS(d,du,du);
|
||||
break;
|
||||
default:
|
||||
for (int j = alignedStart; j<alignedSize; j+=PacketSize)
|
||||
_EIGEN_ACCUMULATE_PACKETS(du,du,du);
|
||||
break;
|
||||
}
|
||||
}
|
||||
} // end explicit vectorization
|
||||
|
||||
/* process remaining coeffs (or all if there is no explicit vectorization) */
|
||||
for (int j=alignedSize; j<size; ++j)
|
||||
res[j] += ei_pfirst(ptmp0)*lhs0[j] + ei_pfirst(ptmp1)*lhs1[j] + ei_pfirst(ptmp2)*lhs2[j] + ei_pfirst(ptmp3)*lhs3[j];
|
||||
}
|
||||
|
||||
// process remaining first and last columns (at most columnsAtOnce-1)
|
||||
int end = rhs.size();
|
||||
int start = columnBound;
|
||||
do
|
||||
{
|
||||
for (int i=start; i<end; ++i)
|
||||
{
|
||||
Packet ptmp0 = ei_pset1(rhs[i]);
|
||||
const Scalar* lhs0 = lhs + i*lhsStride;
|
||||
|
||||
if (PacketSize>1)
|
||||
{
|
||||
/* explicit vectorization */
|
||||
// process first unaligned result's coeffs
|
||||
for (int j=0; j<alignedStart; ++j)
|
||||
res[j] += ei_pfirst(ptmp0) * lhs0[j];
|
||||
|
||||
// process aligned result's coeffs
|
||||
if ((std::size_t(lhs0+alignedStart)%sizeof(Packet))==0)
|
||||
for (int j = alignedStart;j<alignedSize;j+=PacketSize)
|
||||
ei_pstore(&res[j], ei_pmadd(ptmp0,ei_pload(&lhs0[j]),ei_pload(&res[j])));
|
||||
else
|
||||
for (int j = alignedStart;j<alignedSize;j+=PacketSize)
|
||||
ei_pstore(&res[j], ei_pmadd(ptmp0,ei_ploadu(&lhs0[j]),ei_pload(&res[j])));
|
||||
}
|
||||
|
||||
// process remaining scalars (or all if no explicit vectorization)
|
||||
for (int j=alignedSize; j<size; ++j)
|
||||
res[j] += ei_pfirst(ptmp0) * lhs0[j];
|
||||
}
|
||||
if (skipColumns)
|
||||
{
|
||||
start = 0;
|
||||
end = skipColumns;
|
||||
skipColumns = 0;
|
||||
}
|
||||
else
|
||||
break;
|
||||
} while(PacketSize>1);
|
||||
#undef _EIGEN_ACCUMULATE_PACKETS
|
||||
}
|
||||
|
||||
// TODO add peeling to mask unaligned load/stores
|
||||
template<typename Scalar, typename ResType>
|
||||
EIGEN_DONT_INLINE void ei_cache_friendly_product_rowmajor_times_vector(
|
||||
const Scalar* lhs, int lhsStride,
|
||||
const Scalar* rhs, int rhsSize,
|
||||
ResType& res)
|
||||
{
|
||||
#ifdef _EIGEN_ACCUMULATE_PACKETS
|
||||
#error _EIGEN_ACCUMULATE_PACKETS has already been defined
|
||||
#endif
|
||||
|
||||
#define _EIGEN_ACCUMULATE_PACKETS(A0,A13,A2) {\
|
||||
Packet b = ei_pload(&rhs[j]); \
|
||||
ptmp0 = ei_pmadd(b, EIGEN_CAT(ei_ploa,A0) (&lhs0[j]), ptmp0); \
|
||||
ptmp1 = ei_pmadd(b, EIGEN_CAT(ei_ploa,A13)(&lhs1[j]), ptmp1); \
|
||||
ptmp2 = ei_pmadd(b, EIGEN_CAT(ei_ploa,A2) (&lhs2[j]), ptmp2); \
|
||||
ptmp3 = ei_pmadd(b, EIGEN_CAT(ei_ploa,A13)(&lhs3[j]), ptmp3); }
|
||||
|
||||
typedef typename ei_packet_traits<Scalar>::type Packet;
|
||||
const int PacketSize = sizeof(Packet)/sizeof(Scalar);
|
||||
|
||||
enum { AllAligned=0, EvenAligned=1, FirstAligned=2, NoneAligned=3 };
|
||||
const int rowsAtOnce = 4;
|
||||
const int peels = 2;
|
||||
const int PacketAlignedMask = PacketSize-1;
|
||||
const int PeelAlignedMask = PacketSize*peels-1;
|
||||
const int size = rhsSize;
|
||||
|
||||
// How many coeffs of the result do we have to skip to be aligned.
|
||||
// Here we assume data are at least aligned on the base scalar type that is mandatory anyway.
|
||||
const int alignedStart = ei_alignmentOffset(rhs, size);
|
||||
const int alignedSize = PacketSize>1 ? alignedStart + ((size-alignedStart) & ~PacketAlignedMask) : 0;
|
||||
const int peeledSize = peels>1 ? alignedStart + ((alignedSize-alignedStart) & ~PeelAlignedMask) : alignedStart;
|
||||
|
||||
const int alignmentStep = PacketSize>1 ? (PacketSize - lhsStride % PacketSize) & PacketAlignedMask : 0;
|
||||
int alignmentPattern = alignmentStep==0 ? AllAligned
|
||||
: alignmentStep==(PacketSize/2) ? EvenAligned
|
||||
: FirstAligned;
|
||||
|
||||
// we cannot assume the first element is aligned because of sub-matrices
|
||||
const int lhsAlignmentOffset = ei_alignmentOffset(lhs,size);
|
||||
|
||||
// find how many rows do we have to skip to be aligned with rhs (if possible)
|
||||
int skipRows = 0;
|
||||
if (PacketSize>1)
|
||||
{
|
||||
ei_internal_assert(std::size_t(lhs+lhsAlignmentOffset)%sizeof(Packet)==0 || size<PacketSize);
|
||||
|
||||
while (skipRows<PacketSize &&
|
||||
alignedStart != ((lhsAlignmentOffset + alignmentStep*skipRows)%PacketSize))
|
||||
++skipRows;
|
||||
if (skipRows==PacketSize)
|
||||
{
|
||||
// nothing can be aligned, no need to skip any column
|
||||
alignmentPattern = NoneAligned;
|
||||
skipRows = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
skipRows = std::min(skipRows,res.size());
|
||||
// note that the skiped columns are processed later.
|
||||
}
|
||||
ei_internal_assert((alignmentPattern==NoneAligned) || PacketSize==1
|
||||
|| (std::size_t(lhs+alignedStart+lhsStride*skipRows)%sizeof(Packet))==0);
|
||||
}
|
||||
|
||||
int offset1 = (FirstAligned && alignmentStep==1?3:1);
|
||||
int offset3 = (FirstAligned && alignmentStep==1?1:3);
|
||||
|
||||
int rowBound = ((res.size()-skipRows)/rowsAtOnce)*rowsAtOnce + skipRows;
|
||||
for (int i=skipRows; i<rowBound; i+=rowsAtOnce)
|
||||
{
|
||||
Scalar tmp0 = Scalar(0), tmp1 = Scalar(0), tmp2 = Scalar(0), tmp3 = Scalar(0);
|
||||
|
||||
// this helps the compiler generating good binary code
|
||||
const Scalar *lhs0 = lhs + i*lhsStride, *lhs1 = lhs + (i+offset1)*lhsStride,
|
||||
*lhs2 = lhs + (i+2)*lhsStride, *lhs3 = lhs + (i+offset3)*lhsStride;
|
||||
|
||||
if (PacketSize>1)
|
||||
{
|
||||
/* explicit vectorization */
|
||||
Packet ptmp0 = ei_pset1(Scalar(0)), ptmp1 = ei_pset1(Scalar(0)), ptmp2 = ei_pset1(Scalar(0)), ptmp3 = ei_pset1(Scalar(0));
|
||||
|
||||
// process initial unaligned coeffs
|
||||
// FIXME this loop get vectorized by the compiler !
|
||||
for (int j=0; j<alignedStart; ++j)
|
||||
{
|
||||
Scalar b = rhs[j];
|
||||
tmp0 += b*lhs0[j]; tmp1 += b*lhs1[j]; tmp2 += b*lhs2[j]; tmp3 += b*lhs3[j];
|
||||
}
|
||||
|
||||
if (alignedSize>alignedStart)
|
||||
{
|
||||
switch(alignmentPattern)
|
||||
{
|
||||
case AllAligned:
|
||||
for (int j = alignedStart; j<alignedSize; j+=PacketSize)
|
||||
_EIGEN_ACCUMULATE_PACKETS(d,d,d);
|
||||
break;
|
||||
case EvenAligned:
|
||||
for (int j = alignedStart; j<alignedSize; j+=PacketSize)
|
||||
_EIGEN_ACCUMULATE_PACKETS(d,du,d);
|
||||
break;
|
||||
case FirstAligned:
|
||||
if (peels>1)
|
||||
{
|
||||
/* Here we proccess 4 rows with with two peeled iterations to hide
|
||||
* tghe overhead of unaligned loads. Moreover unaligned loads are handled
|
||||
* using special shift/move operations between the two aligned packets
|
||||
* overlaping the desired unaligned packet. This is *much* more efficient
|
||||
* than basic unaligned loads.
|
||||
*/
|
||||
Packet A01, A02, A03, b, A11, A12, A13;
|
||||
A01 = ei_pload(&lhs1[alignedStart-1]);
|
||||
A02 = ei_pload(&lhs2[alignedStart-2]);
|
||||
A03 = ei_pload(&lhs3[alignedStart-3]);
|
||||
|
||||
for (int j = alignedStart; j<peeledSize; j+=peels*PacketSize)
|
||||
{
|
||||
b = ei_pload(&rhs[j]);
|
||||
A11 = ei_pload(&lhs1[j-1+PacketSize]); ei_palign<1>(A01,A11);
|
||||
A12 = ei_pload(&lhs2[j-2+PacketSize]); ei_palign<2>(A02,A12);
|
||||
A13 = ei_pload(&lhs3[j-3+PacketSize]); ei_palign<3>(A03,A13);
|
||||
|
||||
ptmp0 = ei_pmadd(b, ei_pload (&lhs0[j]), ptmp0);
|
||||
ptmp1 = ei_pmadd(b, A01, ptmp1);
|
||||
A01 = ei_pload(&lhs1[j-1+2*PacketSize]); ei_palign<1>(A11,A01);
|
||||
ptmp2 = ei_pmadd(b, A02, ptmp2);
|
||||
A02 = ei_pload(&lhs2[j-2+2*PacketSize]); ei_palign<2>(A12,A02);
|
||||
ptmp3 = ei_pmadd(b, A03, ptmp3);
|
||||
A03 = ei_pload(&lhs3[j-3+2*PacketSize]); ei_palign<3>(A13,A03);
|
||||
|
||||
b = ei_pload(&rhs[j+PacketSize]);
|
||||
ptmp0 = ei_pmadd(b, ei_pload (&lhs0[j+PacketSize]), ptmp0);
|
||||
ptmp1 = ei_pmadd(b, A11, ptmp1);
|
||||
ptmp2 = ei_pmadd(b, A12, ptmp2);
|
||||
ptmp3 = ei_pmadd(b, A13, ptmp3);
|
||||
}
|
||||
}
|
||||
for (int j = peeledSize; j<alignedSize; j+=PacketSize)
|
||||
_EIGEN_ACCUMULATE_PACKETS(d,du,du);
|
||||
break;
|
||||
default:
|
||||
for (int j = alignedStart; j<alignedSize; j+=PacketSize)
|
||||
_EIGEN_ACCUMULATE_PACKETS(du,du,du);
|
||||
break;
|
||||
}
|
||||
tmp0 += ei_predux(ptmp0);
|
||||
tmp1 += ei_predux(ptmp1);
|
||||
tmp2 += ei_predux(ptmp2);
|
||||
tmp3 += ei_predux(ptmp3);
|
||||
}
|
||||
} // end explicit vectorization
|
||||
|
||||
// process remaining coeffs (or all if no explicit vectorization)
|
||||
// FIXME this loop get vectorized by the compiler !
|
||||
for (int j=alignedSize; j<size; ++j)
|
||||
{
|
||||
Scalar b = rhs[j];
|
||||
tmp0 += b*lhs0[j]; tmp1 += b*lhs1[j]; tmp2 += b*lhs2[j]; tmp3 += b*lhs3[j];
|
||||
}
|
||||
res[i] += tmp0; res[i+offset1] += tmp1; res[i+2] += tmp2; res[i+offset3] += tmp3;
|
||||
}
|
||||
|
||||
// process remaining first and last rows (at most columnsAtOnce-1)
|
||||
int end = res.size();
|
||||
int start = rowBound;
|
||||
do
|
||||
{
|
||||
for (int i=start; i<end; ++i)
|
||||
{
|
||||
Scalar tmp0 = Scalar(0);
|
||||
Packet ptmp0 = ei_pset1(tmp0);
|
||||
const Scalar* lhs0 = lhs + i*lhsStride;
|
||||
// process first unaligned result's coeffs
|
||||
// FIXME this loop get vectorized by the compiler !
|
||||
for (int j=0; j<alignedStart; ++j)
|
||||
tmp0 += rhs[j] * lhs0[j];
|
||||
|
||||
if (alignedSize>alignedStart)
|
||||
{
|
||||
// process aligned rhs coeffs
|
||||
if ((std::size_t(lhs0+alignedStart)%sizeof(Packet))==0)
|
||||
for (int j = alignedStart;j<alignedSize;j+=PacketSize)
|
||||
ptmp0 = ei_pmadd(ei_pload(&rhs[j]), ei_pload(&lhs0[j]), ptmp0);
|
||||
else
|
||||
for (int j = alignedStart;j<alignedSize;j+=PacketSize)
|
||||
ptmp0 = ei_pmadd(ei_pload(&rhs[j]), ei_ploadu(&lhs0[j]), ptmp0);
|
||||
tmp0 += ei_predux(ptmp0);
|
||||
}
|
||||
|
||||
// process remaining scalars
|
||||
// FIXME this loop get vectorized by the compiler !
|
||||
for (int j=alignedSize; j<size; ++j)
|
||||
tmp0 += rhs[j] * lhs0[j];
|
||||
res[i] += tmp0;
|
||||
}
|
||||
if (skipRows)
|
||||
{
|
||||
start = 0;
|
||||
end = skipRows;
|
||||
skipRows = 0;
|
||||
}
|
||||
else
|
||||
break;
|
||||
} while(PacketSize>1);
|
||||
|
||||
#undef _EIGEN_ACCUMULATE_PACKETS
|
||||
}
|
||||
|
||||
#endif // EIGEN_CACHE_FRIENDLY_PRODUCT_H
|
384
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Coeffs.h
Normal file
384
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Coeffs.h
Normal file
@ -0,0 +1,384 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_COEFFS_H
|
||||
#define EIGEN_COEFFS_H
|
||||
|
||||
/** Short version: don't use this function, use
|
||||
* \link operator()(int,int) const \endlink instead.
|
||||
*
|
||||
* Long version: this function is similar to
|
||||
* \link operator()(int,int) const \endlink, but without the assertion.
|
||||
* Use this for limiting the performance cost of debugging code when doing
|
||||
* repeated coefficient access. Only use this when it is guaranteed that the
|
||||
* parameters \a row and \a col are in range.
|
||||
*
|
||||
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
|
||||
* function equivalent to \link operator()(int,int) const \endlink.
|
||||
*
|
||||
* \sa operator()(int,int) const, coeffRef(int,int), coeff(int) const
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename ei_traits<Derived>::Scalar MatrixBase<Derived>
|
||||
::coeff(int row, int col) const
|
||||
{
|
||||
ei_internal_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
return derived().coeff(row, col);
|
||||
}
|
||||
|
||||
/** \returns the coefficient at given the given row and column.
|
||||
*
|
||||
* \sa operator()(int,int), operator[](int) const
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename ei_traits<Derived>::Scalar MatrixBase<Derived>
|
||||
::operator()(int row, int col) const
|
||||
{
|
||||
ei_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
return derived().coeff(row, col);
|
||||
}
|
||||
|
||||
/** Short version: don't use this function, use
|
||||
* \link operator()(int,int) \endlink instead.
|
||||
*
|
||||
* Long version: this function is similar to
|
||||
* \link operator()(int,int) \endlink, but without the assertion.
|
||||
* Use this for limiting the performance cost of debugging code when doing
|
||||
* repeated coefficient access. Only use this when it is guaranteed that the
|
||||
* parameters \a row and \a col are in range.
|
||||
*
|
||||
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
|
||||
* function equivalent to \link operator()(int,int) \endlink.
|
||||
*
|
||||
* \sa operator()(int,int), coeff(int, int) const, coeffRef(int)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar& MatrixBase<Derived>
|
||||
::coeffRef(int row, int col)
|
||||
{
|
||||
ei_internal_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
return derived().coeffRef(row, col);
|
||||
}
|
||||
|
||||
/** \returns a reference to the coefficient at given the given row and column.
|
||||
*
|
||||
* \sa operator()(int,int) const, operator[](int)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar& MatrixBase<Derived>
|
||||
::operator()(int row, int col)
|
||||
{
|
||||
ei_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
return derived().coeffRef(row, col);
|
||||
}
|
||||
|
||||
/** Short version: don't use this function, use
|
||||
* \link operator[](int) const \endlink instead.
|
||||
*
|
||||
* Long version: this function is similar to
|
||||
* \link operator[](int) const \endlink, but without the assertion.
|
||||
* Use this for limiting the performance cost of debugging code when doing
|
||||
* repeated coefficient access. Only use this when it is guaranteed that the
|
||||
* parameter \a index is in range.
|
||||
*
|
||||
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
|
||||
* function equivalent to \link operator[](int) const \endlink.
|
||||
*
|
||||
* \sa operator[](int) const, coeffRef(int), coeff(int,int) const
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename ei_traits<Derived>::Scalar MatrixBase<Derived>
|
||||
::coeff(int index) const
|
||||
{
|
||||
ei_internal_assert(index >= 0 && index < size());
|
||||
return derived().coeff(index);
|
||||
}
|
||||
|
||||
/** \returns the coefficient at given index.
|
||||
*
|
||||
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
|
||||
*
|
||||
* \sa operator[](int), operator()(int,int) const, x() const, y() const,
|
||||
* z() const, w() const
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename ei_traits<Derived>::Scalar MatrixBase<Derived>
|
||||
::operator[](int index) const
|
||||
{
|
||||
ei_assert(index >= 0 && index < size());
|
||||
return derived().coeff(index);
|
||||
}
|
||||
|
||||
/** \returns the coefficient at given index.
|
||||
*
|
||||
* This is synonymous to operator[](int) const.
|
||||
*
|
||||
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
|
||||
*
|
||||
* \sa operator[](int), operator()(int,int) const, x() const, y() const,
|
||||
* z() const, w() const
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename ei_traits<Derived>::Scalar MatrixBase<Derived>
|
||||
::operator()(int index) const
|
||||
{
|
||||
ei_assert(index >= 0 && index < size());
|
||||
return derived().coeff(index);
|
||||
}
|
||||
|
||||
/** Short version: don't use this function, use
|
||||
* \link operator[](int) \endlink instead.
|
||||
*
|
||||
* Long version: this function is similar to
|
||||
* \link operator[](int) \endlink, but without the assertion.
|
||||
* Use this for limiting the performance cost of debugging code when doing
|
||||
* repeated coefficient access. Only use this when it is guaranteed that the
|
||||
* parameters \a row and \a col are in range.
|
||||
*
|
||||
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
|
||||
* function equivalent to \link operator[](int) \endlink.
|
||||
*
|
||||
* \sa operator[](int), coeff(int) const, coeffRef(int,int)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar& MatrixBase<Derived>
|
||||
::coeffRef(int index)
|
||||
{
|
||||
ei_internal_assert(index >= 0 && index < size());
|
||||
return derived().coeffRef(index);
|
||||
}
|
||||
|
||||
/** \returns a reference to the coefficient at given index.
|
||||
*
|
||||
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
|
||||
*
|
||||
* \sa operator[](int) const, operator()(int,int), x(), y(), z(), w()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar& MatrixBase<Derived>
|
||||
::operator[](int index)
|
||||
{
|
||||
ei_assert(index >= 0 && index < size());
|
||||
return derived().coeffRef(index);
|
||||
}
|
||||
|
||||
/** \returns a reference to the coefficient at given index.
|
||||
*
|
||||
* This is synonymous to operator[](int).
|
||||
*
|
||||
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
|
||||
*
|
||||
* \sa operator[](int) const, operator()(int,int), x(), y(), z(), w()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar& MatrixBase<Derived>
|
||||
::operator()(int index)
|
||||
{
|
||||
ei_assert(index >= 0 && index < size());
|
||||
return derived().coeffRef(index);
|
||||
}
|
||||
|
||||
/** equivalent to operator[](0). */
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename ei_traits<Derived>::Scalar MatrixBase<Derived>
|
||||
::x() const { return (*this)[0]; }
|
||||
|
||||
/** equivalent to operator[](1). */
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename ei_traits<Derived>::Scalar MatrixBase<Derived>
|
||||
::y() const { return (*this)[1]; }
|
||||
|
||||
/** equivalent to operator[](2). */
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename ei_traits<Derived>::Scalar MatrixBase<Derived>
|
||||
::z() const { return (*this)[2]; }
|
||||
|
||||
/** equivalent to operator[](3). */
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename ei_traits<Derived>::Scalar MatrixBase<Derived>
|
||||
::w() const { return (*this)[3]; }
|
||||
|
||||
/** equivalent to operator[](0). */
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar& MatrixBase<Derived>
|
||||
::x() { return (*this)[0]; }
|
||||
|
||||
/** equivalent to operator[](1). */
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar& MatrixBase<Derived>
|
||||
::y() { return (*this)[1]; }
|
||||
|
||||
/** equivalent to operator[](2). */
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar& MatrixBase<Derived>
|
||||
::z() { return (*this)[2]; }
|
||||
|
||||
/** equivalent to operator[](3). */
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar& MatrixBase<Derived>
|
||||
::w() { return (*this)[3]; }
|
||||
|
||||
/** \returns the packet of coefficients starting at the given row and column. It is your responsibility
|
||||
* to ensure that a packet really starts there. This method is only available on expressions having the
|
||||
* PacketAccessBit.
|
||||
*
|
||||
* The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select
|
||||
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
|
||||
* starting at an address which is a multiple of the packet size.
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE typename ei_packet_traits<typename ei_traits<Derived>::Scalar>::type
|
||||
MatrixBase<Derived>::packet(int row, int col) const
|
||||
{
|
||||
ei_internal_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
return derived().template packet<LoadMode>(row,col);
|
||||
}
|
||||
|
||||
/** Stores the given packet of coefficients, at the given row and column of this expression. It is your responsibility
|
||||
* to ensure that a packet really starts there. This method is only available on expressions having the
|
||||
* PacketAccessBit.
|
||||
*
|
||||
* The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select
|
||||
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
|
||||
* starting at an address which is a multiple of the packet size.
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<int StoreMode>
|
||||
EIGEN_STRONG_INLINE void MatrixBase<Derived>::writePacket
|
||||
(int row, int col, const typename ei_packet_traits<typename ei_traits<Derived>::Scalar>::type& x)
|
||||
{
|
||||
ei_internal_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
derived().template writePacket<StoreMode>(row,col,x);
|
||||
}
|
||||
|
||||
/** \returns the packet of coefficients starting at the given index. It is your responsibility
|
||||
* to ensure that a packet really starts there. This method is only available on expressions having the
|
||||
* PacketAccessBit and the LinearAccessBit.
|
||||
*
|
||||
* The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select
|
||||
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
|
||||
* starting at an address which is a multiple of the packet size.
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE typename ei_packet_traits<typename ei_traits<Derived>::Scalar>::type
|
||||
MatrixBase<Derived>::packet(int index) const
|
||||
{
|
||||
ei_internal_assert(index >= 0 && index < size());
|
||||
return derived().template packet<LoadMode>(index);
|
||||
}
|
||||
|
||||
/** Stores the given packet of coefficients, at the given index in this expression. It is your responsibility
|
||||
* to ensure that a packet really starts there. This method is only available on expressions having the
|
||||
* PacketAccessBit and the LinearAccessBit.
|
||||
*
|
||||
* The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select
|
||||
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
|
||||
* starting at an address which is a multiple of the packet size.
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<int StoreMode>
|
||||
EIGEN_STRONG_INLINE void MatrixBase<Derived>::writePacket
|
||||
(int index, const typename ei_packet_traits<typename ei_traits<Derived>::Scalar>::type& x)
|
||||
{
|
||||
ei_internal_assert(index >= 0 && index < size());
|
||||
derived().template writePacket<StoreMode>(index,x);
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
/** \internal Copies the coefficient at position (row,col) of other into *this.
|
||||
*
|
||||
* This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
|
||||
* with usual assignments.
|
||||
*
|
||||
* Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE void MatrixBase<Derived>::copyCoeff(int row, int col, const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
ei_internal_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
derived().coeffRef(row, col) = other.derived().coeff(row, col);
|
||||
}
|
||||
|
||||
/** \internal Copies the coefficient at the given index of other into *this.
|
||||
*
|
||||
* This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
|
||||
* with usual assignments.
|
||||
*
|
||||
* Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE void MatrixBase<Derived>::copyCoeff(int index, const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
ei_internal_assert(index >= 0 && index < size());
|
||||
derived().coeffRef(index) = other.derived().coeff(index);
|
||||
}
|
||||
|
||||
/** \internal Copies the packet at position (row,col) of other into *this.
|
||||
*
|
||||
* This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
|
||||
* with usual assignments.
|
||||
*
|
||||
* Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived, int StoreMode, int LoadMode>
|
||||
EIGEN_STRONG_INLINE void MatrixBase<Derived>::copyPacket(int row, int col, const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
ei_internal_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
derived().template writePacket<StoreMode>(row, col,
|
||||
other.derived().template packet<LoadMode>(row, col));
|
||||
}
|
||||
|
||||
/** \internal Copies the packet at the given index of other into *this.
|
||||
*
|
||||
* This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
|
||||
* with usual assignments.
|
||||
*
|
||||
* Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived, int StoreMode, int LoadMode>
|
||||
EIGEN_STRONG_INLINE void MatrixBase<Derived>::copyPacket(int index, const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
ei_internal_assert(index >= 0 && index < size());
|
||||
derived().template writePacket<StoreMode>(index,
|
||||
other.derived().template packet<LoadMode>(index));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif // EIGEN_COEFFS_H
|
@ -0,0 +1,152 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_COMMAINITIALIZER_H
|
||||
#define EIGEN_COMMAINITIALIZER_H
|
||||
|
||||
/** \class CommaInitializer
|
||||
*
|
||||
* \brief Helper class used by the comma initializer operator
|
||||
*
|
||||
* This class is internally used to implement the comma initializer feature. It is
|
||||
* the return type of MatrixBase::operator<<, and most of the time this is the only
|
||||
* way it is used.
|
||||
*
|
||||
* \sa \ref MatrixBaseCommaInitRef "MatrixBase::operator<<", CommaInitializer::finished()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
struct CommaInitializer
|
||||
{
|
||||
typedef typename ei_traits<MatrixType>::Scalar Scalar;
|
||||
inline CommaInitializer(MatrixType& mat, const Scalar& s)
|
||||
: m_matrix(mat), m_row(0), m_col(1), m_currentBlockRows(1)
|
||||
{
|
||||
m_matrix.coeffRef(0,0) = s;
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline CommaInitializer(MatrixType& mat, const MatrixBase<OtherDerived>& other)
|
||||
: m_matrix(mat), m_row(0), m_col(other.cols()), m_currentBlockRows(other.rows())
|
||||
{
|
||||
m_matrix.block(0, 0, other.rows(), other.cols()) = other;
|
||||
}
|
||||
|
||||
/* inserts a scalar value in the target matrix */
|
||||
CommaInitializer& operator,(const Scalar& s)
|
||||
{
|
||||
if (m_col==m_matrix.cols())
|
||||
{
|
||||
m_row+=m_currentBlockRows;
|
||||
m_col = 0;
|
||||
m_currentBlockRows = 1;
|
||||
ei_assert(m_row<m_matrix.rows()
|
||||
&& "Too many rows passed to comma initializer (operator<<)");
|
||||
}
|
||||
ei_assert(m_col<m_matrix.cols()
|
||||
&& "Too many coefficients passed to comma initializer (operator<<)");
|
||||
ei_assert(m_currentBlockRows==1);
|
||||
m_matrix.coeffRef(m_row, m_col++) = s;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/* inserts a matrix expression in the target matrix */
|
||||
template<typename OtherDerived>
|
||||
CommaInitializer& operator,(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
if (m_col==m_matrix.cols())
|
||||
{
|
||||
m_row+=m_currentBlockRows;
|
||||
m_col = 0;
|
||||
m_currentBlockRows = other.rows();
|
||||
ei_assert(m_row+m_currentBlockRows<=m_matrix.rows()
|
||||
&& "Too many rows passed to comma initializer (operator<<)");
|
||||
}
|
||||
ei_assert(m_col<m_matrix.cols()
|
||||
&& "Too many coefficients passed to comma initializer (operator<<)");
|
||||
ei_assert(m_currentBlockRows==other.rows());
|
||||
if (OtherDerived::SizeAtCompileTime != Dynamic)
|
||||
m_matrix.template block<OtherDerived::RowsAtCompileTime != Dynamic ? OtherDerived::RowsAtCompileTime : 1,
|
||||
OtherDerived::ColsAtCompileTime != Dynamic ? OtherDerived::ColsAtCompileTime : 1>
|
||||
(m_row, m_col) = other;
|
||||
else
|
||||
m_matrix.block(m_row, m_col, other.rows(), other.cols()) = other;
|
||||
m_col += other.cols();
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline ~CommaInitializer()
|
||||
{
|
||||
ei_assert((m_row+m_currentBlockRows) == m_matrix.rows()
|
||||
&& m_col == m_matrix.cols()
|
||||
&& "Too few coefficients passed to comma initializer (operator<<)");
|
||||
}
|
||||
|
||||
/** \returns the built matrix once all its coefficients have been set.
|
||||
* Calling finished is 100% optional. Its purpose is to write expressions
|
||||
* like this:
|
||||
* \code
|
||||
* quaternion.fromRotationMatrix((Matrix3f() << axis0, axis1, axis2).finished());
|
||||
* \endcode
|
||||
*/
|
||||
inline MatrixType& finished() { return m_matrix; }
|
||||
|
||||
MatrixType& m_matrix; // target matrix
|
||||
int m_row; // current row id
|
||||
int m_col; // current col id
|
||||
int m_currentBlockRows; // current block height
|
||||
|
||||
private:
|
||||
CommaInitializer& operator=(const CommaInitializer&);
|
||||
};
|
||||
|
||||
/** \anchor MatrixBaseCommaInitRef
|
||||
* Convenient operator to set the coefficients of a matrix.
|
||||
*
|
||||
* The coefficients must be provided in a row major order and exactly match
|
||||
* the size of the matrix. Otherwise an assertion is raised.
|
||||
*
|
||||
* \addexample CommaInit \label How to easily set all the coefficients of a matrix
|
||||
*
|
||||
* Example: \include MatrixBase_set.cpp
|
||||
* Output: \verbinclude MatrixBase_set.out
|
||||
*
|
||||
* \sa CommaInitializer::finished(), class CommaInitializer
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline CommaInitializer<Derived> MatrixBase<Derived>::operator<< (const Scalar& s)
|
||||
{
|
||||
return CommaInitializer<Derived>(*static_cast<Derived*>(this), s);
|
||||
}
|
||||
|
||||
/** \sa operator<<(const Scalar&) */
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline CommaInitializer<Derived>
|
||||
MatrixBase<Derived>::operator<<(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
return CommaInitializer<Derived>(*static_cast<Derived *>(this), other);
|
||||
}
|
||||
|
||||
#endif // EIGEN_COMMAINITIALIZER_H
|
@ -0,0 +1,47 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifdef EIGEN_EXTERN_INSTANTIATIONS
|
||||
#undef EIGEN_EXTERN_INSTANTIATIONS
|
||||
#endif
|
||||
|
||||
#include "../../Core"
|
||||
|
||||
namespace Eigen
|
||||
{
|
||||
|
||||
#define EIGEN_INSTANTIATE_PRODUCT(TYPE) \
|
||||
template void ei_cache_friendly_product<TYPE>( \
|
||||
int _rows, int _cols, int depth, \
|
||||
bool _lhsRowMajor, const TYPE* _lhs, int _lhsStride, \
|
||||
bool _rhsRowMajor, const TYPE* _rhs, int _rhsStride, \
|
||||
bool resRowMajor, TYPE* res, int resStride)
|
||||
|
||||
EIGEN_INSTANTIATE_PRODUCT(float);
|
||||
EIGEN_INSTANTIATE_PRODUCT(double);
|
||||
EIGEN_INSTANTIATE_PRODUCT(int);
|
||||
EIGEN_INSTANTIATE_PRODUCT(std::complex<float>);
|
||||
EIGEN_INSTANTIATE_PRODUCT(std::complex<double>);
|
||||
|
||||
}
|
214
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Cwise.h
Normal file
214
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Cwise.h
Normal file
@ -0,0 +1,214 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_CWISE_H
|
||||
#define EIGEN_CWISE_H
|
||||
|
||||
/** \internal
|
||||
* convenient macro to defined the return type of a cwise binary operation */
|
||||
#define EIGEN_CWISE_BINOP_RETURN_TYPE(OP) \
|
||||
CwiseBinaryOp<OP<typename ei_traits<ExpressionType>::Scalar>, ExpressionType, OtherDerived>
|
||||
|
||||
#define EIGEN_CWISE_PRODUCT_RETURN_TYPE \
|
||||
CwiseBinaryOp< \
|
||||
ei_scalar_product_op< \
|
||||
typename ei_scalar_product_traits< \
|
||||
typename ei_traits<ExpressionType>::Scalar, \
|
||||
typename ei_traits<OtherDerived>::Scalar \
|
||||
>::ReturnType \
|
||||
>, \
|
||||
ExpressionType, \
|
||||
OtherDerived \
|
||||
>
|
||||
|
||||
/** \internal
|
||||
* convenient macro to defined the return type of a cwise unary operation */
|
||||
#define EIGEN_CWISE_UNOP_RETURN_TYPE(OP) \
|
||||
CwiseUnaryOp<OP<typename ei_traits<ExpressionType>::Scalar>, ExpressionType>
|
||||
|
||||
/** \internal
|
||||
* convenient macro to defined the return type of a cwise comparison to a scalar */
|
||||
#define EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(OP) \
|
||||
CwiseBinaryOp<OP<typename ei_traits<ExpressionType>::Scalar>, ExpressionType, \
|
||||
NestByValue<typename ExpressionType::ConstantReturnType> >
|
||||
|
||||
/** \class Cwise
|
||||
*
|
||||
* \brief Pseudo expression providing additional coefficient-wise operations
|
||||
*
|
||||
* \param ExpressionType the type of the object on which to do coefficient-wise operations
|
||||
*
|
||||
* This class represents an expression with additional coefficient-wise features.
|
||||
* It is the return type of MatrixBase::cwise()
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* Note that some methods are defined in the \ref Array module.
|
||||
*
|
||||
* Example: \include MatrixBase_cwise_const.cpp
|
||||
* Output: \verbinclude MatrixBase_cwise_const.out
|
||||
*
|
||||
* \sa MatrixBase::cwise() const, MatrixBase::cwise()
|
||||
*/
|
||||
template<typename ExpressionType> class Cwise
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename ei_traits<ExpressionType>::Scalar Scalar;
|
||||
typedef typename ei_meta_if<ei_must_nest_by_value<ExpressionType>::ret,
|
||||
ExpressionType, const ExpressionType&>::ret ExpressionTypeNested;
|
||||
typedef CwiseUnaryOp<ei_scalar_add_op<Scalar>, ExpressionType> ScalarAddReturnType;
|
||||
|
||||
inline Cwise(const ExpressionType& matrix) : m_matrix(matrix) {}
|
||||
|
||||
/** \internal */
|
||||
inline const ExpressionType& _expression() const { return m_matrix; }
|
||||
|
||||
template<typename OtherDerived>
|
||||
const EIGEN_CWISE_PRODUCT_RETURN_TYPE
|
||||
operator*(const MatrixBase<OtherDerived> &other) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
const EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_quotient_op)
|
||||
operator/(const MatrixBase<OtherDerived> &other) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
const EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_min_op)
|
||||
min(const MatrixBase<OtherDerived> &other) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
const EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_max_op)
|
||||
max(const MatrixBase<OtherDerived> &other) const;
|
||||
|
||||
const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_abs_op) abs() const;
|
||||
const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_abs2_op) abs2() const;
|
||||
const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_square_op) square() const;
|
||||
const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_cube_op) cube() const;
|
||||
const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_inverse_op) inverse() const;
|
||||
const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_sqrt_op) sqrt() const;
|
||||
const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_exp_op) exp() const;
|
||||
const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_log_op) log() const;
|
||||
const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_cos_op) cos() const;
|
||||
const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_sin_op) sin() const;
|
||||
const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_pow_op) pow(const Scalar& exponent) const;
|
||||
|
||||
const ScalarAddReturnType
|
||||
operator+(const Scalar& scalar) const;
|
||||
|
||||
/** \relates Cwise */
|
||||
friend const ScalarAddReturnType
|
||||
operator+(const Scalar& scalar, const Cwise& mat)
|
||||
{ return mat + scalar; }
|
||||
|
||||
ExpressionType& operator+=(const Scalar& scalar);
|
||||
|
||||
const ScalarAddReturnType
|
||||
operator-(const Scalar& scalar) const;
|
||||
|
||||
ExpressionType& operator-=(const Scalar& scalar);
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline ExpressionType& operator*=(const MatrixBase<OtherDerived> &other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline ExpressionType& operator/=(const MatrixBase<OtherDerived> &other);
|
||||
|
||||
template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less)
|
||||
operator<(const MatrixBase<OtherDerived>& other) const;
|
||||
|
||||
template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less_equal)
|
||||
operator<=(const MatrixBase<OtherDerived>& other) const;
|
||||
|
||||
template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater)
|
||||
operator>(const MatrixBase<OtherDerived>& other) const;
|
||||
|
||||
template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater_equal)
|
||||
operator>=(const MatrixBase<OtherDerived>& other) const;
|
||||
|
||||
template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::equal_to)
|
||||
operator==(const MatrixBase<OtherDerived>& other) const;
|
||||
|
||||
template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::not_equal_to)
|
||||
operator!=(const MatrixBase<OtherDerived>& other) const;
|
||||
|
||||
// comparisons to a scalar value
|
||||
const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less)
|
||||
operator<(Scalar s) const;
|
||||
|
||||
const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less_equal)
|
||||
operator<=(Scalar s) const;
|
||||
|
||||
const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater)
|
||||
operator>(Scalar s) const;
|
||||
|
||||
const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater_equal)
|
||||
operator>=(Scalar s) const;
|
||||
|
||||
const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::equal_to)
|
||||
operator==(Scalar s) const;
|
||||
|
||||
const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::not_equal_to)
|
||||
operator!=(Scalar s) const;
|
||||
|
||||
// allow to extend Cwise outside Eigen
|
||||
#ifdef EIGEN_CWISE_PLUGIN
|
||||
#include EIGEN_CWISE_PLUGIN
|
||||
#endif
|
||||
|
||||
protected:
|
||||
ExpressionTypeNested m_matrix;
|
||||
|
||||
private:
|
||||
Cwise& operator=(const Cwise&);
|
||||
};
|
||||
|
||||
/** \returns a Cwise wrapper of *this providing additional coefficient-wise operations
|
||||
*
|
||||
* Example: \include MatrixBase_cwise_const.cpp
|
||||
* Output: \verbinclude MatrixBase_cwise_const.out
|
||||
*
|
||||
* \sa class Cwise, cwise()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const Cwise<Derived>
|
||||
MatrixBase<Derived>::cwise() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \returns a Cwise wrapper of *this providing additional coefficient-wise operations
|
||||
*
|
||||
* Example: \include MatrixBase_cwise.cpp
|
||||
* Output: \verbinclude MatrixBase_cwise.out
|
||||
*
|
||||
* \sa class Cwise, cwise() const
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline Cwise<Derived>
|
||||
MatrixBase<Derived>::cwise()
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
#endif // EIGEN_CWISE_H
|
@ -0,0 +1,304 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_CWISE_BINARY_OP_H
|
||||
#define EIGEN_CWISE_BINARY_OP_H
|
||||
|
||||
/** \class CwiseBinaryOp
|
||||
*
|
||||
* \brief Generic expression of a coefficient-wise operator between two matrices or vectors
|
||||
*
|
||||
* \param BinaryOp template functor implementing the operator
|
||||
* \param Lhs the type of the left-hand side
|
||||
* \param Rhs the type of the right-hand side
|
||||
*
|
||||
* This class represents an expression of a generic binary operator of two matrices or vectors.
|
||||
* It is the return type of the operator+, operator-, and the Cwise methods, and most
|
||||
* of the time this is the only way it is used.
|
||||
*
|
||||
* However, if you want to write a function returning such an expression, you
|
||||
* will need to use this class.
|
||||
*
|
||||
* \sa MatrixBase::binaryExpr(const MatrixBase<OtherDerived> &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp
|
||||
*/
|
||||
template<typename BinaryOp, typename Lhs, typename Rhs>
|
||||
struct ei_traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
|
||||
{
|
||||
// even though we require Lhs and Rhs to have the same scalar type (see CwiseBinaryOp constructor),
|
||||
// we still want to handle the case when the result type is different.
|
||||
typedef typename ei_result_of<
|
||||
BinaryOp(
|
||||
typename Lhs::Scalar,
|
||||
typename Rhs::Scalar
|
||||
)
|
||||
>::type Scalar;
|
||||
typedef typename Lhs::Nested LhsNested;
|
||||
typedef typename Rhs::Nested RhsNested;
|
||||
typedef typename ei_unref<LhsNested>::type _LhsNested;
|
||||
typedef typename ei_unref<RhsNested>::type _RhsNested;
|
||||
enum {
|
||||
LhsCoeffReadCost = _LhsNested::CoeffReadCost,
|
||||
RhsCoeffReadCost = _RhsNested::CoeffReadCost,
|
||||
LhsFlags = _LhsNested::Flags,
|
||||
RhsFlags = _RhsNested::Flags,
|
||||
RowsAtCompileTime = Lhs::RowsAtCompileTime,
|
||||
ColsAtCompileTime = Lhs::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = Lhs::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = Lhs::MaxColsAtCompileTime,
|
||||
Flags = (int(LhsFlags) | int(RhsFlags)) & (
|
||||
HereditaryBits
|
||||
| (int(LhsFlags) & int(RhsFlags) & (LinearAccessBit | AlignedBit))
|
||||
| (ei_functor_traits<BinaryOp>::PacketAccess && ((int(LhsFlags) & RowMajorBit)==(int(RhsFlags) & RowMajorBit))
|
||||
? (int(LhsFlags) & int(RhsFlags) & PacketAccessBit) : 0)),
|
||||
CoeffReadCost = LhsCoeffReadCost + RhsCoeffReadCost + ei_functor_traits<BinaryOp>::Cost
|
||||
};
|
||||
};
|
||||
|
||||
template<typename BinaryOp, typename Lhs, typename Rhs>
|
||||
class CwiseBinaryOp : ei_no_assignment_operator,
|
||||
public MatrixBase<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
|
||||
{
|
||||
public:
|
||||
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseBinaryOp)
|
||||
typedef typename ei_traits<CwiseBinaryOp>::LhsNested LhsNested;
|
||||
typedef typename ei_traits<CwiseBinaryOp>::RhsNested RhsNested;
|
||||
|
||||
EIGEN_STRONG_INLINE CwiseBinaryOp(const Lhs& lhs, const Rhs& rhs, const BinaryOp& func = BinaryOp())
|
||||
: m_lhs(lhs), m_rhs(rhs), m_functor(func)
|
||||
{
|
||||
// we require Lhs and Rhs to have the same scalar type. Currently there is no example of a binary functor
|
||||
// that would take two operands of different types. If there were such an example, then this check should be
|
||||
// moved to the BinaryOp functors, on a per-case basis. This would however require a change in the BinaryOp functors, as
|
||||
// currently they take only one typename Scalar template parameter.
|
||||
// It is tempting to always allow mixing different types but remember that this is often impossible in the vectorized paths.
|
||||
// So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to
|
||||
// add together a float matrix and a double matrix.
|
||||
EIGEN_STATIC_ASSERT((ei_functor_allows_mixing_real_and_complex<BinaryOp>::ret
|
||||
? int(ei_is_same_type<typename Lhs::RealScalar, typename Rhs::RealScalar>::ret)
|
||||
: int(ei_is_same_type<typename Lhs::Scalar, typename Rhs::Scalar>::ret)),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
// require the sizes to match
|
||||
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Lhs, Rhs)
|
||||
ei_assert(lhs.rows() == rhs.rows() && lhs.cols() == rhs.cols());
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE int rows() const { return m_lhs.rows(); }
|
||||
EIGEN_STRONG_INLINE int cols() const { return m_lhs.cols(); }
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar coeff(int row, int col) const
|
||||
{
|
||||
return m_functor(m_lhs.coeff(row, col), m_rhs.coeff(row, col));
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet(int row, int col) const
|
||||
{
|
||||
return m_functor.packetOp(m_lhs.template packet<LoadMode>(row, col), m_rhs.template packet<LoadMode>(row, col));
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar coeff(int index) const
|
||||
{
|
||||
return m_functor(m_lhs.coeff(index), m_rhs.coeff(index));
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet(int index) const
|
||||
{
|
||||
return m_functor.packetOp(m_lhs.template packet<LoadMode>(index), m_rhs.template packet<LoadMode>(index));
|
||||
}
|
||||
|
||||
protected:
|
||||
const LhsNested m_lhs;
|
||||
const RhsNested m_rhs;
|
||||
const BinaryOp m_functor;
|
||||
};
|
||||
|
||||
/**\returns an expression of the difference of \c *this and \a other
|
||||
*
|
||||
* \note If you want to substract a given scalar from all coefficients, see Cwise::operator-().
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::operator-=(), Cwise::operator-()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE const CwiseBinaryOp<ei_scalar_difference_op<typename ei_traits<Derived>::Scalar>,
|
||||
Derived, OtherDerived>
|
||||
MatrixBase<Derived>::operator-(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
return CwiseBinaryOp<ei_scalar_difference_op<Scalar>,
|
||||
Derived, OtherDerived>(derived(), other.derived());
|
||||
}
|
||||
|
||||
/** replaces \c *this by \c *this - \a other.
|
||||
*
|
||||
* \returns a reference to \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived &
|
||||
MatrixBase<Derived>::operator-=(const MatrixBase<OtherDerived> &other)
|
||||
{
|
||||
return *this = *this - other;
|
||||
}
|
||||
|
||||
/** \relates MatrixBase
|
||||
*
|
||||
* \returns an expression of the sum of \c *this and \a other
|
||||
*
|
||||
* \note If you want to add a given scalar to all coefficients, see Cwise::operator+().
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::operator+=(), Cwise::operator+()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE const CwiseBinaryOp<ei_scalar_sum_op<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
|
||||
MatrixBase<Derived>::operator+(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
return CwiseBinaryOp<ei_scalar_sum_op<Scalar>, Derived, OtherDerived>(derived(), other.derived());
|
||||
}
|
||||
|
||||
/** replaces \c *this by \c *this + \a other.
|
||||
*
|
||||
* \returns a reference to \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived &
|
||||
MatrixBase<Derived>::operator+=(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
return *this = *this + other;
|
||||
}
|
||||
|
||||
/** \returns an expression of the Schur product (coefficient wise product) of *this and \a other
|
||||
*
|
||||
* Example: \include Cwise_product.cpp
|
||||
* Output: \verbinclude Cwise_product.out
|
||||
*
|
||||
* \sa class CwiseBinaryOp, operator/(), square()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE
|
||||
Cwise<ExpressionType>::operator*(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
return EIGEN_CWISE_PRODUCT_RETURN_TYPE(_expression(), other.derived());
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise quotient of *this and \a other
|
||||
*
|
||||
* Example: \include Cwise_quotient.cpp
|
||||
* Output: \verbinclude Cwise_quotient.out
|
||||
*
|
||||
* \sa class CwiseBinaryOp, operator*(), inverse()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE const EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_quotient_op)
|
||||
Cwise<ExpressionType>::operator/(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
return EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_quotient_op)(_expression(), other.derived());
|
||||
}
|
||||
|
||||
/** Replaces this expression by its coefficient-wise product with \a other.
|
||||
*
|
||||
* Example: \include Cwise_times_equal.cpp
|
||||
* Output: \verbinclude Cwise_times_equal.out
|
||||
*
|
||||
* \sa operator*(), operator/=()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
template<typename OtherDerived>
|
||||
inline ExpressionType& Cwise<ExpressionType>::operator*=(const MatrixBase<OtherDerived> &other)
|
||||
{
|
||||
return m_matrix.const_cast_derived() = *this * other;
|
||||
}
|
||||
|
||||
/** Replaces this expression by its coefficient-wise quotient by \a other.
|
||||
*
|
||||
* Example: \include Cwise_slash_equal.cpp
|
||||
* Output: \verbinclude Cwise_slash_equal.out
|
||||
*
|
||||
* \sa operator/(), operator*=()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
template<typename OtherDerived>
|
||||
inline ExpressionType& Cwise<ExpressionType>::operator/=(const MatrixBase<OtherDerived> &other)
|
||||
{
|
||||
return m_matrix.const_cast_derived() = *this / other;
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise min of *this and \a other
|
||||
*
|
||||
* Example: \include Cwise_min.cpp
|
||||
* Output: \verbinclude Cwise_min.out
|
||||
*
|
||||
* \sa class CwiseBinaryOp
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE const EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_min_op)
|
||||
Cwise<ExpressionType>::min(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
return EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_min_op)(_expression(), other.derived());
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise max of *this and \a other
|
||||
*
|
||||
* Example: \include Cwise_max.cpp
|
||||
* Output: \verbinclude Cwise_max.out
|
||||
*
|
||||
* \sa class CwiseBinaryOp
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE const EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_max_op)
|
||||
Cwise<ExpressionType>::max(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
return EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_max_op)(_expression(), other.derived());
|
||||
}
|
||||
|
||||
/** \returns an expression of a custom coefficient-wise operator \a func of *this and \a other
|
||||
*
|
||||
* The template parameter \a CustomBinaryOp is the type of the functor
|
||||
* of the custom operator (see class CwiseBinaryOp for an example)
|
||||
*
|
||||
* \addexample CustomCwiseBinaryFunctors \label How to use custom coeff wise binary functors
|
||||
*
|
||||
* Here is an example illustrating the use of custom functors:
|
||||
* \include class_CwiseBinaryOp.cpp
|
||||
* Output: \verbinclude class_CwiseBinaryOp.out
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::operator+, MatrixBase::operator-, Cwise::operator*, Cwise::operator/
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename CustomBinaryOp, typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE const CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>
|
||||
MatrixBase<Derived>::binaryExpr(const MatrixBase<OtherDerived> &other, const CustomBinaryOp& func) const
|
||||
{
|
||||
return CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>(derived(), other.derived(), func);
|
||||
}
|
||||
|
||||
#endif // EIGEN_CWISE_BINARY_OP_H
|
@ -0,0 +1,763 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_CWISE_NULLARY_OP_H
|
||||
#define EIGEN_CWISE_NULLARY_OP_H
|
||||
|
||||
/** \class CwiseNullaryOp
|
||||
*
|
||||
* \brief Generic expression of a matrix where all coefficients are defined by a functor
|
||||
*
|
||||
* \param NullaryOp template functor implementing the operator
|
||||
*
|
||||
* This class represents an expression of a generic nullary operator.
|
||||
* It is the return type of the Ones(), Zero(), Constant(), Identity() and Random() functions,
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* However, if you want to write a function returning such an expression, you
|
||||
* will need to use this class.
|
||||
*
|
||||
* \sa class CwiseUnaryOp, class CwiseBinaryOp, MatrixBase::NullaryExpr()
|
||||
*/
|
||||
template<typename NullaryOp, typename MatrixType>
|
||||
struct ei_traits<CwiseNullaryOp<NullaryOp, MatrixType> > : ei_traits<MatrixType>
|
||||
{
|
||||
enum {
|
||||
Flags = (ei_traits<MatrixType>::Flags
|
||||
& ( HereditaryBits
|
||||
| (ei_functor_has_linear_access<NullaryOp>::ret ? LinearAccessBit : 0)
|
||||
| (ei_functor_traits<NullaryOp>::PacketAccess ? PacketAccessBit : 0)))
|
||||
| (ei_functor_traits<NullaryOp>::IsRepeatable ? 0 : EvalBeforeNestingBit),
|
||||
CoeffReadCost = ei_functor_traits<NullaryOp>::Cost
|
||||
};
|
||||
};
|
||||
|
||||
template<typename NullaryOp, typename MatrixType>
|
||||
class CwiseNullaryOp : ei_no_assignment_operator,
|
||||
public MatrixBase<CwiseNullaryOp<NullaryOp, MatrixType> >
|
||||
{
|
||||
public:
|
||||
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseNullaryOp)
|
||||
|
||||
CwiseNullaryOp(int rows, int cols, const NullaryOp& func = NullaryOp())
|
||||
: m_rows(rows), m_cols(cols), m_functor(func)
|
||||
{
|
||||
ei_assert(rows > 0
|
||||
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
|
||||
&& cols > 0
|
||||
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE int rows() const { return m_rows.value(); }
|
||||
EIGEN_STRONG_INLINE int cols() const { return m_cols.value(); }
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar coeff(int rows, int cols) const
|
||||
{
|
||||
return m_functor(rows, cols);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet(int, int) const
|
||||
{
|
||||
return m_functor.packetOp();
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar coeff(int index) const
|
||||
{
|
||||
if(RowsAtCompileTime == 1)
|
||||
return m_functor(0, index);
|
||||
else
|
||||
return m_functor(index, 0);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet(int) const
|
||||
{
|
||||
return m_functor.packetOp();
|
||||
}
|
||||
|
||||
protected:
|
||||
const ei_int_if_dynamic<RowsAtCompileTime> m_rows;
|
||||
const ei_int_if_dynamic<ColsAtCompileTime> m_cols;
|
||||
const NullaryOp m_functor;
|
||||
};
|
||||
|
||||
|
||||
/** \returns an expression of a matrix defined by a custom functor \a func
|
||||
*
|
||||
* The parameters \a rows and \a cols are the number of rows and of columns of
|
||||
* the returned matrix. Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
|
||||
* it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
|
||||
* instead.
|
||||
*
|
||||
* The template parameter \a CustomNullaryOp is the type of the functor.
|
||||
*
|
||||
* \sa class CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename CustomNullaryOp>
|
||||
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, Derived>
|
||||
MatrixBase<Derived>::NullaryExpr(int rows, int cols, const CustomNullaryOp& func)
|
||||
{
|
||||
return CwiseNullaryOp<CustomNullaryOp, Derived>(rows, cols, func);
|
||||
}
|
||||
|
||||
/** \returns an expression of a matrix defined by a custom functor \a func
|
||||
*
|
||||
* The parameter \a size is the size of the returned vector.
|
||||
* Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
|
||||
* it is redundant to pass \a size as argument, so Zero() should be used
|
||||
* instead.
|
||||
*
|
||||
* The template parameter \a CustomNullaryOp is the type of the functor.
|
||||
*
|
||||
* \sa class CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename CustomNullaryOp>
|
||||
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, Derived>
|
||||
MatrixBase<Derived>::NullaryExpr(int size, const CustomNullaryOp& func)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
ei_assert(IsVectorAtCompileTime);
|
||||
if(RowsAtCompileTime == 1) return CwiseNullaryOp<CustomNullaryOp, Derived>(1, size, func);
|
||||
else return CwiseNullaryOp<CustomNullaryOp, Derived>(size, 1, func);
|
||||
}
|
||||
|
||||
/** \returns an expression of a matrix defined by a custom functor \a func
|
||||
*
|
||||
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
|
||||
* need to use the variants taking size arguments.
|
||||
*
|
||||
* The template parameter \a CustomNullaryOp is the type of the functor.
|
||||
*
|
||||
* \sa class CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename CustomNullaryOp>
|
||||
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, Derived>
|
||||
MatrixBase<Derived>::NullaryExpr(const CustomNullaryOp& func)
|
||||
{
|
||||
return CwiseNullaryOp<CustomNullaryOp, Derived>(RowsAtCompileTime, ColsAtCompileTime, func);
|
||||
}
|
||||
|
||||
/** \returns an expression of a constant matrix of value \a value
|
||||
*
|
||||
* The parameters \a rows and \a cols are the number of rows and of columns of
|
||||
* the returned matrix. Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
|
||||
* it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
|
||||
* instead.
|
||||
*
|
||||
* The template parameter \a CustomNullaryOp is the type of the functor.
|
||||
*
|
||||
* \sa class CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::ConstantReturnType
|
||||
MatrixBase<Derived>::Constant(int rows, int cols, const Scalar& value)
|
||||
{
|
||||
return NullaryExpr(rows, cols, ei_scalar_constant_op<Scalar>(value));
|
||||
}
|
||||
|
||||
/** \returns an expression of a constant matrix of value \a value
|
||||
*
|
||||
* The parameter \a size is the size of the returned vector.
|
||||
* Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
|
||||
* it is redundant to pass \a size as argument, so Zero() should be used
|
||||
* instead.
|
||||
*
|
||||
* The template parameter \a CustomNullaryOp is the type of the functor.
|
||||
*
|
||||
* \sa class CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::ConstantReturnType
|
||||
MatrixBase<Derived>::Constant(int size, const Scalar& value)
|
||||
{
|
||||
return NullaryExpr(size, ei_scalar_constant_op<Scalar>(value));
|
||||
}
|
||||
|
||||
/** \returns an expression of a constant matrix of value \a value
|
||||
*
|
||||
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
|
||||
* need to use the variants taking size arguments.
|
||||
*
|
||||
* The template parameter \a CustomNullaryOp is the type of the functor.
|
||||
*
|
||||
* \sa class CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::ConstantReturnType
|
||||
MatrixBase<Derived>::Constant(const Scalar& value)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
|
||||
return NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, ei_scalar_constant_op<Scalar>(value));
|
||||
}
|
||||
|
||||
/** \returns true if all coefficients in this matrix are approximately equal to \a value, to within precision \a prec */
|
||||
template<typename Derived>
|
||||
bool MatrixBase<Derived>::isApproxToConstant
|
||||
(const Scalar& value, RealScalar prec) const
|
||||
{
|
||||
for(int j = 0; j < cols(); ++j)
|
||||
for(int i = 0; i < rows(); ++i)
|
||||
if(!ei_isApprox(coeff(i, j), value, prec))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/** This is just an alias for isApproxToConstant().
|
||||
*
|
||||
* \returns true if all coefficients in this matrix are approximately equal to \a value, to within precision \a prec */
|
||||
template<typename Derived>
|
||||
bool MatrixBase<Derived>::isConstant
|
||||
(const Scalar& value, RealScalar prec) const
|
||||
{
|
||||
return isApproxToConstant(value, prec);
|
||||
}
|
||||
|
||||
/** Alias for setConstant(): sets all coefficients in this expression to \a value.
|
||||
*
|
||||
* \sa setConstant(), Constant(), class CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE void MatrixBase<Derived>::fill(const Scalar& value)
|
||||
{
|
||||
setConstant(value);
|
||||
}
|
||||
|
||||
/** Sets all coefficients in this expression to \a value.
|
||||
*
|
||||
* \sa fill(), setConstant(int,const Scalar&), setConstant(int,int,const Scalar&), setZero(), setOnes(), Constant(), class CwiseNullaryOp, setZero(), setOnes()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setConstant(const Scalar& value)
|
||||
{
|
||||
return derived() = Constant(rows(), cols(), value);
|
||||
}
|
||||
|
||||
/** Resizes to the given \a size, and sets all coefficients in this expression to the given \a value.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* Example: \include Matrix_set_int.cpp
|
||||
* Output: \verbinclude Matrix_setConstant_int.out
|
||||
*
|
||||
* \sa MatrixBase::setConstant(const Scalar&), setConstant(int,int,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
|
||||
Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setConstant(int size, const Scalar& value)
|
||||
{
|
||||
resize(size);
|
||||
return setConstant(value);
|
||||
}
|
||||
|
||||
/** Resizes to the given size, and sets all coefficients in this expression to the given \a value.
|
||||
*
|
||||
* \param rows the new number of rows
|
||||
* \param cols the new number of columns
|
||||
*
|
||||
* Example: \include Matrix_setConstant_int_int.cpp
|
||||
* Output: \verbinclude Matrix_setConstant_int_int.out
|
||||
*
|
||||
* \sa MatrixBase::setConstant(const Scalar&), setConstant(int,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
|
||||
Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setConstant(int rows, int cols, const Scalar& value)
|
||||
{
|
||||
resize(rows, cols);
|
||||
return setConstant(value);
|
||||
}
|
||||
|
||||
|
||||
// zero:
|
||||
|
||||
/** \returns an expression of a zero matrix.
|
||||
*
|
||||
* The parameters \a rows and \a cols are the number of rows and of columns of
|
||||
* the returned matrix. Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
|
||||
* it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
|
||||
* instead.
|
||||
*
|
||||
* \addexample Zero \label How to take get a zero matrix
|
||||
*
|
||||
* Example: \include MatrixBase_zero_int_int.cpp
|
||||
* Output: \verbinclude MatrixBase_zero_int_int.out
|
||||
*
|
||||
* \sa Zero(), Zero(int)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::ConstantReturnType
|
||||
MatrixBase<Derived>::Zero(int rows, int cols)
|
||||
{
|
||||
return Constant(rows, cols, Scalar(0));
|
||||
}
|
||||
|
||||
/** \returns an expression of a zero vector.
|
||||
*
|
||||
* The parameter \a size is the size of the returned vector.
|
||||
* Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
|
||||
* it is redundant to pass \a size as argument, so Zero() should be used
|
||||
* instead.
|
||||
*
|
||||
* Example: \include MatrixBase_zero_int.cpp
|
||||
* Output: \verbinclude MatrixBase_zero_int.out
|
||||
*
|
||||
* \sa Zero(), Zero(int,int)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::ConstantReturnType
|
||||
MatrixBase<Derived>::Zero(int size)
|
||||
{
|
||||
return Constant(size, Scalar(0));
|
||||
}
|
||||
|
||||
/** \returns an expression of a fixed-size zero matrix or vector.
|
||||
*
|
||||
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
|
||||
* need to use the variants taking size arguments.
|
||||
*
|
||||
* Example: \include MatrixBase_zero.cpp
|
||||
* Output: \verbinclude MatrixBase_zero.out
|
||||
*
|
||||
* \sa Zero(int), Zero(int,int)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::ConstantReturnType
|
||||
MatrixBase<Derived>::Zero()
|
||||
{
|
||||
return Constant(Scalar(0));
|
||||
}
|
||||
|
||||
/** \returns true if *this is approximately equal to the zero matrix,
|
||||
* within the precision given by \a prec.
|
||||
*
|
||||
* Example: \include MatrixBase_isZero.cpp
|
||||
* Output: \verbinclude MatrixBase_isZero.out
|
||||
*
|
||||
* \sa class CwiseNullaryOp, Zero()
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool MatrixBase<Derived>::isZero(RealScalar prec) const
|
||||
{
|
||||
for(int j = 0; j < cols(); ++j)
|
||||
for(int i = 0; i < rows(); ++i)
|
||||
if(!ei_isMuchSmallerThan(coeff(i, j), static_cast<Scalar>(1), prec))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/** Sets all coefficients in this expression to zero.
|
||||
*
|
||||
* Example: \include MatrixBase_setZero.cpp
|
||||
* Output: \verbinclude MatrixBase_setZero.out
|
||||
*
|
||||
* \sa class CwiseNullaryOp, Zero()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setZero()
|
||||
{
|
||||
return setConstant(Scalar(0));
|
||||
}
|
||||
|
||||
/** Resizes to the given \a size, and sets all coefficients in this expression to zero.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* Example: \include Matrix_setZero_int.cpp
|
||||
* Output: \verbinclude Matrix_setZero_int.out
|
||||
*
|
||||
* \sa MatrixBase::setZero(), setZero(int,int), class CwiseNullaryOp, MatrixBase::Zero()
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
|
||||
Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setZero(int size)
|
||||
{
|
||||
resize(size);
|
||||
return setConstant(Scalar(0));
|
||||
}
|
||||
|
||||
/** Resizes to the given size, and sets all coefficients in this expression to zero.
|
||||
*
|
||||
* \param rows the new number of rows
|
||||
* \param cols the new number of columns
|
||||
*
|
||||
* Example: \include Matrix_setZero_int_int.cpp
|
||||
* Output: \verbinclude Matrix_setZero_int_int.out
|
||||
*
|
||||
* \sa MatrixBase::setZero(), setZero(int), class CwiseNullaryOp, MatrixBase::Zero()
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
|
||||
Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setZero(int rows, int cols)
|
||||
{
|
||||
resize(rows, cols);
|
||||
return setConstant(Scalar(0));
|
||||
}
|
||||
|
||||
// ones:
|
||||
|
||||
/** \returns an expression of a matrix where all coefficients equal one.
|
||||
*
|
||||
* The parameters \a rows and \a cols are the number of rows and of columns of
|
||||
* the returned matrix. Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
|
||||
* it is redundant to pass \a rows and \a cols as arguments, so Ones() should be used
|
||||
* instead.
|
||||
*
|
||||
* \addexample One \label How to get a matrix with all coefficients equal one
|
||||
*
|
||||
* Example: \include MatrixBase_ones_int_int.cpp
|
||||
* Output: \verbinclude MatrixBase_ones_int_int.out
|
||||
*
|
||||
* \sa Ones(), Ones(int), isOnes(), class Ones
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::ConstantReturnType
|
||||
MatrixBase<Derived>::Ones(int rows, int cols)
|
||||
{
|
||||
return Constant(rows, cols, Scalar(1));
|
||||
}
|
||||
|
||||
/** \returns an expression of a vector where all coefficients equal one.
|
||||
*
|
||||
* The parameter \a size is the size of the returned vector.
|
||||
* Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
|
||||
* it is redundant to pass \a size as argument, so Ones() should be used
|
||||
* instead.
|
||||
*
|
||||
* Example: \include MatrixBase_ones_int.cpp
|
||||
* Output: \verbinclude MatrixBase_ones_int.out
|
||||
*
|
||||
* \sa Ones(), Ones(int,int), isOnes(), class Ones
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::ConstantReturnType
|
||||
MatrixBase<Derived>::Ones(int size)
|
||||
{
|
||||
return Constant(size, Scalar(1));
|
||||
}
|
||||
|
||||
/** \returns an expression of a fixed-size matrix or vector where all coefficients equal one.
|
||||
*
|
||||
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
|
||||
* need to use the variants taking size arguments.
|
||||
*
|
||||
* Example: \include MatrixBase_ones.cpp
|
||||
* Output: \verbinclude MatrixBase_ones.out
|
||||
*
|
||||
* \sa Ones(int), Ones(int,int), isOnes(), class Ones
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::ConstantReturnType
|
||||
MatrixBase<Derived>::Ones()
|
||||
{
|
||||
return Constant(Scalar(1));
|
||||
}
|
||||
|
||||
/** \returns true if *this is approximately equal to the matrix where all coefficients
|
||||
* are equal to 1, within the precision given by \a prec.
|
||||
*
|
||||
* Example: \include MatrixBase_isOnes.cpp
|
||||
* Output: \verbinclude MatrixBase_isOnes.out
|
||||
*
|
||||
* \sa class CwiseNullaryOp, Ones()
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool MatrixBase<Derived>::isOnes
|
||||
(RealScalar prec) const
|
||||
{
|
||||
return isApproxToConstant(Scalar(1), prec);
|
||||
}
|
||||
|
||||
/** Sets all coefficients in this expression to one.
|
||||
*
|
||||
* Example: \include MatrixBase_setOnes.cpp
|
||||
* Output: \verbinclude MatrixBase_setOnes.out
|
||||
*
|
||||
* \sa class CwiseNullaryOp, Ones()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setOnes()
|
||||
{
|
||||
return setConstant(Scalar(1));
|
||||
}
|
||||
|
||||
/** Resizes to the given \a size, and sets all coefficients in this expression to one.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* Example: \include Matrix_setOnes_int.cpp
|
||||
* Output: \verbinclude Matrix_setOnes_int.out
|
||||
*
|
||||
* \sa MatrixBase::setOnes(), setOnes(int,int), class CwiseNullaryOp, MatrixBase::Ones()
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
|
||||
Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setOnes(int size)
|
||||
{
|
||||
resize(size);
|
||||
return setConstant(Scalar(1));
|
||||
}
|
||||
|
||||
/** Resizes to the given size, and sets all coefficients in this expression to one.
|
||||
*
|
||||
* \param rows the new number of rows
|
||||
* \param cols the new number of columns
|
||||
*
|
||||
* Example: \include Matrix_setOnes_int_int.cpp
|
||||
* Output: \verbinclude Matrix_setOnes_int_int.out
|
||||
*
|
||||
* \sa MatrixBase::setOnes(), setOnes(int), class CwiseNullaryOp, MatrixBase::Ones()
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
|
||||
Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setOnes(int rows, int cols)
|
||||
{
|
||||
resize(rows, cols);
|
||||
return setConstant(Scalar(1));
|
||||
}
|
||||
|
||||
// Identity:
|
||||
|
||||
/** \returns an expression of the identity matrix (not necessarily square).
|
||||
*
|
||||
* The parameters \a rows and \a cols are the number of rows and of columns of
|
||||
* the returned matrix. Must be compatible with this MatrixBase type.
|
||||
*
|
||||
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
|
||||
* it is redundant to pass \a rows and \a cols as arguments, so Identity() should be used
|
||||
* instead.
|
||||
*
|
||||
* \addexample Identity \label How to get an identity matrix
|
||||
*
|
||||
* Example: \include MatrixBase_identity_int_int.cpp
|
||||
* Output: \verbinclude MatrixBase_identity_int_int.out
|
||||
*
|
||||
* \sa Identity(), setIdentity(), isIdentity()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
|
||||
MatrixBase<Derived>::Identity(int rows, int cols)
|
||||
{
|
||||
return NullaryExpr(rows, cols, ei_scalar_identity_op<Scalar>());
|
||||
}
|
||||
|
||||
/** \returns an expression of the identity matrix (not necessarily square).
|
||||
*
|
||||
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
|
||||
* need to use the variant taking size arguments.
|
||||
*
|
||||
* Example: \include MatrixBase_identity.cpp
|
||||
* Output: \verbinclude MatrixBase_identity.out
|
||||
*
|
||||
* \sa Identity(int,int), setIdentity(), isIdentity()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
|
||||
MatrixBase<Derived>::Identity()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
|
||||
return NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, ei_scalar_identity_op<Scalar>());
|
||||
}
|
||||
|
||||
/** \returns true if *this is approximately equal to the identity matrix
|
||||
* (not necessarily square),
|
||||
* within the precision given by \a prec.
|
||||
*
|
||||
* Example: \include MatrixBase_isIdentity.cpp
|
||||
* Output: \verbinclude MatrixBase_isIdentity.out
|
||||
*
|
||||
* \sa class CwiseNullaryOp, Identity(), Identity(int,int), setIdentity()
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool MatrixBase<Derived>::isIdentity
|
||||
(RealScalar prec) const
|
||||
{
|
||||
for(int j = 0; j < cols(); ++j)
|
||||
{
|
||||
for(int i = 0; i < rows(); ++i)
|
||||
{
|
||||
if(i == j)
|
||||
{
|
||||
if(!ei_isApprox(coeff(i, j), static_cast<Scalar>(1), prec))
|
||||
return false;
|
||||
}
|
||||
else
|
||||
{
|
||||
if(!ei_isMuchSmallerThan(coeff(i, j), static_cast<RealScalar>(1), prec))
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename Derived, bool Big = (Derived::SizeAtCompileTime>=16)>
|
||||
struct ei_setIdentity_impl
|
||||
{
|
||||
static EIGEN_STRONG_INLINE Derived& run(Derived& m)
|
||||
{
|
||||
return m = Derived::Identity(m.rows(), m.cols());
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_setIdentity_impl<Derived, true>
|
||||
{
|
||||
static EIGEN_STRONG_INLINE Derived& run(Derived& m)
|
||||
{
|
||||
m.setZero();
|
||||
const int size = std::min(m.rows(), m.cols());
|
||||
for(int i = 0; i < size; ++i) m.coeffRef(i,i) = typename Derived::Scalar(1);
|
||||
return m;
|
||||
}
|
||||
};
|
||||
|
||||
/** Writes the identity expression (not necessarily square) into *this.
|
||||
*
|
||||
* Example: \include MatrixBase_setIdentity.cpp
|
||||
* Output: \verbinclude MatrixBase_setIdentity.out
|
||||
*
|
||||
* \sa class CwiseNullaryOp, Identity(), Identity(int,int), isIdentity()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity()
|
||||
{
|
||||
return ei_setIdentity_impl<Derived>::run(derived());
|
||||
}
|
||||
|
||||
/** Resizes to the given size, and writes the identity expression (not necessarily square) into *this.
|
||||
*
|
||||
* \param rows the new number of rows
|
||||
* \param cols the new number of columns
|
||||
*
|
||||
* Example: \include Matrix_setIdentity_int_int.cpp
|
||||
* Output: \verbinclude Matrix_setIdentity_int_int.out
|
||||
*
|
||||
* \sa MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Identity()
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
|
||||
Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setIdentity(int rows, int cols)
|
||||
{
|
||||
resize(rows, cols);
|
||||
return setIdentity();
|
||||
}
|
||||
|
||||
/** \returns an expression of the i-th unit (basis) vector.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \sa MatrixBase::Unit(int), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(int size, int i)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return BasisReturnType(SquareMatrixType::Identity(size,size), i);
|
||||
}
|
||||
|
||||
/** \returns an expression of the i-th unit (basis) vector.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* This variant is for fixed-size vector only.
|
||||
*
|
||||
* \sa MatrixBase::Unit(int,int), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(int i)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return BasisReturnType(SquareMatrixType::Identity(),i);
|
||||
}
|
||||
|
||||
/** \returns an expression of the X axis unit vector (1{,0}^*)
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \sa MatrixBase::Unit(int,int), MatrixBase::Unit(int), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitX()
|
||||
{ return Derived::Unit(0); }
|
||||
|
||||
/** \returns an expression of the Y axis unit vector (0,1{,0}^*)
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \sa MatrixBase::Unit(int,int), MatrixBase::Unit(int), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitY()
|
||||
{ return Derived::Unit(1); }
|
||||
|
||||
/** \returns an expression of the Z axis unit vector (0,0,1{,0}^*)
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \sa MatrixBase::Unit(int,int), MatrixBase::Unit(int), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitZ()
|
||||
{ return Derived::Unit(2); }
|
||||
|
||||
/** \returns an expression of the W axis unit vector (0,0,0,1)
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \sa MatrixBase::Unit(int,int), MatrixBase::Unit(int), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitW()
|
||||
{ return Derived::Unit(3); }
|
||||
|
||||
#endif // EIGEN_CWISE_NULLARY_OP_H
|
229
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/CwiseUnaryOp.h
Normal file
229
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/CwiseUnaryOp.h
Normal file
@ -0,0 +1,229 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_CWISE_UNARY_OP_H
|
||||
#define EIGEN_CWISE_UNARY_OP_H
|
||||
|
||||
/** \class CwiseUnaryOp
|
||||
*
|
||||
* \brief Generic expression of a coefficient-wise unary operator of a matrix or a vector
|
||||
*
|
||||
* \param UnaryOp template functor implementing the operator
|
||||
* \param MatrixType the type of the matrix we are applying the unary operator
|
||||
*
|
||||
* This class represents an expression of a generic unary operator of a matrix or a vector.
|
||||
* It is the return type of the unary operator-, of a matrix or a vector, and most
|
||||
* of the time this is the only way it is used.
|
||||
*
|
||||
* \sa MatrixBase::unaryExpr(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp
|
||||
*/
|
||||
template<typename UnaryOp, typename MatrixType>
|
||||
struct ei_traits<CwiseUnaryOp<UnaryOp, MatrixType> >
|
||||
: ei_traits<MatrixType>
|
||||
{
|
||||
typedef typename ei_result_of<
|
||||
UnaryOp(typename MatrixType::Scalar)
|
||||
>::type Scalar;
|
||||
typedef typename MatrixType::Nested MatrixTypeNested;
|
||||
typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
|
||||
enum {
|
||||
Flags = (_MatrixTypeNested::Flags & (
|
||||
HereditaryBits | LinearAccessBit | AlignedBit
|
||||
| (ei_functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0))),
|
||||
CoeffReadCost = _MatrixTypeNested::CoeffReadCost + ei_functor_traits<UnaryOp>::Cost
|
||||
};
|
||||
};
|
||||
|
||||
template<typename UnaryOp, typename MatrixType>
|
||||
class CwiseUnaryOp : ei_no_assignment_operator,
|
||||
public MatrixBase<CwiseUnaryOp<UnaryOp, MatrixType> >
|
||||
{
|
||||
public:
|
||||
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryOp)
|
||||
|
||||
inline CwiseUnaryOp(const MatrixType& mat, const UnaryOp& func = UnaryOp())
|
||||
: m_matrix(mat), m_functor(func) {}
|
||||
|
||||
EIGEN_STRONG_INLINE int rows() const { return m_matrix.rows(); }
|
||||
EIGEN_STRONG_INLINE int cols() const { return m_matrix.cols(); }
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar coeff(int row, int col) const
|
||||
{
|
||||
return m_functor(m_matrix.coeff(row, col));
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet(int row, int col) const
|
||||
{
|
||||
return m_functor.packetOp(m_matrix.template packet<LoadMode>(row, col));
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar coeff(int index) const
|
||||
{
|
||||
return m_functor(m_matrix.coeff(index));
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet(int index) const
|
||||
{
|
||||
return m_functor.packetOp(m_matrix.template packet<LoadMode>(index));
|
||||
}
|
||||
|
||||
protected:
|
||||
const typename MatrixType::Nested m_matrix;
|
||||
const UnaryOp m_functor;
|
||||
};
|
||||
|
||||
/** \returns an expression of a custom coefficient-wise unary operator \a func of *this
|
||||
*
|
||||
* The template parameter \a CustomUnaryOp is the type of the functor
|
||||
* of the custom unary operator.
|
||||
*
|
||||
* \addexample CustomCwiseUnaryFunctors \label How to use custom coeff wise unary functors
|
||||
*
|
||||
* Example:
|
||||
* \include class_CwiseUnaryOp.cpp
|
||||
* Output: \verbinclude class_CwiseUnaryOp.out
|
||||
*
|
||||
* \sa class CwiseUnaryOp, class CwiseBinarOp, MatrixBase::operator-, Cwise::abs
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename CustomUnaryOp>
|
||||
EIGEN_STRONG_INLINE const CwiseUnaryOp<CustomUnaryOp, Derived>
|
||||
MatrixBase<Derived>::unaryExpr(const CustomUnaryOp& func) const
|
||||
{
|
||||
return CwiseUnaryOp<CustomUnaryOp, Derived>(derived(), func);
|
||||
}
|
||||
|
||||
/** \returns an expression of the opposite of \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const CwiseUnaryOp<ei_scalar_opposite_op<typename ei_traits<Derived>::Scalar>,Derived>
|
||||
MatrixBase<Derived>::operator-() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise absolute value of \c *this
|
||||
*
|
||||
* Example: \include Cwise_abs.cpp
|
||||
* Output: \verbinclude Cwise_abs.out
|
||||
*
|
||||
* \sa abs2()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
EIGEN_STRONG_INLINE const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_abs_op)
|
||||
Cwise<ExpressionType>::abs() const
|
||||
{
|
||||
return _expression();
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise squared absolute value of \c *this
|
||||
*
|
||||
* Example: \include Cwise_abs2.cpp
|
||||
* Output: \verbinclude Cwise_abs2.out
|
||||
*
|
||||
* \sa abs(), square()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
EIGEN_STRONG_INLINE const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_abs2_op)
|
||||
Cwise<ExpressionType>::abs2() const
|
||||
{
|
||||
return _expression();
|
||||
}
|
||||
|
||||
/** \returns an expression of the complex conjugate of \c *this.
|
||||
*
|
||||
* \sa adjoint() */
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename MatrixBase<Derived>::ConjugateReturnType
|
||||
MatrixBase<Derived>::conjugate() const
|
||||
{
|
||||
return ConjugateReturnType(derived());
|
||||
}
|
||||
|
||||
/** \returns an expression of the real part of \c *this.
|
||||
*
|
||||
* \sa imag() */
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::RealReturnType
|
||||
MatrixBase<Derived>::real() const { return derived(); }
|
||||
|
||||
/** \returns an expression of the imaginary part of \c *this.
|
||||
*
|
||||
* \sa real() */
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::ImagReturnType
|
||||
MatrixBase<Derived>::imag() const { return derived(); }
|
||||
|
||||
/** \returns an expression of *this with the \a Scalar type casted to
|
||||
* \a NewScalar.
|
||||
*
|
||||
* The template parameter \a NewScalar is the type we are casting the scalars to.
|
||||
*
|
||||
* \sa class CwiseUnaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename NewType>
|
||||
EIGEN_STRONG_INLINE const CwiseUnaryOp<ei_scalar_cast_op<typename ei_traits<Derived>::Scalar, NewType>, Derived>
|
||||
MatrixBase<Derived>::cast() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \relates MatrixBase */
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::ScalarMultipleReturnType
|
||||
MatrixBase<Derived>::operator*(const Scalar& scalar) const
|
||||
{
|
||||
return CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, Derived>
|
||||
(derived(), ei_scalar_multiple_op<Scalar>(scalar));
|
||||
}
|
||||
|
||||
/** \relates MatrixBase */
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const CwiseUnaryOp<ei_scalar_quotient1_op<typename ei_traits<Derived>::Scalar>, Derived>
|
||||
MatrixBase<Derived>::operator/(const Scalar& scalar) const
|
||||
{
|
||||
return CwiseUnaryOp<ei_scalar_quotient1_op<Scalar>, Derived>
|
||||
(derived(), ei_scalar_quotient1_op<Scalar>(scalar));
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived&
|
||||
MatrixBase<Derived>::operator*=(const Scalar& other)
|
||||
{
|
||||
return *this = *this * other;
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived&
|
||||
MatrixBase<Derived>::operator/=(const Scalar& other)
|
||||
{
|
||||
return *this = *this / other;
|
||||
}
|
||||
|
||||
#endif // EIGEN_CWISE_UNARY_OP_H
|
@ -0,0 +1,124 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_DIAGONALCOEFFS_H
|
||||
#define EIGEN_DIAGONALCOEFFS_H
|
||||
|
||||
/** \class DiagonalCoeffs
|
||||
*
|
||||
* \brief Expression of the main diagonal of a matrix
|
||||
*
|
||||
* \param MatrixType the type of the object in which we are taking the main diagonal
|
||||
*
|
||||
* The matrix is not required to be square.
|
||||
*
|
||||
* This class represents an expression of the main diagonal of a square matrix.
|
||||
* It is the return type of MatrixBase::diagonal() and most of the time this is
|
||||
* the only way it is used.
|
||||
*
|
||||
* \sa MatrixBase::diagonal()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
struct ei_traits<DiagonalCoeffs<MatrixType> >
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
|
||||
typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
|
||||
enum {
|
||||
RowsAtCompileTime = int(MatrixType::SizeAtCompileTime) == Dynamic ? Dynamic
|
||||
: EIGEN_SIZE_MIN(MatrixType::RowsAtCompileTime,
|
||||
MatrixType::ColsAtCompileTime),
|
||||
ColsAtCompileTime = 1,
|
||||
MaxRowsAtCompileTime = int(MatrixType::MaxSizeAtCompileTime) == Dynamic ? Dynamic
|
||||
: EIGEN_SIZE_MIN(MatrixType::MaxRowsAtCompileTime,
|
||||
MatrixType::MaxColsAtCompileTime),
|
||||
MaxColsAtCompileTime = 1,
|
||||
Flags = (unsigned int)_MatrixTypeNested::Flags & (HereditaryBits | LinearAccessBit),
|
||||
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
|
||||
};
|
||||
};
|
||||
|
||||
template<typename MatrixType> class DiagonalCoeffs
|
||||
: public MatrixBase<DiagonalCoeffs<MatrixType> >
|
||||
{
|
||||
public:
|
||||
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(DiagonalCoeffs)
|
||||
|
||||
inline DiagonalCoeffs(const MatrixType& matrix) : m_matrix(matrix) {}
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(DiagonalCoeffs)
|
||||
|
||||
inline int rows() const { return std::min(m_matrix.rows(), m_matrix.cols()); }
|
||||
inline int cols() const { return 1; }
|
||||
|
||||
inline Scalar& coeffRef(int row, int)
|
||||
{
|
||||
return m_matrix.const_cast_derived().coeffRef(row, row);
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int row, int) const
|
||||
{
|
||||
return m_matrix.coeff(row, row);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(int index)
|
||||
{
|
||||
return m_matrix.const_cast_derived().coeffRef(index, index);
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int index) const
|
||||
{
|
||||
return m_matrix.coeff(index, index);
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
const typename MatrixType::Nested m_matrix;
|
||||
};
|
||||
|
||||
/** \returns an expression of the main diagonal of the matrix \c *this
|
||||
*
|
||||
* \c *this is not required to be square.
|
||||
*
|
||||
* Example: \include MatrixBase_diagonal.cpp
|
||||
* Output: \verbinclude MatrixBase_diagonal.out
|
||||
*
|
||||
* \sa class DiagonalCoeffs */
|
||||
template<typename Derived>
|
||||
inline DiagonalCoeffs<Derived>
|
||||
MatrixBase<Derived>::diagonal()
|
||||
{
|
||||
return DiagonalCoeffs<Derived>(derived());
|
||||
}
|
||||
|
||||
/** This is the const version of diagonal(). */
|
||||
template<typename Derived>
|
||||
inline const DiagonalCoeffs<Derived>
|
||||
MatrixBase<Derived>::diagonal() const
|
||||
{
|
||||
return DiagonalCoeffs<Derived>(derived());
|
||||
}
|
||||
|
||||
#endif // EIGEN_DIAGONALCOEFFS_H
|
@ -0,0 +1,144 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_DIAGONALMATRIX_H
|
||||
#define EIGEN_DIAGONALMATRIX_H
|
||||
|
||||
/** \class DiagonalMatrix
|
||||
* \nonstableyet
|
||||
*
|
||||
* \brief Expression of a diagonal matrix
|
||||
*
|
||||
* \param CoeffsVectorType the type of the vector of diagonal coefficients
|
||||
*
|
||||
* This class is an expression of a diagonal matrix with given vector of diagonal
|
||||
* coefficients. It is the return
|
||||
* type of MatrixBase::diagonal(const OtherDerived&) and most of the time this is
|
||||
* the only way it is used.
|
||||
*
|
||||
* \sa MatrixBase::diagonal(const OtherDerived&)
|
||||
*/
|
||||
template<typename CoeffsVectorType>
|
||||
struct ei_traits<DiagonalMatrix<CoeffsVectorType> >
|
||||
{
|
||||
typedef typename CoeffsVectorType::Scalar Scalar;
|
||||
typedef typename ei_nested<CoeffsVectorType>::type CoeffsVectorTypeNested;
|
||||
typedef typename ei_unref<CoeffsVectorTypeNested>::type _CoeffsVectorTypeNested;
|
||||
enum {
|
||||
RowsAtCompileTime = CoeffsVectorType::SizeAtCompileTime,
|
||||
ColsAtCompileTime = CoeffsVectorType::SizeAtCompileTime,
|
||||
MaxRowsAtCompileTime = CoeffsVectorType::MaxSizeAtCompileTime,
|
||||
MaxColsAtCompileTime = CoeffsVectorType::MaxSizeAtCompileTime,
|
||||
Flags = (_CoeffsVectorTypeNested::Flags & HereditaryBits) | Diagonal,
|
||||
CoeffReadCost = _CoeffsVectorTypeNested::CoeffReadCost
|
||||
};
|
||||
};
|
||||
|
||||
template<typename CoeffsVectorType>
|
||||
class DiagonalMatrix : ei_no_assignment_operator,
|
||||
public MatrixBase<DiagonalMatrix<CoeffsVectorType> >
|
||||
{
|
||||
public:
|
||||
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(DiagonalMatrix)
|
||||
typedef CoeffsVectorType _CoeffsVectorType;
|
||||
|
||||
// needed to evaluate a DiagonalMatrix<Xpr> to a DiagonalMatrix<NestByValue<Vector> >
|
||||
template<typename OtherCoeffsVectorType>
|
||||
inline DiagonalMatrix(const DiagonalMatrix<OtherCoeffsVectorType>& other) : m_coeffs(other.diagonal())
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(CoeffsVectorType);
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherCoeffsVectorType);
|
||||
ei_assert(m_coeffs.size() > 0);
|
||||
}
|
||||
|
||||
inline DiagonalMatrix(const CoeffsVectorType& coeffs) : m_coeffs(coeffs)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(CoeffsVectorType);
|
||||
ei_assert(coeffs.size() > 0);
|
||||
}
|
||||
|
||||
inline int rows() const { return m_coeffs.size(); }
|
||||
inline int cols() const { return m_coeffs.size(); }
|
||||
|
||||
inline const Scalar coeff(int row, int col) const
|
||||
{
|
||||
return row == col ? m_coeffs.coeff(row) : static_cast<Scalar>(0);
|
||||
}
|
||||
|
||||
inline const CoeffsVectorType& diagonal() const { return m_coeffs; }
|
||||
|
||||
protected:
|
||||
const typename CoeffsVectorType::Nested m_coeffs;
|
||||
};
|
||||
|
||||
/** \nonstableyet
|
||||
* \returns an expression of a diagonal matrix with *this as vector of diagonal coefficients
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \addexample AsDiagonalExample \label How to build a diagonal matrix from a vector
|
||||
*
|
||||
* Example: \include MatrixBase_asDiagonal.cpp
|
||||
* Output: \verbinclude MatrixBase_asDiagonal.out
|
||||
*
|
||||
* \sa class DiagonalMatrix, isDiagonal()
|
||||
**/
|
||||
template<typename Derived>
|
||||
inline const DiagonalMatrix<Derived>
|
||||
MatrixBase<Derived>::asDiagonal() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \nonstableyet
|
||||
* \returns true if *this is approximately equal to a diagonal matrix,
|
||||
* within the precision given by \a prec.
|
||||
*
|
||||
* Example: \include MatrixBase_isDiagonal.cpp
|
||||
* Output: \verbinclude MatrixBase_isDiagonal.out
|
||||
*
|
||||
* \sa asDiagonal()
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool MatrixBase<Derived>::isDiagonal
|
||||
(RealScalar prec) const
|
||||
{
|
||||
if(cols() != rows()) return false;
|
||||
RealScalar maxAbsOnDiagonal = static_cast<RealScalar>(-1);
|
||||
for(int j = 0; j < cols(); ++j)
|
||||
{
|
||||
RealScalar absOnDiagonal = ei_abs(coeff(j,j));
|
||||
if(absOnDiagonal > maxAbsOnDiagonal) maxAbsOnDiagonal = absOnDiagonal;
|
||||
}
|
||||
for(int j = 0; j < cols(); ++j)
|
||||
for(int i = 0; i < j; ++i)
|
||||
{
|
||||
if(!ei_isMuchSmallerThan(coeff(i, j), maxAbsOnDiagonal, prec)) return false;
|
||||
if(!ei_isMuchSmallerThan(coeff(j, i), maxAbsOnDiagonal, prec)) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif // EIGEN_DIAGONALMATRIX_H
|
@ -0,0 +1,130 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_DIAGONALPRODUCT_H
|
||||
#define EIGEN_DIAGONALPRODUCT_H
|
||||
|
||||
/** \internal Specialization of ei_nested for DiagonalMatrix.
|
||||
* Unlike ei_nested, if the argument is a DiagonalMatrix and if it must be evaluated,
|
||||
* then it evaluated to a DiagonalMatrix having its own argument evaluated.
|
||||
*/
|
||||
template<typename T, int N> struct ei_nested_diagonal : ei_nested<T,N> {};
|
||||
template<typename T, int N> struct ei_nested_diagonal<DiagonalMatrix<T>,N >
|
||||
: ei_nested<DiagonalMatrix<T>, N, DiagonalMatrix<NestByValue<typename ei_plain_matrix_type<T>::type> > >
|
||||
{};
|
||||
|
||||
// specialization of ProductReturnType
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct ProductReturnType<Lhs,Rhs,DiagonalProduct>
|
||||
{
|
||||
typedef typename ei_nested_diagonal<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
|
||||
typedef typename ei_nested_diagonal<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
|
||||
|
||||
typedef Product<LhsNested, RhsNested, DiagonalProduct> Type;
|
||||
};
|
||||
|
||||
template<typename LhsNested, typename RhsNested>
|
||||
struct ei_traits<Product<LhsNested, RhsNested, DiagonalProduct> >
|
||||
{
|
||||
// clean the nested types:
|
||||
typedef typename ei_cleantype<LhsNested>::type _LhsNested;
|
||||
typedef typename ei_cleantype<RhsNested>::type _RhsNested;
|
||||
typedef typename _LhsNested::Scalar Scalar;
|
||||
|
||||
enum {
|
||||
LhsFlags = _LhsNested::Flags,
|
||||
RhsFlags = _RhsNested::Flags,
|
||||
RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
|
||||
ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
|
||||
|
||||
LhsIsDiagonal = (_LhsNested::Flags&Diagonal)==Diagonal,
|
||||
RhsIsDiagonal = (_RhsNested::Flags&Diagonal)==Diagonal,
|
||||
|
||||
CanVectorizeRhs = (!RhsIsDiagonal) && (RhsFlags & RowMajorBit) && (RhsFlags & PacketAccessBit)
|
||||
&& (ColsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
|
||||
|
||||
CanVectorizeLhs = (!LhsIsDiagonal) && (!(LhsFlags & RowMajorBit)) && (LhsFlags & PacketAccessBit)
|
||||
&& (RowsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
|
||||
|
||||
RemovedBits = ~((RhsFlags & RowMajorBit) && (!CanVectorizeLhs) ? 0 : RowMajorBit),
|
||||
|
||||
Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
|
||||
| (((CanVectorizeLhs&&RhsIsDiagonal) || (CanVectorizeRhs&&LhsIsDiagonal)) ? PacketAccessBit : 0),
|
||||
|
||||
CoeffReadCost = NumTraits<Scalar>::MulCost + _LhsNested::CoeffReadCost + _RhsNested::CoeffReadCost
|
||||
};
|
||||
};
|
||||
|
||||
template<typename LhsNested, typename RhsNested> class Product<LhsNested, RhsNested, DiagonalProduct> : ei_no_assignment_operator,
|
||||
public MatrixBase<Product<LhsNested, RhsNested, DiagonalProduct> >
|
||||
{
|
||||
typedef typename ei_traits<Product>::_LhsNested _LhsNested;
|
||||
typedef typename ei_traits<Product>::_RhsNested _RhsNested;
|
||||
|
||||
enum {
|
||||
RhsIsDiagonal = (_RhsNested::Flags&Diagonal)==Diagonal
|
||||
};
|
||||
|
||||
public:
|
||||
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(Product)
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
inline Product(const Lhs& lhs, const Rhs& rhs)
|
||||
: m_lhs(lhs), m_rhs(rhs)
|
||||
{
|
||||
ei_assert(lhs.cols() == rhs.rows());
|
||||
}
|
||||
|
||||
inline int rows() const { return m_lhs.rows(); }
|
||||
inline int cols() const { return m_rhs.cols(); }
|
||||
|
||||
const Scalar coeff(int row, int col) const
|
||||
{
|
||||
const int unique = RhsIsDiagonal ? col : row;
|
||||
return m_lhs.coeff(row, unique) * m_rhs.coeff(unique, col);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
const PacketScalar packet(int row, int col) const
|
||||
{
|
||||
if (RhsIsDiagonal)
|
||||
{
|
||||
return ei_pmul(m_lhs.template packet<LoadMode>(row, col), ei_pset1(m_rhs.coeff(col, col)));
|
||||
}
|
||||
else
|
||||
{
|
||||
return ei_pmul(ei_pset1(m_lhs.coeff(row, row)), m_rhs.template packet<LoadMode>(row, col));
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
const LhsNested m_lhs;
|
||||
const RhsNested m_rhs;
|
||||
};
|
||||
|
||||
#endif // EIGEN_DIAGONALPRODUCT_H
|
361
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Dot.h
Normal file
361
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Dot.h
Normal file
@ -0,0 +1,361 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_DOT_H
|
||||
#define EIGEN_DOT_H
|
||||
|
||||
/***************************************************************************
|
||||
* Part 1 : the logic deciding a strategy for vectorization and unrolling
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
struct ei_dot_traits
|
||||
{
|
||||
public:
|
||||
enum {
|
||||
Vectorization = (int(Derived1::Flags)&int(Derived2::Flags)&ActualPacketAccessBit)
|
||||
&& (int(Derived1::Flags)&int(Derived2::Flags)&LinearAccessBit)
|
||||
? LinearVectorization
|
||||
: NoVectorization
|
||||
};
|
||||
|
||||
private:
|
||||
typedef typename Derived1::Scalar Scalar;
|
||||
enum {
|
||||
PacketSize = ei_packet_traits<Scalar>::size,
|
||||
Cost = Derived1::SizeAtCompileTime * (Derived1::CoeffReadCost + Derived2::CoeffReadCost + NumTraits<Scalar>::MulCost)
|
||||
+ (Derived1::SizeAtCompileTime-1) * NumTraits<Scalar>::AddCost,
|
||||
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Vectorization) == int(NoVectorization) ? 1 : int(PacketSize))
|
||||
};
|
||||
|
||||
public:
|
||||
enum {
|
||||
Unrolling = Cost <= UnrollingLimit
|
||||
? CompleteUnrolling
|
||||
: NoUnrolling
|
||||
};
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 2 : unrollers
|
||||
***************************************************************************/
|
||||
|
||||
/*** no vectorization ***/
|
||||
|
||||
template<typename Derived1, typename Derived2, int Start, int Length>
|
||||
struct ei_dot_novec_unroller
|
||||
{
|
||||
enum {
|
||||
HalfLength = Length/2
|
||||
};
|
||||
|
||||
typedef typename Derived1::Scalar Scalar;
|
||||
|
||||
inline static Scalar run(const Derived1& v1, const Derived2& v2)
|
||||
{
|
||||
return ei_dot_novec_unroller<Derived1, Derived2, Start, HalfLength>::run(v1, v2)
|
||||
+ ei_dot_novec_unroller<Derived1, Derived2, Start+HalfLength, Length-HalfLength>::run(v1, v2);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Start>
|
||||
struct ei_dot_novec_unroller<Derived1, Derived2, Start, 1>
|
||||
{
|
||||
typedef typename Derived1::Scalar Scalar;
|
||||
|
||||
inline static Scalar run(const Derived1& v1, const Derived2& v2)
|
||||
{
|
||||
return v1.coeff(Start) * ei_conj(v2.coeff(Start));
|
||||
}
|
||||
};
|
||||
|
||||
/*** vectorization ***/
|
||||
|
||||
template<typename Derived1, typename Derived2, int Index, int Stop,
|
||||
bool LastPacket = (Stop-Index == ei_packet_traits<typename Derived1::Scalar>::size)>
|
||||
struct ei_dot_vec_unroller
|
||||
{
|
||||
typedef typename Derived1::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
|
||||
enum {
|
||||
row1 = Derived1::RowsAtCompileTime == 1 ? 0 : Index,
|
||||
col1 = Derived1::RowsAtCompileTime == 1 ? Index : 0,
|
||||
row2 = Derived2::RowsAtCompileTime == 1 ? 0 : Index,
|
||||
col2 = Derived2::RowsAtCompileTime == 1 ? Index : 0
|
||||
};
|
||||
|
||||
inline static PacketScalar run(const Derived1& v1, const Derived2& v2)
|
||||
{
|
||||
return ei_pmadd(
|
||||
v1.template packet<Aligned>(row1, col1),
|
||||
v2.template packet<Aligned>(row2, col2),
|
||||
ei_dot_vec_unroller<Derived1, Derived2, Index+ei_packet_traits<Scalar>::size, Stop>::run(v1, v2)
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Index, int Stop>
|
||||
struct ei_dot_vec_unroller<Derived1, Derived2, Index, Stop, true>
|
||||
{
|
||||
enum {
|
||||
row1 = Derived1::RowsAtCompileTime == 1 ? 0 : Index,
|
||||
col1 = Derived1::RowsAtCompileTime == 1 ? Index : 0,
|
||||
row2 = Derived2::RowsAtCompileTime == 1 ? 0 : Index,
|
||||
col2 = Derived2::RowsAtCompileTime == 1 ? Index : 0,
|
||||
alignment1 = (Derived1::Flags & AlignedBit) ? Aligned : Unaligned,
|
||||
alignment2 = (Derived2::Flags & AlignedBit) ? Aligned : Unaligned
|
||||
};
|
||||
|
||||
typedef typename Derived1::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
|
||||
inline static PacketScalar run(const Derived1& v1, const Derived2& v2)
|
||||
{
|
||||
return ei_pmul(v1.template packet<alignment1>(row1, col1), v2.template packet<alignment2>(row2, col2));
|
||||
}
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 3 : implementation of all cases
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Derived1, typename Derived2,
|
||||
int Vectorization = ei_dot_traits<Derived1, Derived2>::Vectorization,
|
||||
int Unrolling = ei_dot_traits<Derived1, Derived2>::Unrolling
|
||||
>
|
||||
struct ei_dot_impl;
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
struct ei_dot_impl<Derived1, Derived2, NoVectorization, NoUnrolling>
|
||||
{
|
||||
typedef typename Derived1::Scalar Scalar;
|
||||
static Scalar run(const Derived1& v1, const Derived2& v2)
|
||||
{
|
||||
ei_assert(v1.size()>0 && "you are using a non initialized vector");
|
||||
Scalar res;
|
||||
res = v1.coeff(0) * ei_conj(v2.coeff(0));
|
||||
for(int i = 1; i < v1.size(); ++i)
|
||||
res += v1.coeff(i) * ei_conj(v2.coeff(i));
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
struct ei_dot_impl<Derived1, Derived2, NoVectorization, CompleteUnrolling>
|
||||
: public ei_dot_novec_unroller<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
|
||||
{};
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
struct ei_dot_impl<Derived1, Derived2, LinearVectorization, NoUnrolling>
|
||||
{
|
||||
typedef typename Derived1::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
|
||||
static Scalar run(const Derived1& v1, const Derived2& v2)
|
||||
{
|
||||
const int size = v1.size();
|
||||
const int packetSize = ei_packet_traits<Scalar>::size;
|
||||
const int alignedSize = (size/packetSize)*packetSize;
|
||||
enum {
|
||||
alignment1 = (Derived1::Flags & AlignedBit) ? Aligned : Unaligned,
|
||||
alignment2 = (Derived2::Flags & AlignedBit) ? Aligned : Unaligned
|
||||
};
|
||||
Scalar res;
|
||||
|
||||
// do the vectorizable part of the sum
|
||||
if(size >= packetSize)
|
||||
{
|
||||
PacketScalar packet_res = ei_pmul(
|
||||
v1.template packet<alignment1>(0),
|
||||
v2.template packet<alignment2>(0)
|
||||
);
|
||||
for(int index = packetSize; index<alignedSize; index += packetSize)
|
||||
{
|
||||
packet_res = ei_pmadd(
|
||||
v1.template packet<alignment1>(index),
|
||||
v2.template packet<alignment2>(index),
|
||||
packet_res
|
||||
);
|
||||
}
|
||||
res = ei_predux(packet_res);
|
||||
|
||||
// now we must do the rest without vectorization.
|
||||
if(alignedSize == size) return res;
|
||||
}
|
||||
else // too small to vectorize anything.
|
||||
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
|
||||
{
|
||||
res = Scalar(0);
|
||||
}
|
||||
|
||||
// do the remainder of the vector
|
||||
for(int index = alignedSize; index < size; ++index)
|
||||
{
|
||||
res += v1.coeff(index) * v2.coeff(index);
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
struct ei_dot_impl<Derived1, Derived2, LinearVectorization, CompleteUnrolling>
|
||||
{
|
||||
typedef typename Derived1::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
enum {
|
||||
PacketSize = ei_packet_traits<Scalar>::size,
|
||||
Size = Derived1::SizeAtCompileTime,
|
||||
VectorizationSize = (Size / PacketSize) * PacketSize
|
||||
};
|
||||
static Scalar run(const Derived1& v1, const Derived2& v2)
|
||||
{
|
||||
Scalar res = ei_predux(ei_dot_vec_unroller<Derived1, Derived2, 0, VectorizationSize>::run(v1, v2));
|
||||
if (VectorizationSize != Size)
|
||||
res += ei_dot_novec_unroller<Derived1, Derived2, VectorizationSize, Size-VectorizationSize>::run(v1, v2);
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 4 : implementation of MatrixBase methods
|
||||
***************************************************************************/
|
||||
|
||||
/** \returns the dot product of *this with other.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \note If the scalar type is complex numbers, then this function returns the hermitian
|
||||
* (sesquilinear) dot product, linear in the first variable and conjugate-linear in the
|
||||
* second variable.
|
||||
*
|
||||
* \sa squaredNorm(), norm()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
||||
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
|
||||
EIGEN_STATIC_ASSERT((ei_is_same_type<Scalar, typename OtherDerived::Scalar>::ret),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
|
||||
ei_assert(size() == other.size());
|
||||
|
||||
return ei_dot_impl<Derived, OtherDerived>::run(derived(), other.derived());
|
||||
}
|
||||
|
||||
/** \returns the squared \em l2 norm of *this, i.e., for vectors, the dot product of *this with itself.
|
||||
*
|
||||
* \sa dot(), norm()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
|
||||
{
|
||||
return ei_real((*this).cwise().abs2().sum());
|
||||
}
|
||||
|
||||
/** \returns the \em l2 norm of *this, i.e., for vectors, the square root of the dot product of *this with itself.
|
||||
*
|
||||
* \sa dot(), squaredNorm()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
|
||||
{
|
||||
return ei_sqrt(squaredNorm());
|
||||
}
|
||||
|
||||
/** \returns an expression of the quotient of *this by its own norm.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \sa norm(), normalize()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const typename MatrixBase<Derived>::PlainMatrixType
|
||||
MatrixBase<Derived>::normalized() const
|
||||
{
|
||||
typedef typename ei_nested<Derived>::type Nested;
|
||||
typedef typename ei_unref<Nested>::type _Nested;
|
||||
_Nested n(derived());
|
||||
return n / n.norm();
|
||||
}
|
||||
|
||||
/** Normalizes the vector, i.e. divides it by its own norm.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \sa norm(), normalized()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline void MatrixBase<Derived>::normalize()
|
||||
{
|
||||
*this /= norm();
|
||||
}
|
||||
|
||||
/** \returns true if *this is approximately orthogonal to \a other,
|
||||
* within the precision given by \a prec.
|
||||
*
|
||||
* Example: \include MatrixBase_isOrthogonal.cpp
|
||||
* Output: \verbinclude MatrixBase_isOrthogonal.out
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
bool MatrixBase<Derived>::isOrthogonal
|
||||
(const MatrixBase<OtherDerived>& other, RealScalar prec) const
|
||||
{
|
||||
typename ei_nested<Derived,2>::type nested(derived());
|
||||
typename ei_nested<OtherDerived,2>::type otherNested(other.derived());
|
||||
return ei_abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
|
||||
}
|
||||
|
||||
/** \returns true if *this is approximately an unitary matrix,
|
||||
* within the precision given by \a prec. In the case where the \a Scalar
|
||||
* type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
|
||||
*
|
||||
* \note This can be used to check whether a family of vectors forms an orthonormal basis.
|
||||
* Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an
|
||||
* orthonormal basis.
|
||||
*
|
||||
* Example: \include MatrixBase_isUnitary.cpp
|
||||
* Output: \verbinclude MatrixBase_isUnitary.out
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool MatrixBase<Derived>::isUnitary(RealScalar prec) const
|
||||
{
|
||||
typename Derived::Nested nested(derived());
|
||||
for(int i = 0; i < cols(); ++i)
|
||||
{
|
||||
if(!ei_isApprox(nested.col(i).squaredNorm(), static_cast<Scalar>(1), prec))
|
||||
return false;
|
||||
for(int j = 0; j < i; ++j)
|
||||
if(!ei_isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
#endif // EIGEN_DOT_H
|
149
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Flagged.h
Normal file
149
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Flagged.h
Normal file
@ -0,0 +1,149 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_FLAGGED_H
|
||||
#define EIGEN_FLAGGED_H
|
||||
|
||||
/** \class Flagged
|
||||
*
|
||||
* \brief Expression with modified flags
|
||||
*
|
||||
* \param ExpressionType the type of the object of which we are modifying the flags
|
||||
* \param Added the flags added to the expression
|
||||
* \param Removed the flags removed from the expression (has priority over Added).
|
||||
*
|
||||
* This class represents an expression whose flags have been modified.
|
||||
* It is the return type of MatrixBase::flagged()
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* \sa MatrixBase::flagged()
|
||||
*/
|
||||
template<typename ExpressionType, unsigned int Added, unsigned int Removed>
|
||||
struct ei_traits<Flagged<ExpressionType, Added, Removed> > : ei_traits<ExpressionType>
|
||||
{
|
||||
enum { Flags = (ExpressionType::Flags | Added) & ~Removed };
|
||||
};
|
||||
|
||||
template<typename ExpressionType, unsigned int Added, unsigned int Removed> class Flagged
|
||||
: public MatrixBase<Flagged<ExpressionType, Added, Removed> >
|
||||
{
|
||||
public:
|
||||
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(Flagged)
|
||||
typedef typename ei_meta_if<ei_must_nest_by_value<ExpressionType>::ret,
|
||||
ExpressionType, const ExpressionType&>::ret ExpressionTypeNested;
|
||||
typedef typename ExpressionType::InnerIterator InnerIterator;
|
||||
|
||||
inline Flagged(const ExpressionType& matrix) : m_matrix(matrix) {}
|
||||
|
||||
inline int rows() const { return m_matrix.rows(); }
|
||||
inline int cols() const { return m_matrix.cols(); }
|
||||
inline int stride() const { return m_matrix.stride(); }
|
||||
|
||||
inline const Scalar coeff(int row, int col) const
|
||||
{
|
||||
return m_matrix.coeff(row, col);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(int row, int col)
|
||||
{
|
||||
return m_matrix.const_cast_derived().coeffRef(row, col);
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int index) const
|
||||
{
|
||||
return m_matrix.coeff(index);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(int index)
|
||||
{
|
||||
return m_matrix.const_cast_derived().coeffRef(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(int row, int col) const
|
||||
{
|
||||
return m_matrix.template packet<LoadMode>(row, col);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(int row, int col, const PacketScalar& x)
|
||||
{
|
||||
m_matrix.const_cast_derived().template writePacket<LoadMode>(row, col, x);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(int index) const
|
||||
{
|
||||
return m_matrix.template packet<LoadMode>(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(int index, const PacketScalar& x)
|
||||
{
|
||||
m_matrix.const_cast_derived().template writePacket<LoadMode>(index, x);
|
||||
}
|
||||
|
||||
const ExpressionType& _expression() const { return m_matrix; }
|
||||
|
||||
protected:
|
||||
ExpressionTypeNested m_matrix;
|
||||
|
||||
private:
|
||||
Flagged& operator=(const Flagged&);
|
||||
};
|
||||
|
||||
/** \returns an expression of *this with added flags
|
||||
*
|
||||
* \addexample MarkExample \label How to mark a triangular matrix as triangular
|
||||
*
|
||||
* Example: \include MatrixBase_marked.cpp
|
||||
* Output: \verbinclude MatrixBase_marked.out
|
||||
*
|
||||
* \sa class Flagged, extract(), part()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<unsigned int Added>
|
||||
inline const Flagged<Derived, Added, 0>
|
||||
MatrixBase<Derived>::marked() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \returns an expression of *this with the following flags removed:
|
||||
* EvalBeforeNestingBit and EvalBeforeAssigningBit.
|
||||
*
|
||||
* Example: \include MatrixBase_lazy.cpp
|
||||
* Output: \verbinclude MatrixBase_lazy.out
|
||||
*
|
||||
* \sa class Flagged, marked()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const Flagged<Derived, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit>
|
||||
MatrixBase<Derived>::lazy() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
#endif // EIGEN_FLAGGED_H
|
378
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Functors.h
Normal file
378
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Functors.h
Normal file
@ -0,0 +1,378 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_FUNCTORS_H
|
||||
#define EIGEN_FUNCTORS_H
|
||||
|
||||
// associative functors:
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the sum of two scalars
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::operator+, class PartialRedux, MatrixBase::sum()
|
||||
*/
|
||||
template<typename Scalar> struct ei_scalar_sum_op EIGEN_EMPTY_STRUCT {
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; }
|
||||
template<typename PacketScalar>
|
||||
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
|
||||
{ return ei_padd(a,b); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_sum_op<Scalar> > {
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost,
|
||||
PacketAccess = ei_packet_traits<Scalar>::size>1
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the product of two scalars
|
||||
*
|
||||
* \sa class CwiseBinaryOp, Cwise::operator*(), class PartialRedux, MatrixBase::redux()
|
||||
*/
|
||||
template<typename Scalar> struct ei_scalar_product_op EIGEN_EMPTY_STRUCT {
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a * b; }
|
||||
template<typename PacketScalar>
|
||||
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
|
||||
{ return ei_pmul(a,b); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_product_op<Scalar> > {
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::MulCost,
|
||||
PacketAccess = ei_packet_traits<Scalar>::size>1
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the min of two scalars
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class PartialRedux, MatrixBase::minCoeff()
|
||||
*/
|
||||
template<typename Scalar> struct ei_scalar_min_op EIGEN_EMPTY_STRUCT {
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::min(a, b); }
|
||||
template<typename PacketScalar>
|
||||
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
|
||||
{ return ei_pmin(a,b); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_min_op<Scalar> > {
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost,
|
||||
PacketAccess = ei_packet_traits<Scalar>::size>1
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the max of two scalars
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class PartialRedux, MatrixBase::maxCoeff()
|
||||
*/
|
||||
template<typename Scalar> struct ei_scalar_max_op EIGEN_EMPTY_STRUCT {
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::max(a, b); }
|
||||
template<typename PacketScalar>
|
||||
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
|
||||
{ return ei_pmax(a,b); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_max_op<Scalar> > {
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost,
|
||||
PacketAccess = ei_packet_traits<Scalar>::size>1
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
// other binary functors:
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the difference of two scalars
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::operator-
|
||||
*/
|
||||
template<typename Scalar> struct ei_scalar_difference_op EIGEN_EMPTY_STRUCT {
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; }
|
||||
template<typename PacketScalar>
|
||||
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
|
||||
{ return ei_psub(a,b); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_difference_op<Scalar> > {
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost,
|
||||
PacketAccess = ei_packet_traits<Scalar>::size>1
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the quotient of two scalars
|
||||
*
|
||||
* \sa class CwiseBinaryOp, Cwise::operator/()
|
||||
*/
|
||||
template<typename Scalar> struct ei_scalar_quotient_op EIGEN_EMPTY_STRUCT {
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; }
|
||||
template<typename PacketScalar>
|
||||
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
|
||||
{ return ei_pdiv(a,b); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_quotient_op<Scalar> > {
|
||||
enum {
|
||||
Cost = 2 * NumTraits<Scalar>::MulCost,
|
||||
PacketAccess = ei_packet_traits<Scalar>::size>1
|
||||
#if (defined EIGEN_VECTORIZE_SSE)
|
||||
&& NumTraits<Scalar>::HasFloatingPoint
|
||||
#endif
|
||||
};
|
||||
};
|
||||
|
||||
// unary functors:
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the opposite of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, MatrixBase::operator-
|
||||
*/
|
||||
template<typename Scalar> struct ei_scalar_opposite_op EIGEN_EMPTY_STRUCT {
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_opposite_op<Scalar> >
|
||||
{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false }; };
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the absolute value of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::abs
|
||||
*/
|
||||
template<typename Scalar> struct ei_scalar_abs_op EIGEN_EMPTY_STRUCT {
|
||||
typedef typename NumTraits<Scalar>::Real result_type;
|
||||
EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return ei_abs(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_abs_op<Scalar> >
|
||||
{
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost,
|
||||
PacketAccess = false // this could actually be vectorized with SSSE3.
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the squared absolute value of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::abs2
|
||||
*/
|
||||
template<typename Scalar> struct ei_scalar_abs2_op EIGEN_EMPTY_STRUCT {
|
||||
typedef typename NumTraits<Scalar>::Real result_type;
|
||||
EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return ei_abs2(a); }
|
||||
template<typename PacketScalar>
|
||||
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const
|
||||
{ return ei_pmul(a,a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_abs2_op<Scalar> >
|
||||
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = int(ei_packet_traits<Scalar>::size)>1 }; };
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the conjugate of a complex value
|
||||
*
|
||||
* \sa class CwiseUnaryOp, MatrixBase::conjugate()
|
||||
*/
|
||||
template<typename Scalar> struct ei_scalar_conjugate_op EIGEN_EMPTY_STRUCT {
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return ei_conj(a); }
|
||||
template<typename PacketScalar>
|
||||
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const { return a; }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_conjugate_op<Scalar> >
|
||||
{
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0,
|
||||
PacketAccess = int(ei_packet_traits<Scalar>::size)>1
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to cast a scalar to another type
|
||||
*
|
||||
* \sa class CwiseUnaryOp, MatrixBase::cast()
|
||||
*/
|
||||
template<typename Scalar, typename NewType>
|
||||
struct ei_scalar_cast_op EIGEN_EMPTY_STRUCT {
|
||||
typedef NewType result_type;
|
||||
EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return static_cast<NewType>(a); }
|
||||
};
|
||||
template<typename Scalar, typename NewType>
|
||||
struct ei_functor_traits<ei_scalar_cast_op<Scalar,NewType> >
|
||||
{ enum { Cost = ei_is_same_type<Scalar, NewType>::ret ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to extract the real part of a complex
|
||||
*
|
||||
* \sa class CwiseUnaryOp, MatrixBase::real()
|
||||
*/
|
||||
template<typename Scalar>
|
||||
struct ei_scalar_real_op EIGEN_EMPTY_STRUCT {
|
||||
typedef typename NumTraits<Scalar>::Real result_type;
|
||||
EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return ei_real(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_real_op<Scalar> >
|
||||
{ enum { Cost = 0, PacketAccess = false }; };
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to extract the imaginary part of a complex
|
||||
*
|
||||
* \sa class CwiseUnaryOp, MatrixBase::imag()
|
||||
*/
|
||||
template<typename Scalar>
|
||||
struct ei_scalar_imag_op EIGEN_EMPTY_STRUCT {
|
||||
typedef typename NumTraits<Scalar>::Real result_type;
|
||||
EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return ei_imag(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_imag_op<Scalar> >
|
||||
{ enum { Cost = 0, PacketAccess = false }; };
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to multiply a scalar by a fixed other one
|
||||
*
|
||||
* \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/
|
||||
*/
|
||||
/* NOTE why doing the ei_pset1() in packetOp *is* an optimization ?
|
||||
* indeed it seems better to declare m_other as a PacketScalar and do the ei_pset1() once
|
||||
* in the constructor. However, in practice:
|
||||
* - GCC does not like m_other as a PacketScalar and generate a load every time it needs it
|
||||
* - one the other hand GCC is able to moves the ei_pset1() away the loop :)
|
||||
* - simpler code ;)
|
||||
* (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y)
|
||||
*/
|
||||
template<typename Scalar>
|
||||
struct ei_scalar_multiple_op {
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
// FIXME default copy constructors seems bugged with std::complex<>
|
||||
EIGEN_STRONG_INLINE ei_scalar_multiple_op(const ei_scalar_multiple_op& other) : m_other(other.m_other) { }
|
||||
EIGEN_STRONG_INLINE ei_scalar_multiple_op(const Scalar& other) : m_other(other) { }
|
||||
EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
|
||||
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const
|
||||
{ return ei_pmul(a, ei_pset1(m_other)); }
|
||||
const Scalar m_other;
|
||||
private:
|
||||
ei_scalar_multiple_op& operator=(const ei_scalar_multiple_op&);
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_multiple_op<Scalar> >
|
||||
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::size>1 }; };
|
||||
|
||||
template<typename Scalar, bool HasFloatingPoint>
|
||||
struct ei_scalar_quotient1_impl {
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
// FIXME default copy constructors seems bugged with std::complex<>
|
||||
EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const ei_scalar_quotient1_impl& other) : m_other(other.m_other) { }
|
||||
EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const Scalar& other) : m_other(static_cast<Scalar>(1) / other) {}
|
||||
EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
|
||||
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const
|
||||
{ return ei_pmul(a, ei_pset1(m_other)); }
|
||||
const Scalar m_other;
|
||||
private:
|
||||
ei_scalar_quotient1_impl& operator=(const ei_scalar_quotient1_impl&);
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_quotient1_impl<Scalar,true> >
|
||||
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::size>1 }; };
|
||||
|
||||
template<typename Scalar>
|
||||
struct ei_scalar_quotient1_impl<Scalar,false> {
|
||||
// FIXME default copy constructors seems bugged with std::complex<>
|
||||
EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const ei_scalar_quotient1_impl& other) : m_other(other.m_other) { }
|
||||
EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const Scalar& other) : m_other(other) {}
|
||||
EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; }
|
||||
const Scalar m_other;
|
||||
private:
|
||||
ei_scalar_quotient1_impl& operator=(const ei_scalar_quotient1_impl&);
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_quotient1_impl<Scalar,false> >
|
||||
{ enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to divide a scalar by a fixed other one
|
||||
*
|
||||
* This functor is used to implement the quotient of a matrix by
|
||||
* a scalar where the scalar type is not necessarily a floating point type.
|
||||
*
|
||||
* \sa class CwiseUnaryOp, MatrixBase::operator/
|
||||
*/
|
||||
template<typename Scalar>
|
||||
struct ei_scalar_quotient1_op : ei_scalar_quotient1_impl<Scalar, NumTraits<Scalar>::HasFloatingPoint > {
|
||||
EIGEN_STRONG_INLINE ei_scalar_quotient1_op(const Scalar& other)
|
||||
: ei_scalar_quotient1_impl<Scalar, NumTraits<Scalar>::HasFloatingPoint >(other) {}
|
||||
private:
|
||||
ei_scalar_quotient1_op& operator=(const ei_scalar_quotient1_op&);
|
||||
};
|
||||
|
||||
// nullary functors
|
||||
|
||||
template<typename Scalar>
|
||||
struct ei_scalar_constant_op {
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
EIGEN_STRONG_INLINE ei_scalar_constant_op(const ei_scalar_constant_op& other) : m_other(other.m_other) { }
|
||||
EIGEN_STRONG_INLINE ei_scalar_constant_op(const Scalar& other) : m_other(other) { }
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (int, int = 0) const { return m_other; }
|
||||
EIGEN_STRONG_INLINE const PacketScalar packetOp() const { return ei_pset1(m_other); }
|
||||
const Scalar m_other;
|
||||
private:
|
||||
ei_scalar_constant_op& operator=(const ei_scalar_constant_op&);
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_constant_op<Scalar> >
|
||||
{ enum { Cost = 1, PacketAccess = ei_packet_traits<Scalar>::size>1, IsRepeatable = true }; };
|
||||
|
||||
template<typename Scalar> struct ei_scalar_identity_op EIGEN_EMPTY_STRUCT {
|
||||
EIGEN_STRONG_INLINE ei_scalar_identity_op(void) {}
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (int row, int col) const { return row==col ? Scalar(1) : Scalar(0); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_identity_op<Scalar> >
|
||||
{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
|
||||
|
||||
// allow to add new functors and specializations of ei_functor_traits from outside Eigen.
|
||||
// this macro is really needed because ei_functor_traits must be specialized after it is declared but before it is used...
|
||||
#ifdef EIGEN_FUNCTORS_PLUGIN
|
||||
#include EIGEN_FUNCTORS_PLUGIN
|
||||
#endif
|
||||
|
||||
// all functors allow linear access, except ei_scalar_identity_op. So we fix here a quick meta
|
||||
// to indicate whether a functor allows linear access, just always answering 'yes' except for
|
||||
// ei_scalar_identity_op.
|
||||
template<typename Functor> struct ei_functor_has_linear_access { enum { ret = 1 }; };
|
||||
template<typename Scalar> struct ei_functor_has_linear_access<ei_scalar_identity_op<Scalar> > { enum { ret = 0 }; };
|
||||
|
||||
// in CwiseBinaryOp, we require the Lhs and Rhs to have the same scalar type, except for multiplication
|
||||
// where we only require them to have the same _real_ scalar type so one may multiply, say, float by complex<float>.
|
||||
template<typename Functor> struct ei_functor_allows_mixing_real_and_complex { enum { ret = 0 }; };
|
||||
template<typename Scalar> struct ei_functor_allows_mixing_real_and_complex<ei_scalar_product_op<Scalar> > { enum { ret = 1 }; };
|
||||
|
||||
#endif // EIGEN_FUNCTORS_H
|
234
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Fuzzy.h
Normal file
234
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Fuzzy.h
Normal file
@ -0,0 +1,234 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_FUZZY_H
|
||||
#define EIGEN_FUZZY_H
|
||||
|
||||
#ifndef EIGEN_LEGACY_COMPARES
|
||||
|
||||
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
||||
* determined by \a prec.
|
||||
*
|
||||
* \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$
|
||||
* are considered to be approximately equal within precision \f$ p \f$ if
|
||||
* \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f]
|
||||
* For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm
|
||||
* L2 norm).
|
||||
*
|
||||
* \note Because of the multiplicativeness of this comparison, one can't use this function
|
||||
* to check whether \c *this is approximately equal to the zero matrix or vector.
|
||||
* Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix
|
||||
* or vector. If you want to test whether \c *this is zero, use ei_isMuchSmallerThan(const
|
||||
* RealScalar&, RealScalar) instead.
|
||||
*
|
||||
* \sa ei_isMuchSmallerThan(const RealScalar&, RealScalar) const
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
bool MatrixBase<Derived>::isApprox(
|
||||
const MatrixBase<OtherDerived>& other,
|
||||
typename NumTraits<Scalar>::Real prec
|
||||
) const
|
||||
{
|
||||
const typename ei_nested<Derived,2>::type nested(derived());
|
||||
const typename ei_nested<OtherDerived,2>::type otherNested(other.derived());
|
||||
return (nested - otherNested).cwise().abs2().sum() <= prec * prec * std::min(nested.cwise().abs2().sum(), otherNested.cwise().abs2().sum());
|
||||
}
|
||||
|
||||
/** \returns \c true if the norm of \c *this is much smaller than \a other,
|
||||
* within the precision determined by \a prec.
|
||||
*
|
||||
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
|
||||
* considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if
|
||||
* \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f]
|
||||
*
|
||||
* For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason,
|
||||
* the value of the reference scalar \a other should come from the Hilbert-Schmidt norm
|
||||
* of a reference matrix of same dimensions.
|
||||
*
|
||||
* \sa isApprox(), isMuchSmallerThan(const MatrixBase<OtherDerived>&, RealScalar) const
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool MatrixBase<Derived>::isMuchSmallerThan(
|
||||
const typename NumTraits<Scalar>::Real& other,
|
||||
typename NumTraits<Scalar>::Real prec
|
||||
) const
|
||||
{
|
||||
return cwise().abs2().sum() <= prec * prec * other * other;
|
||||
}
|
||||
|
||||
/** \returns \c true if the norm of \c *this is much smaller than the norm of \a other,
|
||||
* within the precision determined by \a prec.
|
||||
*
|
||||
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
|
||||
* considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if
|
||||
* \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f]
|
||||
* For matrices, the comparison is done using the Hilbert-Schmidt norm.
|
||||
*
|
||||
* \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
bool MatrixBase<Derived>::isMuchSmallerThan(
|
||||
const MatrixBase<OtherDerived>& other,
|
||||
typename NumTraits<Scalar>::Real prec
|
||||
) const
|
||||
{
|
||||
return this->cwise().abs2().sum() <= prec * prec * other.cwise().abs2().sum();
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
template<typename Derived, typename OtherDerived=Derived, bool IsVector=Derived::IsVectorAtCompileTime>
|
||||
struct ei_fuzzy_selector;
|
||||
|
||||
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
||||
* determined by \a prec.
|
||||
*
|
||||
* \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$
|
||||
* are considered to be approximately equal within precision \f$ p \f$ if
|
||||
* \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f]
|
||||
* For matrices, the comparison is done on all columns.
|
||||
*
|
||||
* \note Because of the multiplicativeness of this comparison, one can't use this function
|
||||
* to check whether \c *this is approximately equal to the zero matrix or vector.
|
||||
* Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix
|
||||
* or vector. If you want to test whether \c *this is zero, use ei_isMuchSmallerThan(const
|
||||
* RealScalar&, RealScalar) instead.
|
||||
*
|
||||
* \sa ei_isMuchSmallerThan(const RealScalar&, RealScalar) const
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
bool MatrixBase<Derived>::isApprox(
|
||||
const MatrixBase<OtherDerived>& other,
|
||||
typename NumTraits<Scalar>::Real prec
|
||||
) const
|
||||
{
|
||||
return ei_fuzzy_selector<Derived,OtherDerived>::isApprox(derived(), other.derived(), prec);
|
||||
}
|
||||
|
||||
/** \returns \c true if the norm of \c *this is much smaller than \a other,
|
||||
* within the precision determined by \a prec.
|
||||
*
|
||||
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
|
||||
* considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if
|
||||
* \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f]
|
||||
* For matrices, the comparison is done on all columns.
|
||||
*
|
||||
* \sa isApprox(), isMuchSmallerThan(const MatrixBase<OtherDerived>&, RealScalar) const
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool MatrixBase<Derived>::isMuchSmallerThan(
|
||||
const typename NumTraits<Scalar>::Real& other,
|
||||
typename NumTraits<Scalar>::Real prec
|
||||
) const
|
||||
{
|
||||
return ei_fuzzy_selector<Derived>::isMuchSmallerThan(derived(), other, prec);
|
||||
}
|
||||
|
||||
/** \returns \c true if the norm of \c *this is much smaller than the norm of \a other,
|
||||
* within the precision determined by \a prec.
|
||||
*
|
||||
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
|
||||
* considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if
|
||||
* \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f]
|
||||
* For matrices, the comparison is done on all columns.
|
||||
*
|
||||
* \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
bool MatrixBase<Derived>::isMuchSmallerThan(
|
||||
const MatrixBase<OtherDerived>& other,
|
||||
typename NumTraits<Scalar>::Real prec
|
||||
) const
|
||||
{
|
||||
return ei_fuzzy_selector<Derived,OtherDerived>::isMuchSmallerThan(derived(), other.derived(), prec);
|
||||
}
|
||||
|
||||
|
||||
template<typename Derived, typename OtherDerived>
|
||||
struct ei_fuzzy_selector<Derived,OtherDerived,true>
|
||||
{
|
||||
typedef typename Derived::RealScalar RealScalar;
|
||||
static bool isApprox(const Derived& self, const OtherDerived& other, RealScalar prec)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
|
||||
ei_assert(self.size() == other.size());
|
||||
return((self - other).squaredNorm() <= std::min(self.squaredNorm(), other.squaredNorm()) * prec * prec);
|
||||
}
|
||||
static bool isMuchSmallerThan(const Derived& self, const RealScalar& other, RealScalar prec)
|
||||
{
|
||||
return(self.squaredNorm() <= ei_abs2(other * prec));
|
||||
}
|
||||
static bool isMuchSmallerThan(const Derived& self, const OtherDerived& other, RealScalar prec)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
|
||||
ei_assert(self.size() == other.size());
|
||||
return(self.squaredNorm() <= other.squaredNorm() * prec * prec);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived, typename OtherDerived>
|
||||
struct ei_fuzzy_selector<Derived,OtherDerived,false>
|
||||
{
|
||||
typedef typename Derived::RealScalar RealScalar;
|
||||
static bool isApprox(const Derived& self, const OtherDerived& other, RealScalar prec)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived,OtherDerived)
|
||||
ei_assert(self.rows() == other.rows() && self.cols() == other.cols());
|
||||
typename Derived::Nested nested(self);
|
||||
typename OtherDerived::Nested otherNested(other);
|
||||
for(int i = 0; i < self.cols(); ++i)
|
||||
if((nested.col(i) - otherNested.col(i)).squaredNorm()
|
||||
> std::min(nested.col(i).squaredNorm(), otherNested.col(i).squaredNorm()) * prec * prec)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
static bool isMuchSmallerThan(const Derived& self, const RealScalar& other, RealScalar prec)
|
||||
{
|
||||
typename Derived::Nested nested(self);
|
||||
for(int i = 0; i < self.cols(); ++i)
|
||||
if(nested.col(i).squaredNorm() > ei_abs2(other * prec))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
static bool isMuchSmallerThan(const Derived& self, const OtherDerived& other, RealScalar prec)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived,OtherDerived)
|
||||
ei_assert(self.rows() == other.rows() && self.cols() == other.cols());
|
||||
typename Derived::Nested nested(self);
|
||||
typename OtherDerived::Nested otherNested(other);
|
||||
for(int i = 0; i < self.cols(); ++i)
|
||||
if(nested.col(i).squaredNorm() > otherNested.col(i).squaredNorm() * prec * prec)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#endif // EIGEN_FUZZY_H
|
@ -0,0 +1,150 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_GENERIC_PACKET_MATH_H
|
||||
#define EIGEN_GENERIC_PACKET_MATH_H
|
||||
|
||||
/** \internal
|
||||
* \file GenericPacketMath.h
|
||||
*
|
||||
* Default implementation for types not supported by the vectorization.
|
||||
* In practice these functions are provided to make easier the writing
|
||||
* of generic vectorized code.
|
||||
*/
|
||||
|
||||
/** \internal \returns a + b (coeff-wise) */
|
||||
template<typename Packet> inline Packet
|
||||
ei_padd(const Packet& a,
|
||||
const Packet& b) { return a+b; }
|
||||
|
||||
/** \internal \returns a - b (coeff-wise) */
|
||||
template<typename Packet> inline Packet
|
||||
ei_psub(const Packet& a,
|
||||
const Packet& b) { return a-b; }
|
||||
|
||||
/** \internal \returns a * b (coeff-wise) */
|
||||
template<typename Packet> inline Packet
|
||||
ei_pmul(const Packet& a,
|
||||
const Packet& b) { return a*b; }
|
||||
|
||||
/** \internal \returns a / b (coeff-wise) */
|
||||
template<typename Packet> inline Packet
|
||||
ei_pdiv(const Packet& a,
|
||||
const Packet& b) { return a/b; }
|
||||
|
||||
/** \internal \returns the min of \a a and \a b (coeff-wise) */
|
||||
template<typename Packet> inline Packet
|
||||
ei_pmin(const Packet& a,
|
||||
const Packet& b) { return std::min(a, b); }
|
||||
|
||||
/** \internal \returns the max of \a a and \a b (coeff-wise) */
|
||||
template<typename Packet> inline Packet
|
||||
ei_pmax(const Packet& a,
|
||||
const Packet& b) { return std::max(a, b); }
|
||||
|
||||
/** \internal \returns a packet version of \a *from, from must be 16 bytes aligned */
|
||||
template<typename Scalar> inline typename ei_packet_traits<Scalar>::type
|
||||
ei_pload(const Scalar* from) { return *from; }
|
||||
|
||||
/** \internal \returns a packet version of \a *from, (un-aligned load) */
|
||||
template<typename Scalar> inline typename ei_packet_traits<Scalar>::type
|
||||
ei_ploadu(const Scalar* from) { return *from; }
|
||||
|
||||
/** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */
|
||||
template<typename Scalar> inline typename ei_packet_traits<Scalar>::type
|
||||
ei_pset1(const Scalar& a) { return a; }
|
||||
|
||||
/** \internal copy the packet \a from to \a *to, \a to must be 16 bytes aligned */
|
||||
template<typename Scalar, typename Packet> inline void ei_pstore(Scalar* to, const Packet& from)
|
||||
{ (*to) = from; }
|
||||
|
||||
/** \internal copy the packet \a from to \a *to, (un-aligned store) */
|
||||
template<typename Scalar, typename Packet> inline void ei_pstoreu(Scalar* to, const Packet& from)
|
||||
{ (*to) = from; }
|
||||
|
||||
/** \internal \returns the first element of a packet */
|
||||
template<typename Packet> inline typename ei_unpacket_traits<Packet>::type ei_pfirst(const Packet& a)
|
||||
{ return a; }
|
||||
|
||||
/** \internal \returns a packet where the element i contains the sum of the packet of \a vec[i] */
|
||||
template<typename Packet> inline Packet
|
||||
ei_preduxp(const Packet* vecs) { return vecs[0]; }
|
||||
|
||||
/** \internal \returns the sum of the elements of \a a*/
|
||||
template<typename Packet> inline typename ei_unpacket_traits<Packet>::type ei_predux(const Packet& a)
|
||||
{ return a; }
|
||||
|
||||
|
||||
/***************************************************************************
|
||||
* The following functions might not have to be overwritten for vectorized types
|
||||
***************************************************************************/
|
||||
|
||||
/** \internal \returns a * b + c (coeff-wise) */
|
||||
template<typename Packet> inline Packet
|
||||
ei_pmadd(const Packet& a,
|
||||
const Packet& b,
|
||||
const Packet& c)
|
||||
{ return ei_padd(ei_pmul(a, b),c); }
|
||||
|
||||
/** \internal \returns a packet version of \a *from.
|
||||
* \If LoadMode equals Aligned, \a from must be 16 bytes aligned */
|
||||
template<typename Scalar, int LoadMode>
|
||||
inline typename ei_packet_traits<Scalar>::type ei_ploadt(const Scalar* from)
|
||||
{
|
||||
if(LoadMode == Aligned)
|
||||
return ei_pload(from);
|
||||
else
|
||||
return ei_ploadu(from);
|
||||
}
|
||||
|
||||
/** \internal copy the packet \a from to \a *to.
|
||||
* If StoreMode equals Aligned, \a to must be 16 bytes aligned */
|
||||
template<typename Scalar, typename Packet, int LoadMode>
|
||||
inline void ei_pstoret(Scalar* to, const Packet& from)
|
||||
{
|
||||
if(LoadMode == Aligned)
|
||||
ei_pstore(to, from);
|
||||
else
|
||||
ei_pstoreu(to, from);
|
||||
}
|
||||
|
||||
/** \internal default implementation of ei_palign() allowing partial specialization */
|
||||
template<int Offset,typename PacketType>
|
||||
struct ei_palign_impl
|
||||
{
|
||||
// by default data are aligned, so there is nothing to be done :)
|
||||
inline static void run(PacketType&, const PacketType&) {}
|
||||
};
|
||||
|
||||
/** \internal update \a first using the concatenation of the \a Offset last elements
|
||||
* of \a first and packet_size minus \a Offset first elements of \a second */
|
||||
template<int Offset,typename PacketType>
|
||||
inline void ei_palign(PacketType& first, const PacketType& second)
|
||||
{
|
||||
ei_palign_impl<Offset,PacketType>::run(first,second);
|
||||
}
|
||||
|
||||
#endif // EIGEN_GENERIC_PACKET_MATH_H
|
||||
|
184
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/IO.h
Normal file
184
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/IO.h
Normal file
@ -0,0 +1,184 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_IO_H
|
||||
#define EIGEN_IO_H
|
||||
|
||||
enum { Raw, AlignCols };
|
||||
|
||||
/** \class IOFormat
|
||||
*
|
||||
* \brief Stores a set of parameters controlling the way matrices are printed
|
||||
*
|
||||
* List of available parameters:
|
||||
* - \b precision number of digits for floating point values
|
||||
* - \b flags can be either Raw (default) or AlignCols which aligns all the columns
|
||||
* - \b coeffSeparator string printed between two coefficients of the same row
|
||||
* - \b rowSeparator string printed between two rows
|
||||
* - \b rowPrefix string printed at the beginning of each row
|
||||
* - \b rowSuffix string printed at the end of each row
|
||||
* - \b matPrefix string printed at the beginning of the matrix
|
||||
* - \b matSuffix string printed at the end of the matrix
|
||||
*
|
||||
* Example: \include IOFormat.cpp
|
||||
* Output: \verbinclude IOFormat.out
|
||||
*
|
||||
* \sa MatrixBase::format(), class WithFormat
|
||||
*/
|
||||
struct IOFormat
|
||||
{
|
||||
/** Default contructor, see class IOFormat for the meaning of the parameters */
|
||||
IOFormat(int _precision=4, int _flags=Raw,
|
||||
const std::string& _coeffSeparator = " ",
|
||||
const std::string& _rowSeparator = "\n", const std::string& _rowPrefix="", const std::string& _rowSuffix="",
|
||||
const std::string& _matPrefix="", const std::string& _matSuffix="")
|
||||
: matPrefix(_matPrefix), matSuffix(_matSuffix), rowPrefix(_rowPrefix), rowSuffix(_rowSuffix), rowSeparator(_rowSeparator),
|
||||
coeffSeparator(_coeffSeparator), precision(_precision), flags(_flags)
|
||||
{
|
||||
rowSpacer = "";
|
||||
int i = int(matSuffix.length())-1;
|
||||
while (i>=0 && matSuffix[i]!='\n')
|
||||
{
|
||||
rowSpacer += ' ';
|
||||
i--;
|
||||
}
|
||||
}
|
||||
std::string matPrefix, matSuffix;
|
||||
std::string rowPrefix, rowSuffix, rowSeparator, rowSpacer;
|
||||
std::string coeffSeparator;
|
||||
int precision;
|
||||
int flags;
|
||||
};
|
||||
|
||||
/** \class WithFormat
|
||||
*
|
||||
* \brief Pseudo expression providing matrix output with given format
|
||||
*
|
||||
* \param ExpressionType the type of the object on which IO stream operations are performed
|
||||
*
|
||||
* This class represents an expression with stream operators controlled by a given IOFormat.
|
||||
* It is the return type of MatrixBase::format()
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* See class IOFormat for some examples.
|
||||
*
|
||||
* \sa MatrixBase::format(), class IOFormat
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
class WithFormat
|
||||
{
|
||||
public:
|
||||
|
||||
WithFormat(const ExpressionType& matrix, const IOFormat& format)
|
||||
: m_matrix(matrix), m_format(format)
|
||||
{}
|
||||
|
||||
friend std::ostream & operator << (std::ostream & s, const WithFormat& wf)
|
||||
{
|
||||
return ei_print_matrix(s, wf.m_matrix.eval(), wf.m_format);
|
||||
}
|
||||
|
||||
protected:
|
||||
const typename ExpressionType::Nested m_matrix;
|
||||
IOFormat m_format;
|
||||
};
|
||||
|
||||
/** \returns a WithFormat proxy object allowing to print a matrix the with given
|
||||
* format \a fmt.
|
||||
*
|
||||
* See class IOFormat for some examples.
|
||||
*
|
||||
* \sa class IOFormat, class WithFormat
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const WithFormat<Derived>
|
||||
MatrixBase<Derived>::format(const IOFormat& fmt) const
|
||||
{
|
||||
return WithFormat<Derived>(derived(), fmt);
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* print the matrix \a _m to the output stream \a s using the output format \a fmt */
|
||||
template<typename Derived>
|
||||
std::ostream & ei_print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt)
|
||||
{
|
||||
const typename Derived::Nested m = _m;
|
||||
|
||||
int width = 0;
|
||||
if (fmt.flags & AlignCols)
|
||||
{
|
||||
// compute the largest width
|
||||
for(int j = 1; j < m.cols(); ++j)
|
||||
for(int i = 0; i < m.rows(); ++i)
|
||||
{
|
||||
std::stringstream sstr;
|
||||
sstr.precision(fmt.precision);
|
||||
sstr << m.coeff(i,j);
|
||||
width = std::max<int>(width, int(sstr.str().length()));
|
||||
}
|
||||
}
|
||||
s.precision(fmt.precision);
|
||||
s << fmt.matPrefix;
|
||||
for(int i = 0; i < m.rows(); ++i)
|
||||
{
|
||||
if (i)
|
||||
s << fmt.rowSpacer;
|
||||
s << fmt.rowPrefix;
|
||||
if(width) s.width(width);
|
||||
s << m.coeff(i, 0);
|
||||
for(int j = 1; j < m.cols(); ++j)
|
||||
{
|
||||
s << fmt.coeffSeparator;
|
||||
if (width) s.width(width);
|
||||
s << m.coeff(i, j);
|
||||
}
|
||||
s << fmt.rowSuffix;
|
||||
if( i < m.rows() - 1)
|
||||
s << fmt.rowSeparator;
|
||||
}
|
||||
s << fmt.matSuffix;
|
||||
return s;
|
||||
}
|
||||
|
||||
/** \relates MatrixBase
|
||||
*
|
||||
* Outputs the matrix, to the given stream.
|
||||
*
|
||||
* If you wish to print the matrix with a format different than the default, use MatrixBase::format().
|
||||
*
|
||||
* It is also possible to change the default format by defining EIGEN_DEFAULT_IO_FORMAT before including Eigen headers.
|
||||
* If not defined, this will automatically be defined to Eigen::IOFormat(), that is the Eigen::IOFormat with default parameters.
|
||||
*
|
||||
* \sa MatrixBase::format()
|
||||
*/
|
||||
template<typename Derived>
|
||||
std::ostream & operator <<
|
||||
(std::ostream & s,
|
||||
const MatrixBase<Derived> & m)
|
||||
{
|
||||
return ei_print_matrix(s, m.eval(), EIGEN_DEFAULT_IO_FORMAT);
|
||||
}
|
||||
|
||||
#endif // EIGEN_IO_H
|
111
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Map.h
Normal file
111
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Map.h
Normal file
@ -0,0 +1,111 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_MAP_H
|
||||
#define EIGEN_MAP_H
|
||||
|
||||
/** \class Map
|
||||
*
|
||||
* \brief A matrix or vector expression mapping an existing array of data.
|
||||
*
|
||||
* \param MatrixType the equivalent matrix type of the mapped data
|
||||
* \param _PacketAccess allows to enforce aligned loads and stores if set to ForceAligned.
|
||||
* The default is AsRequested. This parameter is internaly used by Eigen
|
||||
* in expressions such as \code Map<...>(...) += other; \endcode and most
|
||||
* of the time this is the only way it is used.
|
||||
*
|
||||
* This class represents a matrix or vector expression mapping an existing array of data.
|
||||
* It can be used to let Eigen interface without any overhead with non-Eigen data structures,
|
||||
* such as plain C arrays or structures from other libraries.
|
||||
*
|
||||
* This class is the return type of Matrix::Map() but can also be used directly.
|
||||
*
|
||||
* \sa Matrix::Map()
|
||||
*/
|
||||
template<typename MatrixType, int _PacketAccess>
|
||||
struct ei_traits<Map<MatrixType, _PacketAccess> > : public ei_traits<MatrixType>
|
||||
{
|
||||
enum {
|
||||
PacketAccess = _PacketAccess,
|
||||
Flags = ei_traits<MatrixType>::Flags & ~AlignedBit
|
||||
};
|
||||
typedef typename ei_meta_if<int(PacketAccess)==ForceAligned,
|
||||
Map<MatrixType, _PacketAccess>&,
|
||||
Map<MatrixType, ForceAligned> >::ret AlignedDerivedType;
|
||||
};
|
||||
|
||||
template<typename MatrixType, int PacketAccess> class Map
|
||||
: public MapBase<Map<MatrixType, PacketAccess> >
|
||||
{
|
||||
public:
|
||||
|
||||
_EIGEN_GENERIC_PUBLIC_INTERFACE(Map, MapBase<Map>)
|
||||
typedef typename ei_traits<Map>::AlignedDerivedType AlignedDerivedType;
|
||||
|
||||
inline int stride() const { return this->innerSize(); }
|
||||
|
||||
AlignedDerivedType _convertToForceAligned()
|
||||
{
|
||||
return Map<MatrixType,ForceAligned>(Base::m_data, Base::m_rows.value(), Base::m_cols.value());
|
||||
}
|
||||
|
||||
inline Map(const Scalar* data) : Base(data) {}
|
||||
|
||||
inline Map(const Scalar* data, int size) : Base(data, size) {}
|
||||
|
||||
inline Map(const Scalar* data, int rows, int cols) : Base(data, rows, cols) {}
|
||||
|
||||
inline void resize(int rows, int cols)
|
||||
{
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(rows);
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(cols);
|
||||
ei_assert(rows == this->rows());
|
||||
ei_assert(cols == this->cols());
|
||||
}
|
||||
|
||||
inline void resize(int size)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(MatrixType)
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(size);
|
||||
ei_assert(size == this->size());
|
||||
}
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
|
||||
};
|
||||
|
||||
/** Constructor copying an existing array of data.
|
||||
* Only for fixed-size matrices and vectors.
|
||||
* \param data The array of data to copy
|
||||
*
|
||||
* \sa Matrix::Map(const Scalar *)
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _StorageOrder, int _MaxRows, int _MaxCols>
|
||||
inline Matrix<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>
|
||||
::Matrix(const Scalar *data)
|
||||
{
|
||||
_set_noalias(Eigen::Map<Matrix>(data));
|
||||
}
|
||||
|
||||
#endif // EIGEN_MAP_H
|
202
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/MapBase.h
Normal file
202
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/MapBase.h
Normal file
@ -0,0 +1,202 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_MAPBASE_H
|
||||
#define EIGEN_MAPBASE_H
|
||||
|
||||
/** \class MapBase
|
||||
*
|
||||
* \brief Base class for Map and Block expression with direct access
|
||||
*
|
||||
* Expression classes inheriting MapBase must define the constant \c PacketAccess,
|
||||
* and type \c AlignedDerivedType in their respective ei_traits<> specialization structure.
|
||||
* The value of \c PacketAccess can be either:
|
||||
* - \b ForceAligned which enforces both aligned loads and stores
|
||||
* - \b AsRequested which is the default behavior
|
||||
* The type \c AlignedDerivedType should correspond to the equivalent expression type
|
||||
* with \c PacketAccess being \c ForceAligned.
|
||||
*
|
||||
* \sa class Map, class Block
|
||||
*/
|
||||
template<typename Derived> class MapBase
|
||||
: public MatrixBase<Derived>
|
||||
{
|
||||
public:
|
||||
|
||||
typedef MatrixBase<Derived> Base;
|
||||
enum {
|
||||
IsRowMajor = (int(ei_traits<Derived>::Flags) & RowMajorBit) ? 1 : 0,
|
||||
PacketAccess = ei_traits<Derived>::PacketAccess,
|
||||
RowsAtCompileTime = ei_traits<Derived>::RowsAtCompileTime,
|
||||
ColsAtCompileTime = ei_traits<Derived>::ColsAtCompileTime,
|
||||
SizeAtCompileTime = Base::SizeAtCompileTime
|
||||
};
|
||||
|
||||
typedef typename ei_traits<Derived>::AlignedDerivedType AlignedDerivedType;
|
||||
typedef typename ei_traits<Derived>::Scalar Scalar;
|
||||
typedef typename Base::PacketScalar PacketScalar;
|
||||
using Base::derived;
|
||||
|
||||
inline int rows() const { return m_rows.value(); }
|
||||
inline int cols() const { return m_cols.value(); }
|
||||
|
||||
inline int stride() const { return derived().stride(); }
|
||||
inline const Scalar* data() const { return m_data; }
|
||||
|
||||
template<bool IsForceAligned,typename Dummy> struct force_aligned_impl {
|
||||
static AlignedDerivedType run(MapBase& a) { return a.derived(); }
|
||||
};
|
||||
|
||||
template<typename Dummy> struct force_aligned_impl<false,Dummy> {
|
||||
static AlignedDerivedType run(MapBase& a) { return a.derived()._convertToForceAligned(); }
|
||||
};
|
||||
|
||||
/** \returns an expression equivalent to \c *this but having the \c PacketAccess constant
|
||||
* set to \c ForceAligned. Must be reimplemented by the derived class. */
|
||||
AlignedDerivedType forceAligned()
|
||||
{
|
||||
return force_aligned_impl<int(PacketAccess)==int(ForceAligned),Derived>::run(*this);
|
||||
}
|
||||
|
||||
inline const Scalar& coeff(int row, int col) const
|
||||
{
|
||||
if(IsRowMajor)
|
||||
return m_data[col + row * stride()];
|
||||
else // column-major
|
||||
return m_data[row + col * stride()];
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(int row, int col)
|
||||
{
|
||||
if(IsRowMajor)
|
||||
return const_cast<Scalar*>(m_data)[col + row * stride()];
|
||||
else // column-major
|
||||
return const_cast<Scalar*>(m_data)[row + col * stride()];
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int index) const
|
||||
{
|
||||
ei_assert(Derived::IsVectorAtCompileTime || (ei_traits<Derived>::Flags & LinearAccessBit));
|
||||
if ( ((RowsAtCompileTime == 1) == IsRowMajor) || !int(Derived::IsVectorAtCompileTime) )
|
||||
return m_data[index];
|
||||
else
|
||||
return m_data[index*stride()];
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(int index)
|
||||
{
|
||||
ei_assert(Derived::IsVectorAtCompileTime || (ei_traits<Derived>::Flags & LinearAccessBit));
|
||||
if ( ((RowsAtCompileTime == 1) == IsRowMajor) || !int(Derived::IsVectorAtCompileTime) )
|
||||
return const_cast<Scalar*>(m_data)[index];
|
||||
else
|
||||
return const_cast<Scalar*>(m_data)[index*stride()];
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline PacketScalar packet(int row, int col) const
|
||||
{
|
||||
return ei_ploadt<Scalar, int(PacketAccess) == ForceAligned ? Aligned : LoadMode>
|
||||
(m_data + (IsRowMajor ? col + row * stride()
|
||||
: row + col * stride()));
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline PacketScalar packet(int index) const
|
||||
{
|
||||
return ei_ploadt<Scalar, int(PacketAccess) == ForceAligned ? Aligned : LoadMode>(m_data + index);
|
||||
}
|
||||
|
||||
template<int StoreMode>
|
||||
inline void writePacket(int row, int col, const PacketScalar& x)
|
||||
{
|
||||
ei_pstoret<Scalar, PacketScalar, int(PacketAccess) == ForceAligned ? Aligned : StoreMode>
|
||||
(const_cast<Scalar*>(m_data) + (IsRowMajor ? col + row * stride()
|
||||
: row + col * stride()), x);
|
||||
}
|
||||
|
||||
template<int StoreMode>
|
||||
inline void writePacket(int index, const PacketScalar& x)
|
||||
{
|
||||
ei_pstoret<Scalar, PacketScalar, int(PacketAccess) == ForceAligned ? Aligned : StoreMode>
|
||||
(const_cast<Scalar*>(m_data) + index, x);
|
||||
}
|
||||
|
||||
inline MapBase(const Scalar* data) : m_data(data), m_rows(RowsAtCompileTime), m_cols(ColsAtCompileTime)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
|
||||
}
|
||||
|
||||
inline MapBase(const Scalar* data, int size)
|
||||
: m_data(data),
|
||||
m_rows(RowsAtCompileTime == Dynamic ? size : RowsAtCompileTime),
|
||||
m_cols(ColsAtCompileTime == Dynamic ? size : ColsAtCompileTime)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
ei_assert(size > 0 || data == 0);
|
||||
ei_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == size);
|
||||
}
|
||||
|
||||
inline MapBase(const Scalar* data, int rows, int cols)
|
||||
: m_data(data), m_rows(rows), m_cols(cols)
|
||||
{
|
||||
ei_assert( (data == 0)
|
||||
|| ( rows > 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
|
||||
&& cols > 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols)));
|
||||
}
|
||||
|
||||
Derived& operator=(const MapBase& other)
|
||||
{
|
||||
return Base::operator=(other);
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator=(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
return Base::operator=(other);
|
||||
}
|
||||
|
||||
using Base::operator*=;
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator+=(const MatrixBase<OtherDerived>& other)
|
||||
{ return derived() = forceAligned() + other; }
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator-=(const MatrixBase<OtherDerived>& other)
|
||||
{ return derived() = forceAligned() - other; }
|
||||
|
||||
Derived& operator*=(const Scalar& other)
|
||||
{ return derived() = forceAligned() * other; }
|
||||
|
||||
Derived& operator/=(const Scalar& other)
|
||||
{ return derived() = forceAligned() / other; }
|
||||
|
||||
protected:
|
||||
const Scalar* EIGEN_RESTRICT m_data;
|
||||
const ei_int_if_dynamic<RowsAtCompileTime> m_rows;
|
||||
const ei_int_if_dynamic<ColsAtCompileTime> m_cols;
|
||||
};
|
||||
|
||||
#endif // EIGEN_MAPBASE_H
|
@ -0,0 +1,295 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_MATHFUNCTIONS_H
|
||||
#define EIGEN_MATHFUNCTIONS_H
|
||||
|
||||
template<typename T> inline typename NumTraits<T>::Real precision();
|
||||
template<typename T> inline typename NumTraits<T>::Real machine_epsilon();
|
||||
template<typename T> inline T ei_random(T a, T b);
|
||||
template<typename T> inline T ei_random();
|
||||
template<typename T> inline T ei_random_amplitude()
|
||||
{
|
||||
if(NumTraits<T>::HasFloatingPoint) return static_cast<T>(1);
|
||||
else return static_cast<T>(10);
|
||||
}
|
||||
|
||||
/**************
|
||||
*** int ***
|
||||
**************/
|
||||
|
||||
template<> inline int precision<int>() { return 0; }
|
||||
template<> inline int machine_epsilon<int>() { return 0; }
|
||||
inline int ei_real(int x) { return x; }
|
||||
inline int ei_imag(int) { return 0; }
|
||||
inline int ei_conj(int x) { return x; }
|
||||
inline int ei_abs(int x) { return std::abs(x); }
|
||||
inline int ei_abs2(int x) { return x*x; }
|
||||
inline int ei_sqrt(int) { ei_assert(false); return 0; }
|
||||
inline int ei_exp(int) { ei_assert(false); return 0; }
|
||||
inline int ei_log(int) { ei_assert(false); return 0; }
|
||||
inline int ei_sin(int) { ei_assert(false); return 0; }
|
||||
inline int ei_cos(int) { ei_assert(false); return 0; }
|
||||
inline int ei_atan2(int, int) { ei_assert(false); return 0; }
|
||||
inline int ei_pow(int x, int y) { return int(std::pow(double(x), y)); }
|
||||
|
||||
template<> inline int ei_random(int a, int b)
|
||||
{
|
||||
// We can't just do rand()%n as only the high-order bits are really random
|
||||
return a + static_cast<int>((b-a+1) * (std::rand() / (RAND_MAX + 1.0)));
|
||||
}
|
||||
template<> inline int ei_random()
|
||||
{
|
||||
return ei_random<int>(-ei_random_amplitude<int>(), ei_random_amplitude<int>());
|
||||
}
|
||||
inline bool ei_isMuchSmallerThan(int a, int, int = precision<int>())
|
||||
{
|
||||
return a == 0;
|
||||
}
|
||||
inline bool ei_isApprox(int a, int b, int = precision<int>())
|
||||
{
|
||||
return a == b;
|
||||
}
|
||||
inline bool ei_isApproxOrLessThan(int a, int b, int = precision<int>())
|
||||
{
|
||||
return a <= b;
|
||||
}
|
||||
|
||||
/**************
|
||||
*** float ***
|
||||
**************/
|
||||
|
||||
template<> inline float precision<float>() { return 1e-5f; }
|
||||
template<> inline float machine_epsilon<float>() { return 1.192e-07f; }
|
||||
inline float ei_real(float x) { return x; }
|
||||
inline float ei_imag(float) { return 0.f; }
|
||||
inline float ei_conj(float x) { return x; }
|
||||
inline float ei_abs(float x) { return std::abs(x); }
|
||||
inline float ei_abs2(float x) { return x*x; }
|
||||
inline float ei_sqrt(float x) { return std::sqrt(x); }
|
||||
inline float ei_exp(float x) { return std::exp(x); }
|
||||
inline float ei_log(float x) { return std::log(x); }
|
||||
inline float ei_sin(float x) { return std::sin(x); }
|
||||
inline float ei_cos(float x) { return std::cos(x); }
|
||||
inline float ei_atan2(float y, float x) { return std::atan2(y,x); }
|
||||
inline float ei_pow(float x, float y) { return std::pow(x, y); }
|
||||
|
||||
template<> inline float ei_random(float a, float b)
|
||||
{
|
||||
#ifdef EIGEN_NICE_RANDOM
|
||||
int i;
|
||||
do { i = ei_random<int>(256*int(a),256*int(b));
|
||||
} while(i==0);
|
||||
return float(i)/256.f;
|
||||
#else
|
||||
return a + (b-a) * float(std::rand()) / float(RAND_MAX);
|
||||
#endif
|
||||
}
|
||||
template<> inline float ei_random()
|
||||
{
|
||||
return ei_random<float>(-ei_random_amplitude<float>(), ei_random_amplitude<float>());
|
||||
}
|
||||
inline bool ei_isMuchSmallerThan(float a, float b, float prec = precision<float>())
|
||||
{
|
||||
return ei_abs(a) <= ei_abs(b) * prec;
|
||||
}
|
||||
inline bool ei_isApprox(float a, float b, float prec = precision<float>())
|
||||
{
|
||||
return ei_abs(a - b) <= std::min(ei_abs(a), ei_abs(b)) * prec;
|
||||
}
|
||||
inline bool ei_isApproxOrLessThan(float a, float b, float prec = precision<float>())
|
||||
{
|
||||
return a <= b || ei_isApprox(a, b, prec);
|
||||
}
|
||||
|
||||
/**************
|
||||
*** double ***
|
||||
**************/
|
||||
|
||||
template<> inline double precision<double>() { return 1e-11; }
|
||||
template<> inline double machine_epsilon<double>() { return 2.220e-16; }
|
||||
|
||||
inline double ei_real(double x) { return x; }
|
||||
inline double ei_imag(double) { return 0.; }
|
||||
inline double ei_conj(double x) { return x; }
|
||||
inline double ei_abs(double x) { return std::abs(x); }
|
||||
inline double ei_abs2(double x) { return x*x; }
|
||||
inline double ei_sqrt(double x) { return std::sqrt(x); }
|
||||
inline double ei_exp(double x) { return std::exp(x); }
|
||||
inline double ei_log(double x) { return std::log(x); }
|
||||
inline double ei_sin(double x) { return std::sin(x); }
|
||||
inline double ei_cos(double x) { return std::cos(x); }
|
||||
inline double ei_atan2(double y, double x) { return std::atan2(y,x); }
|
||||
inline double ei_pow(double x, double y) { return std::pow(x, y); }
|
||||
|
||||
template<> inline double ei_random(double a, double b)
|
||||
{
|
||||
#ifdef EIGEN_NICE_RANDOM
|
||||
int i;
|
||||
do { i= ei_random<int>(256*int(a),256*int(b));
|
||||
} while(i==0);
|
||||
return i/256.;
|
||||
#else
|
||||
return a + (b-a) * std::rand() / RAND_MAX;
|
||||
#endif
|
||||
}
|
||||
template<> inline double ei_random()
|
||||
{
|
||||
return ei_random<double>(-ei_random_amplitude<double>(), ei_random_amplitude<double>());
|
||||
}
|
||||
inline bool ei_isMuchSmallerThan(double a, double b, double prec = precision<double>())
|
||||
{
|
||||
return ei_abs(a) <= ei_abs(b) * prec;
|
||||
}
|
||||
inline bool ei_isApprox(double a, double b, double prec = precision<double>())
|
||||
{
|
||||
return ei_abs(a - b) <= std::min(ei_abs(a), ei_abs(b)) * prec;
|
||||
}
|
||||
inline bool ei_isApproxOrLessThan(double a, double b, double prec = precision<double>())
|
||||
{
|
||||
return a <= b || ei_isApprox(a, b, prec);
|
||||
}
|
||||
|
||||
/*********************
|
||||
*** complex<float> ***
|
||||
*********************/
|
||||
|
||||
template<> inline float precision<std::complex<float> >() { return precision<float>(); }
|
||||
template<> inline float machine_epsilon<std::complex<float> >() { return machine_epsilon<float>(); }
|
||||
inline float ei_real(const std::complex<float>& x) { return std::real(x); }
|
||||
inline float ei_imag(const std::complex<float>& x) { return std::imag(x); }
|
||||
inline std::complex<float> ei_conj(const std::complex<float>& x) { return std::conj(x); }
|
||||
inline float ei_abs(const std::complex<float>& x) { return std::abs(x); }
|
||||
inline float ei_abs2(const std::complex<float>& x) { return std::norm(x); }
|
||||
inline std::complex<float> ei_exp(std::complex<float> x) { return std::exp(x); }
|
||||
inline std::complex<float> ei_sin(std::complex<float> x) { return std::sin(x); }
|
||||
inline std::complex<float> ei_cos(std::complex<float> x) { return std::cos(x); }
|
||||
inline std::complex<float> ei_atan2(std::complex<float>, std::complex<float> ) { ei_assert(false); return 0; }
|
||||
|
||||
template<> inline std::complex<float> ei_random()
|
||||
{
|
||||
return std::complex<float>(ei_random<float>(), ei_random<float>());
|
||||
}
|
||||
inline bool ei_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b, float prec = precision<float>())
|
||||
{
|
||||
return ei_abs2(a) <= ei_abs2(b) * prec * prec;
|
||||
}
|
||||
inline bool ei_isMuchSmallerThan(const std::complex<float>& a, float b, float prec = precision<float>())
|
||||
{
|
||||
return ei_abs2(a) <= ei_abs2(b) * prec * prec;
|
||||
}
|
||||
inline bool ei_isApprox(const std::complex<float>& a, const std::complex<float>& b, float prec = precision<float>())
|
||||
{
|
||||
return ei_isApprox(ei_real(a), ei_real(b), prec)
|
||||
&& ei_isApprox(ei_imag(a), ei_imag(b), prec);
|
||||
}
|
||||
// ei_isApproxOrLessThan wouldn't make sense for complex numbers
|
||||
|
||||
/**********************
|
||||
*** complex<double> ***
|
||||
**********************/
|
||||
|
||||
template<> inline double precision<std::complex<double> >() { return precision<double>(); }
|
||||
template<> inline double machine_epsilon<std::complex<double> >() { return machine_epsilon<double>(); }
|
||||
inline double ei_real(const std::complex<double>& x) { return std::real(x); }
|
||||
inline double ei_imag(const std::complex<double>& x) { return std::imag(x); }
|
||||
inline std::complex<double> ei_conj(const std::complex<double>& x) { return std::conj(x); }
|
||||
inline double ei_abs(const std::complex<double>& x) { return std::abs(x); }
|
||||
inline double ei_abs2(const std::complex<double>& x) { return std::norm(x); }
|
||||
inline std::complex<double> ei_exp(std::complex<double> x) { return std::exp(x); }
|
||||
inline std::complex<double> ei_sin(std::complex<double> x) { return std::sin(x); }
|
||||
inline std::complex<double> ei_cos(std::complex<double> x) { return std::cos(x); }
|
||||
inline std::complex<double> ei_atan2(std::complex<double>, std::complex<double>) { ei_assert(false); return 0; }
|
||||
|
||||
template<> inline std::complex<double> ei_random()
|
||||
{
|
||||
return std::complex<double>(ei_random<double>(), ei_random<double>());
|
||||
}
|
||||
inline bool ei_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b, double prec = precision<double>())
|
||||
{
|
||||
return ei_abs2(a) <= ei_abs2(b) * prec * prec;
|
||||
}
|
||||
inline bool ei_isMuchSmallerThan(const std::complex<double>& a, double b, double prec = precision<double>())
|
||||
{
|
||||
return ei_abs2(a) <= ei_abs2(b) * prec * prec;
|
||||
}
|
||||
inline bool ei_isApprox(const std::complex<double>& a, const std::complex<double>& b, double prec = precision<double>())
|
||||
{
|
||||
return ei_isApprox(ei_real(a), ei_real(b), prec)
|
||||
&& ei_isApprox(ei_imag(a), ei_imag(b), prec);
|
||||
}
|
||||
// ei_isApproxOrLessThan wouldn't make sense for complex numbers
|
||||
|
||||
|
||||
/******************
|
||||
*** long double ***
|
||||
******************/
|
||||
|
||||
template<> inline long double precision<long double>() { return precision<double>(); }
|
||||
template<> inline long double machine_epsilon<long double>() { return 1.084e-19l; }
|
||||
inline long double ei_real(long double x) { return x; }
|
||||
inline long double ei_imag(long double) { return 0.; }
|
||||
inline long double ei_conj(long double x) { return x; }
|
||||
inline long double ei_abs(long double x) { return std::abs(x); }
|
||||
inline long double ei_abs2(long double x) { return x*x; }
|
||||
inline long double ei_sqrt(long double x) { return std::sqrt(x); }
|
||||
inline long double ei_exp(long double x) { return std::exp(x); }
|
||||
inline long double ei_log(long double x) { return std::log(x); }
|
||||
inline long double ei_sin(long double x) { return std::sin(x); }
|
||||
inline long double ei_cos(long double x) { return std::cos(x); }
|
||||
inline long double ei_atan2(long double y, long double x) { return std::atan2(y,x); }
|
||||
inline long double ei_pow(long double x, long double y) { return std::pow(x, y); }
|
||||
|
||||
template<> inline long double ei_random(long double a, long double b)
|
||||
{
|
||||
return ei_random<double>(static_cast<double>(a),static_cast<double>(b));
|
||||
}
|
||||
template<> inline long double ei_random()
|
||||
{
|
||||
return ei_random<double>(-ei_random_amplitude<double>(), ei_random_amplitude<double>());
|
||||
}
|
||||
inline bool ei_isMuchSmallerThan(long double a, long double b, long double prec = precision<long double>())
|
||||
{
|
||||
return ei_abs(a) <= ei_abs(b) * prec;
|
||||
}
|
||||
inline bool ei_isApprox(long double a, long double b, long double prec = precision<long double>())
|
||||
{
|
||||
return ei_abs(a - b) <= std::min(ei_abs(a), ei_abs(b)) * prec;
|
||||
}
|
||||
inline bool ei_isApproxOrLessThan(long double a, long double b, long double prec = precision<long double>())
|
||||
{
|
||||
return a <= b || ei_isApprox(a, b, prec);
|
||||
}
|
||||
|
||||
template<typename T> inline T ei_hypot(T x, T y)
|
||||
{
|
||||
T _x = ei_abs(x);
|
||||
T _y = ei_abs(y);
|
||||
T p = std::max(_x, _y);
|
||||
T q = std::min(_x, _y);
|
||||
T qp = q/p;
|
||||
return p * ei_sqrt(T(1) + qp*qp);
|
||||
}
|
||||
|
||||
#endif // EIGEN_MATHFUNCTIONS_H
|
663
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Matrix.h
Normal file
663
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Matrix.h
Normal file
@ -0,0 +1,663 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_MATRIX_H
|
||||
#define EIGEN_MATRIX_H
|
||||
|
||||
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
|
||||
# define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=Scalar(0);
|
||||
#else
|
||||
# define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
||||
#endif
|
||||
|
||||
/** \class Matrix
|
||||
*
|
||||
* \brief The matrix class, also used for vectors and row-vectors
|
||||
*
|
||||
* The %Matrix class is the work-horse for all \em dense (\ref dense "note") matrices and vectors within Eigen.
|
||||
* Vectors are matrices with one column, and row-vectors are matrices with one row.
|
||||
*
|
||||
* The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note").
|
||||
*
|
||||
* The first three template parameters are required:
|
||||
* \param _Scalar Numeric type, i.e. float, double, int
|
||||
* \param _Rows Number of rows, or \b Dynamic
|
||||
* \param _Cols Number of columns, or \b Dynamic
|
||||
*
|
||||
* The remaining template parameters are optional -- in most cases you don't have to worry about them.
|
||||
* \param _Options A combination of either \b RowMajor or \b ColMajor, and of either
|
||||
* \b AutoAlign or \b DontAlign.
|
||||
* The former controls storage order, and defaults to column-major. The latter controls alignment, which is required
|
||||
* for vectorization. It defaults to aligning matrices except for fixed sizes that aren't a multiple of the packet size.
|
||||
* \param _MaxRows Maximum number of rows. Defaults to \a _Rows (\ref maxrows "note").
|
||||
* \param _MaxCols Maximum number of columns. Defaults to \a _Cols (\ref maxrows "note").
|
||||
*
|
||||
* Eigen provides a number of typedefs covering the usual cases. Here are some examples:
|
||||
*
|
||||
* \li \c Matrix2d is a 2x2 square matrix of doubles (\c Matrix<double, 2, 2>)
|
||||
* \li \c Vector4f is a vector of 4 floats (\c Matrix<float, 4, 1>)
|
||||
* \li \c RowVector3i is a row-vector of 3 ints (\c Matrix<int, 1, 3>)
|
||||
*
|
||||
* \li \c MatrixXf is a dynamic-size matrix of floats (\c Matrix<float, Dynamic, Dynamic>)
|
||||
* \li \c VectorXf is a dynamic-size vector of floats (\c Matrix<float, Dynamic, 1>)
|
||||
*
|
||||
* See \link matrixtypedefs this page \endlink for a complete list of predefined \em %Matrix and \em Vector typedefs.
|
||||
*
|
||||
* You can access elements of vectors and matrices using normal subscripting:
|
||||
*
|
||||
* \code
|
||||
* Eigen::VectorXd v(10);
|
||||
* v[0] = 0.1;
|
||||
* v[1] = 0.2;
|
||||
* v(0) = 0.3;
|
||||
* v(1) = 0.4;
|
||||
*
|
||||
* Eigen::MatrixXi m(10, 10);
|
||||
* m(0, 1) = 1;
|
||||
* m(0, 2) = 2;
|
||||
* m(0, 3) = 3;
|
||||
* \endcode
|
||||
*
|
||||
* <i><b>Some notes:</b></i>
|
||||
*
|
||||
* <dl>
|
||||
* <dt><b>\anchor dense Dense versus sparse:</b></dt>
|
||||
* <dd>This %Matrix class handles dense, not sparse matrices and vectors. For sparse matrices and vectors, see the Sparse module.
|
||||
*
|
||||
* Dense matrices and vectors are plain usual arrays of coefficients. All the coefficients are stored, in an ordinary contiguous array.
|
||||
* This is unlike Sparse matrices and vectors where the coefficients are stored as a list of nonzero coefficients.</dd>
|
||||
*
|
||||
* <dt><b>\anchor fixedsize Fixed-size versus dynamic-size:</b></dt>
|
||||
* <dd>Fixed-size means that the numbers of rows and columns are known are compile-time. In this case, Eigen allocates the array
|
||||
* of coefficients as a fixed-size array, as a class member. This makes sense for very small matrices, typically up to 4x4, sometimes up
|
||||
* to 16x16. Larger matrices should be declared as dynamic-size even if one happens to know their size at compile-time.
|
||||
*
|
||||
* Dynamic-size means that the numbers of rows or columns are not necessarily known at compile-time. In this case they are runtime
|
||||
* variables, and the array of coefficients is allocated dynamically on the heap.
|
||||
*
|
||||
* Note that \em dense matrices, be they Fixed-size or Dynamic-size, <em>do not</em> expand dynamically in the sense of a std::map.
|
||||
* If you want this behavior, see the Sparse module.</dd>
|
||||
*
|
||||
* <dt><b>\anchor maxrows _MaxRows and _MaxCols:</b></dt>
|
||||
* <dd>In most cases, one just leaves these parameters to the default values.
|
||||
* These parameters mean the maximum size of rows and columns that the matrix may have. They are useful in cases
|
||||
* when the exact numbers of rows and columns are not known are compile-time, but it is known at compile-time that they cannot
|
||||
* exceed a certain value. This happens when taking dynamic-size blocks inside fixed-size matrices: in this case _MaxRows and _MaxCols
|
||||
* are the dimensions of the original matrix, while _Rows and _Cols are Dynamic.</dd>
|
||||
* </dl>
|
||||
*
|
||||
* \see MatrixBase for the majority of the API methods for matrices
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
struct ei_traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
enum {
|
||||
RowsAtCompileTime = _Rows,
|
||||
ColsAtCompileTime = _Cols,
|
||||
MaxRowsAtCompileTime = _MaxRows,
|
||||
MaxColsAtCompileTime = _MaxCols,
|
||||
Flags = ei_compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
|
||||
CoeffReadCost = NumTraits<Scalar>::ReadCost
|
||||
};
|
||||
};
|
||||
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
class Matrix
|
||||
: public MatrixBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
|
||||
{
|
||||
public:
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(Matrix)
|
||||
enum { Options = _Options };
|
||||
friend class Eigen::Map<Matrix, Unaligned>;
|
||||
typedef class Eigen::Map<Matrix, Unaligned> UnalignedMapType;
|
||||
friend class Eigen::Map<Matrix, Aligned>;
|
||||
typedef class Eigen::Map<Matrix, Aligned> AlignedMapType;
|
||||
|
||||
protected:
|
||||
ei_matrix_storage<Scalar, MaxSizeAtCompileTime, RowsAtCompileTime, ColsAtCompileTime, Options> m_storage;
|
||||
|
||||
public:
|
||||
enum { NeedsToAlign = (Options&AutoAlign) == AutoAlign
|
||||
&& SizeAtCompileTime!=Dynamic && ((sizeof(Scalar)*SizeAtCompileTime)%16)==0 };
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
|
||||
|
||||
Base& base() { return *static_cast<Base*>(this); }
|
||||
const Base& base() const { return *static_cast<const Base*>(this); }
|
||||
|
||||
EIGEN_STRONG_INLINE int rows() const { return m_storage.rows(); }
|
||||
EIGEN_STRONG_INLINE int cols() const { return m_storage.cols(); }
|
||||
|
||||
EIGEN_STRONG_INLINE int stride(void) const
|
||||
{
|
||||
if(Flags & RowMajorBit)
|
||||
return m_storage.cols();
|
||||
else
|
||||
return m_storage.rows();
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar& coeff(int row, int col) const
|
||||
{
|
||||
if(Flags & RowMajorBit)
|
||||
return m_storage.data()[col + row * m_storage.cols()];
|
||||
else // column-major
|
||||
return m_storage.data()[row + col * m_storage.rows()];
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar& coeff(int index) const
|
||||
{
|
||||
return m_storage.data()[index];
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar& coeffRef(int row, int col)
|
||||
{
|
||||
if(Flags & RowMajorBit)
|
||||
return m_storage.data()[col + row * m_storage.cols()];
|
||||
else // column-major
|
||||
return m_storage.data()[row + col * m_storage.rows()];
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar& coeffRef(int index)
|
||||
{
|
||||
return m_storage.data()[index];
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet(int row, int col) const
|
||||
{
|
||||
return ei_ploadt<Scalar, LoadMode>
|
||||
(m_storage.data() + (Flags & RowMajorBit
|
||||
? col + row * m_storage.cols()
|
||||
: row + col * m_storage.rows()));
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet(int index) const
|
||||
{
|
||||
return ei_ploadt<Scalar, LoadMode>(m_storage.data() + index);
|
||||
}
|
||||
|
||||
template<int StoreMode>
|
||||
EIGEN_STRONG_INLINE void writePacket(int row, int col, const PacketScalar& x)
|
||||
{
|
||||
ei_pstoret<Scalar, PacketScalar, StoreMode>
|
||||
(m_storage.data() + (Flags & RowMajorBit
|
||||
? col + row * m_storage.cols()
|
||||
: row + col * m_storage.rows()), x);
|
||||
}
|
||||
|
||||
template<int StoreMode>
|
||||
EIGEN_STRONG_INLINE void writePacket(int index, const PacketScalar& x)
|
||||
{
|
||||
ei_pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, x);
|
||||
}
|
||||
|
||||
/** \returns a const pointer to the data array of this matrix */
|
||||
EIGEN_STRONG_INLINE const Scalar *data() const
|
||||
{ return m_storage.data(); }
|
||||
|
||||
/** \returns a pointer to the data array of this matrix */
|
||||
EIGEN_STRONG_INLINE Scalar *data()
|
||||
{ return m_storage.data(); }
|
||||
|
||||
/** Resizes \c *this to a \a rows x \a cols matrix.
|
||||
*
|
||||
* Makes sense for dynamic-size matrices only.
|
||||
*
|
||||
* If the current number of coefficients of \c *this exactly matches the
|
||||
* product \a rows * \a cols, then no memory allocation is performed and
|
||||
* the current values are left unchanged. In all other cases, including
|
||||
* shrinking, the data is reallocated and all previous values are lost.
|
||||
*
|
||||
* \sa resize(int) for vectors.
|
||||
*/
|
||||
inline void resize(int rows, int cols)
|
||||
{
|
||||
ei_assert((MaxRowsAtCompileTime == Dynamic || MaxRowsAtCompileTime >= rows)
|
||||
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
|
||||
&& (MaxColsAtCompileTime == Dynamic || MaxColsAtCompileTime >= cols)
|
||||
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
|
||||
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
|
||||
int size = rows*cols;
|
||||
bool size_changed = size != this->size();
|
||||
m_storage.resize(size, rows, cols);
|
||||
if(size_changed) EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
||||
#else
|
||||
m_storage.resize(rows*cols, rows, cols);
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Resizes \c *this to a vector of length \a size
|
||||
*
|
||||
* \sa resize(int,int) for the details.
|
||||
*/
|
||||
inline void resize(int size)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
|
||||
ei_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == size);
|
||||
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
|
||||
bool size_changed = size != this->size();
|
||||
#endif
|
||||
if(RowsAtCompileTime == 1)
|
||||
m_storage.resize(size, 1, size);
|
||||
else
|
||||
m_storage.resize(size, size, 1);
|
||||
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
|
||||
if(size_changed) EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Copies the value of the expression \a other into \c *this with automatic resizing.
|
||||
*
|
||||
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
|
||||
* it will be initialized.
|
||||
*
|
||||
* Note that copying a row-vector into a vector (and conversely) is allowed.
|
||||
* The resizing, if any, is then done in the appropriate way so that row-vectors
|
||||
* remain row-vectors and vectors remain vectors.
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Matrix& operator=(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
return _set(other);
|
||||
}
|
||||
|
||||
/** This is a special case of the templated operator=. Its purpose is to
|
||||
* prevent a default operator= from hiding the templated operator=.
|
||||
*/
|
||||
EIGEN_STRONG_INLINE Matrix& operator=(const Matrix& other)
|
||||
{
|
||||
return _set(other);
|
||||
}
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Matrix, +=)
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Matrix, -=)
|
||||
EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Matrix, *=)
|
||||
EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Matrix, /=)
|
||||
|
||||
/** Default constructor.
|
||||
*
|
||||
* For fixed-size matrices, does nothing.
|
||||
*
|
||||
* For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix
|
||||
* is called a null matrix. This constructor is the unique way to create null matrices: resizing
|
||||
* a matrix to 0 is not supported.
|
||||
*
|
||||
* \sa resize(int,int)
|
||||
*/
|
||||
EIGEN_STRONG_INLINE explicit Matrix() : m_storage()
|
||||
{
|
||||
_check_template_params();
|
||||
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** \internal */
|
||||
Matrix(ei_constructor_without_unaligned_array_assert)
|
||||
: m_storage(ei_constructor_without_unaligned_array_assert())
|
||||
{EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED}
|
||||
#endif
|
||||
|
||||
/** Constructs a vector or row-vector with given dimension. \only_for_vectors
|
||||
*
|
||||
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
|
||||
* it is redundant to pass the dimension here, so it makes more sense to use the default
|
||||
* constructor Matrix() instead.
|
||||
*/
|
||||
EIGEN_STRONG_INLINE explicit Matrix(int dim)
|
||||
: m_storage(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
|
||||
{
|
||||
_check_template_params();
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
|
||||
ei_assert(dim > 0);
|
||||
ei_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
|
||||
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
||||
}
|
||||
|
||||
/** This constructor has two very different behaviors, depending on the type of *this.
|
||||
*
|
||||
* \li When Matrix is a fixed-size vector type of size 2, this constructor constructs
|
||||
* an initialized vector. The parameters \a x, \a y are copied into the first and second
|
||||
* coords of the vector respectively.
|
||||
* \li Otherwise, this constructor constructs an uninitialized matrix with \a x rows and
|
||||
* \a y columns. This is useful for dynamic-size matrices. For fixed-size matrices,
|
||||
* it is redundant to pass these parameters, so one should use the default constructor
|
||||
* Matrix() instead.
|
||||
*/
|
||||
EIGEN_STRONG_INLINE Matrix(int x, int y) : m_storage(x*y, x, y)
|
||||
{
|
||||
_check_template_params();
|
||||
if((RowsAtCompileTime == 1 && ColsAtCompileTime == 2)
|
||||
|| (RowsAtCompileTime == 2 && ColsAtCompileTime == 1))
|
||||
{
|
||||
m_storage.data()[0] = Scalar(x);
|
||||
m_storage.data()[1] = Scalar(y);
|
||||
}
|
||||
else
|
||||
{
|
||||
ei_assert(x > 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == x)
|
||||
&& y > 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == y));
|
||||
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
|
||||
}
|
||||
}
|
||||
/** constructs an initialized 2D vector with given coefficients */
|
||||
EIGEN_STRONG_INLINE Matrix(const float& x, const float& y)
|
||||
{
|
||||
_check_template_params();
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 2)
|
||||
m_storage.data()[0] = x;
|
||||
m_storage.data()[1] = y;
|
||||
}
|
||||
/** constructs an initialized 2D vector with given coefficients */
|
||||
EIGEN_STRONG_INLINE Matrix(const double& x, const double& y)
|
||||
{
|
||||
_check_template_params();
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 2)
|
||||
m_storage.data()[0] = x;
|
||||
m_storage.data()[1] = y;
|
||||
}
|
||||
/** constructs an initialized 3D vector with given coefficients */
|
||||
EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z)
|
||||
{
|
||||
_check_template_params();
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3)
|
||||
m_storage.data()[0] = x;
|
||||
m_storage.data()[1] = y;
|
||||
m_storage.data()[2] = z;
|
||||
}
|
||||
/** constructs an initialized 4D vector with given coefficients */
|
||||
EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w)
|
||||
{
|
||||
_check_template_params();
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4)
|
||||
m_storage.data()[0] = x;
|
||||
m_storage.data()[1] = y;
|
||||
m_storage.data()[2] = z;
|
||||
m_storage.data()[3] = w;
|
||||
}
|
||||
|
||||
explicit Matrix(const Scalar *data);
|
||||
|
||||
/** Constructor copying the value of the expression \a other */
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Matrix(const MatrixBase<OtherDerived>& other)
|
||||
: m_storage(other.rows() * other.cols(), other.rows(), other.cols())
|
||||
{
|
||||
_check_template_params();
|
||||
_set_noalias(other);
|
||||
}
|
||||
/** Copy constructor */
|
||||
EIGEN_STRONG_INLINE Matrix(const Matrix& other)
|
||||
: Base(), m_storage(other.rows() * other.cols(), other.rows(), other.cols())
|
||||
{
|
||||
_check_template_params();
|
||||
_set_noalias(other);
|
||||
}
|
||||
/** Destructor */
|
||||
inline ~Matrix() {}
|
||||
|
||||
/** Override MatrixBase::swap() since for dynamic-sized matrices of same type it is enough to swap the
|
||||
* data pointers.
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
void swap(const MatrixBase<OtherDerived>& other);
|
||||
|
||||
/** \name Map
|
||||
* These are convenience functions returning Map objects.
|
||||
*
|
||||
* \warning Do not use MapAligned in the Eigen 2.0. Mapping aligned arrays will be fully
|
||||
* supported in Eigen 3.0 (already implemented in the development branch)
|
||||
*
|
||||
* \see class Map
|
||||
*/
|
||||
//@{
|
||||
inline static const UnalignedMapType Map(const Scalar* data)
|
||||
{ return UnalignedMapType(data); }
|
||||
inline static UnalignedMapType Map(Scalar* data)
|
||||
{ return UnalignedMapType(data); }
|
||||
inline static const UnalignedMapType Map(const Scalar* data, int size)
|
||||
{ return UnalignedMapType(data, size); }
|
||||
inline static UnalignedMapType Map(Scalar* data, int size)
|
||||
{ return UnalignedMapType(data, size); }
|
||||
inline static const UnalignedMapType Map(const Scalar* data, int rows, int cols)
|
||||
{ return UnalignedMapType(data, rows, cols); }
|
||||
inline static UnalignedMapType Map(Scalar* data, int rows, int cols)
|
||||
{ return UnalignedMapType(data, rows, cols); }
|
||||
|
||||
inline static const AlignedMapType MapAligned(const Scalar* data)
|
||||
{ return AlignedMapType(data); }
|
||||
inline static AlignedMapType MapAligned(Scalar* data)
|
||||
{ return AlignedMapType(data); }
|
||||
inline static const AlignedMapType MapAligned(const Scalar* data, int size)
|
||||
{ return AlignedMapType(data, size); }
|
||||
inline static AlignedMapType MapAligned(Scalar* data, int size)
|
||||
{ return AlignedMapType(data, size); }
|
||||
inline static const AlignedMapType MapAligned(const Scalar* data, int rows, int cols)
|
||||
{ return AlignedMapType(data, rows, cols); }
|
||||
inline static AlignedMapType MapAligned(Scalar* data, int rows, int cols)
|
||||
{ return AlignedMapType(data, rows, cols); }
|
||||
//@}
|
||||
|
||||
using Base::setConstant;
|
||||
Matrix& setConstant(int size, const Scalar& value);
|
||||
Matrix& setConstant(int rows, int cols, const Scalar& value);
|
||||
|
||||
using Base::setZero;
|
||||
Matrix& setZero(int size);
|
||||
Matrix& setZero(int rows, int cols);
|
||||
|
||||
using Base::setOnes;
|
||||
Matrix& setOnes(int size);
|
||||
Matrix& setOnes(int rows, int cols);
|
||||
|
||||
using Base::setRandom;
|
||||
Matrix& setRandom(int size);
|
||||
Matrix& setRandom(int rows, int cols);
|
||||
|
||||
using Base::setIdentity;
|
||||
Matrix& setIdentity(int rows, int cols);
|
||||
|
||||
/////////// Geometry module ///////////
|
||||
|
||||
template<typename OtherDerived>
|
||||
explicit Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
|
||||
template<typename OtherDerived>
|
||||
Matrix& operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
|
||||
|
||||
// allow to extend Matrix outside Eigen
|
||||
#ifdef EIGEN_MATRIX_PLUGIN
|
||||
#include EIGEN_MATRIX_PLUGIN
|
||||
#endif
|
||||
|
||||
private:
|
||||
/** \internal Resizes *this in preparation for assigning \a other to it.
|
||||
* Takes care of doing all the checking that's needed.
|
||||
*
|
||||
* Note that copying a row-vector into a vector (and conversely) is allowed.
|
||||
* The resizing, if any, is then done in the appropriate way so that row-vectors
|
||||
* remain row-vectors and vectors remain vectors.
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE void _resize_to_match(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
if(RowsAtCompileTime == 1)
|
||||
{
|
||||
ei_assert(other.isVector());
|
||||
resize(1, other.size());
|
||||
}
|
||||
else if(ColsAtCompileTime == 1)
|
||||
{
|
||||
ei_assert(other.isVector());
|
||||
resize(other.size(), 1);
|
||||
}
|
||||
else resize(other.rows(), other.cols());
|
||||
}
|
||||
|
||||
/** \internal Copies the value of the expression \a other into \c *this with automatic resizing.
|
||||
*
|
||||
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
|
||||
* it will be initialized.
|
||||
*
|
||||
* Note that copying a row-vector into a vector (and conversely) is allowed.
|
||||
* The resizing, if any, is then done in the appropriate way so that row-vectors
|
||||
* remain row-vectors and vectors remain vectors.
|
||||
*
|
||||
* \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias()
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Matrix& _set(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
// this enum introduced to fix compilation with gcc 3.3
|
||||
enum { cond = int(OtherDerived::Flags) & EvalBeforeAssigningBit };
|
||||
_set_selector(other.derived(), typename ei_meta_if<bool(cond), ei_meta_true, ei_meta_false>::ret());
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const ei_meta_true&) { _set_noalias(other.eval()); }
|
||||
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const ei_meta_false&) { _set_noalias(other); }
|
||||
|
||||
/** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which
|
||||
* is the case when creating a new matrix) so one can enforce lazy evaluation.
|
||||
*
|
||||
* \sa operator=(const MatrixBase<OtherDerived>&), _set()
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Matrix& _set_noalias(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
_resize_to_match(other);
|
||||
// the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because
|
||||
// it wouldn't allow to copy a row-vector into a column-vector.
|
||||
return ei_assign_selector<Matrix,OtherDerived,false>::run(*this, other.derived());
|
||||
}
|
||||
|
||||
static EIGEN_STRONG_INLINE void _check_template_params()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((_Rows > 0
|
||||
&& _Cols > 0
|
||||
&& _MaxRows <= _Rows
|
||||
&& _MaxCols <= _Cols
|
||||
&& (_Options & (AutoAlign|RowMajor)) == _Options),
|
||||
INVALID_MATRIX_TEMPLATE_PARAMETERS)
|
||||
}
|
||||
|
||||
template<typename MatrixType, typename OtherDerived, bool IsSameType, bool IsDynamicSize>
|
||||
friend struct ei_matrix_swap_impl;
|
||||
};
|
||||
|
||||
template<typename MatrixType, typename OtherDerived,
|
||||
bool IsSameType = ei_is_same_type<MatrixType, OtherDerived>::ret,
|
||||
bool IsDynamicSize = MatrixType::SizeAtCompileTime==Dynamic>
|
||||
struct ei_matrix_swap_impl
|
||||
{
|
||||
static inline void run(MatrixType& matrix, MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
matrix.base().swap(other);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename MatrixType, typename OtherDerived>
|
||||
struct ei_matrix_swap_impl<MatrixType, OtherDerived, true, true>
|
||||
{
|
||||
static inline void run(MatrixType& matrix, MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
matrix.m_storage.swap(other.derived().m_storage);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
template<typename OtherDerived>
|
||||
inline void Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::swap(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
// the Eigen:: here is to work around a stupid ICC 11.1 bug.
|
||||
Eigen::ei_matrix_swap_impl<Matrix, OtherDerived>::run(*this, *const_cast<MatrixBase<OtherDerived>*>(&other));
|
||||
}
|
||||
|
||||
|
||||
/** \defgroup matrixtypedefs Global matrix typedefs
|
||||
*
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* Eigen defines several typedef shortcuts for most common matrix and vector types.
|
||||
*
|
||||
* The general patterns are the following:
|
||||
*
|
||||
* \c MatrixSizeType where \c Size can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
|
||||
* and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
|
||||
* for complex double.
|
||||
*
|
||||
* For example, \c Matrix3d is a fixed-size 3x3 matrix type of doubles, and \c MatrixXf is a dynamic-size matrix of floats.
|
||||
*
|
||||
* There are also \c VectorSizeType and \c RowVectorSizeType which are self-explanatory. For example, \c Vector4cf is
|
||||
* a fixed-size vector of 4 complex floats.
|
||||
*
|
||||
* \sa class Matrix
|
||||
*/
|
||||
|
||||
#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix;
|
||||
|
||||
#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
|
||||
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \
|
||||
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \
|
||||
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \
|
||||
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X)
|
||||
|
||||
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i)
|
||||
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f)
|
||||
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d)
|
||||
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<float>, cf)
|
||||
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
|
||||
|
||||
#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES
|
||||
#undef EIGEN_MAKE_TYPEDEFS
|
||||
|
||||
#undef EIGEN_MAKE_TYPEDEFS_LARGE
|
||||
|
||||
#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
|
||||
using Eigen::Matrix##SizeSuffix##TypeSuffix; \
|
||||
using Eigen::Vector##SizeSuffix##TypeSuffix; \
|
||||
using Eigen::RowVector##SizeSuffix##TypeSuffix;
|
||||
|
||||
#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(TypeSuffix) \
|
||||
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
|
||||
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
|
||||
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
|
||||
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
|
||||
|
||||
#define EIGEN_USING_MATRIX_TYPEDEFS \
|
||||
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(i) \
|
||||
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(f) \
|
||||
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(d) \
|
||||
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cf) \
|
||||
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cd)
|
||||
|
||||
#endif // EIGEN_MATRIX_H
|
645
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/MatrixBase.h
Normal file
645
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/MatrixBase.h
Normal file
@ -0,0 +1,645 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_MATRIXBASE_H
|
||||
#define EIGEN_MATRIXBASE_H
|
||||
|
||||
/** \class MatrixBase
|
||||
*
|
||||
* \brief Base class for all matrices, vectors, and expressions
|
||||
*
|
||||
* This class is the base that is inherited by all matrix, vector, and expression
|
||||
* types. Most of the Eigen API is contained in this class. Other important classes for
|
||||
* the Eigen API are Matrix, Cwise, and PartialRedux.
|
||||
*
|
||||
* Note that some methods are defined in the \ref Array module.
|
||||
*
|
||||
* \param Derived is the derived type, e.g. a matrix type, or an expression, etc.
|
||||
*
|
||||
* When writing a function taking Eigen objects as argument, if you want your function
|
||||
* to take as argument any matrix, vector, or expression, just let it take a
|
||||
* MatrixBase argument. As an example, here is a function printFirstRow which, given
|
||||
* a matrix, vector, or expression \a x, prints the first row of \a x.
|
||||
*
|
||||
* \code
|
||||
template<typename Derived>
|
||||
void printFirstRow(const Eigen::MatrixBase<Derived>& x)
|
||||
{
|
||||
cout << x.row(0) << endl;
|
||||
}
|
||||
* \endcode
|
||||
*
|
||||
*/
|
||||
template<typename Derived> class MatrixBase
|
||||
{
|
||||
public:
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
class InnerIterator;
|
||||
|
||||
typedef typename ei_traits<Derived>::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
enum {
|
||||
|
||||
RowsAtCompileTime = ei_traits<Derived>::RowsAtCompileTime,
|
||||
/**< The number of rows at compile-time. This is just a copy of the value provided
|
||||
* by the \a Derived type. If a value is not known at compile-time,
|
||||
* it is set to the \a Dynamic constant.
|
||||
* \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
|
||||
|
||||
ColsAtCompileTime = ei_traits<Derived>::ColsAtCompileTime,
|
||||
/**< The number of columns at compile-time. This is just a copy of the value provided
|
||||
* by the \a Derived type. If a value is not known at compile-time,
|
||||
* it is set to the \a Dynamic constant.
|
||||
* \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
|
||||
|
||||
|
||||
SizeAtCompileTime = (ei_size_at_compile_time<ei_traits<Derived>::RowsAtCompileTime,
|
||||
ei_traits<Derived>::ColsAtCompileTime>::ret),
|
||||
/**< This is equal to the number of coefficients, i.e. the number of
|
||||
* rows times the number of columns, or to \a Dynamic if this is not
|
||||
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
|
||||
|
||||
MaxRowsAtCompileTime = ei_traits<Derived>::MaxRowsAtCompileTime,
|
||||
/**< This value is equal to the maximum possible number of rows that this expression
|
||||
* might have. If this expression might have an arbitrarily high number of rows,
|
||||
* this value is set to \a Dynamic.
|
||||
*
|
||||
* This value is useful to know when evaluating an expression, in order to determine
|
||||
* whether it is possible to avoid doing a dynamic memory allocation.
|
||||
*
|
||||
* \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime
|
||||
*/
|
||||
|
||||
MaxColsAtCompileTime = ei_traits<Derived>::MaxColsAtCompileTime,
|
||||
/**< This value is equal to the maximum possible number of columns that this expression
|
||||
* might have. If this expression might have an arbitrarily high number of columns,
|
||||
* this value is set to \a Dynamic.
|
||||
*
|
||||
* This value is useful to know when evaluating an expression, in order to determine
|
||||
* whether it is possible to avoid doing a dynamic memory allocation.
|
||||
*
|
||||
* \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime
|
||||
*/
|
||||
|
||||
MaxSizeAtCompileTime = (ei_size_at_compile_time<ei_traits<Derived>::MaxRowsAtCompileTime,
|
||||
ei_traits<Derived>::MaxColsAtCompileTime>::ret),
|
||||
/**< This value is equal to the maximum possible number of coefficients that this expression
|
||||
* might have. If this expression might have an arbitrarily high number of coefficients,
|
||||
* this value is set to \a Dynamic.
|
||||
*
|
||||
* This value is useful to know when evaluating an expression, in order to determine
|
||||
* whether it is possible to avoid doing a dynamic memory allocation.
|
||||
*
|
||||
* \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime
|
||||
*/
|
||||
|
||||
IsVectorAtCompileTime = ei_traits<Derived>::RowsAtCompileTime == 1
|
||||
|| ei_traits<Derived>::ColsAtCompileTime == 1,
|
||||
/**< This is set to true if either the number of rows or the number of
|
||||
* columns is known at compile-time to be equal to 1. Indeed, in that case,
|
||||
* we are dealing with a column-vector (if there is only one column) or with
|
||||
* a row-vector (if there is only one row). */
|
||||
|
||||
Flags = ei_traits<Derived>::Flags,
|
||||
/**< This stores expression \ref flags flags which may or may not be inherited by new expressions
|
||||
* constructed from this one. See the \ref flags "list of flags".
|
||||
*/
|
||||
|
||||
CoeffReadCost = ei_traits<Derived>::CoeffReadCost
|
||||
/**< This is a rough measure of how expensive it is to read one coefficient from
|
||||
* this expression.
|
||||
*/
|
||||
};
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** This is the "real scalar" type; if the \a Scalar type is already real numbers
|
||||
* (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
|
||||
* \a Scalar is \a std::complex<T> then RealScalar is \a T.
|
||||
*
|
||||
* \sa class NumTraits
|
||||
*/
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
/** type of the equivalent square matrix */
|
||||
typedef Matrix<Scalar,EIGEN_ENUM_MAX(RowsAtCompileTime,ColsAtCompileTime),
|
||||
EIGEN_ENUM_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType;
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
/** \returns the number of rows. \sa cols(), RowsAtCompileTime */
|
||||
inline int rows() const { return derived().rows(); }
|
||||
/** \returns the number of columns. \sa rows(), ColsAtCompileTime*/
|
||||
inline int cols() const { return derived().cols(); }
|
||||
/** \returns the number of coefficients, which is \a rows()*cols().
|
||||
* \sa rows(), cols(), SizeAtCompileTime. */
|
||||
inline int size() const { return rows() * cols(); }
|
||||
/** \returns the number of nonzero coefficients which is in practice the number
|
||||
* of stored coefficients. */
|
||||
inline int nonZeros() const { return size(); }
|
||||
/** \returns true if either the number of rows or the number of columns is equal to 1.
|
||||
* In other words, this function returns
|
||||
* \code rows()==1 || cols()==1 \endcode
|
||||
* \sa rows(), cols(), IsVectorAtCompileTime. */
|
||||
inline bool isVector() const { return rows()==1 || cols()==1; }
|
||||
/** \returns the size of the storage major dimension,
|
||||
* i.e., the number of columns for a columns major matrix, and the number of rows otherwise */
|
||||
int outerSize() const { return (int(Flags)&RowMajorBit) ? this->rows() : this->cols(); }
|
||||
/** \returns the size of the inner dimension according to the storage order,
|
||||
* i.e., the number of rows for a columns major matrix, and the number of cols otherwise */
|
||||
int innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); }
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** \internal the plain matrix type corresponding to this expression. Note that is not necessarily
|
||||
* exactly the return type of eval(): in the case of plain matrices, the return type of eval() is a const
|
||||
* reference to a matrix, not a matrix! It guaranteed however, that the return type of eval() is either
|
||||
* PlainMatrixType or const PlainMatrixType&.
|
||||
*/
|
||||
typedef typename ei_plain_matrix_type<Derived>::type PlainMatrixType;
|
||||
/** \internal the column-major plain matrix type corresponding to this expression. Note that is not necessarily
|
||||
* exactly the return type of eval(): in the case of plain matrices, the return type of eval() is a const
|
||||
* reference to a matrix, not a matrix!
|
||||
* The only difference from PlainMatrixType is that PlainMatrixType_ColMajor is guaranteed to be column-major.
|
||||
*/
|
||||
typedef typename ei_plain_matrix_type<Derived>::type PlainMatrixType_ColMajor;
|
||||
|
||||
/** \internal Represents a matrix with all coefficients equal to one another*/
|
||||
typedef CwiseNullaryOp<ei_scalar_constant_op<Scalar>,Derived> ConstantReturnType;
|
||||
/** \internal Represents a scalar multiple of a matrix */
|
||||
typedef CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, Derived> ScalarMultipleReturnType;
|
||||
/** \internal Represents a quotient of a matrix by a scalar*/
|
||||
typedef CwiseUnaryOp<ei_scalar_quotient1_op<Scalar>, Derived> ScalarQuotient1ReturnType;
|
||||
/** \internal the return type of MatrixBase::conjugate() */
|
||||
typedef typename ei_meta_if<NumTraits<Scalar>::IsComplex,
|
||||
const CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, Derived>,
|
||||
const Derived&
|
||||
>::ret ConjugateReturnType;
|
||||
/** \internal the return type of MatrixBase::real() */
|
||||
typedef CwiseUnaryOp<ei_scalar_real_op<Scalar>, Derived> RealReturnType;
|
||||
/** \internal the return type of MatrixBase::imag() */
|
||||
typedef CwiseUnaryOp<ei_scalar_imag_op<Scalar>, Derived> ImagReturnType;
|
||||
/** \internal the return type of MatrixBase::adjoint() */
|
||||
typedef Eigen::Transpose<NestByValue<typename ei_cleantype<ConjugateReturnType>::type> >
|
||||
AdjointReturnType;
|
||||
/** \internal the return type of MatrixBase::eigenvalues() */
|
||||
typedef Matrix<typename NumTraits<typename ei_traits<Derived>::Scalar>::Real, ei_traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType;
|
||||
/** \internal expression tyepe of a column */
|
||||
typedef Block<Derived, ei_traits<Derived>::RowsAtCompileTime, 1> ColXpr;
|
||||
/** \internal expression tyepe of a column */
|
||||
typedef Block<Derived, 1, ei_traits<Derived>::ColsAtCompileTime> RowXpr;
|
||||
/** \internal the return type of identity */
|
||||
typedef CwiseNullaryOp<ei_scalar_identity_op<Scalar>,Derived> IdentityReturnType;
|
||||
/** \internal the return type of unit vectors */
|
||||
typedef Block<CwiseNullaryOp<ei_scalar_identity_op<Scalar>, SquareMatrixType>,
|
||||
ei_traits<Derived>::RowsAtCompileTime,
|
||||
ei_traits<Derived>::ColsAtCompileTime> BasisReturnType;
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
|
||||
/** Copies \a other into *this. \returns a reference to *this. */
|
||||
template<typename OtherDerived>
|
||||
Derived& operator=(const MatrixBase<OtherDerived>& other);
|
||||
|
||||
/** Special case of the template operator=, in order to prevent the compiler
|
||||
* from generating a default operator= (issue hit with g++ 4.1)
|
||||
*/
|
||||
inline Derived& operator=(const MatrixBase& other)
|
||||
{
|
||||
return this->operator=<Derived>(other);
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** Copies \a other into *this without evaluating other. \returns a reference to *this. */
|
||||
template<typename OtherDerived>
|
||||
Derived& lazyAssign(const MatrixBase<OtherDerived>& other);
|
||||
|
||||
/** Overloaded for cache friendly product evaluation */
|
||||
template<typename Lhs, typename Rhs>
|
||||
Derived& lazyAssign(const Product<Lhs,Rhs,CacheFriendlyProduct>& product);
|
||||
|
||||
/** Overloaded for cache friendly product evaluation */
|
||||
template<typename OtherDerived>
|
||||
Derived& lazyAssign(const Flagged<OtherDerived, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit>& other)
|
||||
{ return lazyAssign(other._expression()); }
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
CommaInitializer<Derived> operator<< (const Scalar& s);
|
||||
|
||||
template<typename OtherDerived>
|
||||
CommaInitializer<Derived> operator<< (const MatrixBase<OtherDerived>& other);
|
||||
|
||||
const Scalar coeff(int row, int col) const;
|
||||
const Scalar operator()(int row, int col) const;
|
||||
|
||||
Scalar& coeffRef(int row, int col);
|
||||
Scalar& operator()(int row, int col);
|
||||
|
||||
const Scalar coeff(int index) const;
|
||||
const Scalar operator[](int index) const;
|
||||
const Scalar operator()(int index) const;
|
||||
|
||||
Scalar& coeffRef(int index);
|
||||
Scalar& operator[](int index);
|
||||
Scalar& operator()(int index);
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename OtherDerived>
|
||||
void copyCoeff(int row, int col, const MatrixBase<OtherDerived>& other);
|
||||
template<typename OtherDerived>
|
||||
void copyCoeff(int index, const MatrixBase<OtherDerived>& other);
|
||||
template<typename OtherDerived, int StoreMode, int LoadMode>
|
||||
void copyPacket(int row, int col, const MatrixBase<OtherDerived>& other);
|
||||
template<typename OtherDerived, int StoreMode, int LoadMode>
|
||||
void copyPacket(int index, const MatrixBase<OtherDerived>& other);
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
template<int LoadMode>
|
||||
PacketScalar packet(int row, int col) const;
|
||||
template<int StoreMode>
|
||||
void writePacket(int row, int col, const PacketScalar& x);
|
||||
|
||||
template<int LoadMode>
|
||||
PacketScalar packet(int index) const;
|
||||
template<int StoreMode>
|
||||
void writePacket(int index, const PacketScalar& x);
|
||||
|
||||
const Scalar x() const;
|
||||
const Scalar y() const;
|
||||
const Scalar z() const;
|
||||
const Scalar w() const;
|
||||
Scalar& x();
|
||||
Scalar& y();
|
||||
Scalar& z();
|
||||
Scalar& w();
|
||||
|
||||
|
||||
const CwiseUnaryOp<ei_scalar_opposite_op<typename ei_traits<Derived>::Scalar>,Derived> operator-() const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
const CwiseBinaryOp<ei_scalar_sum_op<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
|
||||
operator+(const MatrixBase<OtherDerived> &other) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
const CwiseBinaryOp<ei_scalar_difference_op<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
|
||||
operator-(const MatrixBase<OtherDerived> &other) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator+=(const MatrixBase<OtherDerived>& other);
|
||||
template<typename OtherDerived>
|
||||
Derived& operator-=(const MatrixBase<OtherDerived>& other);
|
||||
|
||||
template<typename Lhs,typename Rhs>
|
||||
Derived& operator+=(const Flagged<Product<Lhs,Rhs,CacheFriendlyProduct>, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit>& other);
|
||||
|
||||
Derived& operator*=(const Scalar& other);
|
||||
Derived& operator/=(const Scalar& other);
|
||||
|
||||
const ScalarMultipleReturnType operator*(const Scalar& scalar) const;
|
||||
const CwiseUnaryOp<ei_scalar_quotient1_op<typename ei_traits<Derived>::Scalar>, Derived>
|
||||
operator/(const Scalar& scalar) const;
|
||||
|
||||
inline friend const CwiseUnaryOp<ei_scalar_multiple_op<typename ei_traits<Derived>::Scalar>, Derived>
|
||||
operator*(const Scalar& scalar, const MatrixBase& matrix)
|
||||
{ return matrix*scalar; }
|
||||
|
||||
|
||||
template<typename OtherDerived>
|
||||
const typename ProductReturnType<Derived,OtherDerived>::Type
|
||||
operator*(const MatrixBase<OtherDerived> &other) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator*=(const MatrixBase<OtherDerived>& other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
typename ei_plain_matrix_type_column_major<OtherDerived>::type
|
||||
solveTriangular(const MatrixBase<OtherDerived>& other) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
void solveTriangularInPlace(const MatrixBase<OtherDerived>& other) const;
|
||||
|
||||
|
||||
template<typename OtherDerived>
|
||||
Scalar dot(const MatrixBase<OtherDerived>& other) const;
|
||||
RealScalar squaredNorm() const;
|
||||
RealScalar norm() const;
|
||||
const PlainMatrixType normalized() const;
|
||||
void normalize();
|
||||
|
||||
Eigen::Transpose<Derived> transpose();
|
||||
const Eigen::Transpose<Derived> transpose() const;
|
||||
void transposeInPlace();
|
||||
const AdjointReturnType adjoint() const;
|
||||
|
||||
|
||||
RowXpr row(int i);
|
||||
const RowXpr row(int i) const;
|
||||
|
||||
ColXpr col(int i);
|
||||
const ColXpr col(int i) const;
|
||||
|
||||
Minor<Derived> minor(int row, int col);
|
||||
const Minor<Derived> minor(int row, int col) const;
|
||||
|
||||
typename BlockReturnType<Derived>::Type block(int startRow, int startCol, int blockRows, int blockCols);
|
||||
const typename BlockReturnType<Derived>::Type
|
||||
block(int startRow, int startCol, int blockRows, int blockCols) const;
|
||||
|
||||
typename BlockReturnType<Derived>::SubVectorType segment(int start, int size);
|
||||
const typename BlockReturnType<Derived>::SubVectorType segment(int start, int size) const;
|
||||
|
||||
typename BlockReturnType<Derived,Dynamic>::SubVectorType start(int size);
|
||||
const typename BlockReturnType<Derived,Dynamic>::SubVectorType start(int size) const;
|
||||
|
||||
typename BlockReturnType<Derived,Dynamic>::SubVectorType end(int size);
|
||||
const typename BlockReturnType<Derived,Dynamic>::SubVectorType end(int size) const;
|
||||
|
||||
typename BlockReturnType<Derived>::Type corner(CornerType type, int cRows, int cCols);
|
||||
const typename BlockReturnType<Derived>::Type corner(CornerType type, int cRows, int cCols) const;
|
||||
|
||||
template<int BlockRows, int BlockCols>
|
||||
typename BlockReturnType<Derived, BlockRows, BlockCols>::Type block(int startRow, int startCol);
|
||||
template<int BlockRows, int BlockCols>
|
||||
const typename BlockReturnType<Derived, BlockRows, BlockCols>::Type block(int startRow, int startCol) const;
|
||||
|
||||
template<int CRows, int CCols>
|
||||
typename BlockReturnType<Derived, CRows, CCols>::Type corner(CornerType type);
|
||||
template<int CRows, int CCols>
|
||||
const typename BlockReturnType<Derived, CRows, CCols>::Type corner(CornerType type) const;
|
||||
|
||||
template<int Size> typename BlockReturnType<Derived,Size>::SubVectorType start(void);
|
||||
template<int Size> const typename BlockReturnType<Derived,Size>::SubVectorType start() const;
|
||||
|
||||
template<int Size> typename BlockReturnType<Derived,Size>::SubVectorType end();
|
||||
template<int Size> const typename BlockReturnType<Derived,Size>::SubVectorType end() const;
|
||||
|
||||
template<int Size> typename BlockReturnType<Derived,Size>::SubVectorType segment(int start);
|
||||
template<int Size> const typename BlockReturnType<Derived,Size>::SubVectorType segment(int start) const;
|
||||
|
||||
DiagonalCoeffs<Derived> diagonal();
|
||||
const DiagonalCoeffs<Derived> diagonal() const;
|
||||
|
||||
template<unsigned int Mode> Part<Derived, Mode> part();
|
||||
template<unsigned int Mode> const Part<Derived, Mode> part() const;
|
||||
|
||||
|
||||
static const ConstantReturnType
|
||||
Constant(int rows, int cols, const Scalar& value);
|
||||
static const ConstantReturnType
|
||||
Constant(int size, const Scalar& value);
|
||||
static const ConstantReturnType
|
||||
Constant(const Scalar& value);
|
||||
|
||||
template<typename CustomNullaryOp>
|
||||
static const CwiseNullaryOp<CustomNullaryOp, Derived>
|
||||
NullaryExpr(int rows, int cols, const CustomNullaryOp& func);
|
||||
template<typename CustomNullaryOp>
|
||||
static const CwiseNullaryOp<CustomNullaryOp, Derived>
|
||||
NullaryExpr(int size, const CustomNullaryOp& func);
|
||||
template<typename CustomNullaryOp>
|
||||
static const CwiseNullaryOp<CustomNullaryOp, Derived>
|
||||
NullaryExpr(const CustomNullaryOp& func);
|
||||
|
||||
static const ConstantReturnType Zero(int rows, int cols);
|
||||
static const ConstantReturnType Zero(int size);
|
||||
static const ConstantReturnType Zero();
|
||||
static const ConstantReturnType Ones(int rows, int cols);
|
||||
static const ConstantReturnType Ones(int size);
|
||||
static const ConstantReturnType Ones();
|
||||
static const IdentityReturnType Identity();
|
||||
static const IdentityReturnType Identity(int rows, int cols);
|
||||
static const BasisReturnType Unit(int size, int i);
|
||||
static const BasisReturnType Unit(int i);
|
||||
static const BasisReturnType UnitX();
|
||||
static const BasisReturnType UnitY();
|
||||
static const BasisReturnType UnitZ();
|
||||
static const BasisReturnType UnitW();
|
||||
|
||||
const DiagonalMatrix<Derived> asDiagonal() const;
|
||||
|
||||
void fill(const Scalar& value);
|
||||
Derived& setConstant(const Scalar& value);
|
||||
Derived& setZero();
|
||||
Derived& setOnes();
|
||||
Derived& setRandom();
|
||||
Derived& setIdentity();
|
||||
|
||||
|
||||
template<typename OtherDerived>
|
||||
bool isApprox(const MatrixBase<OtherDerived>& other,
|
||||
RealScalar prec = precision<Scalar>()) const;
|
||||
bool isMuchSmallerThan(const RealScalar& other,
|
||||
RealScalar prec = precision<Scalar>()) const;
|
||||
template<typename OtherDerived>
|
||||
bool isMuchSmallerThan(const MatrixBase<OtherDerived>& other,
|
||||
RealScalar prec = precision<Scalar>()) const;
|
||||
|
||||
bool isApproxToConstant(const Scalar& value, RealScalar prec = precision<Scalar>()) const;
|
||||
bool isConstant(const Scalar& value, RealScalar prec = precision<Scalar>()) const;
|
||||
bool isZero(RealScalar prec = precision<Scalar>()) const;
|
||||
bool isOnes(RealScalar prec = precision<Scalar>()) const;
|
||||
bool isIdentity(RealScalar prec = precision<Scalar>()) const;
|
||||
bool isDiagonal(RealScalar prec = precision<Scalar>()) const;
|
||||
|
||||
bool isUpperTriangular(RealScalar prec = precision<Scalar>()) const;
|
||||
bool isLowerTriangular(RealScalar prec = precision<Scalar>()) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
bool isOrthogonal(const MatrixBase<OtherDerived>& other,
|
||||
RealScalar prec = precision<Scalar>()) const;
|
||||
bool isUnitary(RealScalar prec = precision<Scalar>()) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline bool operator==(const MatrixBase<OtherDerived>& other) const
|
||||
{ return (cwise() == other).all(); }
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline bool operator!=(const MatrixBase<OtherDerived>& other) const
|
||||
{ return (cwise() != other).any(); }
|
||||
|
||||
|
||||
template<typename NewType>
|
||||
const CwiseUnaryOp<ei_scalar_cast_op<typename ei_traits<Derived>::Scalar, NewType>, Derived> cast() const;
|
||||
|
||||
/** \returns the matrix or vector obtained by evaluating this expression.
|
||||
*
|
||||
* Notice that in the case of a plain matrix or vector (not an expression) this function just returns
|
||||
* a const reference, in order to avoid a useless copy.
|
||||
*/
|
||||
EIGEN_STRONG_INLINE const typename ei_eval<Derived>::type eval() const
|
||||
{ return typename ei_eval<Derived>::type(derived()); }
|
||||
|
||||
template<typename OtherDerived>
|
||||
void swap(const MatrixBase<OtherDerived>& other);
|
||||
|
||||
template<unsigned int Added>
|
||||
const Flagged<Derived, Added, 0> marked() const;
|
||||
const Flagged<Derived, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit> lazy() const;
|
||||
|
||||
/** \returns number of elements to skip to pass from one row (resp. column) to another
|
||||
* for a row-major (resp. column-major) matrix.
|
||||
* Combined with coeffRef() and the \ref flags flags, it allows a direct access to the data
|
||||
* of the underlying matrix.
|
||||
*/
|
||||
inline int stride(void) const { return derived().stride(); }
|
||||
|
||||
inline const NestByValue<Derived> nestByValue() const;
|
||||
|
||||
|
||||
ConjugateReturnType conjugate() const;
|
||||
const RealReturnType real() const;
|
||||
const ImagReturnType imag() const;
|
||||
|
||||
template<typename CustomUnaryOp>
|
||||
const CwiseUnaryOp<CustomUnaryOp, Derived> unaryExpr(const CustomUnaryOp& func = CustomUnaryOp()) const;
|
||||
|
||||
template<typename CustomBinaryOp, typename OtherDerived>
|
||||
const CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>
|
||||
binaryExpr(const MatrixBase<OtherDerived> &other, const CustomBinaryOp& func = CustomBinaryOp()) const;
|
||||
|
||||
|
||||
Scalar sum() const;
|
||||
Scalar trace() const;
|
||||
|
||||
typename ei_traits<Derived>::Scalar minCoeff() const;
|
||||
typename ei_traits<Derived>::Scalar maxCoeff() const;
|
||||
|
||||
typename ei_traits<Derived>::Scalar minCoeff(int* row, int* col) const;
|
||||
typename ei_traits<Derived>::Scalar maxCoeff(int* row, int* col) const;
|
||||
|
||||
typename ei_traits<Derived>::Scalar minCoeff(int* index) const;
|
||||
typename ei_traits<Derived>::Scalar maxCoeff(int* index) const;
|
||||
|
||||
template<typename BinaryOp>
|
||||
typename ei_result_of<BinaryOp(typename ei_traits<Derived>::Scalar)>::type
|
||||
redux(const BinaryOp& func) const;
|
||||
|
||||
template<typename Visitor>
|
||||
void visit(Visitor& func) const;
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||
inline Derived& derived() { return *static_cast<Derived*>(this); }
|
||||
inline Derived& const_cast_derived() const
|
||||
{ return *static_cast<Derived*>(const_cast<MatrixBase*>(this)); }
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
const Cwise<Derived> cwise() const;
|
||||
Cwise<Derived> cwise();
|
||||
|
||||
inline const WithFormat<Derived> format(const IOFormat& fmt) const;
|
||||
|
||||
/////////// Array module ///////////
|
||||
|
||||
bool all(void) const;
|
||||
bool any(void) const;
|
||||
int count() const;
|
||||
|
||||
const PartialRedux<Derived,Horizontal> rowwise() const;
|
||||
const PartialRedux<Derived,Vertical> colwise() const;
|
||||
|
||||
static const CwiseNullaryOp<ei_scalar_random_op<Scalar>,Derived> Random(int rows, int cols);
|
||||
static const CwiseNullaryOp<ei_scalar_random_op<Scalar>,Derived> Random(int size);
|
||||
static const CwiseNullaryOp<ei_scalar_random_op<Scalar>,Derived> Random();
|
||||
|
||||
template<typename ThenDerived,typename ElseDerived>
|
||||
const Select<Derived,ThenDerived,ElseDerived>
|
||||
select(const MatrixBase<ThenDerived>& thenMatrix,
|
||||
const MatrixBase<ElseDerived>& elseMatrix) const;
|
||||
|
||||
template<typename ThenDerived>
|
||||
inline const Select<Derived,ThenDerived, NestByValue<typename ThenDerived::ConstantReturnType> >
|
||||
select(const MatrixBase<ThenDerived>& thenMatrix, typename ThenDerived::Scalar elseScalar) const;
|
||||
|
||||
template<typename ElseDerived>
|
||||
inline const Select<Derived, NestByValue<typename ElseDerived::ConstantReturnType>, ElseDerived >
|
||||
select(typename ElseDerived::Scalar thenScalar, const MatrixBase<ElseDerived>& elseMatrix) const;
|
||||
|
||||
template<int p> RealScalar lpNorm() const;
|
||||
|
||||
/////////// LU module ///////////
|
||||
|
||||
const LU<PlainMatrixType> lu() const;
|
||||
const PlainMatrixType inverse() const;
|
||||
template<typename ResultType>
|
||||
void computeInverse(MatrixBase<ResultType> *result) const;
|
||||
Scalar determinant() const;
|
||||
|
||||
/////////// Cholesky module ///////////
|
||||
|
||||
const LLT<PlainMatrixType> llt() const;
|
||||
const LDLT<PlainMatrixType> ldlt() const;
|
||||
|
||||
/////////// QR module ///////////
|
||||
|
||||
const QR<PlainMatrixType> qr() const;
|
||||
|
||||
EigenvaluesReturnType eigenvalues() const;
|
||||
RealScalar operatorNorm() const;
|
||||
|
||||
/////////// SVD module ///////////
|
||||
|
||||
SVD<PlainMatrixType> svd() const;
|
||||
|
||||
/////////// Geometry module ///////////
|
||||
|
||||
template<typename OtherDerived>
|
||||
PlainMatrixType cross(const MatrixBase<OtherDerived>& other) const;
|
||||
PlainMatrixType unitOrthogonal(void) const;
|
||||
Matrix<Scalar,3,1> eulerAngles(int a0, int a1, int a2) const;
|
||||
|
||||
/////////// Sparse module ///////////
|
||||
|
||||
// dense = spasre * dense
|
||||
template<typename Derived1, typename Derived2>
|
||||
Derived& lazyAssign(const SparseProduct<Derived1,Derived2,SparseTimeDenseProduct>& product);
|
||||
// dense = dense * spasre
|
||||
template<typename Derived1, typename Derived2>
|
||||
Derived& lazyAssign(const SparseProduct<Derived1,Derived2,DenseTimeSparseProduct>& product);
|
||||
|
||||
#ifdef EIGEN_MATRIXBASE_PLUGIN
|
||||
#include EIGEN_MATRIXBASE_PLUGIN
|
||||
#endif
|
||||
|
||||
protected:
|
||||
/** Default constructor. Do nothing. */
|
||||
MatrixBase()
|
||||
{
|
||||
/* Just checks for self-consistency of the flags.
|
||||
* Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down
|
||||
*/
|
||||
#ifdef EIGEN_INTERNAL_DEBUGGING
|
||||
EIGEN_STATIC_ASSERT(ei_are_flags_consistent<Flags>::ret,
|
||||
INVALID_MATRIXBASE_TEMPLATE_PARAMETERS)
|
||||
#endif
|
||||
}
|
||||
|
||||
private:
|
||||
explicit MatrixBase(int);
|
||||
MatrixBase(int,int);
|
||||
template<typename OtherDerived> explicit MatrixBase(const MatrixBase<OtherDerived>&);
|
||||
};
|
||||
|
||||
#endif // EIGEN_MATRIXBASE_H
|
@ -0,0 +1,249 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_MATRIXSTORAGE_H
|
||||
#define EIGEN_MATRIXSTORAGE_H
|
||||
|
||||
struct ei_constructor_without_unaligned_array_assert {};
|
||||
|
||||
/** \internal
|
||||
* Static array automatically aligned if the total byte size is a multiple of 16 and the matrix options require auto alignment
|
||||
*/
|
||||
template <typename T, int Size, int MatrixOptions,
|
||||
bool Align = (MatrixOptions&AutoAlign) && (((Size*sizeof(T))&0xf)==0)
|
||||
> struct ei_matrix_array
|
||||
{
|
||||
EIGEN_ALIGN_128 T array[Size];
|
||||
|
||||
ei_matrix_array()
|
||||
{
|
||||
#ifndef EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT
|
||||
ei_assert((reinterpret_cast<size_t>(array) & 0xf) == 0
|
||||
&& "this assertion is explained here: http://eigen.tuxfamily.org/dox/UnalignedArrayAssert.html **** READ THIS WEB PAGE !!! ****");
|
||||
#endif
|
||||
}
|
||||
|
||||
ei_matrix_array(ei_constructor_without_unaligned_array_assert) {}
|
||||
};
|
||||
|
||||
template <typename T, int Size, int MatrixOptions> struct ei_matrix_array<T,Size,MatrixOptions,false>
|
||||
{
|
||||
T array[Size];
|
||||
ei_matrix_array() {}
|
||||
ei_matrix_array(ei_constructor_without_unaligned_array_assert) {}
|
||||
};
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \class ei_matrix_storage
|
||||
*
|
||||
* \brief Stores the data of a matrix
|
||||
*
|
||||
* This class stores the data of fixed-size, dynamic-size or mixed matrices
|
||||
* in a way as compact as possible.
|
||||
*
|
||||
* \sa Matrix
|
||||
*/
|
||||
template<typename T, int Size, int _Rows, int _Cols, int _Options> class ei_matrix_storage;
|
||||
|
||||
// purely fixed-size matrix
|
||||
template<typename T, int Size, int _Rows, int _Cols, int _Options> class ei_matrix_storage
|
||||
{
|
||||
ei_matrix_array<T,Size,_Options> m_data;
|
||||
public:
|
||||
inline explicit ei_matrix_storage() {}
|
||||
inline ei_matrix_storage(ei_constructor_without_unaligned_array_assert)
|
||||
: m_data(ei_constructor_without_unaligned_array_assert()) {}
|
||||
inline ei_matrix_storage(int,int,int) {}
|
||||
inline void swap(ei_matrix_storage& other) { std::swap(m_data,other.m_data); }
|
||||
inline static int rows(void) {return _Rows;}
|
||||
inline static int cols(void) {return _Cols;}
|
||||
inline void resize(int,int,int) {}
|
||||
inline const T *data() const { return m_data.array; }
|
||||
inline T *data() { return m_data.array; }
|
||||
};
|
||||
|
||||
// dynamic-size matrix with fixed-size storage
|
||||
template<typename T, int Size, int _Options> class ei_matrix_storage<T, Size, Dynamic, Dynamic, _Options>
|
||||
{
|
||||
ei_matrix_array<T,Size,_Options> m_data;
|
||||
int m_rows;
|
||||
int m_cols;
|
||||
public:
|
||||
inline explicit ei_matrix_storage() : m_rows(0), m_cols(0) {}
|
||||
inline ei_matrix_storage(ei_constructor_without_unaligned_array_assert)
|
||||
: m_data(ei_constructor_without_unaligned_array_assert()), m_rows(0), m_cols(0) {}
|
||||
inline ei_matrix_storage(int, int rows, int cols) : m_rows(rows), m_cols(cols) {}
|
||||
inline ~ei_matrix_storage() {}
|
||||
inline void swap(ei_matrix_storage& other)
|
||||
{ std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); }
|
||||
inline int rows(void) const {return m_rows;}
|
||||
inline int cols(void) const {return m_cols;}
|
||||
inline void resize(int, int rows, int cols)
|
||||
{
|
||||
m_rows = rows;
|
||||
m_cols = cols;
|
||||
}
|
||||
inline const T *data() const { return m_data.array; }
|
||||
inline T *data() { return m_data.array; }
|
||||
};
|
||||
|
||||
// dynamic-size matrix with fixed-size storage and fixed width
|
||||
template<typename T, int Size, int _Cols, int _Options> class ei_matrix_storage<T, Size, Dynamic, _Cols, _Options>
|
||||
{
|
||||
ei_matrix_array<T,Size,_Options> m_data;
|
||||
int m_rows;
|
||||
public:
|
||||
inline explicit ei_matrix_storage() : m_rows(0) {}
|
||||
inline ei_matrix_storage(ei_constructor_without_unaligned_array_assert)
|
||||
: m_data(ei_constructor_without_unaligned_array_assert()), m_rows(0) {}
|
||||
inline ei_matrix_storage(int, int rows, int) : m_rows(rows) {}
|
||||
inline ~ei_matrix_storage() {}
|
||||
inline void swap(ei_matrix_storage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
|
||||
inline int rows(void) const {return m_rows;}
|
||||
inline int cols(void) const {return _Cols;}
|
||||
inline void resize(int /*size*/, int rows, int)
|
||||
{
|
||||
m_rows = rows;
|
||||
}
|
||||
inline const T *data() const { return m_data.array; }
|
||||
inline T *data() { return m_data.array; }
|
||||
};
|
||||
|
||||
// dynamic-size matrix with fixed-size storage and fixed height
|
||||
template<typename T, int Size, int _Rows, int _Options> class ei_matrix_storage<T, Size, _Rows, Dynamic, _Options>
|
||||
{
|
||||
ei_matrix_array<T,Size,_Options> m_data;
|
||||
int m_cols;
|
||||
public:
|
||||
inline explicit ei_matrix_storage() : m_cols(0) {}
|
||||
inline ei_matrix_storage(ei_constructor_without_unaligned_array_assert)
|
||||
: m_data(ei_constructor_without_unaligned_array_assert()), m_cols(0) {}
|
||||
inline ei_matrix_storage(int, int, int cols) : m_cols(cols) {}
|
||||
inline ~ei_matrix_storage() {}
|
||||
inline void swap(ei_matrix_storage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
|
||||
inline int rows(void) const {return _Rows;}
|
||||
inline int cols(void) const {return m_cols;}
|
||||
inline void resize(int, int, int cols)
|
||||
{
|
||||
m_cols = cols;
|
||||
}
|
||||
inline const T *data() const { return m_data.array; }
|
||||
inline T *data() { return m_data.array; }
|
||||
};
|
||||
|
||||
// purely dynamic matrix.
|
||||
template<typename T, int _Options> class ei_matrix_storage<T, Dynamic, Dynamic, Dynamic, _Options>
|
||||
{
|
||||
T *m_data;
|
||||
int m_rows;
|
||||
int m_cols;
|
||||
public:
|
||||
inline explicit ei_matrix_storage() : m_data(0), m_rows(0), m_cols(0) {}
|
||||
inline ei_matrix_storage(ei_constructor_without_unaligned_array_assert)
|
||||
: m_data(0), m_rows(0), m_cols(0) {}
|
||||
inline ei_matrix_storage(int size, int rows, int cols)
|
||||
: m_data(ei_aligned_new<T>(size)), m_rows(rows), m_cols(cols) {}
|
||||
inline ~ei_matrix_storage() { ei_aligned_delete(m_data, m_rows*m_cols); }
|
||||
inline void swap(ei_matrix_storage& other)
|
||||
{ std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); }
|
||||
inline int rows(void) const {return m_rows;}
|
||||
inline int cols(void) const {return m_cols;}
|
||||
void resize(int size, int rows, int cols)
|
||||
{
|
||||
if(size != m_rows*m_cols)
|
||||
{
|
||||
ei_aligned_delete(m_data, m_rows*m_cols);
|
||||
if (size)
|
||||
m_data = ei_aligned_new<T>(size);
|
||||
else
|
||||
m_data = 0;
|
||||
}
|
||||
m_rows = rows;
|
||||
m_cols = cols;
|
||||
}
|
||||
inline const T *data() const { return m_data; }
|
||||
inline T *data() { return m_data; }
|
||||
};
|
||||
|
||||
// matrix with dynamic width and fixed height (so that matrix has dynamic size).
|
||||
template<typename T, int _Rows, int _Options> class ei_matrix_storage<T, Dynamic, _Rows, Dynamic, _Options>
|
||||
{
|
||||
T *m_data;
|
||||
int m_cols;
|
||||
public:
|
||||
inline explicit ei_matrix_storage() : m_data(0), m_cols(0) {}
|
||||
inline ei_matrix_storage(ei_constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {}
|
||||
inline ei_matrix_storage(int size, int, int cols) : m_data(ei_aligned_new<T>(size)), m_cols(cols) {}
|
||||
inline ~ei_matrix_storage() { ei_aligned_delete(m_data, _Rows*m_cols); }
|
||||
inline void swap(ei_matrix_storage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
|
||||
inline static int rows(void) {return _Rows;}
|
||||
inline int cols(void) const {return m_cols;}
|
||||
void resize(int size, int, int cols)
|
||||
{
|
||||
if(size != _Rows*m_cols)
|
||||
{
|
||||
ei_aligned_delete(m_data, _Rows*m_cols);
|
||||
if (size)
|
||||
m_data = ei_aligned_new<T>(size);
|
||||
else
|
||||
m_data = 0;
|
||||
}
|
||||
m_cols = cols;
|
||||
}
|
||||
inline const T *data() const { return m_data; }
|
||||
inline T *data() { return m_data; }
|
||||
};
|
||||
|
||||
// matrix with dynamic height and fixed width (so that matrix has dynamic size).
|
||||
template<typename T, int _Cols, int _Options> class ei_matrix_storage<T, Dynamic, Dynamic, _Cols, _Options>
|
||||
{
|
||||
T *m_data;
|
||||
int m_rows;
|
||||
public:
|
||||
inline explicit ei_matrix_storage() : m_data(0), m_rows(0) {}
|
||||
inline ei_matrix_storage(ei_constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {}
|
||||
inline ei_matrix_storage(int size, int rows, int) : m_data(ei_aligned_new<T>(size)), m_rows(rows) {}
|
||||
inline ~ei_matrix_storage() { ei_aligned_delete(m_data, _Cols*m_rows); }
|
||||
inline void swap(ei_matrix_storage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
|
||||
inline int rows(void) const {return m_rows;}
|
||||
inline static int cols(void) {return _Cols;}
|
||||
void resize(int size, int rows, int)
|
||||
{
|
||||
if(size != m_rows*_Cols)
|
||||
{
|
||||
ei_aligned_delete(m_data, _Cols*m_rows);
|
||||
if (size)
|
||||
m_data = ei_aligned_new<T>(size);
|
||||
else
|
||||
m_data = 0;
|
||||
}
|
||||
m_rows = rows;
|
||||
}
|
||||
inline const T *data() const { return m_data; }
|
||||
inline T *data() { return m_data; }
|
||||
};
|
||||
|
||||
#endif // EIGEN_MATRIX_H
|
122
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Minor.h
Normal file
122
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Minor.h
Normal file
@ -0,0 +1,122 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_MINOR_H
|
||||
#define EIGEN_MINOR_H
|
||||
|
||||
/** \nonstableyet
|
||||
* \class Minor
|
||||
*
|
||||
* \brief Expression of a minor
|
||||
*
|
||||
* \param MatrixType the type of the object in which we are taking a minor
|
||||
*
|
||||
* This class represents an expression of a minor. It is the return
|
||||
* type of MatrixBase::minor() and most of the time this is the only way it
|
||||
* is used.
|
||||
*
|
||||
* \sa MatrixBase::minor()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
struct ei_traits<Minor<MatrixType> >
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
|
||||
typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
|
||||
enum {
|
||||
RowsAtCompileTime = (MatrixType::RowsAtCompileTime != Dynamic) ?
|
||||
int(MatrixType::RowsAtCompileTime) - 1 : Dynamic,
|
||||
ColsAtCompileTime = (MatrixType::ColsAtCompileTime != Dynamic) ?
|
||||
int(MatrixType::ColsAtCompileTime) - 1 : Dynamic,
|
||||
MaxRowsAtCompileTime = (MatrixType::MaxRowsAtCompileTime != Dynamic) ?
|
||||
int(MatrixType::MaxRowsAtCompileTime) - 1 : Dynamic,
|
||||
MaxColsAtCompileTime = (MatrixType::MaxColsAtCompileTime != Dynamic) ?
|
||||
int(MatrixType::MaxColsAtCompileTime) - 1 : Dynamic,
|
||||
Flags = _MatrixTypeNested::Flags & HereditaryBits,
|
||||
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
|
||||
};
|
||||
};
|
||||
|
||||
template<typename MatrixType> class Minor
|
||||
: public MatrixBase<Minor<MatrixType> >
|
||||
{
|
||||
public:
|
||||
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(Minor)
|
||||
|
||||
inline Minor(const MatrixType& matrix,
|
||||
int row, int col)
|
||||
: m_matrix(matrix), m_row(row), m_col(col)
|
||||
{
|
||||
ei_assert(row >= 0 && row < matrix.rows()
|
||||
&& col >= 0 && col < matrix.cols());
|
||||
}
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Minor)
|
||||
|
||||
inline int rows() const { return m_matrix.rows() - 1; }
|
||||
inline int cols() const { return m_matrix.cols() - 1; }
|
||||
|
||||
inline Scalar& coeffRef(int row, int col)
|
||||
{
|
||||
return m_matrix.const_cast_derived().coeffRef(row + (row >= m_row), col + (col >= m_col));
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int row, int col) const
|
||||
{
|
||||
return m_matrix.coeff(row + (row >= m_row), col + (col >= m_col));
|
||||
}
|
||||
|
||||
protected:
|
||||
const typename MatrixType::Nested m_matrix;
|
||||
const int m_row, m_col;
|
||||
};
|
||||
|
||||
/** \nonstableyet
|
||||
* \return an expression of the (\a row, \a col)-minor of *this,
|
||||
* i.e. an expression constructed from *this by removing the specified
|
||||
* row and column.
|
||||
*
|
||||
* Example: \include MatrixBase_minor.cpp
|
||||
* Output: \verbinclude MatrixBase_minor.out
|
||||
*
|
||||
* \sa class Minor
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline Minor<Derived>
|
||||
MatrixBase<Derived>::minor(int row, int col)
|
||||
{
|
||||
return Minor<Derived>(derived(), row, col);
|
||||
}
|
||||
|
||||
/** \nonstableyet
|
||||
* This is the const version of minor(). */
|
||||
template<typename Derived>
|
||||
inline const Minor<Derived>
|
||||
MatrixBase<Derived>::minor(int row, int col) const
|
||||
{
|
||||
return Minor<Derived>(derived(), row, col);
|
||||
}
|
||||
|
||||
#endif // EIGEN_MINOR_H
|
117
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/NestByValue.h
Normal file
117
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/NestByValue.h
Normal file
@ -0,0 +1,117 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_NESTBYVALUE_H
|
||||
#define EIGEN_NESTBYVALUE_H
|
||||
|
||||
/** \class NestByValue
|
||||
*
|
||||
* \brief Expression which must be nested by value
|
||||
*
|
||||
* \param ExpressionType the type of the object of which we are requiring nesting-by-value
|
||||
*
|
||||
* This class is the return type of MatrixBase::nestByValue()
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* \sa MatrixBase::nestByValue()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
struct ei_traits<NestByValue<ExpressionType> > : public ei_traits<ExpressionType>
|
||||
{};
|
||||
|
||||
template<typename ExpressionType> class NestByValue
|
||||
: public MatrixBase<NestByValue<ExpressionType> >
|
||||
{
|
||||
public:
|
||||
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(NestByValue)
|
||||
|
||||
inline NestByValue(const ExpressionType& matrix) : m_expression(matrix) {}
|
||||
|
||||
inline int rows() const { return m_expression.rows(); }
|
||||
inline int cols() const { return m_expression.cols(); }
|
||||
inline int stride() const { return m_expression.stride(); }
|
||||
|
||||
inline const Scalar coeff(int row, int col) const
|
||||
{
|
||||
return m_expression.coeff(row, col);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(int row, int col)
|
||||
{
|
||||
return m_expression.const_cast_derived().coeffRef(row, col);
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int index) const
|
||||
{
|
||||
return m_expression.coeff(index);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(int index)
|
||||
{
|
||||
return m_expression.const_cast_derived().coeffRef(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(int row, int col) const
|
||||
{
|
||||
return m_expression.template packet<LoadMode>(row, col);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(int row, int col, const PacketScalar& x)
|
||||
{
|
||||
m_expression.const_cast_derived().template writePacket<LoadMode>(row, col, x);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(int index) const
|
||||
{
|
||||
return m_expression.template packet<LoadMode>(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(int index, const PacketScalar& x)
|
||||
{
|
||||
m_expression.const_cast_derived().template writePacket<LoadMode>(index, x);
|
||||
}
|
||||
|
||||
protected:
|
||||
const ExpressionType m_expression;
|
||||
|
||||
private:
|
||||
NestByValue& operator=(const NestByValue&);
|
||||
};
|
||||
|
||||
/** \returns an expression of the temporary version of *this.
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const NestByValue<Derived>
|
||||
MatrixBase<Derived>::nestByValue() const
|
||||
{
|
||||
return NestByValue<Derived>(derived());
|
||||
}
|
||||
|
||||
#endif // EIGEN_NESTBYVALUE_H
|
142
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/NumTraits.h
Normal file
142
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/NumTraits.h
Normal file
@ -0,0 +1,142 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_NUMTRAITS_H
|
||||
#define EIGEN_NUMTRAITS_H
|
||||
|
||||
/** \class NumTraits
|
||||
*
|
||||
* \brief Holds some data about the various numeric (i.e. scalar) types allowed by Eigen.
|
||||
*
|
||||
* \param T the numeric type about which this class provides data. Recall that Eigen allows
|
||||
* only the following types for \a T: \c int, \c float, \c double,
|
||||
* \c std::complex<float>, \c std::complex<double>, and \c long \c double (especially
|
||||
* useful to enforce x87 arithmetics when SSE is the default).
|
||||
*
|
||||
* The provided data consists of:
|
||||
* \li A typedef \a Real, giving the "real part" type of \a T. If \a T is already real,
|
||||
* then \a Real is just a typedef to \a T. If \a T is \c std::complex<U> then \a Real
|
||||
* is a typedef to \a U.
|
||||
* \li A typedef \a FloatingPoint, giving the "floating-point type" of \a T. If \a T is
|
||||
* \c int, then \a FloatingPoint is a typedef to \c double. Otherwise, \a FloatingPoint
|
||||
* is a typedef to \a T.
|
||||
* \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex
|
||||
* type, and to 0 otherwise.
|
||||
* \li An enum \a HasFloatingPoint. It is equal to \c 0 if \a T is \c int,
|
||||
* and to \c 1 otherwise.
|
||||
*/
|
||||
template<typename T> struct NumTraits;
|
||||
|
||||
template<> struct NumTraits<int>
|
||||
{
|
||||
typedef int Real;
|
||||
typedef double FloatingPoint;
|
||||
enum {
|
||||
IsComplex = 0,
|
||||
HasFloatingPoint = 0,
|
||||
ReadCost = 1,
|
||||
AddCost = 1,
|
||||
MulCost = 1
|
||||
};
|
||||
};
|
||||
|
||||
template<> struct NumTraits<float>
|
||||
{
|
||||
typedef float Real;
|
||||
typedef float FloatingPoint;
|
||||
enum {
|
||||
IsComplex = 0,
|
||||
HasFloatingPoint = 1,
|
||||
ReadCost = 1,
|
||||
AddCost = 1,
|
||||
MulCost = 1
|
||||
};
|
||||
};
|
||||
|
||||
template<> struct NumTraits<double>
|
||||
{
|
||||
typedef double Real;
|
||||
typedef double FloatingPoint;
|
||||
enum {
|
||||
IsComplex = 0,
|
||||
HasFloatingPoint = 1,
|
||||
ReadCost = 1,
|
||||
AddCost = 1,
|
||||
MulCost = 1
|
||||
};
|
||||
};
|
||||
|
||||
template<typename _Real> struct NumTraits<std::complex<_Real> >
|
||||
{
|
||||
typedef _Real Real;
|
||||
typedef std::complex<_Real> FloatingPoint;
|
||||
enum {
|
||||
IsComplex = 1,
|
||||
HasFloatingPoint = NumTraits<Real>::HasFloatingPoint,
|
||||
ReadCost = 2 * NumTraits<_Real>::ReadCost,
|
||||
AddCost = 2 * NumTraits<Real>::AddCost,
|
||||
MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
|
||||
};
|
||||
};
|
||||
|
||||
template<> struct NumTraits<long long int>
|
||||
{
|
||||
typedef long long int Real;
|
||||
typedef long double FloatingPoint;
|
||||
enum {
|
||||
IsComplex = 0,
|
||||
HasFloatingPoint = 0,
|
||||
ReadCost = 1,
|
||||
AddCost = 1,
|
||||
MulCost = 1
|
||||
};
|
||||
};
|
||||
|
||||
template<> struct NumTraits<long double>
|
||||
{
|
||||
typedef long double Real;
|
||||
typedef long double FloatingPoint;
|
||||
enum {
|
||||
IsComplex = 0,
|
||||
HasFloatingPoint = 1,
|
||||
ReadCost = 1,
|
||||
AddCost = 1,
|
||||
MulCost = 1
|
||||
};
|
||||
};
|
||||
|
||||
template<> struct NumTraits<bool>
|
||||
{
|
||||
typedef bool Real;
|
||||
typedef float FloatingPoint;
|
||||
enum {
|
||||
IsComplex = 0,
|
||||
HasFloatingPoint = 0,
|
||||
ReadCost = 1,
|
||||
AddCost = 1,
|
||||
MulCost = 1
|
||||
};
|
||||
};
|
||||
|
||||
#endif // EIGEN_NUMTRAITS_H
|
377
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Part.h
Normal file
377
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Part.h
Normal file
@ -0,0 +1,377 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_PART_H
|
||||
#define EIGEN_PART_H
|
||||
|
||||
/** \nonstableyet
|
||||
* \class Part
|
||||
*
|
||||
* \brief Expression of a triangular matrix extracted from a given matrix
|
||||
*
|
||||
* \param MatrixType the type of the object in which we are taking the triangular part
|
||||
* \param Mode the kind of triangular matrix expression to construct. Can be UpperTriangular, StrictlyUpperTriangular,
|
||||
* UnitUpperTriangular, LowerTriangular, StrictlyLowerTriangular, UnitLowerTriangular. This is in fact a bit field; it must have either
|
||||
* UpperTriangularBit or LowerTriangularBit, and additionnaly it may have either ZeroDiagBit or
|
||||
* UnitDiagBit.
|
||||
*
|
||||
* This class represents an expression of the upper or lower triangular part of
|
||||
* a square matrix, possibly with a further assumption on the diagonal. It is the return type
|
||||
* of MatrixBase::part() and most of the time this is the only way it is used.
|
||||
*
|
||||
* \sa MatrixBase::part()
|
||||
*/
|
||||
template<typename MatrixType, unsigned int Mode>
|
||||
struct ei_traits<Part<MatrixType, Mode> > : ei_traits<MatrixType>
|
||||
{
|
||||
typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
|
||||
typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
|
||||
enum {
|
||||
Flags = (_MatrixTypeNested::Flags & (HereditaryBits) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit))) | Mode,
|
||||
CoeffReadCost = _MatrixTypeNested::CoeffReadCost + ConditionalJumpCost
|
||||
};
|
||||
};
|
||||
|
||||
template<typename MatrixType, unsigned int Mode> class Part
|
||||
: public MatrixBase<Part<MatrixType, Mode> >
|
||||
{
|
||||
public:
|
||||
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(Part)
|
||||
|
||||
inline Part(const MatrixType& matrix) : m_matrix(matrix)
|
||||
{ ei_assert(ei_are_flags_consistent<Mode>::ret); }
|
||||
|
||||
/** \sa MatrixBase::operator+=() */
|
||||
template<typename Other> Part& operator+=(const Other& other);
|
||||
/** \sa MatrixBase::operator-=() */
|
||||
template<typename Other> Part& operator-=(const Other& other);
|
||||
/** \sa MatrixBase::operator*=() */
|
||||
Part& operator*=(const typename ei_traits<MatrixType>::Scalar& other);
|
||||
/** \sa MatrixBase::operator/=() */
|
||||
Part& operator/=(const typename ei_traits<MatrixType>::Scalar& other);
|
||||
|
||||
/** \sa operator=(), MatrixBase::lazyAssign() */
|
||||
template<typename Other> void lazyAssign(const Other& other);
|
||||
/** \sa MatrixBase::operator=() */
|
||||
template<typename Other> Part& operator=(const Other& other);
|
||||
|
||||
inline int rows() const { return m_matrix.rows(); }
|
||||
inline int cols() const { return m_matrix.cols(); }
|
||||
inline int stride() const { return m_matrix.stride(); }
|
||||
|
||||
inline Scalar coeff(int row, int col) const
|
||||
{
|
||||
// SelfAdjointBit doesn't play any role here: just because a matrix is selfadjoint doesn't say anything about
|
||||
// each individual coefficient, except for the not-very-useful-here fact that diagonal coefficients are real.
|
||||
if( ((Flags & LowerTriangularBit) && (col>row)) || ((Flags & UpperTriangularBit) && (row>col)) )
|
||||
return (Scalar)0;
|
||||
if(Flags & UnitDiagBit)
|
||||
return col==row ? (Scalar)1 : m_matrix.coeff(row, col);
|
||||
else if(Flags & ZeroDiagBit)
|
||||
return col==row ? (Scalar)0 : m_matrix.coeff(row, col);
|
||||
else
|
||||
return m_matrix.coeff(row, col);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(int row, int col)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(!(Flags & UnitDiagBit), WRITING_TO_TRIANGULAR_PART_WITH_UNIT_DIAGONAL_IS_NOT_SUPPORTED)
|
||||
EIGEN_STATIC_ASSERT(!(Flags & SelfAdjointBit), COEFFICIENT_WRITE_ACCESS_TO_SELFADJOINT_NOT_SUPPORTED)
|
||||
ei_assert( (Mode==UpperTriangular && col>=row)
|
||||
|| (Mode==LowerTriangular && col<=row)
|
||||
|| (Mode==StrictlyUpperTriangular && col>row)
|
||||
|| (Mode==StrictlyLowerTriangular && col<row));
|
||||
return m_matrix.const_cast_derived().coeffRef(row, col);
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
const MatrixType& _expression() const { return m_matrix; }
|
||||
|
||||
/** discard any writes to a row */
|
||||
const Block<Part, 1, ColsAtCompileTime> row(int i) { return Base::row(i); }
|
||||
const Block<Part, 1, ColsAtCompileTime> row(int i) const { return Base::row(i); }
|
||||
/** discard any writes to a column */
|
||||
const Block<Part, RowsAtCompileTime, 1> col(int i) { return Base::col(i); }
|
||||
const Block<Part, RowsAtCompileTime, 1> col(int i) const { return Base::col(i); }
|
||||
|
||||
template<typename OtherDerived>
|
||||
void swap(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
Part<SwapWrapper<MatrixType>,Mode>(const_cast<MatrixType&>(m_matrix)).lazyAssign(other.derived());
|
||||
}
|
||||
|
||||
protected:
|
||||
const typename MatrixType::Nested m_matrix;
|
||||
|
||||
private:
|
||||
Part& operator=(const Part&);
|
||||
};
|
||||
|
||||
/** \nonstableyet
|
||||
* \returns an expression of a triangular matrix extracted from the current matrix
|
||||
*
|
||||
* The parameter \a Mode can have the following values: \c UpperTriangular, \c StrictlyUpperTriangular, \c UnitUpperTriangular,
|
||||
* \c LowerTriangular, \c StrictlyLowerTriangular, \c UnitLowerTriangular.
|
||||
*
|
||||
* \addexample PartExample \label How to extract a triangular part of an arbitrary matrix
|
||||
*
|
||||
* Example: \include MatrixBase_extract.cpp
|
||||
* Output: \verbinclude MatrixBase_extract.out
|
||||
*
|
||||
* \sa class Part, part(), marked()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<unsigned int Mode>
|
||||
const Part<Derived, Mode> MatrixBase<Derived>::part() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename MatrixType, unsigned int Mode>
|
||||
template<typename Other>
|
||||
inline Part<MatrixType, Mode>& Part<MatrixType, Mode>::operator=(const Other& other)
|
||||
{
|
||||
if(Other::Flags & EvalBeforeAssigningBit)
|
||||
{
|
||||
typename MatrixBase<Other>::PlainMatrixType other_evaluated(other.rows(), other.cols());
|
||||
other_evaluated.template part<Mode>().lazyAssign(other);
|
||||
lazyAssign(other_evaluated);
|
||||
}
|
||||
else
|
||||
lazyAssign(other.derived());
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename Derived1, typename Derived2, unsigned int Mode, int UnrollCount>
|
||||
struct ei_part_assignment_impl
|
||||
{
|
||||
enum {
|
||||
col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
|
||||
row = (UnrollCount-1) % Derived1::RowsAtCompileTime
|
||||
};
|
||||
|
||||
inline static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
ei_part_assignment_impl<Derived1, Derived2, Mode, UnrollCount-1>::run(dst, src);
|
||||
|
||||
if(Mode == SelfAdjoint)
|
||||
{
|
||||
if(row == col)
|
||||
dst.coeffRef(row, col) = ei_real(src.coeff(row, col));
|
||||
else if(row < col)
|
||||
dst.coeffRef(col, row) = ei_conj(dst.coeffRef(row, col) = src.coeff(row, col));
|
||||
}
|
||||
else
|
||||
{
|
||||
ei_assert(Mode == UpperTriangular || Mode == LowerTriangular || Mode == StrictlyUpperTriangular || Mode == StrictlyLowerTriangular);
|
||||
if((Mode == UpperTriangular && row <= col)
|
||||
|| (Mode == LowerTriangular && row >= col)
|
||||
|| (Mode == StrictlyUpperTriangular && row < col)
|
||||
|| (Mode == StrictlyLowerTriangular && row > col))
|
||||
dst.copyCoeff(row, col, src);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, unsigned int Mode>
|
||||
struct ei_part_assignment_impl<Derived1, Derived2, Mode, 1>
|
||||
{
|
||||
inline static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
if(!(Mode & ZeroDiagBit))
|
||||
dst.copyCoeff(0, 0, src);
|
||||
}
|
||||
};
|
||||
|
||||
// prevent buggy user code from causing an infinite recursion
|
||||
template<typename Derived1, typename Derived2, unsigned int Mode>
|
||||
struct ei_part_assignment_impl<Derived1, Derived2, Mode, 0>
|
||||
{
|
||||
inline static void run(Derived1 &, const Derived2 &) {}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
struct ei_part_assignment_impl<Derived1, Derived2, UpperTriangular, Dynamic>
|
||||
{
|
||||
inline static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
for(int j = 0; j < dst.cols(); ++j)
|
||||
for(int i = 0; i <= j; ++i)
|
||||
dst.copyCoeff(i, j, src);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
struct ei_part_assignment_impl<Derived1, Derived2, LowerTriangular, Dynamic>
|
||||
{
|
||||
inline static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
for(int j = 0; j < dst.cols(); ++j)
|
||||
for(int i = j; i < dst.rows(); ++i)
|
||||
dst.copyCoeff(i, j, src);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
struct ei_part_assignment_impl<Derived1, Derived2, StrictlyUpperTriangular, Dynamic>
|
||||
{
|
||||
inline static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
for(int j = 0; j < dst.cols(); ++j)
|
||||
for(int i = 0; i < j; ++i)
|
||||
dst.copyCoeff(i, j, src);
|
||||
}
|
||||
};
|
||||
template<typename Derived1, typename Derived2>
|
||||
struct ei_part_assignment_impl<Derived1, Derived2, StrictlyLowerTriangular, Dynamic>
|
||||
{
|
||||
inline static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
for(int j = 0; j < dst.cols(); ++j)
|
||||
for(int i = j+1; i < dst.rows(); ++i)
|
||||
dst.copyCoeff(i, j, src);
|
||||
}
|
||||
};
|
||||
template<typename Derived1, typename Derived2>
|
||||
struct ei_part_assignment_impl<Derived1, Derived2, SelfAdjoint, Dynamic>
|
||||
{
|
||||
inline static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
for(int j = 0; j < dst.cols(); ++j)
|
||||
{
|
||||
for(int i = 0; i < j; ++i)
|
||||
dst.coeffRef(j, i) = ei_conj(dst.coeffRef(i, j) = src.coeff(i, j));
|
||||
dst.coeffRef(j, j) = ei_real(src.coeff(j, j));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename MatrixType, unsigned int Mode>
|
||||
template<typename Other>
|
||||
void Part<MatrixType, Mode>::lazyAssign(const Other& other)
|
||||
{
|
||||
const bool unroll = MatrixType::SizeAtCompileTime * Other::CoeffReadCost / 2 <= EIGEN_UNROLLING_LIMIT;
|
||||
ei_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols());
|
||||
|
||||
ei_part_assignment_impl
|
||||
<MatrixType, Other, Mode,
|
||||
unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic
|
||||
>::run(m_matrix.const_cast_derived(), other.derived());
|
||||
}
|
||||
|
||||
/** \nonstableyet
|
||||
* \returns a lvalue pseudo-expression allowing to perform special operations on \c *this.
|
||||
*
|
||||
* The \a Mode parameter can have the following values: \c UpperTriangular, \c StrictlyUpperTriangular, \c LowerTriangular,
|
||||
* \c StrictlyLowerTriangular, \c SelfAdjoint.
|
||||
*
|
||||
* \addexample PartExample \label How to write to a triangular part of a matrix
|
||||
*
|
||||
* Example: \include MatrixBase_part.cpp
|
||||
* Output: \verbinclude MatrixBase_part.out
|
||||
*
|
||||
* \sa class Part, MatrixBase::extract(), MatrixBase::marked()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<unsigned int Mode>
|
||||
inline Part<Derived, Mode> MatrixBase<Derived>::part()
|
||||
{
|
||||
return Part<Derived, Mode>(derived());
|
||||
}
|
||||
|
||||
/** \returns true if *this is approximately equal to an upper triangular matrix,
|
||||
* within the precision given by \a prec.
|
||||
*
|
||||
* \sa isLowerTriangular(), extract(), part(), marked()
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool MatrixBase<Derived>::isUpperTriangular(RealScalar prec) const
|
||||
{
|
||||
if(cols() != rows()) return false;
|
||||
RealScalar maxAbsOnUpperTriangularPart = static_cast<RealScalar>(-1);
|
||||
for(int j = 0; j < cols(); ++j)
|
||||
for(int i = 0; i <= j; ++i)
|
||||
{
|
||||
RealScalar absValue = ei_abs(coeff(i,j));
|
||||
if(absValue > maxAbsOnUpperTriangularPart) maxAbsOnUpperTriangularPart = absValue;
|
||||
}
|
||||
for(int j = 0; j < cols()-1; ++j)
|
||||
for(int i = j+1; i < rows(); ++i)
|
||||
if(!ei_isMuchSmallerThan(coeff(i, j), maxAbsOnUpperTriangularPart, prec)) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/** \returns true if *this is approximately equal to a lower triangular matrix,
|
||||
* within the precision given by \a prec.
|
||||
*
|
||||
* \sa isUpperTriangular(), extract(), part(), marked()
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool MatrixBase<Derived>::isLowerTriangular(RealScalar prec) const
|
||||
{
|
||||
if(cols() != rows()) return false;
|
||||
RealScalar maxAbsOnLowerTriangularPart = static_cast<RealScalar>(-1);
|
||||
for(int j = 0; j < cols(); ++j)
|
||||
for(int i = j; i < rows(); ++i)
|
||||
{
|
||||
RealScalar absValue = ei_abs(coeff(i,j));
|
||||
if(absValue > maxAbsOnLowerTriangularPart) maxAbsOnLowerTriangularPart = absValue;
|
||||
}
|
||||
for(int j = 1; j < cols(); ++j)
|
||||
for(int i = 0; i < j; ++i)
|
||||
if(!ei_isMuchSmallerThan(coeff(i, j), maxAbsOnLowerTriangularPart, prec)) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename MatrixType, unsigned int Mode>
|
||||
template<typename Other>
|
||||
inline Part<MatrixType, Mode>& Part<MatrixType, Mode>::operator+=(const Other& other)
|
||||
{
|
||||
return *this = m_matrix + other;
|
||||
}
|
||||
|
||||
template<typename MatrixType, unsigned int Mode>
|
||||
template<typename Other>
|
||||
inline Part<MatrixType, Mode>& Part<MatrixType, Mode>::operator-=(const Other& other)
|
||||
{
|
||||
return *this = m_matrix - other;
|
||||
}
|
||||
|
||||
template<typename MatrixType, unsigned int Mode>
|
||||
inline Part<MatrixType, Mode>& Part<MatrixType, Mode>::operator*=
|
||||
(const typename ei_traits<MatrixType>::Scalar& other)
|
||||
{
|
||||
return *this = m_matrix * other;
|
||||
}
|
||||
|
||||
template<typename MatrixType, unsigned int Mode>
|
||||
inline Part<MatrixType, Mode>& Part<MatrixType, Mode>::operator/=
|
||||
(const typename ei_traits<MatrixType>::Scalar& other)
|
||||
{
|
||||
return *this = m_matrix / other;
|
||||
}
|
||||
|
||||
#endif // EIGEN_PART_H
|
807
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Product.h
Normal file
807
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Product.h
Normal file
@ -0,0 +1,807 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_PRODUCT_H
|
||||
#define EIGEN_PRODUCT_H
|
||||
|
||||
/***************************
|
||||
*** Forward declarations ***
|
||||
***************************/
|
||||
|
||||
template<int VectorizationMode, int Index, typename Lhs, typename Rhs, typename RetScalar>
|
||||
struct ei_product_coeff_impl;
|
||||
|
||||
template<int StorageOrder, int Index, typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
|
||||
struct ei_product_packet_impl;
|
||||
|
||||
/** \class ProductReturnType
|
||||
*
|
||||
* \brief Helper class to get the correct and optimized returned type of operator*
|
||||
*
|
||||
* \param Lhs the type of the left-hand side
|
||||
* \param Rhs the type of the right-hand side
|
||||
* \param ProductMode the type of the product (determined automatically by ei_product_mode)
|
||||
*
|
||||
* This class defines the typename Type representing the optimized product expression
|
||||
* between two matrix expressions. In practice, using ProductReturnType<Lhs,Rhs>::Type
|
||||
* is the recommended way to define the result type of a function returning an expression
|
||||
* which involve a matrix product. The class Product or DiagonalProduct should never be
|
||||
* used directly.
|
||||
*
|
||||
* \sa class Product, class DiagonalProduct, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
|
||||
*/
|
||||
template<typename Lhs, typename Rhs, int ProductMode>
|
||||
struct ProductReturnType
|
||||
{
|
||||
typedef typename ei_nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
|
||||
typedef typename ei_nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
|
||||
|
||||
typedef Product<LhsNested, RhsNested, ProductMode> Type;
|
||||
};
|
||||
|
||||
// cache friendly specialization
|
||||
// note that there is a DiagonalProduct specialization in DiagonalProduct.h
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct ProductReturnType<Lhs,Rhs,CacheFriendlyProduct>
|
||||
{
|
||||
typedef const Lhs& LhsNested;
|
||||
typedef const Rhs& RhsNested;
|
||||
|
||||
typedef Product<LhsNested, RhsNested, CacheFriendlyProduct> Type;
|
||||
};
|
||||
|
||||
/* Helper class to determine the type of the product, can be either:
|
||||
* - NormalProduct
|
||||
* - CacheFriendlyProduct
|
||||
* - DiagonalProduct
|
||||
*/
|
||||
template<typename Lhs, typename Rhs> struct ei_product_mode
|
||||
{
|
||||
enum{
|
||||
|
||||
value = ((Rhs::Flags&Diagonal)==Diagonal) || ((Lhs::Flags&Diagonal)==Diagonal)
|
||||
? DiagonalProduct
|
||||
: Lhs::MaxColsAtCompileTime == Dynamic
|
||||
&& ( Lhs::MaxRowsAtCompileTime == Dynamic
|
||||
|| Rhs::MaxColsAtCompileTime == Dynamic )
|
||||
&& (!(Rhs::IsVectorAtCompileTime && (Lhs::Flags&RowMajorBit) && (!(Lhs::Flags&DirectAccessBit))))
|
||||
&& (!(Lhs::IsVectorAtCompileTime && (!(Rhs::Flags&RowMajorBit)) && (!(Rhs::Flags&DirectAccessBit))))
|
||||
&& (ei_is_same_type<typename Lhs::Scalar, typename Rhs::Scalar>::ret)
|
||||
? CacheFriendlyProduct
|
||||
: NormalProduct };
|
||||
};
|
||||
|
||||
/** \class Product
|
||||
*
|
||||
* \brief Expression of the product of two matrices
|
||||
*
|
||||
* \param LhsNested the type used to store the left-hand side
|
||||
* \param RhsNested the type used to store the right-hand side
|
||||
* \param ProductMode the type of the product
|
||||
*
|
||||
* This class represents an expression of the product of two matrices.
|
||||
* It is the return type of the operator* between matrices. Its template
|
||||
* arguments are determined automatically by ProductReturnType. Therefore,
|
||||
* Product should never be used direclty. To determine the result type of a
|
||||
* function which involves a matrix product, use ProductReturnType::Type.
|
||||
*
|
||||
* \sa ProductReturnType, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
|
||||
*/
|
||||
template<typename LhsNested, typename RhsNested, int ProductMode>
|
||||
struct ei_traits<Product<LhsNested, RhsNested, ProductMode> >
|
||||
{
|
||||
// clean the nested types:
|
||||
typedef typename ei_cleantype<LhsNested>::type _LhsNested;
|
||||
typedef typename ei_cleantype<RhsNested>::type _RhsNested;
|
||||
typedef typename ei_scalar_product_traits<typename _LhsNested::Scalar, typename _RhsNested::Scalar>::ReturnType Scalar;
|
||||
|
||||
enum {
|
||||
LhsCoeffReadCost = _LhsNested::CoeffReadCost,
|
||||
RhsCoeffReadCost = _RhsNested::CoeffReadCost,
|
||||
LhsFlags = _LhsNested::Flags,
|
||||
RhsFlags = _RhsNested::Flags,
|
||||
|
||||
RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
|
||||
ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
|
||||
InnerSize = EIGEN_SIZE_MIN(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
|
||||
|
||||
MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
|
||||
|
||||
LhsRowMajor = LhsFlags & RowMajorBit,
|
||||
RhsRowMajor = RhsFlags & RowMajorBit,
|
||||
|
||||
CanVectorizeRhs = RhsRowMajor && (RhsFlags & PacketAccessBit)
|
||||
&& (ColsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
|
||||
|
||||
CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit)
|
||||
&& (RowsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
|
||||
|
||||
EvalToRowMajor = RhsRowMajor && (ProductMode==(int)CacheFriendlyProduct ? LhsRowMajor : (!CanVectorizeLhs)),
|
||||
|
||||
RemovedBits = ~((EvalToRowMajor ? 0 : RowMajorBit)|DirectAccessBit),
|
||||
|
||||
Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
|
||||
| EvalBeforeAssigningBit
|
||||
| EvalBeforeNestingBit
|
||||
| (CanVectorizeLhs || CanVectorizeRhs ? PacketAccessBit : 0)
|
||||
| (LhsFlags & RhsFlags & AlignedBit),
|
||||
|
||||
CoeffReadCost = InnerSize == Dynamic ? Dynamic
|
||||
: InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
|
||||
+ (InnerSize - 1) * NumTraits<Scalar>::AddCost,
|
||||
|
||||
/* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
|
||||
* of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
|
||||
* loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
|
||||
* the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
|
||||
*/
|
||||
CanVectorizeInner = LhsRowMajor && (!RhsRowMajor) && (LhsFlags & RhsFlags & ActualPacketAccessBit)
|
||||
&& (InnerSize % ei_packet_traits<Scalar>::size == 0)
|
||||
};
|
||||
};
|
||||
|
||||
template<typename LhsNested, typename RhsNested, int ProductMode> class Product : ei_no_assignment_operator,
|
||||
public MatrixBase<Product<LhsNested, RhsNested, ProductMode> >
|
||||
{
|
||||
public:
|
||||
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(Product)
|
||||
|
||||
private:
|
||||
|
||||
typedef typename ei_traits<Product>::_LhsNested _LhsNested;
|
||||
typedef typename ei_traits<Product>::_RhsNested _RhsNested;
|
||||
|
||||
enum {
|
||||
PacketSize = ei_packet_traits<Scalar>::size,
|
||||
InnerSize = ei_traits<Product>::InnerSize,
|
||||
Unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
|
||||
CanVectorizeInner = ei_traits<Product>::CanVectorizeInner
|
||||
};
|
||||
|
||||
typedef ei_product_coeff_impl<CanVectorizeInner ? InnerVectorization : NoVectorization,
|
||||
Unroll ? InnerSize-1 : Dynamic,
|
||||
_LhsNested, _RhsNested, Scalar> ScalarCoeffImpl;
|
||||
|
||||
public:
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
inline Product(const Lhs& lhs, const Rhs& rhs)
|
||||
: m_lhs(lhs), m_rhs(rhs)
|
||||
{
|
||||
// we don't allow taking products of matrices of different real types, as that wouldn't be vectorizable.
|
||||
// We still allow to mix T and complex<T>.
|
||||
EIGEN_STATIC_ASSERT((ei_is_same_type<typename Lhs::RealScalar, typename Rhs::RealScalar>::ret),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
ei_assert(lhs.cols() == rhs.rows()
|
||||
&& "invalid matrix product"
|
||||
&& "if you wanted a coeff-wise or a dot product use the respective explicit functions");
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* compute \a res += \c *this using the cache friendly product.
|
||||
*/
|
||||
template<typename DestDerived>
|
||||
void _cacheFriendlyEvalAndAdd(DestDerived& res) const;
|
||||
|
||||
/** \internal
|
||||
* \returns whether it is worth it to use the cache friendly product.
|
||||
*/
|
||||
EIGEN_STRONG_INLINE bool _useCacheFriendlyProduct() const
|
||||
{
|
||||
return m_lhs.cols()>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|
||||
&& ( rows()>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|
||||
|| cols()>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD);
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE int rows() const { return m_lhs.rows(); }
|
||||
EIGEN_STRONG_INLINE int cols() const { return m_rhs.cols(); }
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar coeff(int row, int col) const
|
||||
{
|
||||
Scalar res;
|
||||
ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
|
||||
* which is why we don't set the LinearAccessBit.
|
||||
*/
|
||||
EIGEN_STRONG_INLINE const Scalar coeff(int index) const
|
||||
{
|
||||
Scalar res;
|
||||
const int row = RowsAtCompileTime == 1 ? 0 : index;
|
||||
const int col = RowsAtCompileTime == 1 ? index : 0;
|
||||
ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
|
||||
return res;
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE const PacketScalar packet(int row, int col) const
|
||||
{
|
||||
PacketScalar res;
|
||||
ei_product_packet_impl<Flags&RowMajorBit ? RowMajor : ColMajor,
|
||||
Unroll ? InnerSize-1 : Dynamic,
|
||||
_LhsNested, _RhsNested, PacketScalar, LoadMode>
|
||||
::run(row, col, m_lhs, m_rhs, res);
|
||||
return res;
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE const _LhsNested& lhs() const { return m_lhs; }
|
||||
EIGEN_STRONG_INLINE const _RhsNested& rhs() const { return m_rhs; }
|
||||
|
||||
protected:
|
||||
const LhsNested m_lhs;
|
||||
const RhsNested m_rhs;
|
||||
};
|
||||
|
||||
/** \returns the matrix product of \c *this and \a other.
|
||||
*
|
||||
* \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
|
||||
*
|
||||
* \sa lazy(), operator*=(const MatrixBase&), Cwise::operator*()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline const typename ProductReturnType<Derived,OtherDerived>::Type
|
||||
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
enum {
|
||||
ProductIsValid = Derived::ColsAtCompileTime==Dynamic
|
||||
|| OtherDerived::RowsAtCompileTime==Dynamic
|
||||
|| int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
|
||||
AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
|
||||
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
|
||||
};
|
||||
// note to the lost user:
|
||||
// * for a dot product use: v1.dot(v2)
|
||||
// * for a coeff-wise product use: v1.cwise()*v2
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
|
||||
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
|
||||
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
|
||||
return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
|
||||
}
|
||||
|
||||
/** replaces \c *this by \c *this * \a other.
|
||||
*
|
||||
* \returns a reference to \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline Derived &
|
||||
MatrixBase<Derived>::operator*=(const MatrixBase<OtherDerived> &other)
|
||||
{
|
||||
return derived() = derived() * other.derived();
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Normal product .coeff() implementation (with meta-unrolling)
|
||||
***************************************************************************/
|
||||
|
||||
/**************************************
|
||||
*** Scalar path - no vectorization ***
|
||||
**************************************/
|
||||
|
||||
template<int Index, typename Lhs, typename Rhs, typename RetScalar>
|
||||
struct ei_product_coeff_impl<NoVectorization, Index, Lhs, Rhs, RetScalar>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
|
||||
{
|
||||
ei_product_coeff_impl<NoVectorization, Index-1, Lhs, Rhs, RetScalar>::run(row, col, lhs, rhs, res);
|
||||
res += lhs.coeff(row, Index) * rhs.coeff(Index, col);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename RetScalar>
|
||||
struct ei_product_coeff_impl<NoVectorization, 0, Lhs, Rhs, RetScalar>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
|
||||
{
|
||||
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename RetScalar>
|
||||
struct ei_product_coeff_impl<NoVectorization, Dynamic, Lhs, Rhs, RetScalar>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, RetScalar& res)
|
||||
{
|
||||
ei_assert(lhs.cols()>0 && "you are using a non initialized matrix");
|
||||
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
|
||||
for(int i = 1; i < lhs.cols(); ++i)
|
||||
res += lhs.coeff(row, i) * rhs.coeff(i, col);
|
||||
}
|
||||
};
|
||||
|
||||
// prevent buggy user code from causing an infinite recursion
|
||||
template<typename Lhs, typename Rhs, typename RetScalar>
|
||||
struct ei_product_coeff_impl<NoVectorization, -1, Lhs, Rhs, RetScalar>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(int, int, const Lhs&, const Rhs&, RetScalar&) {}
|
||||
};
|
||||
|
||||
/*******************************************
|
||||
*** Scalar path with inner vectorization ***
|
||||
*******************************************/
|
||||
|
||||
template<int Index, typename Lhs, typename Rhs, typename PacketScalar>
|
||||
struct ei_product_coeff_vectorized_unroller
|
||||
{
|
||||
enum { PacketSize = ei_packet_traits<typename Lhs::Scalar>::size };
|
||||
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
|
||||
{
|
||||
ei_product_coeff_vectorized_unroller<Index-PacketSize, Lhs, Rhs, PacketScalar>::run(row, col, lhs, rhs, pres);
|
||||
pres = ei_padd(pres, ei_pmul( lhs.template packet<Aligned>(row, Index) , rhs.template packet<Aligned>(Index, col) ));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename PacketScalar>
|
||||
struct ei_product_coeff_vectorized_unroller<0, Lhs, Rhs, PacketScalar>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
|
||||
{
|
||||
pres = ei_pmul(lhs.template packet<Aligned>(row, 0) , rhs.template packet<Aligned>(0, col));
|
||||
}
|
||||
};
|
||||
|
||||
template<int Index, typename Lhs, typename Rhs, typename RetScalar>
|
||||
struct ei_product_coeff_impl<InnerVectorization, Index, Lhs, Rhs, RetScalar>
|
||||
{
|
||||
typedef typename Lhs::PacketScalar PacketScalar;
|
||||
enum { PacketSize = ei_packet_traits<typename Lhs::Scalar>::size };
|
||||
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
|
||||
{
|
||||
PacketScalar pres;
|
||||
ei_product_coeff_vectorized_unroller<Index+1-PacketSize, Lhs, Rhs, PacketScalar>::run(row, col, lhs, rhs, pres);
|
||||
ei_product_coeff_impl<NoVectorization,Index,Lhs,Rhs,RetScalar>::run(row, col, lhs, rhs, res);
|
||||
res = ei_predux(pres);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int LhsRows = Lhs::RowsAtCompileTime, int RhsCols = Rhs::ColsAtCompileTime>
|
||||
struct ei_product_coeff_vectorized_dyn_selector
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
|
||||
{
|
||||
res = ei_dot_impl<
|
||||
Block<Lhs, 1, ei_traits<Lhs>::ColsAtCompileTime>,
|
||||
Block<Rhs, ei_traits<Rhs>::RowsAtCompileTime, 1>,
|
||||
LinearVectorization, NoUnrolling>::run(lhs.row(row), rhs.col(col));
|
||||
}
|
||||
};
|
||||
|
||||
// NOTE the 3 following specializations are because taking .col(0) on a vector is a bit slower
|
||||
// NOTE maybe they are now useless since we have a specialization for Block<Matrix>
|
||||
template<typename Lhs, typename Rhs, int RhsCols>
|
||||
struct ei_product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,RhsCols>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(int /*row*/, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
|
||||
{
|
||||
res = ei_dot_impl<
|
||||
Lhs,
|
||||
Block<Rhs, ei_traits<Rhs>::RowsAtCompileTime, 1>,
|
||||
LinearVectorization, NoUnrolling>::run(lhs, rhs.col(col));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int LhsRows>
|
||||
struct ei_product_coeff_vectorized_dyn_selector<Lhs,Rhs,LhsRows,1>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(int row, int /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
|
||||
{
|
||||
res = ei_dot_impl<
|
||||
Block<Lhs, 1, ei_traits<Lhs>::ColsAtCompileTime>,
|
||||
Rhs,
|
||||
LinearVectorization, NoUnrolling>::run(lhs.row(row), rhs);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct ei_product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,1>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(int /*row*/, int /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
|
||||
{
|
||||
res = ei_dot_impl<
|
||||
Lhs,
|
||||
Rhs,
|
||||
LinearVectorization, NoUnrolling>::run(lhs, rhs);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename RetScalar>
|
||||
struct ei_product_coeff_impl<InnerVectorization, Dynamic, Lhs, Rhs, RetScalar>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
|
||||
{
|
||||
ei_product_coeff_vectorized_dyn_selector<Lhs,Rhs>::run(row, col, lhs, rhs, res);
|
||||
}
|
||||
};
|
||||
|
||||
/*******************
|
||||
*** Packet path ***
|
||||
*******************/
|
||||
|
||||
template<int Index, typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
|
||||
struct ei_product_packet_impl<RowMajor, Index, Lhs, Rhs, PacketScalar, LoadMode>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
|
||||
{
|
||||
ei_product_packet_impl<RowMajor, Index-1, Lhs, Rhs, PacketScalar, LoadMode>::run(row, col, lhs, rhs, res);
|
||||
res = ei_pmadd(ei_pset1(lhs.coeff(row, Index)), rhs.template packet<LoadMode>(Index, col), res);
|
||||
}
|
||||
};
|
||||
|
||||
template<int Index, typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
|
||||
struct ei_product_packet_impl<ColMajor, Index, Lhs, Rhs, PacketScalar, LoadMode>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
|
||||
{
|
||||
ei_product_packet_impl<ColMajor, Index-1, Lhs, Rhs, PacketScalar, LoadMode>::run(row, col, lhs, rhs, res);
|
||||
res = ei_pmadd(lhs.template packet<LoadMode>(row, Index), ei_pset1(rhs.coeff(Index, col)), res);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
|
||||
struct ei_product_packet_impl<RowMajor, 0, Lhs, Rhs, PacketScalar, LoadMode>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
|
||||
{
|
||||
res = ei_pmul(ei_pset1(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
|
||||
struct ei_product_packet_impl<ColMajor, 0, Lhs, Rhs, PacketScalar, LoadMode>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
|
||||
{
|
||||
res = ei_pmul(lhs.template packet<LoadMode>(row, 0), ei_pset1(rhs.coeff(0, col)));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
|
||||
struct ei_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, PacketScalar, LoadMode>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar& res)
|
||||
{
|
||||
ei_assert(lhs.cols()>0 && "you are using a non initialized matrix");
|
||||
res = ei_pmul(ei_pset1(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
|
||||
for(int i = 1; i < lhs.cols(); ++i)
|
||||
res = ei_pmadd(ei_pset1(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
|
||||
struct ei_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, PacketScalar, LoadMode>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar& res)
|
||||
{
|
||||
ei_assert(lhs.cols()>0 && "you are using a non initialized matrix");
|
||||
res = ei_pmul(lhs.template packet<LoadMode>(row, 0), ei_pset1(rhs.coeff(0, col)));
|
||||
for(int i = 1; i < lhs.cols(); ++i)
|
||||
res = ei_pmadd(lhs.template packet<LoadMode>(row, i), ei_pset1(rhs.coeff(i, col)), res);
|
||||
}
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Cache friendly product callers and specific nested evaluation strategies
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Scalar, typename RhsType>
|
||||
static void ei_cache_friendly_product_colmajor_times_vector(
|
||||
int size, const Scalar* lhs, int lhsStride, const RhsType& rhs, Scalar* res);
|
||||
|
||||
template<typename Scalar, typename ResType>
|
||||
static void ei_cache_friendly_product_rowmajor_times_vector(
|
||||
const Scalar* lhs, int lhsStride, const Scalar* rhs, int rhsSize, ResType& res);
|
||||
|
||||
template<typename ProductType,
|
||||
int LhsRows = ei_traits<ProductType>::RowsAtCompileTime,
|
||||
int LhsOrder = int(ei_traits<ProductType>::LhsFlags)&RowMajorBit ? RowMajor : ColMajor,
|
||||
int LhsHasDirectAccess = int(ei_traits<ProductType>::LhsFlags)&DirectAccessBit? HasDirectAccess : NoDirectAccess,
|
||||
int RhsCols = ei_traits<ProductType>::ColsAtCompileTime,
|
||||
int RhsOrder = int(ei_traits<ProductType>::RhsFlags)&RowMajorBit ? RowMajor : ColMajor,
|
||||
int RhsHasDirectAccess = int(ei_traits<ProductType>::RhsFlags)&DirectAccessBit? HasDirectAccess : NoDirectAccess>
|
||||
struct ei_cache_friendly_product_selector
|
||||
{
|
||||
template<typename DestDerived>
|
||||
inline static void run(DestDerived& res, const ProductType& product)
|
||||
{
|
||||
product._cacheFriendlyEvalAndAdd(res);
|
||||
}
|
||||
};
|
||||
|
||||
// optimized colmajor * vector path
|
||||
template<typename ProductType, int LhsRows, int RhsOrder, int RhsAccess>
|
||||
struct ei_cache_friendly_product_selector<ProductType,LhsRows,ColMajor,NoDirectAccess,1,RhsOrder,RhsAccess>
|
||||
{
|
||||
template<typename DestDerived>
|
||||
inline static void run(DestDerived& res, const ProductType& product)
|
||||
{
|
||||
const int size = product.rhs().rows();
|
||||
for (int k=0; k<size; ++k)
|
||||
res += product.rhs().coeff(k) * product.lhs().col(k);
|
||||
}
|
||||
};
|
||||
|
||||
// optimized cache friendly colmajor * vector path for matrix with direct access flag
|
||||
// NOTE this path could also be enabled for expressions if we add runtime align queries
|
||||
template<typename ProductType, int LhsRows, int RhsOrder, int RhsAccess>
|
||||
struct ei_cache_friendly_product_selector<ProductType,LhsRows,ColMajor,HasDirectAccess,1,RhsOrder,RhsAccess>
|
||||
{
|
||||
typedef typename ProductType::Scalar Scalar;
|
||||
|
||||
template<typename DestDerived>
|
||||
inline static void run(DestDerived& res, const ProductType& product)
|
||||
{
|
||||
enum {
|
||||
EvalToRes = (ei_packet_traits<Scalar>::size==1)
|
||||
||((DestDerived::Flags&ActualPacketAccessBit) && (!(DestDerived::Flags & RowMajorBit))) };
|
||||
Scalar* EIGEN_RESTRICT _res;
|
||||
if (EvalToRes)
|
||||
_res = &res.coeffRef(0);
|
||||
else
|
||||
{
|
||||
_res = ei_aligned_stack_new(Scalar,res.size());
|
||||
Map<Matrix<Scalar,DestDerived::RowsAtCompileTime,1,ColMajor> >(_res, res.size()) = res;
|
||||
}
|
||||
ei_cache_friendly_product_colmajor_times_vector(res.size(),
|
||||
&product.lhs().const_cast_derived().coeffRef(0,0), product.lhs().stride(),
|
||||
product.rhs(), _res);
|
||||
|
||||
if (!EvalToRes)
|
||||
{
|
||||
res = Map<Matrix<Scalar,DestDerived::SizeAtCompileTime,1,ColMajor> >(_res, res.size());
|
||||
ei_aligned_stack_delete(Scalar, _res, res.size());
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// optimized vector * rowmajor path
|
||||
template<typename ProductType, int LhsOrder, int LhsAccess, int RhsCols>
|
||||
struct ei_cache_friendly_product_selector<ProductType,1,LhsOrder,LhsAccess,RhsCols,RowMajor,NoDirectAccess>
|
||||
{
|
||||
template<typename DestDerived>
|
||||
inline static void run(DestDerived& res, const ProductType& product)
|
||||
{
|
||||
const int cols = product.lhs().cols();
|
||||
for (int j=0; j<cols; ++j)
|
||||
res += product.lhs().coeff(j) * product.rhs().row(j);
|
||||
}
|
||||
};
|
||||
|
||||
// optimized cache friendly vector * rowmajor path for matrix with direct access flag
|
||||
// NOTE this path coul also be enabled for expressions if we add runtime align queries
|
||||
template<typename ProductType, int LhsOrder, int LhsAccess, int RhsCols>
|
||||
struct ei_cache_friendly_product_selector<ProductType,1,LhsOrder,LhsAccess,RhsCols,RowMajor,HasDirectAccess>
|
||||
{
|
||||
typedef typename ProductType::Scalar Scalar;
|
||||
|
||||
template<typename DestDerived>
|
||||
inline static void run(DestDerived& res, const ProductType& product)
|
||||
{
|
||||
enum {
|
||||
EvalToRes = (ei_packet_traits<Scalar>::size==1)
|
||||
||((DestDerived::Flags & ActualPacketAccessBit) && (DestDerived::Flags & RowMajorBit)) };
|
||||
Scalar* EIGEN_RESTRICT _res;
|
||||
if (EvalToRes)
|
||||
_res = &res.coeffRef(0);
|
||||
else
|
||||
{
|
||||
_res = ei_aligned_stack_new(Scalar, res.size());
|
||||
Map<Matrix<Scalar,1,DestDerived::SizeAtCompileTime,ColMajor> >(_res, res.size()) = res;
|
||||
}
|
||||
ei_cache_friendly_product_colmajor_times_vector(res.size(),
|
||||
&product.rhs().const_cast_derived().coeffRef(0,0), product.rhs().stride(),
|
||||
product.lhs().transpose(), _res);
|
||||
|
||||
if (!EvalToRes)
|
||||
{
|
||||
res = Map<Matrix<Scalar,1,DestDerived::SizeAtCompileTime,ColMajor> >(_res, res.size());
|
||||
ei_aligned_stack_delete(Scalar, _res, res.size());
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// optimized rowmajor - vector product
|
||||
template<typename ProductType, int LhsRows, int RhsOrder, int RhsAccess>
|
||||
struct ei_cache_friendly_product_selector<ProductType,LhsRows,RowMajor,HasDirectAccess,1,RhsOrder,RhsAccess>
|
||||
{
|
||||
typedef typename ProductType::Scalar Scalar;
|
||||
typedef typename ei_traits<ProductType>::_RhsNested Rhs;
|
||||
enum {
|
||||
UseRhsDirectly = ((ei_packet_traits<Scalar>::size==1) || (Rhs::Flags&ActualPacketAccessBit))
|
||||
&& (Rhs::Flags&DirectAccessBit)
|
||||
&& (!(Rhs::Flags & RowMajorBit)) };
|
||||
|
||||
template<typename DestDerived>
|
||||
inline static void run(DestDerived& res, const ProductType& product)
|
||||
{
|
||||
Scalar* EIGEN_RESTRICT _rhs;
|
||||
if (UseRhsDirectly)
|
||||
_rhs = &product.rhs().const_cast_derived().coeffRef(0);
|
||||
else
|
||||
{
|
||||
_rhs = ei_aligned_stack_new(Scalar, product.rhs().size());
|
||||
Map<Matrix<Scalar,Rhs::SizeAtCompileTime,1,ColMajor> >(_rhs, product.rhs().size()) = product.rhs();
|
||||
}
|
||||
ei_cache_friendly_product_rowmajor_times_vector(&product.lhs().const_cast_derived().coeffRef(0,0), product.lhs().stride(),
|
||||
_rhs, product.rhs().size(), res);
|
||||
|
||||
if (!UseRhsDirectly) ei_aligned_stack_delete(Scalar, _rhs, product.rhs().size());
|
||||
}
|
||||
};
|
||||
|
||||
// optimized vector - colmajor product
|
||||
template<typename ProductType, int LhsOrder, int LhsAccess, int RhsCols>
|
||||
struct ei_cache_friendly_product_selector<ProductType,1,LhsOrder,LhsAccess,RhsCols,ColMajor,HasDirectAccess>
|
||||
{
|
||||
typedef typename ProductType::Scalar Scalar;
|
||||
typedef typename ei_traits<ProductType>::_LhsNested Lhs;
|
||||
enum {
|
||||
UseLhsDirectly = ((ei_packet_traits<Scalar>::size==1) || (Lhs::Flags&ActualPacketAccessBit))
|
||||
&& (Lhs::Flags&DirectAccessBit)
|
||||
&& (Lhs::Flags & RowMajorBit) };
|
||||
|
||||
template<typename DestDerived>
|
||||
inline static void run(DestDerived& res, const ProductType& product)
|
||||
{
|
||||
Scalar* EIGEN_RESTRICT _lhs;
|
||||
if (UseLhsDirectly)
|
||||
_lhs = &product.lhs().const_cast_derived().coeffRef(0);
|
||||
else
|
||||
{
|
||||
_lhs = ei_aligned_stack_new(Scalar, product.lhs().size());
|
||||
Map<Matrix<Scalar,1,Lhs::SizeAtCompileTime,ColMajor> >(_lhs, product.lhs().size()) = product.lhs();
|
||||
}
|
||||
ei_cache_friendly_product_rowmajor_times_vector(&product.rhs().const_cast_derived().coeffRef(0,0), product.rhs().stride(),
|
||||
_lhs, product.lhs().size(), res);
|
||||
|
||||
if(!UseLhsDirectly) ei_aligned_stack_delete(Scalar, _lhs, product.lhs().size());
|
||||
}
|
||||
};
|
||||
|
||||
// discard this case which has to be handled by the default path
|
||||
// (we keep it to be sure to hit a compilation error if this is not the case)
|
||||
template<typename ProductType, int LhsRows, int RhsOrder, int RhsAccess>
|
||||
struct ei_cache_friendly_product_selector<ProductType,LhsRows,RowMajor,NoDirectAccess,1,RhsOrder,RhsAccess>
|
||||
{};
|
||||
|
||||
// discard this case which has to be handled by the default path
|
||||
// (we keep it to be sure to hit a compilation error if this is not the case)
|
||||
template<typename ProductType, int LhsOrder, int LhsAccess, int RhsCols>
|
||||
struct ei_cache_friendly_product_selector<ProductType,1,LhsOrder,LhsAccess,RhsCols,ColMajor,NoDirectAccess>
|
||||
{};
|
||||
|
||||
|
||||
/** \internal */
|
||||
template<typename Derived>
|
||||
template<typename Lhs,typename Rhs>
|
||||
inline Derived&
|
||||
MatrixBase<Derived>::operator+=(const Flagged<Product<Lhs,Rhs,CacheFriendlyProduct>, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit>& other)
|
||||
{
|
||||
if (other._expression()._useCacheFriendlyProduct())
|
||||
ei_cache_friendly_product_selector<Product<Lhs,Rhs,CacheFriendlyProduct> >::run(const_cast_derived(), other._expression());
|
||||
else
|
||||
{
|
||||
typedef typename ei_cleantype<Lhs>::type _Lhs;
|
||||
typedef typename ei_cleantype<Rhs>::type _Rhs;
|
||||
|
||||
typedef typename ei_nested<_Lhs,_Rhs::ColsAtCompileTime>::type LhsNested;
|
||||
typedef typename ei_nested<_Rhs,_Lhs::RowsAtCompileTime>::type RhsNested;
|
||||
|
||||
Product<LhsNested,RhsNested,NormalProduct> prod(other._expression().lhs(),other._expression().rhs());
|
||||
|
||||
lazyAssign(derived() + prod);
|
||||
}
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename Lhs, typename Rhs>
|
||||
inline Derived& MatrixBase<Derived>::lazyAssign(const Product<Lhs,Rhs,CacheFriendlyProduct>& product)
|
||||
{
|
||||
if (product._useCacheFriendlyProduct())
|
||||
{
|
||||
setZero();
|
||||
ei_cache_friendly_product_selector<Product<Lhs,Rhs,CacheFriendlyProduct> >::run(const_cast_derived(), product);
|
||||
}
|
||||
else
|
||||
{
|
||||
typedef typename ei_cleantype<Lhs>::type _Lhs;
|
||||
typedef typename ei_cleantype<Rhs>::type _Rhs;
|
||||
|
||||
typedef typename ei_nested<_Lhs,_Rhs::ColsAtCompileTime>::type LhsNested;
|
||||
typedef typename ei_nested<_Rhs,_Lhs::RowsAtCompileTime>::type RhsNested;
|
||||
|
||||
typedef Product<LhsNested,RhsNested,NormalProduct> NormalProduct;
|
||||
NormalProduct normal_prod(product.lhs(),product.rhs());
|
||||
|
||||
lazyAssign<NormalProduct>(normal_prod);
|
||||
}
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename T,int StorageOrder> struct ei_product_copy_rhs
|
||||
{
|
||||
typedef typename ei_meta_if<
|
||||
(ei_traits<T>::Flags & RowMajorBit)
|
||||
|| (!(ei_traits<T>::Flags & DirectAccessBit)),
|
||||
typename ei_plain_matrix_type_column_major<T>::type,
|
||||
const T&
|
||||
>::ret type;
|
||||
};
|
||||
|
||||
template<typename T> struct ei_product_copy_rhs<T,RowMajorBit>
|
||||
{
|
||||
typedef typename ei_meta_if<
|
||||
(!(ei_traits<T>::Flags & DirectAccessBit)),
|
||||
typename ei_plain_matrix_type<T>::type,
|
||||
const T&
|
||||
>::ret type;
|
||||
};
|
||||
|
||||
template<typename T,int StorageOrder> struct ei_product_copy_lhs
|
||||
{
|
||||
typedef typename ei_meta_if<
|
||||
(!(int(ei_traits<T>::Flags) & DirectAccessBit)),
|
||||
typename ei_plain_matrix_type_row_major<T>::type,
|
||||
const T&
|
||||
>::ret type;
|
||||
};
|
||||
|
||||
template<typename T> struct ei_product_copy_lhs<T,RowMajorBit>
|
||||
{
|
||||
typedef typename ei_meta_if<
|
||||
((ei_traits<T>::Flags & RowMajorBit)==0)
|
||||
|| (!(int(ei_traits<T>::Flags) & DirectAccessBit)),
|
||||
typename ei_plain_matrix_type_row_major<T>::type,
|
||||
const T&
|
||||
>::ret type;
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int ProductMode>
|
||||
template<typename DestDerived>
|
||||
inline void Product<Lhs,Rhs,ProductMode>::_cacheFriendlyEvalAndAdd(DestDerived& res) const
|
||||
{
|
||||
typedef typename ei_product_copy_lhs<_LhsNested,DestDerived::Flags&RowMajorBit>::type LhsCopy;
|
||||
typedef typename ei_unref<LhsCopy>::type _LhsCopy;
|
||||
typedef typename ei_product_copy_rhs<_RhsNested,DestDerived::Flags&RowMajorBit>::type RhsCopy;
|
||||
typedef typename ei_unref<RhsCopy>::type _RhsCopy;
|
||||
LhsCopy lhs(m_lhs);
|
||||
RhsCopy rhs(m_rhs);
|
||||
ei_cache_friendly_product<Scalar>(
|
||||
rows(), cols(), lhs.cols(),
|
||||
_LhsCopy::Flags&RowMajorBit, (const Scalar*)&(lhs.const_cast_derived().coeffRef(0,0)), lhs.stride(),
|
||||
_RhsCopy::Flags&RowMajorBit, (const Scalar*)&(rhs.const_cast_derived().coeffRef(0,0)), rhs.stride(),
|
||||
DestDerived::Flags&RowMajorBit, (Scalar*)&(res.coeffRef(0,0)), res.stride()
|
||||
);
|
||||
|
||||
}
|
||||
|
||||
#endif // EIGEN_PRODUCT_H
|
117
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Redux.h
Normal file
117
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Redux.h
Normal file
@ -0,0 +1,117 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_REDUX_H
|
||||
#define EIGEN_REDUX_H
|
||||
|
||||
template<typename BinaryOp, typename Derived, int Start, int Length>
|
||||
struct ei_redux_impl
|
||||
{
|
||||
enum {
|
||||
HalfLength = Length/2
|
||||
};
|
||||
|
||||
typedef typename ei_result_of<BinaryOp(typename Derived::Scalar)>::type Scalar;
|
||||
|
||||
static Scalar run(const Derived &mat, const BinaryOp& func)
|
||||
{
|
||||
return func(
|
||||
ei_redux_impl<BinaryOp, Derived, Start, HalfLength>::run(mat, func),
|
||||
ei_redux_impl<BinaryOp, Derived, Start+HalfLength, Length - HalfLength>::run(mat, func));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename BinaryOp, typename Derived, int Start>
|
||||
struct ei_redux_impl<BinaryOp, Derived, Start, 1>
|
||||
{
|
||||
enum {
|
||||
col = Start / Derived::RowsAtCompileTime,
|
||||
row = Start % Derived::RowsAtCompileTime
|
||||
};
|
||||
|
||||
typedef typename ei_result_of<BinaryOp(typename Derived::Scalar)>::type Scalar;
|
||||
|
||||
static Scalar run(const Derived &mat, const BinaryOp &)
|
||||
{
|
||||
return mat.coeff(row, col);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename BinaryOp, typename Derived, int Start>
|
||||
struct ei_redux_impl<BinaryOp, Derived, Start, Dynamic>
|
||||
{
|
||||
typedef typename ei_result_of<BinaryOp(typename Derived::Scalar)>::type Scalar;
|
||||
static Scalar run(const Derived& mat, const BinaryOp& func)
|
||||
{
|
||||
ei_assert(mat.rows()>0 && mat.cols()>0 && "you are using a non initialized matrix");
|
||||
Scalar res;
|
||||
res = mat.coeff(0,0);
|
||||
for(int i = 1; i < mat.rows(); ++i)
|
||||
res = func(res, mat.coeff(i, 0));
|
||||
for(int j = 1; j < mat.cols(); ++j)
|
||||
for(int i = 0; i < mat.rows(); ++i)
|
||||
res = func(res, mat.coeff(i, j));
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
/** \returns the result of a full redux operation on the whole matrix or vector using \a func
|
||||
*
|
||||
* The template parameter \a BinaryOp is the type of the functor \a func which must be
|
||||
* an assiociative operator. Both current STL and TR1 functor styles are handled.
|
||||
*
|
||||
* \sa MatrixBase::sum(), MatrixBase::minCoeff(), MatrixBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename BinaryOp>
|
||||
typename ei_result_of<BinaryOp(typename ei_traits<Derived>::Scalar)>::type
|
||||
MatrixBase<Derived>::redux(const BinaryOp& func) const
|
||||
{
|
||||
const bool unroll = SizeAtCompileTime * CoeffReadCost
|
||||
+ (SizeAtCompileTime-1) * ei_functor_traits<BinaryOp>::Cost
|
||||
<= EIGEN_UNROLLING_LIMIT;
|
||||
return ei_redux_impl<BinaryOp, Derived, 0, unroll ? int(SizeAtCompileTime) : Dynamic>
|
||||
::run(derived(), func);
|
||||
}
|
||||
|
||||
/** \returns the minimum of all coefficients of *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::minCoeff() const
|
||||
{
|
||||
return this->redux(Eigen::ei_scalar_min_op<Scalar>());
|
||||
}
|
||||
|
||||
/** \returns the maximum of all coefficients of *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::maxCoeff() const
|
||||
{
|
||||
return this->redux(Eigen::ei_scalar_max_op<Scalar>());
|
||||
}
|
||||
|
||||
#endif // EIGEN_REDUX_H
|
@ -0,0 +1,297 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_SOLVETRIANGULAR_H
|
||||
#define EIGEN_SOLVETRIANGULAR_H
|
||||
|
||||
template<typename XprType> struct ei_is_part { enum {value=false}; };
|
||||
template<typename XprType, unsigned int Mode> struct ei_is_part<Part<XprType,Mode> > { enum {value=true}; };
|
||||
|
||||
template<typename Lhs, typename Rhs,
|
||||
int TriangularPart = (int(Lhs::Flags) & LowerTriangularBit)
|
||||
? LowerTriangular
|
||||
: (int(Lhs::Flags) & UpperTriangularBit)
|
||||
? UpperTriangular
|
||||
: -1,
|
||||
int StorageOrder = ei_is_part<Lhs>::value ? -1 // this is to solve ambiguous specializations
|
||||
: int(Lhs::Flags) & int(RowMajorBit|SparseBit)
|
||||
>
|
||||
struct ei_solve_triangular_selector;
|
||||
|
||||
// transform a Part xpr to a Flagged xpr
|
||||
template<typename Lhs, unsigned int LhsMode, typename Rhs, int UpLo, int StorageOrder>
|
||||
struct ei_solve_triangular_selector<Part<Lhs,LhsMode>,Rhs,UpLo,StorageOrder>
|
||||
{
|
||||
static void run(const Part<Lhs,LhsMode>& lhs, Rhs& other)
|
||||
{
|
||||
ei_solve_triangular_selector<Flagged<Lhs,LhsMode,0>,Rhs>::run(lhs._expression(), other);
|
||||
}
|
||||
};
|
||||
|
||||
// forward substitution, row-major
|
||||
template<typename Lhs, typename Rhs, int UpLo>
|
||||
struct ei_solve_triangular_selector<Lhs,Rhs,UpLo,RowMajor|IsDense>
|
||||
{
|
||||
typedef typename Rhs::Scalar Scalar;
|
||||
static void run(const Lhs& lhs, Rhs& other)
|
||||
{
|
||||
const bool IsLowerTriangular = (UpLo==LowerTriangular);
|
||||
const int size = lhs.cols();
|
||||
/* We perform the inverse product per block of 4 rows such that we perfectly match
|
||||
* our optimized matrix * vector product. blockyStart represents the number of rows
|
||||
* we have process first using the non-block version.
|
||||
*/
|
||||
int blockyStart = (std::max(size-5,0)/4)*4;
|
||||
if (IsLowerTriangular)
|
||||
blockyStart = size - blockyStart;
|
||||
else
|
||||
blockyStart -= 1;
|
||||
for(int c=0 ; c<other.cols() ; ++c)
|
||||
{
|
||||
// process first rows using the non block version
|
||||
if(!(Lhs::Flags & UnitDiagBit))
|
||||
{
|
||||
if (IsLowerTriangular)
|
||||
other.coeffRef(0,c) = other.coeff(0,c)/lhs.coeff(0, 0);
|
||||
else
|
||||
other.coeffRef(size-1,c) = other.coeff(size-1, c)/lhs.coeff(size-1, size-1);
|
||||
}
|
||||
for(int i=(IsLowerTriangular ? 1 : size-2); IsLowerTriangular ? i<blockyStart : i>blockyStart; i += (IsLowerTriangular ? 1 : -1) )
|
||||
{
|
||||
Scalar tmp = other.coeff(i,c)
|
||||
- (IsLowerTriangular ? ((lhs.row(i).start(i)) * other.col(c).start(i)).coeff(0,0)
|
||||
: ((lhs.row(i).end(size-i-1)) * other.col(c).end(size-i-1)).coeff(0,0));
|
||||
if (Lhs::Flags & UnitDiagBit)
|
||||
other.coeffRef(i,c) = tmp;
|
||||
else
|
||||
other.coeffRef(i,c) = tmp/lhs.coeff(i,i);
|
||||
}
|
||||
|
||||
// now let's process the remaining rows 4 at once
|
||||
for(int i=blockyStart; IsLowerTriangular ? i<size : i>0; )
|
||||
{
|
||||
int startBlock = i;
|
||||
int endBlock = startBlock + (IsLowerTriangular ? 4 : -4);
|
||||
|
||||
/* Process the i cols times 4 rows block, and keep the result in a temporary vector */
|
||||
// FIXME use fixed size block but take care to small fixed size matrices...
|
||||
Matrix<Scalar,Dynamic,1> btmp(4);
|
||||
if (IsLowerTriangular)
|
||||
btmp = lhs.block(startBlock,0,4,i) * other.col(c).start(i);
|
||||
else
|
||||
btmp = lhs.block(i-3,i+1,4,size-1-i) * other.col(c).end(size-1-i);
|
||||
|
||||
/* Let's process the 4x4 sub-matrix as usual.
|
||||
* btmp stores the diagonal coefficients used to update the remaining part of the result.
|
||||
*/
|
||||
{
|
||||
Scalar tmp = other.coeff(startBlock,c)-btmp.coeff(IsLowerTriangular?0:3);
|
||||
if (Lhs::Flags & UnitDiagBit)
|
||||
other.coeffRef(i,c) = tmp;
|
||||
else
|
||||
other.coeffRef(i,c) = tmp/lhs.coeff(i,i);
|
||||
}
|
||||
|
||||
i += IsLowerTriangular ? 1 : -1;
|
||||
for (;IsLowerTriangular ? i<endBlock : i>endBlock; i += IsLowerTriangular ? 1 : -1)
|
||||
{
|
||||
int remainingSize = IsLowerTriangular ? i-startBlock : startBlock-i;
|
||||
Scalar tmp = other.coeff(i,c)
|
||||
- btmp.coeff(IsLowerTriangular ? remainingSize : 3-remainingSize)
|
||||
- ( lhs.row(i).segment(IsLowerTriangular ? startBlock : i+1, remainingSize)
|
||||
* other.col(c).segment(IsLowerTriangular ? startBlock : i+1, remainingSize)).coeff(0,0);
|
||||
|
||||
if (Lhs::Flags & UnitDiagBit)
|
||||
other.coeffRef(i,c) = tmp;
|
||||
else
|
||||
other.coeffRef(i,c) = tmp/lhs.coeff(i,i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Implements the following configurations:
|
||||
// - inv(LowerTriangular, ColMajor) * Column vector
|
||||
// - inv(LowerTriangular,UnitDiag,ColMajor) * Column vector
|
||||
// - inv(UpperTriangular, ColMajor) * Column vector
|
||||
// - inv(UpperTriangular,UnitDiag,ColMajor) * Column vector
|
||||
template<typename Lhs, typename Rhs, int UpLo>
|
||||
struct ei_solve_triangular_selector<Lhs,Rhs,UpLo,ColMajor|IsDense>
|
||||
{
|
||||
typedef typename Rhs::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type Packet;
|
||||
enum { PacketSize = ei_packet_traits<Scalar>::size };
|
||||
|
||||
static void run(const Lhs& lhs, Rhs& other)
|
||||
{
|
||||
static const bool IsLowerTriangular = (UpLo==LowerTriangular);
|
||||
const int size = lhs.cols();
|
||||
for(int c=0 ; c<other.cols() ; ++c)
|
||||
{
|
||||
/* let's perform the inverse product per block of 4 columns such that we perfectly match
|
||||
* our optimized matrix * vector product. blockyEnd represents the number of rows
|
||||
* we can process using the block version.
|
||||
*/
|
||||
int blockyEnd = (std::max(size-5,0)/4)*4;
|
||||
if (!IsLowerTriangular)
|
||||
blockyEnd = size-1 - blockyEnd;
|
||||
for(int i=IsLowerTriangular ? 0 : size-1; IsLowerTriangular ? i<blockyEnd : i>blockyEnd;)
|
||||
{
|
||||
/* Let's process the 4x4 sub-matrix as usual.
|
||||
* btmp stores the diagonal coefficients used to update the remaining part of the result.
|
||||
*/
|
||||
int startBlock = i;
|
||||
int endBlock = startBlock + (IsLowerTriangular ? 4 : -4);
|
||||
Matrix<Scalar,4,1> btmp;
|
||||
for (;IsLowerTriangular ? i<endBlock : i>endBlock;
|
||||
i += IsLowerTriangular ? 1 : -1)
|
||||
{
|
||||
if(!(Lhs::Flags & UnitDiagBit))
|
||||
other.coeffRef(i,c) /= lhs.coeff(i,i);
|
||||
int remainingSize = IsLowerTriangular ? endBlock-i-1 : i-endBlock-1;
|
||||
if (remainingSize>0)
|
||||
other.col(c).segment((IsLowerTriangular ? i : endBlock) + 1, remainingSize) -=
|
||||
other.coeffRef(i,c)
|
||||
* Block<Lhs,Dynamic,1>(lhs, (IsLowerTriangular ? i : endBlock) + 1, i, remainingSize, 1);
|
||||
btmp.coeffRef(IsLowerTriangular ? i-startBlock : remainingSize) = -other.coeffRef(i,c);
|
||||
}
|
||||
|
||||
/* Now we can efficiently update the remaining part of the result as a matrix * vector product.
|
||||
* NOTE in order to reduce both compilation time and binary size, let's directly call
|
||||
* the fast product implementation. It is equivalent to the following code:
|
||||
* other.col(c).end(size-endBlock) += (lhs.block(endBlock, startBlock, size-endBlock, endBlock-startBlock)
|
||||
* * other.col(c).block(startBlock,endBlock-startBlock)).lazy();
|
||||
*/
|
||||
// FIXME this is cool but what about conjugate/adjoint expressions ? do we want to evaluate them ?
|
||||
// this is a more general problem though.
|
||||
ei_cache_friendly_product_colmajor_times_vector(
|
||||
IsLowerTriangular ? size-endBlock : endBlock+1,
|
||||
&(lhs.const_cast_derived().coeffRef(IsLowerTriangular ? endBlock : 0, IsLowerTriangular ? startBlock : endBlock+1)),
|
||||
lhs.stride(),
|
||||
btmp, &(other.coeffRef(IsLowerTriangular ? endBlock : 0, c)));
|
||||
// if (IsLowerTriangular)
|
||||
// other.col(c).end(size-endBlock) += (lhs.block(endBlock, startBlock, size-endBlock, endBlock-startBlock)
|
||||
// * other.col(c).block(startBlock,endBlock-startBlock)).lazy();
|
||||
// else
|
||||
// other.col(c).end(size-endBlock) += (lhs.block(endBlock, startBlock, size-endBlock, endBlock-startBlock)
|
||||
// * other.col(c).block(startBlock,endBlock-startBlock)).lazy();
|
||||
}
|
||||
|
||||
/* Now we have to process the remaining part as usual */
|
||||
int i;
|
||||
for(i=blockyEnd; IsLowerTriangular ? i<size-1 : i>0; i += (IsLowerTriangular ? 1 : -1) )
|
||||
{
|
||||
if(!(Lhs::Flags & UnitDiagBit))
|
||||
other.coeffRef(i,c) /= lhs.coeff(i,i);
|
||||
|
||||
/* NOTE we cannot use lhs.col(i).end(size-i-1) because Part::coeffRef gets called by .col() to
|
||||
* get the address of the start of the row
|
||||
*/
|
||||
if(IsLowerTriangular)
|
||||
other.col(c).end(size-i-1) -= other.coeffRef(i,c) * Block<Lhs,Dynamic,1>(lhs, i+1,i, size-i-1,1);
|
||||
else
|
||||
other.col(c).start(i) -= other.coeffRef(i,c) * Block<Lhs,Dynamic,1>(lhs, 0,i, i, 1);
|
||||
}
|
||||
if(!(Lhs::Flags & UnitDiagBit))
|
||||
other.coeffRef(i,c) /= lhs.coeff(i,i);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/** "in-place" version of MatrixBase::solveTriangular() where the result is written in \a other
|
||||
*
|
||||
* \nonstableyet
|
||||
*
|
||||
* The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here.
|
||||
* This function will const_cast it, so constness isn't honored here.
|
||||
*
|
||||
* See MatrixBase:solveTriangular() for the details.
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
void MatrixBase<Derived>::solveTriangularInPlace(const MatrixBase<OtherDerived>& _other) const
|
||||
{
|
||||
MatrixBase<OtherDerived>& other = _other.const_cast_derived();
|
||||
ei_assert(derived().cols() == derived().rows());
|
||||
ei_assert(derived().cols() == other.rows());
|
||||
ei_assert(!(Flags & ZeroDiagBit));
|
||||
ei_assert(Flags & (UpperTriangularBit|LowerTriangularBit));
|
||||
|
||||
enum { copy = ei_traits<OtherDerived>::Flags & RowMajorBit };
|
||||
|
||||
typedef typename ei_meta_if<copy,
|
||||
typename ei_plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::ret OtherCopy;
|
||||
OtherCopy otherCopy(other.derived());
|
||||
|
||||
ei_solve_triangular_selector<Derived, typename ei_unref<OtherCopy>::type>::run(derived(), otherCopy);
|
||||
|
||||
if (copy)
|
||||
other = otherCopy;
|
||||
}
|
||||
|
||||
/** \returns the product of the inverse of \c *this with \a other, \a *this being triangular.
|
||||
*
|
||||
* \nonstableyet
|
||||
*
|
||||
* This function computes the inverse-matrix matrix product inverse(\c *this) * \a other.
|
||||
* The matrix \c *this must be triangular and invertible (i.e., all the coefficients of the
|
||||
* diagonal must be non zero). It works as a forward (resp. backward) substitution if \c *this
|
||||
* is an upper (resp. lower) triangular matrix.
|
||||
*
|
||||
* It is required that \c *this be marked as either an upper or a lower triangular matrix, which
|
||||
* can be done by marked(), and that is automatically the case with expressions such as those returned
|
||||
* by extract().
|
||||
*
|
||||
* \addexample SolveTriangular \label How to solve a triangular system (aka. how to multiply the inverse of a triangular matrix by another one)
|
||||
*
|
||||
* Example: \include MatrixBase_marked.cpp
|
||||
* Output: \verbinclude MatrixBase_marked.out
|
||||
*
|
||||
* This function is essentially a wrapper to the faster solveTriangularInPlace() function creating
|
||||
* a temporary copy of \a other, calling solveTriangularInPlace() on the copy and returning it.
|
||||
* Therefore, if \a other is not needed anymore, it is quite faster to call solveTriangularInPlace()
|
||||
* instead of solveTriangular().
|
||||
*
|
||||
* For users coming from BLAS, this function (and more specifically solveTriangularInPlace()) offer
|
||||
* all the operations supported by the \c *TRSV and \c *TRSM BLAS routines.
|
||||
*
|
||||
* \b Tips: to perform a \em "right-inverse-multiply" you can simply transpose the operation, e.g.:
|
||||
* \code
|
||||
* M * T^1 <=> T.transpose().solveTriangularInPlace(M.transpose());
|
||||
* \endcode
|
||||
*
|
||||
* \sa solveTriangularInPlace(), marked(), extract()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
typename ei_plain_matrix_type_column_major<OtherDerived>::type
|
||||
MatrixBase<Derived>::solveTriangular(const MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
typename ei_plain_matrix_type_column_major<OtherDerived>::type res(other);
|
||||
solveTriangularInPlace(res);
|
||||
return res;
|
||||
}
|
||||
|
||||
#endif // EIGEN_SOLVETRIANGULAR_H
|
271
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Sum.h
Normal file
271
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Sum.h
Normal file
@ -0,0 +1,271 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_SUM_H
|
||||
#define EIGEN_SUM_H
|
||||
|
||||
/***************************************************************************
|
||||
* Part 1 : the logic deciding a strategy for vectorization and unrolling
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_sum_traits
|
||||
{
|
||||
private:
|
||||
enum {
|
||||
PacketSize = ei_packet_traits<typename Derived::Scalar>::size
|
||||
};
|
||||
|
||||
public:
|
||||
enum {
|
||||
Vectorization = (int(Derived::Flags)&ActualPacketAccessBit)
|
||||
&& (int(Derived::Flags)&LinearAccessBit)
|
||||
? LinearVectorization
|
||||
: NoVectorization
|
||||
};
|
||||
|
||||
private:
|
||||
enum {
|
||||
Cost = Derived::SizeAtCompileTime * Derived::CoeffReadCost
|
||||
+ (Derived::SizeAtCompileTime-1) * NumTraits<typename Derived::Scalar>::AddCost,
|
||||
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Vectorization) == int(NoVectorization) ? 1 : int(PacketSize))
|
||||
};
|
||||
|
||||
public:
|
||||
enum {
|
||||
Unrolling = Cost <= UnrollingLimit
|
||||
? CompleteUnrolling
|
||||
: NoUnrolling
|
||||
};
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 2 : unrollers
|
||||
***************************************************************************/
|
||||
|
||||
/*** no vectorization ***/
|
||||
|
||||
template<typename Derived, int Start, int Length>
|
||||
struct ei_sum_novec_unroller
|
||||
{
|
||||
enum {
|
||||
HalfLength = Length/2
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
|
||||
inline static Scalar run(const Derived &mat)
|
||||
{
|
||||
return ei_sum_novec_unroller<Derived, Start, HalfLength>::run(mat)
|
||||
+ ei_sum_novec_unroller<Derived, Start+HalfLength, Length-HalfLength>::run(mat);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived, int Start>
|
||||
struct ei_sum_novec_unroller<Derived, Start, 1>
|
||||
{
|
||||
enum {
|
||||
col = Start / Derived::RowsAtCompileTime,
|
||||
row = Start % Derived::RowsAtCompileTime
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
|
||||
inline static Scalar run(const Derived &mat)
|
||||
{
|
||||
return mat.coeff(row, col);
|
||||
}
|
||||
};
|
||||
|
||||
/*** vectorization ***/
|
||||
|
||||
template<typename Derived, int Start, int Length>
|
||||
struct ei_sum_vec_unroller
|
||||
{
|
||||
enum {
|
||||
PacketSize = ei_packet_traits<typename Derived::Scalar>::size,
|
||||
HalfLength = Length/2
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
|
||||
inline static PacketScalar run(const Derived &mat)
|
||||
{
|
||||
return ei_padd(
|
||||
ei_sum_vec_unroller<Derived, Start, HalfLength>::run(mat),
|
||||
ei_sum_vec_unroller<Derived, Start+HalfLength, Length-HalfLength>::run(mat) );
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived, int Start>
|
||||
struct ei_sum_vec_unroller<Derived, Start, 1>
|
||||
{
|
||||
enum {
|
||||
index = Start * ei_packet_traits<typename Derived::Scalar>::size,
|
||||
row = int(Derived::Flags)&RowMajorBit
|
||||
? index / int(Derived::ColsAtCompileTime)
|
||||
: index % Derived::RowsAtCompileTime,
|
||||
col = int(Derived::Flags)&RowMajorBit
|
||||
? index % int(Derived::ColsAtCompileTime)
|
||||
: index / Derived::RowsAtCompileTime,
|
||||
alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
|
||||
inline static PacketScalar run(const Derived &mat)
|
||||
{
|
||||
return mat.template packet<alignment>(row, col);
|
||||
}
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 3 : implementation of all cases
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Derived,
|
||||
int Vectorization = ei_sum_traits<Derived>::Vectorization,
|
||||
int Unrolling = ei_sum_traits<Derived>::Unrolling
|
||||
>
|
||||
struct ei_sum_impl;
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_sum_impl<Derived, NoVectorization, NoUnrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
static Scalar run(const Derived& mat)
|
||||
{
|
||||
ei_assert(mat.rows()>0 && mat.cols()>0 && "you are using a non initialized matrix");
|
||||
Scalar res;
|
||||
res = mat.coeff(0, 0);
|
||||
for(int i = 1; i < mat.rows(); ++i)
|
||||
res += mat.coeff(i, 0);
|
||||
for(int j = 1; j < mat.cols(); ++j)
|
||||
for(int i = 0; i < mat.rows(); ++i)
|
||||
res += mat.coeff(i, j);
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_sum_impl<Derived, NoVectorization, CompleteUnrolling>
|
||||
: public ei_sum_novec_unroller<Derived, 0, Derived::SizeAtCompileTime>
|
||||
{};
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_sum_impl<Derived, LinearVectorization, NoUnrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
|
||||
static Scalar run(const Derived& mat)
|
||||
{
|
||||
const int size = mat.size();
|
||||
const int packetSize = ei_packet_traits<Scalar>::size;
|
||||
const int alignedStart = (Derived::Flags & AlignedBit)
|
||||
|| !(Derived::Flags & DirectAccessBit)
|
||||
? 0
|
||||
: ei_alignmentOffset(&mat.const_cast_derived().coeffRef(0), size);
|
||||
enum {
|
||||
alignment = (Derived::Flags & DirectAccessBit) || (Derived::Flags & AlignedBit)
|
||||
? Aligned : Unaligned
|
||||
};
|
||||
const int alignedSize = ((size-alignedStart)/packetSize)*packetSize;
|
||||
const int alignedEnd = alignedStart + alignedSize;
|
||||
Scalar res;
|
||||
|
||||
if(alignedSize)
|
||||
{
|
||||
PacketScalar packet_res = mat.template packet<alignment>(alignedStart);
|
||||
for(int index = alignedStart + packetSize; index < alignedEnd; index += packetSize)
|
||||
packet_res = ei_padd(packet_res, mat.template packet<alignment>(index));
|
||||
res = ei_predux(packet_res);
|
||||
}
|
||||
else // too small to vectorize anything.
|
||||
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
|
||||
{
|
||||
res = Scalar(0);
|
||||
}
|
||||
|
||||
for(int index = 0; index < alignedStart; ++index)
|
||||
res += mat.coeff(index);
|
||||
|
||||
for(int index = alignedEnd; index < size; ++index)
|
||||
res += mat.coeff(index);
|
||||
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_sum_impl<Derived, LinearVectorization, CompleteUnrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
enum {
|
||||
PacketSize = ei_packet_traits<Scalar>::size,
|
||||
Size = Derived::SizeAtCompileTime,
|
||||
VectorizationSize = (Size / PacketSize) * PacketSize
|
||||
};
|
||||
static Scalar run(const Derived& mat)
|
||||
{
|
||||
Scalar res = ei_predux(ei_sum_vec_unroller<Derived, 0, Size / PacketSize>::run(mat));
|
||||
if (VectorizationSize != Size)
|
||||
res += ei_sum_novec_unroller<Derived, VectorizationSize, Size-VectorizationSize>::run(mat);
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 4 : implementation of MatrixBase methods
|
||||
***************************************************************************/
|
||||
|
||||
/** \returns the sum of all coefficients of *this
|
||||
*
|
||||
* \sa trace()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::sum() const
|
||||
{
|
||||
return ei_sum_impl<Derived>::run(derived());
|
||||
}
|
||||
|
||||
/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
|
||||
*
|
||||
* \c *this can be any matrix, not necessarily square.
|
||||
*
|
||||
* \sa diagonal(), sum()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::trace() const
|
||||
{
|
||||
return diagonal().sum();
|
||||
}
|
||||
|
||||
#endif // EIGEN_SUM_H
|
145
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Swap.h
Normal file
145
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Swap.h
Normal file
@ -0,0 +1,145 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_SWAP_H
|
||||
#define EIGEN_SWAP_H
|
||||
|
||||
/** \class SwapWrapper
|
||||
*
|
||||
* \internal
|
||||
*
|
||||
* \brief Internal helper class for swapping two expressions
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
struct ei_traits<SwapWrapper<ExpressionType> >
|
||||
{
|
||||
typedef typename ExpressionType::Scalar Scalar;
|
||||
enum {
|
||||
RowsAtCompileTime = ExpressionType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = ExpressionType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = ExpressionType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = ExpressionType::MaxColsAtCompileTime,
|
||||
Flags = ExpressionType::Flags,
|
||||
CoeffReadCost = ExpressionType::CoeffReadCost
|
||||
};
|
||||
};
|
||||
|
||||
template<typename ExpressionType> class SwapWrapper
|
||||
: public MatrixBase<SwapWrapper<ExpressionType> >
|
||||
{
|
||||
public:
|
||||
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(SwapWrapper)
|
||||
typedef typename ei_packet_traits<Scalar>::type Packet;
|
||||
|
||||
inline SwapWrapper(ExpressionType& xpr) : m_expression(xpr) {}
|
||||
|
||||
inline int rows() const { return m_expression.rows(); }
|
||||
inline int cols() const { return m_expression.cols(); }
|
||||
inline int stride() const { return m_expression.stride(); }
|
||||
|
||||
inline Scalar& coeffRef(int row, int col)
|
||||
{
|
||||
return m_expression.const_cast_derived().coeffRef(row, col);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(int index)
|
||||
{
|
||||
return m_expression.const_cast_derived().coeffRef(index);
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
void copyCoeff(int row, int col, const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
OtherDerived& _other = other.const_cast_derived();
|
||||
ei_internal_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
Scalar tmp = m_expression.coeff(row, col);
|
||||
m_expression.coeffRef(row, col) = _other.coeff(row, col);
|
||||
_other.coeffRef(row, col) = tmp;
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
void copyCoeff(int index, const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
OtherDerived& _other = other.const_cast_derived();
|
||||
ei_internal_assert(index >= 0 && index < m_expression.size());
|
||||
Scalar tmp = m_expression.coeff(index);
|
||||
m_expression.coeffRef(index) = _other.coeff(index);
|
||||
_other.coeffRef(index) = tmp;
|
||||
}
|
||||
|
||||
template<typename OtherDerived, int StoreMode, int LoadMode>
|
||||
void copyPacket(int row, int col, const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
OtherDerived& _other = other.const_cast_derived();
|
||||
ei_internal_assert(row >= 0 && row < rows()
|
||||
&& col >= 0 && col < cols());
|
||||
Packet tmp = m_expression.template packet<StoreMode>(row, col);
|
||||
m_expression.template writePacket<StoreMode>(row, col,
|
||||
_other.template packet<LoadMode>(row, col)
|
||||
);
|
||||
_other.template writePacket<LoadMode>(row, col, tmp);
|
||||
}
|
||||
|
||||
template<typename OtherDerived, int StoreMode, int LoadMode>
|
||||
void copyPacket(int index, const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
OtherDerived& _other = other.const_cast_derived();
|
||||
ei_internal_assert(index >= 0 && index < m_expression.size());
|
||||
Packet tmp = m_expression.template packet<StoreMode>(index);
|
||||
m_expression.template writePacket<StoreMode>(index,
|
||||
_other.template packet<LoadMode>(index)
|
||||
);
|
||||
_other.template writePacket<LoadMode>(index, tmp);
|
||||
}
|
||||
|
||||
protected:
|
||||
ExpressionType& m_expression;
|
||||
|
||||
private:
|
||||
SwapWrapper& operator=(const SwapWrapper&);
|
||||
};
|
||||
|
||||
/** swaps *this with the expression \a other.
|
||||
*
|
||||
* \note \a other is only marked for internal reasons, but of course
|
||||
* it gets const-casted. One reason is that one will often call swap
|
||||
* on temporary objects (hence non-const references are forbidden).
|
||||
* Another reason is that lazyAssign takes a const argument anyway.
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
void MatrixBase<Derived>::swap(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
(SwapWrapper<Derived>(derived())).lazyAssign(other);
|
||||
}
|
||||
|
||||
#endif // EIGEN_SWAP_H
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
227
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Transpose.h
Normal file
227
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Transpose.h
Normal file
@ -0,0 +1,227 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_TRANSPOSE_H
|
||||
#define EIGEN_TRANSPOSE_H
|
||||
|
||||
/** \class Transpose
|
||||
*
|
||||
* \brief Expression of the transpose of a matrix
|
||||
*
|
||||
* \param MatrixType the type of the object of which we are taking the transpose
|
||||
*
|
||||
* This class represents an expression of the transpose of a matrix.
|
||||
* It is the return type of MatrixBase::transpose() and MatrixBase::adjoint()
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* \sa MatrixBase::transpose(), MatrixBase::adjoint()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
struct ei_traits<Transpose<MatrixType> >
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
|
||||
typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
Flags = ((int(_MatrixTypeNested::Flags) ^ RowMajorBit)
|
||||
& ~(LowerTriangularBit | UpperTriangularBit))
|
||||
| (int(_MatrixTypeNested::Flags)&UpperTriangularBit ? LowerTriangularBit : 0)
|
||||
| (int(_MatrixTypeNested::Flags)&LowerTriangularBit ? UpperTriangularBit : 0),
|
||||
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
|
||||
};
|
||||
};
|
||||
|
||||
template<typename MatrixType> class Transpose
|
||||
: public MatrixBase<Transpose<MatrixType> >
|
||||
{
|
||||
public:
|
||||
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose)
|
||||
|
||||
inline Transpose(const MatrixType& matrix) : m_matrix(matrix) {}
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose)
|
||||
|
||||
inline int rows() const { return m_matrix.cols(); }
|
||||
inline int cols() const { return m_matrix.rows(); }
|
||||
inline int stride(void) const { return m_matrix.stride(); }
|
||||
|
||||
inline Scalar& coeffRef(int row, int col)
|
||||
{
|
||||
return m_matrix.const_cast_derived().coeffRef(col, row);
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int row, int col) const
|
||||
{
|
||||
return m_matrix.coeff(col, row);
|
||||
}
|
||||
|
||||
inline const Scalar coeff(int index) const
|
||||
{
|
||||
return m_matrix.coeff(index);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(int index)
|
||||
{
|
||||
return m_matrix.const_cast_derived().coeffRef(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(int row, int col) const
|
||||
{
|
||||
return m_matrix.template packet<LoadMode>(col, row);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(int row, int col, const PacketScalar& x)
|
||||
{
|
||||
m_matrix.const_cast_derived().template writePacket<LoadMode>(col, row, x);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline const PacketScalar packet(int index) const
|
||||
{
|
||||
return m_matrix.template packet<LoadMode>(index);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(int index, const PacketScalar& x)
|
||||
{
|
||||
m_matrix.const_cast_derived().template writePacket<LoadMode>(index, x);
|
||||
}
|
||||
|
||||
protected:
|
||||
const typename MatrixType::Nested m_matrix;
|
||||
};
|
||||
|
||||
/** \returns an expression of the transpose of *this.
|
||||
*
|
||||
* Example: \include MatrixBase_transpose.cpp
|
||||
* Output: \verbinclude MatrixBase_transpose.out
|
||||
*
|
||||
* \warning If you want to replace a matrix by its own transpose, do \b NOT do this:
|
||||
* \code
|
||||
* m = m.transpose(); // bug!!! caused by aliasing effect
|
||||
* \endcode
|
||||
* Instead, use the transposeInPlace() method:
|
||||
* \code
|
||||
* m.transposeInPlace();
|
||||
* \endcode
|
||||
* which gives Eigen good opportunities for optimization, or alternatively you can also do:
|
||||
* \code
|
||||
* m = m.transpose().eval();
|
||||
* \endcode
|
||||
*
|
||||
* \sa transposeInPlace(), adjoint() */
|
||||
template<typename Derived>
|
||||
inline Transpose<Derived>
|
||||
MatrixBase<Derived>::transpose()
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** This is the const version of transpose().
|
||||
*
|
||||
* Make sure you read the warning for transpose() !
|
||||
*
|
||||
* \sa transposeInPlace(), adjoint() */
|
||||
template<typename Derived>
|
||||
inline const Transpose<Derived>
|
||||
MatrixBase<Derived>::transpose() const
|
||||
{
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \returns an expression of the adjoint (i.e. conjugate transpose) of *this.
|
||||
*
|
||||
* Example: \include MatrixBase_adjoint.cpp
|
||||
* Output: \verbinclude MatrixBase_adjoint.out
|
||||
*
|
||||
* \warning If you want to replace a matrix by its own adjoint, do \b NOT do this:
|
||||
* \code
|
||||
* m = m.adjoint(); // bug!!! caused by aliasing effect
|
||||
* \endcode
|
||||
* Instead, do:
|
||||
* \code
|
||||
* m = m.adjoint().eval();
|
||||
* \endcode
|
||||
*
|
||||
* \sa transpose(), conjugate(), class Transpose, class ei_scalar_conjugate_op */
|
||||
template<typename Derived>
|
||||
inline const typename MatrixBase<Derived>::AdjointReturnType
|
||||
MatrixBase<Derived>::adjoint() const
|
||||
{
|
||||
return conjugate().nestByValue();
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* "in place" transpose implementation
|
||||
***************************************************************************/
|
||||
|
||||
template<typename MatrixType,
|
||||
bool IsSquare = (MatrixType::RowsAtCompileTime == MatrixType::ColsAtCompileTime) && MatrixType::RowsAtCompileTime!=Dynamic>
|
||||
struct ei_inplace_transpose_selector;
|
||||
|
||||
template<typename MatrixType>
|
||||
struct ei_inplace_transpose_selector<MatrixType,true> { // square matrix
|
||||
static void run(MatrixType& m) {
|
||||
m.template part<StrictlyUpperTriangular>().swap(m.transpose());
|
||||
}
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
struct ei_inplace_transpose_selector<MatrixType,false> { // non square matrix
|
||||
static void run(MatrixType& m) {
|
||||
if (m.rows()==m.cols())
|
||||
m.template part<StrictlyUpperTriangular>().swap(m.transpose());
|
||||
else
|
||||
m = m.transpose().eval();
|
||||
}
|
||||
};
|
||||
|
||||
/** This is the "in place" version of transpose: it transposes \c *this.
|
||||
*
|
||||
* In most cases it is probably better to simply use the transposed expression
|
||||
* of a matrix. However, when transposing the matrix data itself is really needed,
|
||||
* then this "in-place" version is probably the right choice because it provides
|
||||
* the following additional features:
|
||||
* - less error prone: doing the same operation with .transpose() requires special care:
|
||||
* \code m = m.transpose().eval(); \endcode
|
||||
* - no temporary object is created (currently only for squared matrices)
|
||||
* - it allows future optimizations (cache friendliness, etc.)
|
||||
*
|
||||
* \note if the matrix is not square, then \c *this must be a resizable matrix.
|
||||
*
|
||||
* \sa transpose(), adjoint() */
|
||||
template<typename Derived>
|
||||
inline void MatrixBase<Derived>::transposeInPlace()
|
||||
{
|
||||
ei_inplace_transpose_selector<Derived>::run(derived());
|
||||
}
|
||||
|
||||
#endif // EIGEN_TRANSPOSE_H
|
228
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Visitor.h
Normal file
228
ground/openpilotgcs/src/libs/eigen/Eigen/src/Core/Visitor.h
Normal file
@ -0,0 +1,228 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_VISITOR_H
|
||||
#define EIGEN_VISITOR_H
|
||||
|
||||
template<typename Visitor, typename Derived, int UnrollCount>
|
||||
struct ei_visitor_impl
|
||||
{
|
||||
enum {
|
||||
col = (UnrollCount-1) / Derived::RowsAtCompileTime,
|
||||
row = (UnrollCount-1) % Derived::RowsAtCompileTime
|
||||
};
|
||||
|
||||
inline static void run(const Derived &mat, Visitor& visitor)
|
||||
{
|
||||
ei_visitor_impl<Visitor, Derived, UnrollCount-1>::run(mat, visitor);
|
||||
visitor(mat.coeff(row, col), row, col);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Visitor, typename Derived>
|
||||
struct ei_visitor_impl<Visitor, Derived, 1>
|
||||
{
|
||||
inline static void run(const Derived &mat, Visitor& visitor)
|
||||
{
|
||||
return visitor.init(mat.coeff(0, 0), 0, 0);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Visitor, typename Derived>
|
||||
struct ei_visitor_impl<Visitor, Derived, Dynamic>
|
||||
{
|
||||
inline static void run(const Derived& mat, Visitor& visitor)
|
||||
{
|
||||
visitor.init(mat.coeff(0,0), 0, 0);
|
||||
for(int i = 1; i < mat.rows(); ++i)
|
||||
visitor(mat.coeff(i, 0), i, 0);
|
||||
for(int j = 1; j < mat.cols(); ++j)
|
||||
for(int i = 0; i < mat.rows(); ++i)
|
||||
visitor(mat.coeff(i, j), i, j);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/** Applies the visitor \a visitor to the whole coefficients of the matrix or vector.
|
||||
*
|
||||
* The template parameter \a Visitor is the type of the visitor and provides the following interface:
|
||||
* \code
|
||||
* struct MyVisitor {
|
||||
* // called for the first coefficient
|
||||
* void init(const Scalar& value, int i, int j);
|
||||
* // called for all other coefficients
|
||||
* void operator() (const Scalar& value, int i, int j);
|
||||
* };
|
||||
* \endcode
|
||||
*
|
||||
* \note compared to one or two \em for \em loops, visitors offer automatic
|
||||
* unrolling for small fixed size matrix.
|
||||
*
|
||||
* \sa minCoeff(int*,int*), maxCoeff(int*,int*), MatrixBase::redux()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename Visitor>
|
||||
void MatrixBase<Derived>::visit(Visitor& visitor) const
|
||||
{
|
||||
const bool unroll = SizeAtCompileTime * CoeffReadCost
|
||||
+ (SizeAtCompileTime-1) * ei_functor_traits<Visitor>::Cost
|
||||
<= EIGEN_UNROLLING_LIMIT;
|
||||
return ei_visitor_impl<Visitor, Derived,
|
||||
unroll ? int(SizeAtCompileTime) : Dynamic
|
||||
>::run(derived(), visitor);
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* \brief Base class to implement min and max visitors
|
||||
*/
|
||||
template <typename Scalar>
|
||||
struct ei_coeff_visitor
|
||||
{
|
||||
int row, col;
|
||||
Scalar res;
|
||||
inline void init(const Scalar& value, int i, int j)
|
||||
{
|
||||
res = value;
|
||||
row = i;
|
||||
col = j;
|
||||
}
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Visitor computing the min coefficient with its value and coordinates
|
||||
*
|
||||
* \sa MatrixBase::minCoeff(int*, int*)
|
||||
*/
|
||||
template <typename Scalar>
|
||||
struct ei_min_coeff_visitor : ei_coeff_visitor<Scalar>
|
||||
{
|
||||
void operator() (const Scalar& value, int i, int j)
|
||||
{
|
||||
if(value < this->res)
|
||||
{
|
||||
this->res = value;
|
||||
this->row = i;
|
||||
this->col = j;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_min_coeff_visitor<Scalar> > {
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Visitor computing the max coefficient with its value and coordinates
|
||||
*
|
||||
* \sa MatrixBase::maxCoeff(int*, int*)
|
||||
*/
|
||||
template <typename Scalar>
|
||||
struct ei_max_coeff_visitor : ei_coeff_visitor<Scalar>
|
||||
{
|
||||
void operator() (const Scalar& value, int i, int j)
|
||||
{
|
||||
if(value > this->res)
|
||||
{
|
||||
this->res = value;
|
||||
this->row = i;
|
||||
this->col = j;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_max_coeff_visitor<Scalar> > {
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost
|
||||
};
|
||||
};
|
||||
|
||||
/** \returns the minimum of all coefficients of *this
|
||||
* and puts in *row and *col its location.
|
||||
*
|
||||
* \sa MatrixBase::minCoeff(int*), MatrixBase::maxCoeff(int*,int*), MatrixBase::visitor(), MatrixBase::minCoeff()
|
||||
*/
|
||||
template<typename Derived>
|
||||
typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::minCoeff(int* row, int* col) const
|
||||
{
|
||||
ei_min_coeff_visitor<Scalar> minVisitor;
|
||||
this->visit(minVisitor);
|
||||
*row = minVisitor.row;
|
||||
if (col) *col = minVisitor.col;
|
||||
return minVisitor.res;
|
||||
}
|
||||
|
||||
/** \returns the minimum of all coefficients of *this
|
||||
* and puts in *index its location.
|
||||
*
|
||||
* \sa MatrixBase::minCoeff(int*,int*), MatrixBase::maxCoeff(int*,int*), MatrixBase::visitor(), MatrixBase::minCoeff()
|
||||
*/
|
||||
template<typename Derived>
|
||||
typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::minCoeff(int* index) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
ei_min_coeff_visitor<Scalar> minVisitor;
|
||||
this->visit(minVisitor);
|
||||
*index = (RowsAtCompileTime==1) ? minVisitor.col : minVisitor.row;
|
||||
return minVisitor.res;
|
||||
}
|
||||
|
||||
/** \returns the maximum of all coefficients of *this
|
||||
* and puts in *row and *col its location.
|
||||
*
|
||||
* \sa MatrixBase::minCoeff(int*,int*), MatrixBase::visitor(), MatrixBase::maxCoeff()
|
||||
*/
|
||||
template<typename Derived>
|
||||
typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::maxCoeff(int* row, int* col) const
|
||||
{
|
||||
ei_max_coeff_visitor<Scalar> maxVisitor;
|
||||
this->visit(maxVisitor);
|
||||
*row = maxVisitor.row;
|
||||
if (col) *col = maxVisitor.col;
|
||||
return maxVisitor.res;
|
||||
}
|
||||
|
||||
/** \returns the maximum of all coefficients of *this
|
||||
* and puts in *index its location.
|
||||
*
|
||||
* \sa MatrixBase::maxCoeff(int*,int*), MatrixBase::minCoeff(int*,int*), MatrixBase::visitor(), MatrixBase::maxCoeff()
|
||||
*/
|
||||
template<typename Derived>
|
||||
typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::maxCoeff(int* index) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
ei_max_coeff_visitor<Scalar> maxVisitor;
|
||||
this->visit(maxVisitor);
|
||||
*index = (RowsAtCompileTime==1) ? maxVisitor.col : maxVisitor.row;
|
||||
return maxVisitor.res;
|
||||
}
|
||||
|
||||
#endif // EIGEN_VISITOR_H
|
@ -0,0 +1,6 @@
|
||||
FILE(GLOB Eigen_Core_arch_AltiVec_SRCS "*.h")
|
||||
|
||||
INSTALL(FILES
|
||||
${Eigen_Core_arch_AltiVec_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/arch/AltiVec
|
||||
)
|
@ -0,0 +1,354 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Konstantinos Margaritis <markos@codex.gr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_PACKET_MATH_ALTIVEC_H
|
||||
#define EIGEN_PACKET_MATH_ALTIVEC_H
|
||||
|
||||
#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|
||||
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 4
|
||||
#endif
|
||||
|
||||
typedef __vector float v4f;
|
||||
typedef __vector int v4i;
|
||||
typedef __vector unsigned int v4ui;
|
||||
typedef __vector __bool int v4bi;
|
||||
|
||||
// We don't want to write the same code all the time, but we need to reuse the constants
|
||||
// and it doesn't really work to declare them global, so we define macros instead
|
||||
|
||||
#define USE_CONST_v0i const v4i v0i = vec_splat_s32(0)
|
||||
#define USE_CONST_v1i const v4i v1i = vec_splat_s32(1)
|
||||
#define USE_CONST_v16i_ const v4i v16i_ = vec_splat_s32(-16)
|
||||
#define USE_CONST_v0f USE_CONST_v0i; const v4f v0f = (v4f) v0i
|
||||
#define USE_CONST_v1f USE_CONST_v1i; const v4f v1f = vec_ctf(v1i, 0)
|
||||
#define USE_CONST_v1i_ const v4ui v1i_ = vec_splat_u32(-1)
|
||||
#define USE_CONST_v0f_ USE_CONST_v1i_; const v4f v0f_ = (v4f) vec_sl(v1i_, v1i_)
|
||||
|
||||
template<> struct ei_packet_traits<float> { typedef v4f type; enum {size=4}; };
|
||||
template<> struct ei_packet_traits<int> { typedef v4i type; enum {size=4}; };
|
||||
|
||||
template<> struct ei_unpacket_traits<v4f> { typedef float type; enum {size=4}; };
|
||||
template<> struct ei_unpacket_traits<v4i> { typedef int type; enum {size=4}; };
|
||||
|
||||
inline std::ostream & operator <<(std::ostream & s, const v4f & v)
|
||||
{
|
||||
union {
|
||||
v4f v;
|
||||
float n[4];
|
||||
} vt;
|
||||
vt.v = v;
|
||||
s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
|
||||
return s;
|
||||
}
|
||||
|
||||
inline std::ostream & operator <<(std::ostream & s, const v4i & v)
|
||||
{
|
||||
union {
|
||||
v4i v;
|
||||
int n[4];
|
||||
} vt;
|
||||
vt.v = v;
|
||||
s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
|
||||
return s;
|
||||
}
|
||||
|
||||
inline std::ostream & operator <<(std::ostream & s, const v4ui & v)
|
||||
{
|
||||
union {
|
||||
v4ui v;
|
||||
unsigned int n[4];
|
||||
} vt;
|
||||
vt.v = v;
|
||||
s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
|
||||
return s;
|
||||
}
|
||||
|
||||
inline std::ostream & operator <<(std::ostream & s, const v4bi & v)
|
||||
{
|
||||
union {
|
||||
__vector __bool int v;
|
||||
unsigned int n[4];
|
||||
} vt;
|
||||
vt.v = v;
|
||||
s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
|
||||
return s;
|
||||
}
|
||||
|
||||
template<> inline v4f ei_padd(const v4f& a, const v4f& b) { return vec_add(a,b); }
|
||||
template<> inline v4i ei_padd(const v4i& a, const v4i& b) { return vec_add(a,b); }
|
||||
|
||||
template<> inline v4f ei_psub(const v4f& a, const v4f& b) { return vec_sub(a,b); }
|
||||
template<> inline v4i ei_psub(const v4i& a, const v4i& b) { return vec_sub(a,b); }
|
||||
|
||||
template<> inline v4f ei_pmul(const v4f& a, const v4f& b) { USE_CONST_v0f; return vec_madd(a,b, v0f); }
|
||||
template<> inline v4i ei_pmul(const v4i& a, const v4i& b)
|
||||
{
|
||||
// Detailed in: http://freevec.org/content/32bit_signed_integer_multiplication_altivec
|
||||
//Set up constants, variables
|
||||
v4i a1, b1, bswap, low_prod, high_prod, prod, prod_, v1sel;
|
||||
USE_CONST_v0i;
|
||||
USE_CONST_v1i;
|
||||
USE_CONST_v16i_;
|
||||
|
||||
// Get the absolute values
|
||||
a1 = vec_abs(a);
|
||||
b1 = vec_abs(b);
|
||||
|
||||
// Get the signs using xor
|
||||
v4bi sgn = (v4bi) vec_cmplt(vec_xor(a, b), v0i);
|
||||
|
||||
// Do the multiplication for the asbolute values.
|
||||
bswap = (v4i) vec_rl((v4ui) b1, (v4ui) v16i_ );
|
||||
low_prod = vec_mulo((__vector short)a1, (__vector short)b1);
|
||||
high_prod = vec_msum((__vector short)a1, (__vector short)bswap, v0i);
|
||||
high_prod = (v4i) vec_sl((v4ui) high_prod, (v4ui) v16i_);
|
||||
prod = vec_add( low_prod, high_prod );
|
||||
|
||||
// NOR the product and select only the negative elements according to the sign mask
|
||||
prod_ = vec_nor(prod, prod);
|
||||
prod_ = vec_sel(v0i, prod_, sgn);
|
||||
|
||||
// Add 1 to the result to get the negative numbers
|
||||
v1sel = vec_sel(v0i, v1i, sgn);
|
||||
prod_ = vec_add(prod_, v1sel);
|
||||
|
||||
// Merge the results back to the final vector.
|
||||
prod = vec_sel(prod, prod_, sgn);
|
||||
|
||||
return prod;
|
||||
}
|
||||
|
||||
template<> inline v4f ei_pdiv(const v4f& a, const v4f& b) {
|
||||
v4f t, y_0, y_1, res;
|
||||
USE_CONST_v0f;
|
||||
USE_CONST_v1f;
|
||||
|
||||
// Altivec does not offer a divide instruction, we have to do a reciprocal approximation
|
||||
y_0 = vec_re(b);
|
||||
|
||||
// Do one Newton-Raphson iteration to get the needed accuracy
|
||||
t = vec_nmsub(y_0, b, v1f);
|
||||
y_1 = vec_madd(y_0, t, y_0);
|
||||
|
||||
res = vec_madd(a, y_1, v0f);
|
||||
return res;
|
||||
}
|
||||
|
||||
template<> inline v4f ei_pmadd(const v4f& a, const v4f& b, const v4f& c) { return vec_madd(a, b, c); }
|
||||
|
||||
template<> inline v4f ei_pmin(const v4f& a, const v4f& b) { return vec_min(a,b); }
|
||||
template<> inline v4i ei_pmin(const v4i& a, const v4i& b) { return vec_min(a,b); }
|
||||
|
||||
template<> inline v4f ei_pmax(const v4f& a, const v4f& b) { return vec_max(a,b); }
|
||||
template<> inline v4i ei_pmax(const v4i& a, const v4i& b) { return vec_max(a,b); }
|
||||
|
||||
template<> inline v4f ei_pload(const float* from) { return vec_ld(0, from); }
|
||||
template<> inline v4i ei_pload(const int* from) { return vec_ld(0, from); }
|
||||
|
||||
template<> inline v4f ei_ploadu(const float* from)
|
||||
{
|
||||
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
|
||||
__vector unsigned char MSQ, LSQ;
|
||||
__vector unsigned char mask;
|
||||
MSQ = vec_ld(0, (unsigned char *)from); // most significant quadword
|
||||
LSQ = vec_ld(15, (unsigned char *)from); // least significant quadword
|
||||
mask = vec_lvsl(0, from); // create the permute mask
|
||||
return (v4f) vec_perm(MSQ, LSQ, mask); // align the data
|
||||
}
|
||||
|
||||
template<> inline v4i ei_ploadu(const int* from)
|
||||
{
|
||||
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
|
||||
__vector unsigned char MSQ, LSQ;
|
||||
__vector unsigned char mask;
|
||||
MSQ = vec_ld(0, (unsigned char *)from); // most significant quadword
|
||||
LSQ = vec_ld(15, (unsigned char *)from); // least significant quadword
|
||||
mask = vec_lvsl(0, from); // create the permute mask
|
||||
return (v4i) vec_perm(MSQ, LSQ, mask); // align the data
|
||||
}
|
||||
|
||||
template<> inline v4f ei_pset1(const float& from)
|
||||
{
|
||||
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
|
||||
float __attribute__(aligned(16)) af[4];
|
||||
af[0] = from;
|
||||
v4f vc = vec_ld(0, af);
|
||||
vc = vec_splat(vc, 0);
|
||||
return vc;
|
||||
}
|
||||
|
||||
template<> inline v4i ei_pset1(const int& from)
|
||||
{
|
||||
int __attribute__(aligned(16)) ai[4];
|
||||
ai[0] = from;
|
||||
v4i vc = vec_ld(0, ai);
|
||||
vc = vec_splat(vc, 0);
|
||||
return vc;
|
||||
}
|
||||
|
||||
template<> inline void ei_pstore(float* to, const v4f& from) { vec_st(from, 0, to); }
|
||||
template<> inline void ei_pstore(int* to, const v4i& from) { vec_st(from, 0, to); }
|
||||
|
||||
template<> inline void ei_pstoreu(float* to, const v4f& from)
|
||||
{
|
||||
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
|
||||
// Warning: not thread safe!
|
||||
__vector unsigned char MSQ, LSQ, edges;
|
||||
__vector unsigned char edgeAlign, align;
|
||||
|
||||
MSQ = vec_ld(0, (unsigned char *)to); // most significant quadword
|
||||
LSQ = vec_ld(15, (unsigned char *)to); // least significant quadword
|
||||
edgeAlign = vec_lvsl(0, to); // permute map to extract edges
|
||||
edges=vec_perm(LSQ,MSQ,edgeAlign); // extract the edges
|
||||
align = vec_lvsr( 0, to ); // permute map to misalign data
|
||||
MSQ = vec_perm(edges,(__vector unsigned char)from,align); // misalign the data (MSQ)
|
||||
LSQ = vec_perm((__vector unsigned char)from,edges,align); // misalign the data (LSQ)
|
||||
vec_st( LSQ, 15, (unsigned char *)to ); // Store the LSQ part first
|
||||
vec_st( MSQ, 0, (unsigned char *)to ); // Store the MSQ part
|
||||
}
|
||||
|
||||
template<> inline void ei_pstoreu(int* to , const v4i& from )
|
||||
{
|
||||
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
|
||||
// Warning: not thread safe!
|
||||
__vector unsigned char MSQ, LSQ, edges;
|
||||
__vector unsigned char edgeAlign, align;
|
||||
|
||||
MSQ = vec_ld(0, (unsigned char *)to); // most significant quadword
|
||||
LSQ = vec_ld(15, (unsigned char *)to); // least significant quadword
|
||||
edgeAlign = vec_lvsl(0, to); // permute map to extract edges
|
||||
edges=vec_perm(LSQ,MSQ,edgeAlign); // extract the edges
|
||||
align = vec_lvsr( 0, to ); // permute map to misalign data
|
||||
MSQ = vec_perm(edges,(__vector unsigned char)from,align); // misalign the data (MSQ)
|
||||
LSQ = vec_perm((__vector unsigned char)from,edges,align); // misalign the data (LSQ)
|
||||
vec_st( LSQ, 15, (unsigned char *)to ); // Store the LSQ part first
|
||||
vec_st( MSQ, 0, (unsigned char *)to ); // Store the MSQ part
|
||||
}
|
||||
|
||||
template<> inline float ei_pfirst(const v4f& a)
|
||||
{
|
||||
float __attribute__(aligned(16)) af[4];
|
||||
vec_st(a, 0, af);
|
||||
return af[0];
|
||||
}
|
||||
|
||||
template<> inline int ei_pfirst(const v4i& a)
|
||||
{
|
||||
int __attribute__(aligned(16)) ai[4];
|
||||
vec_st(a, 0, ai);
|
||||
return ai[0];
|
||||
}
|
||||
|
||||
inline v4f ei_preduxp(const v4f* vecs)
|
||||
{
|
||||
v4f v[4], sum[4];
|
||||
|
||||
// It's easier and faster to transpose then add as columns
|
||||
// Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation
|
||||
// Do the transpose, first set of moves
|
||||
v[0] = vec_mergeh(vecs[0], vecs[2]);
|
||||
v[1] = vec_mergel(vecs[0], vecs[2]);
|
||||
v[2] = vec_mergeh(vecs[1], vecs[3]);
|
||||
v[3] = vec_mergel(vecs[1], vecs[3]);
|
||||
// Get the resulting vectors
|
||||
sum[0] = vec_mergeh(v[0], v[2]);
|
||||
sum[1] = vec_mergel(v[0], v[2]);
|
||||
sum[2] = vec_mergeh(v[1], v[3]);
|
||||
sum[3] = vec_mergel(v[1], v[3]);
|
||||
|
||||
// Now do the summation:
|
||||
// Lines 0+1
|
||||
sum[0] = vec_add(sum[0], sum[1]);
|
||||
// Lines 2+3
|
||||
sum[1] = vec_add(sum[2], sum[3]);
|
||||
// Add the results
|
||||
sum[0] = vec_add(sum[0], sum[1]);
|
||||
return sum[0];
|
||||
}
|
||||
|
||||
inline float ei_predux(const v4f& a)
|
||||
{
|
||||
v4f b, sum;
|
||||
b = (v4f)vec_sld(a, a, 8);
|
||||
sum = vec_add(a, b);
|
||||
b = (v4f)vec_sld(sum, sum, 4);
|
||||
sum = vec_add(sum, b);
|
||||
return ei_pfirst(sum);
|
||||
}
|
||||
|
||||
inline v4i ei_preduxp(const v4i* vecs)
|
||||
{
|
||||
v4i v[4], sum[4];
|
||||
|
||||
// It's easier and faster to transpose then add as columns
|
||||
// Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation
|
||||
// Do the transpose, first set of moves
|
||||
v[0] = vec_mergeh(vecs[0], vecs[2]);
|
||||
v[1] = vec_mergel(vecs[0], vecs[2]);
|
||||
v[2] = vec_mergeh(vecs[1], vecs[3]);
|
||||
v[3] = vec_mergel(vecs[1], vecs[3]);
|
||||
// Get the resulting vectors
|
||||
sum[0] = vec_mergeh(v[0], v[2]);
|
||||
sum[1] = vec_mergel(v[0], v[2]);
|
||||
sum[2] = vec_mergeh(v[1], v[3]);
|
||||
sum[3] = vec_mergel(v[1], v[3]);
|
||||
|
||||
// Now do the summation:
|
||||
// Lines 0+1
|
||||
sum[0] = vec_add(sum[0], sum[1]);
|
||||
// Lines 2+3
|
||||
sum[1] = vec_add(sum[2], sum[3]);
|
||||
// Add the results
|
||||
sum[0] = vec_add(sum[0], sum[1]);
|
||||
return sum[0];
|
||||
}
|
||||
|
||||
inline int ei_predux(const v4i& a)
|
||||
{
|
||||
USE_CONST_v0i;
|
||||
v4i sum;
|
||||
sum = vec_sums(a, v0i);
|
||||
sum = vec_sld(sum, v0i, 12);
|
||||
return ei_pfirst(sum);
|
||||
}
|
||||
|
||||
template<int Offset>
|
||||
struct ei_palign_impl<Offset, v4f>
|
||||
{
|
||||
inline static void run(v4f& first, const v4f& second)
|
||||
{
|
||||
first = vec_sld(first, second, Offset*4);
|
||||
}
|
||||
};
|
||||
|
||||
template<int Offset>
|
||||
struct ei_palign_impl<Offset, v4i>
|
||||
{
|
||||
inline static void run(v4i& first, const v4i& second)
|
||||
{
|
||||
first = vec_sld(first, second, Offset*4);
|
||||
}
|
||||
};
|
||||
|
||||
#endif // EIGEN_PACKET_MATH_ALTIVEC_H
|
@ -0,0 +1,6 @@
|
||||
FILE(GLOB Eigen_Core_arch_SSE_SRCS "*.h")
|
||||
|
||||
INSTALL(FILES
|
||||
${Eigen_Core_arch_SSE_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/arch/SSE
|
||||
)
|
@ -0,0 +1,327 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_PACKET_MATH_SSE_H
|
||||
#define EIGEN_PACKET_MATH_SSE_H
|
||||
|
||||
#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|
||||
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 16
|
||||
#endif
|
||||
|
||||
template<> struct ei_packet_traits<float> { typedef __m128 type; enum {size=4}; };
|
||||
template<> struct ei_packet_traits<double> { typedef __m128d type; enum {size=2}; };
|
||||
template<> struct ei_packet_traits<int> { typedef __m128i type; enum {size=4}; };
|
||||
|
||||
template<> struct ei_unpacket_traits<__m128> { typedef float type; enum {size=4}; };
|
||||
template<> struct ei_unpacket_traits<__m128d> { typedef double type; enum {size=2}; };
|
||||
template<> struct ei_unpacket_traits<__m128i> { typedef int type; enum {size=4}; };
|
||||
|
||||
template<> EIGEN_STRONG_INLINE __m128 ei_pset1<float>(const float& from) { return _mm_set1_ps(from); }
|
||||
template<> EIGEN_STRONG_INLINE __m128d ei_pset1<double>(const double& from) { return _mm_set1_pd(from); }
|
||||
template<> EIGEN_STRONG_INLINE __m128i ei_pset1<int>(const int& from) { return _mm_set1_epi32(from); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE __m128 ei_padd<__m128>(const __m128& a, const __m128& b) { return _mm_add_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE __m128d ei_padd<__m128d>(const __m128d& a, const __m128d& b) { return _mm_add_pd(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE __m128i ei_padd<__m128i>(const __m128i& a, const __m128i& b) { return _mm_add_epi32(a,b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE __m128 ei_psub<__m128>(const __m128& a, const __m128& b) { return _mm_sub_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE __m128d ei_psub<__m128d>(const __m128d& a, const __m128d& b) { return _mm_sub_pd(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE __m128i ei_psub<__m128i>(const __m128i& a, const __m128i& b) { return _mm_sub_epi32(a,b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE __m128 ei_pmul<__m128>(const __m128& a, const __m128& b) { return _mm_mul_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE __m128d ei_pmul<__m128d>(const __m128d& a, const __m128d& b) { return _mm_mul_pd(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE __m128i ei_pmul<__m128i>(const __m128i& a, const __m128i& b)
|
||||
{
|
||||
return _mm_or_si128(
|
||||
_mm_and_si128(
|
||||
_mm_mul_epu32(a,b),
|
||||
_mm_setr_epi32(0xffffffff,0,0xffffffff,0)),
|
||||
_mm_slli_si128(
|
||||
_mm_and_si128(
|
||||
_mm_mul_epu32(_mm_srli_si128(a,4),_mm_srli_si128(b,4)),
|
||||
_mm_setr_epi32(0xffffffff,0,0xffffffff,0)), 4));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE __m128 ei_pdiv<__m128>(const __m128& a, const __m128& b) { return _mm_div_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE __m128d ei_pdiv<__m128d>(const __m128d& a, const __m128d& b) { return _mm_div_pd(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE __m128i ei_pdiv<__m128i>(const __m128i& /*a*/, const __m128i& /*b*/)
|
||||
{ ei_assert(false && "packet integer division are not supported by SSE");
|
||||
__m128i dummy = ei_pset1<int>(0);
|
||||
return dummy;
|
||||
}
|
||||
|
||||
// for some weird raisons, it has to be overloaded for packet integer
|
||||
template<> EIGEN_STRONG_INLINE __m128i ei_pmadd(const __m128i& a, const __m128i& b, const __m128i& c) { return ei_padd(ei_pmul(a,b), c); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE __m128 ei_pmin<__m128>(const __m128& a, const __m128& b) { return _mm_min_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE __m128d ei_pmin<__m128d>(const __m128d& a, const __m128d& b) { return _mm_min_pd(a,b); }
|
||||
// FIXME this vectorized min operator is likely to be slower than the standard one
|
||||
template<> EIGEN_STRONG_INLINE __m128i ei_pmin<__m128i>(const __m128i& a, const __m128i& b)
|
||||
{
|
||||
__m128i mask = _mm_cmplt_epi32(a,b);
|
||||
return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE __m128 ei_pmax<__m128>(const __m128& a, const __m128& b) { return _mm_max_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE __m128d ei_pmax<__m128d>(const __m128d& a, const __m128d& b) { return _mm_max_pd(a,b); }
|
||||
// FIXME this vectorized max operator is likely to be slower than the standard one
|
||||
template<> EIGEN_STRONG_INLINE __m128i ei_pmax<__m128i>(const __m128i& a, const __m128i& b)
|
||||
{
|
||||
__m128i mask = _mm_cmpgt_epi32(a,b);
|
||||
return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE __m128 ei_pload<float>(const float* from) { return _mm_load_ps(from); }
|
||||
template<> EIGEN_STRONG_INLINE __m128d ei_pload<double>(const double* from) { return _mm_load_pd(from); }
|
||||
template<> EIGEN_STRONG_INLINE __m128i ei_pload<int>(const int* from) { return _mm_load_si128(reinterpret_cast<const __m128i*>(from)); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE __m128 ei_ploadu<float>(const float* from) { return _mm_loadu_ps(from); }
|
||||
// template<> EIGEN_STRONG_INLINE __m128 ei_ploadu(const float* from) {
|
||||
// if (size_t(from)&0xF)
|
||||
// return _mm_loadu_ps(from);
|
||||
// else
|
||||
// return _mm_loadu_ps(from);
|
||||
// }
|
||||
template<> EIGEN_STRONG_INLINE __m128d ei_ploadu<double>(const double* from) { return _mm_loadu_pd(from); }
|
||||
template<> EIGEN_STRONG_INLINE __m128i ei_ploadu<int>(const int* from) { return _mm_loadu_si128(reinterpret_cast<const __m128i*>(from)); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void ei_pstore<float>(float* to, const __m128& from) { _mm_store_ps(to, from); }
|
||||
template<> EIGEN_STRONG_INLINE void ei_pstore<double>(double* to, const __m128d& from) { _mm_store_pd(to, from); }
|
||||
template<> EIGEN_STRONG_INLINE void ei_pstore<int>(int* to, const __m128i& from) { _mm_store_si128(reinterpret_cast<__m128i*>(to), from); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void ei_pstoreu<float>(float* to, const __m128& from) { _mm_storeu_ps(to, from); }
|
||||
template<> EIGEN_STRONG_INLINE void ei_pstoreu<double>(double* to, const __m128d& from) { _mm_storeu_pd(to, from); }
|
||||
template<> EIGEN_STRONG_INLINE void ei_pstoreu<int>(int* to, const __m128i& from) { _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from); }
|
||||
|
||||
#if defined(_MSC_VER) && (_MSC_VER <= 1500) && defined(_WIN64) && !defined(__INTEL_COMPILER)
|
||||
// The temporary variable fixes an internal compilation error.
|
||||
// Direct of the struct members fixed bug #62.
|
||||
template<> EIGEN_STRONG_INLINE float ei_pfirst<__m128>(const __m128& a) { return a.m128_f32[0]; }
|
||||
template<> EIGEN_STRONG_INLINE double ei_pfirst<__m128d>(const __m128d& a) { return a.m128d_f64[0]; }
|
||||
template<> EIGEN_STRONG_INLINE int ei_pfirst<__m128i>(const __m128i& a) { int x = _mm_cvtsi128_si32(a); return x; }
|
||||
#elif defined(_MSC_VER) && (_MSC_VER <= 1500) && !defined(__INTEL_COMPILER)
|
||||
// The temporary variable fixes an internal compilation error.
|
||||
template<> EIGEN_STRONG_INLINE float ei_pfirst<__m128>(const __m128& a) { float x = _mm_cvtss_f32(a); return x; }
|
||||
template<> EIGEN_STRONG_INLINE double ei_pfirst<__m128d>(const __m128d& a) { double x = _mm_cvtsd_f64(a); return x; }
|
||||
template<> EIGEN_STRONG_INLINE int ei_pfirst<__m128i>(const __m128i& a) { int x = _mm_cvtsi128_si32(a); return x; }
|
||||
#else
|
||||
template<> EIGEN_STRONG_INLINE float ei_pfirst<__m128>(const __m128& a) { return _mm_cvtss_f32(a); }
|
||||
template<> EIGEN_STRONG_INLINE double ei_pfirst<__m128d>(const __m128d& a) { return _mm_cvtsd_f64(a); }
|
||||
template<> EIGEN_STRONG_INLINE int ei_pfirst<__m128i>(const __m128i& a) { return _mm_cvtsi128_si32(a); }
|
||||
#endif
|
||||
|
||||
#ifdef __SSE3__
|
||||
// TODO implement SSE2 versions as well as integer versions
|
||||
template<> EIGEN_STRONG_INLINE __m128 ei_preduxp<__m128>(const __m128* vecs)
|
||||
{
|
||||
return _mm_hadd_ps(_mm_hadd_ps(vecs[0], vecs[1]),_mm_hadd_ps(vecs[2], vecs[3]));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE __m128d ei_preduxp<__m128d>(const __m128d* vecs)
|
||||
{
|
||||
return _mm_hadd_pd(vecs[0], vecs[1]);
|
||||
}
|
||||
// SSSE3 version:
|
||||
// EIGEN_STRONG_INLINE __m128i ei_preduxp(const __m128i* vecs)
|
||||
// {
|
||||
// return _mm_hadd_epi32(_mm_hadd_epi32(vecs[0], vecs[1]),_mm_hadd_epi32(vecs[2], vecs[3]));
|
||||
// }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE float ei_predux<__m128>(const __m128& a)
|
||||
{
|
||||
__m128 tmp0 = _mm_hadd_ps(a,a);
|
||||
return ei_pfirst(_mm_hadd_ps(tmp0, tmp0));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE double ei_predux<__m128d>(const __m128d& a) { return ei_pfirst(_mm_hadd_pd(a, a)); }
|
||||
|
||||
// SSSE3 version:
|
||||
// EIGEN_STRONG_INLINE float ei_predux(const __m128i& a)
|
||||
// {
|
||||
// __m128i tmp0 = _mm_hadd_epi32(a,a);
|
||||
// return ei_pfirst(_mm_hadd_epi32(tmp0, tmp0));
|
||||
// }
|
||||
#else
|
||||
// SSE2 versions
|
||||
template<> EIGEN_STRONG_INLINE float ei_predux<__m128>(const __m128& a)
|
||||
{
|
||||
__m128 tmp = _mm_add_ps(a, _mm_movehl_ps(a,a));
|
||||
return ei_pfirst(_mm_add_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE double ei_predux<__m128d>(const __m128d& a)
|
||||
{
|
||||
return ei_pfirst(_mm_add_sd(a, _mm_unpackhi_pd(a,a)));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE __m128 ei_preduxp<__m128>(const __m128* vecs)
|
||||
{
|
||||
__m128 tmp0, tmp1, tmp2;
|
||||
tmp0 = _mm_unpacklo_ps(vecs[0], vecs[1]);
|
||||
tmp1 = _mm_unpackhi_ps(vecs[0], vecs[1]);
|
||||
tmp2 = _mm_unpackhi_ps(vecs[2], vecs[3]);
|
||||
tmp0 = _mm_add_ps(tmp0, tmp1);
|
||||
tmp1 = _mm_unpacklo_ps(vecs[2], vecs[3]);
|
||||
tmp1 = _mm_add_ps(tmp1, tmp2);
|
||||
tmp2 = _mm_movehl_ps(tmp1, tmp0);
|
||||
tmp0 = _mm_movelh_ps(tmp0, tmp1);
|
||||
return _mm_add_ps(tmp0, tmp2);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE __m128d ei_preduxp<__m128d>(const __m128d* vecs)
|
||||
{
|
||||
return _mm_add_pd(_mm_unpacklo_pd(vecs[0], vecs[1]), _mm_unpackhi_pd(vecs[0], vecs[1]));
|
||||
}
|
||||
#endif // SSE3
|
||||
|
||||
template<> EIGEN_STRONG_INLINE int ei_predux<__m128i>(const __m128i& a)
|
||||
{
|
||||
__m128i tmp = _mm_add_epi32(a, _mm_unpackhi_epi64(a,a));
|
||||
return ei_pfirst(tmp) + ei_pfirst(_mm_shuffle_epi32(tmp, 1));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE __m128i ei_preduxp<__m128i>(const __m128i* vecs)
|
||||
{
|
||||
__m128i tmp0, tmp1, tmp2;
|
||||
tmp0 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
|
||||
tmp1 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
|
||||
tmp2 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
|
||||
tmp0 = _mm_add_epi32(tmp0, tmp1);
|
||||
tmp1 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
|
||||
tmp1 = _mm_add_epi32(tmp1, tmp2);
|
||||
tmp2 = _mm_unpacklo_epi64(tmp0, tmp1);
|
||||
tmp0 = _mm_unpackhi_epi64(tmp0, tmp1);
|
||||
return _mm_add_epi32(tmp0, tmp2);
|
||||
}
|
||||
|
||||
#if (defined __GNUC__)
|
||||
// template <> EIGEN_STRONG_INLINE __m128 ei_pmadd(const __m128& a, const __m128& b, const __m128& c)
|
||||
// {
|
||||
// __m128 res = b;
|
||||
// asm("mulps %[a], %[b] \n\taddps %[c], %[b]" : [b] "+x" (res) : [a] "x" (a), [c] "x" (c));
|
||||
// return res;
|
||||
// }
|
||||
// EIGEN_STRONG_INLINE __m128i _mm_alignr_epi8(const __m128i& a, const __m128i& b, const int i)
|
||||
// {
|
||||
// __m128i res = a;
|
||||
// asm("palignr %[i], %[a], %[b] " : [b] "+x" (res) : [a] "x" (a), [i] "i" (i));
|
||||
// return res;
|
||||
// }
|
||||
#endif
|
||||
|
||||
#ifdef __SSSE3__
|
||||
// SSSE3 versions
|
||||
template<int Offset>
|
||||
struct ei_palign_impl<Offset,__m128>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(__m128& first, const __m128& second)
|
||||
{
|
||||
if (Offset!=0)
|
||||
first = _mm_castsi128_ps(_mm_alignr_epi8(_mm_castps_si128(second), _mm_castps_si128(first), Offset*4));
|
||||
}
|
||||
};
|
||||
|
||||
template<int Offset>
|
||||
struct ei_palign_impl<Offset,__m128i>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(__m128i& first, const __m128i& second)
|
||||
{
|
||||
if (Offset!=0)
|
||||
first = _mm_alignr_epi8(second,first, Offset*4);
|
||||
}
|
||||
};
|
||||
|
||||
template<int Offset>
|
||||
struct ei_palign_impl<Offset,__m128d>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(__m128d& first, const __m128d& second)
|
||||
{
|
||||
if (Offset==1)
|
||||
first = _mm_castsi128_pd(_mm_alignr_epi8(_mm_castpd_si128(second), _mm_castpd_si128(first), 8));
|
||||
}
|
||||
};
|
||||
#else
|
||||
// SSE2 versions
|
||||
template<int Offset>
|
||||
struct ei_palign_impl<Offset,__m128>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(__m128& first, const __m128& second)
|
||||
{
|
||||
if (Offset==1)
|
||||
{
|
||||
first = _mm_move_ss(first,second);
|
||||
first = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(first),0x39));
|
||||
}
|
||||
else if (Offset==2)
|
||||
{
|
||||
first = _mm_movehl_ps(first,first);
|
||||
first = _mm_movelh_ps(first,second);
|
||||
}
|
||||
else if (Offset==3)
|
||||
{
|
||||
first = _mm_move_ss(first,second);
|
||||
first = _mm_shuffle_ps(first,second,0x93);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<int Offset>
|
||||
struct ei_palign_impl<Offset,__m128i>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(__m128i& first, const __m128i& second)
|
||||
{
|
||||
if (Offset==1)
|
||||
{
|
||||
first = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
|
||||
first = _mm_shuffle_epi32(first,0x39);
|
||||
}
|
||||
else if (Offset==2)
|
||||
{
|
||||
first = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(first)));
|
||||
first = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
|
||||
}
|
||||
else if (Offset==3)
|
||||
{
|
||||
first = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
|
||||
first = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(second),0x93));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<int Offset>
|
||||
struct ei_palign_impl<Offset,__m128d>
|
||||
{
|
||||
EIGEN_STRONG_INLINE static void run(__m128d& first, const __m128d& second)
|
||||
{
|
||||
if (Offset==1)
|
||||
{
|
||||
first = _mm_castps_pd(_mm_movehl_ps(_mm_castpd_ps(first),_mm_castpd_ps(first)));
|
||||
first = _mm_castps_pd(_mm_movelh_ps(_mm_castpd_ps(first),_mm_castpd_ps(second)));
|
||||
}
|
||||
}
|
||||
};
|
||||
#endif
|
||||
|
||||
#define ei_vec4f_swizzle1(v,p,q,r,s) \
|
||||
(_mm_castsi128_ps(_mm_shuffle_epi32( _mm_castps_si128(v), ((s)<<6|(r)<<4|(q)<<2|(p)))))
|
||||
|
||||
#endif // EIGEN_PACKET_MATH_SSE_H
|
@ -0,0 +1,173 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_ALIGNEDBOX_H
|
||||
#define EIGEN_ALIGNEDBOX_H
|
||||
|
||||
/** \geometry_module \ingroup Geometry_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class AlignedBox
|
||||
*
|
||||
* \brief An axis aligned box
|
||||
*
|
||||
* \param _Scalar the type of the scalar coefficients
|
||||
* \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
|
||||
*
|
||||
* This class represents an axis aligned box as a pair of the minimal and maximal corners.
|
||||
*/
|
||||
template <typename _Scalar, int _AmbientDim>
|
||||
class AlignedBox
|
||||
{
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
|
||||
enum { AmbientDimAtCompileTime = _AmbientDim };
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
|
||||
|
||||
/** Default constructor initializing a null box. */
|
||||
inline explicit AlignedBox()
|
||||
{ if (AmbientDimAtCompileTime!=Dynamic) setNull(); }
|
||||
|
||||
/** Constructs a null box with \a _dim the dimension of the ambient space. */
|
||||
inline explicit AlignedBox(int _dim) : m_min(_dim), m_max(_dim)
|
||||
{ setNull(); }
|
||||
|
||||
/** Constructs a box with extremities \a _min and \a _max. */
|
||||
inline AlignedBox(const VectorType& _min, const VectorType& _max) : m_min(_min), m_max(_max) {}
|
||||
|
||||
/** Constructs a box containing a single point \a p. */
|
||||
inline explicit AlignedBox(const VectorType& p) : m_min(p), m_max(p) {}
|
||||
|
||||
~AlignedBox() {}
|
||||
|
||||
/** \returns the dimension in which the box holds */
|
||||
inline int dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size()-1 : AmbientDimAtCompileTime; }
|
||||
|
||||
/** \returns true if the box is null, i.e, empty. */
|
||||
inline bool isNull() const { return (m_min.cwise() > m_max).any(); }
|
||||
|
||||
/** Makes \c *this a null/empty box. */
|
||||
inline void setNull()
|
||||
{
|
||||
m_min.setConstant( std::numeric_limits<Scalar>::max());
|
||||
m_max.setConstant(-std::numeric_limits<Scalar>::max());
|
||||
}
|
||||
|
||||
/** \returns the minimal corner */
|
||||
inline const VectorType& min() const { return m_min; }
|
||||
/** \returns a non const reference to the minimal corner */
|
||||
inline VectorType& min() { return m_min; }
|
||||
/** \returns the maximal corner */
|
||||
inline const VectorType& max() const { return m_max; }
|
||||
/** \returns a non const reference to the maximal corner */
|
||||
inline VectorType& max() { return m_max; }
|
||||
|
||||
/** \returns true if the point \a p is inside the box \c *this. */
|
||||
inline bool contains(const VectorType& p) const
|
||||
{ return (m_min.cwise()<=p).all() && (p.cwise()<=m_max).all(); }
|
||||
|
||||
/** \returns true if the box \a b is entirely inside the box \c *this. */
|
||||
inline bool contains(const AlignedBox& b) const
|
||||
{ return (m_min.cwise()<=b.min()).all() && (b.max().cwise()<=m_max).all(); }
|
||||
|
||||
/** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. */
|
||||
inline AlignedBox& extend(const VectorType& p)
|
||||
{ m_min = m_min.cwise().min(p); m_max = m_max.cwise().max(p); return *this; }
|
||||
|
||||
/** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. */
|
||||
inline AlignedBox& extend(const AlignedBox& b)
|
||||
{ m_min = m_min.cwise().min(b.m_min); m_max = m_max.cwise().max(b.m_max); return *this; }
|
||||
|
||||
/** Clamps \c *this by the box \a b and returns a reference to \c *this. */
|
||||
inline AlignedBox& clamp(const AlignedBox& b)
|
||||
{ m_min = m_min.cwise().max(b.m_min); m_max = m_max.cwise().min(b.m_max); return *this; }
|
||||
|
||||
/** Translate \c *this by the vector \a t and returns a reference to \c *this. */
|
||||
inline AlignedBox& translate(const VectorType& t)
|
||||
{ m_min += t; m_max += t; return *this; }
|
||||
|
||||
/** \returns the squared distance between the point \a p and the box \c *this,
|
||||
* and zero if \a p is inside the box.
|
||||
* \sa exteriorDistance()
|
||||
*/
|
||||
inline Scalar squaredExteriorDistance(const VectorType& p) const;
|
||||
|
||||
/** \returns the distance between the point \a p and the box \c *this,
|
||||
* and zero if \a p is inside the box.
|
||||
* \sa squaredExteriorDistance()
|
||||
*/
|
||||
inline Scalar exteriorDistance(const VectorType& p) const
|
||||
{ return ei_sqrt(squaredExteriorDistance(p)); }
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
inline typename ei_cast_return_type<AlignedBox,
|
||||
AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
|
||||
{
|
||||
return typename ei_cast_return_type<AlignedBox,
|
||||
AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
|
||||
}
|
||||
|
||||
/** Copy constructor with scalar type conversion */
|
||||
template<typename OtherScalarType>
|
||||
inline explicit AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime>& other)
|
||||
{
|
||||
m_min = other.min().template cast<Scalar>();
|
||||
m_max = other.max().template cast<Scalar>();
|
||||
}
|
||||
|
||||
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
||||
* determined by \a prec.
|
||||
*
|
||||
* \sa MatrixBase::isApprox() */
|
||||
bool isApprox(const AlignedBox& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
|
||||
{ return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); }
|
||||
|
||||
protected:
|
||||
|
||||
VectorType m_min, m_max;
|
||||
};
|
||||
|
||||
template<typename Scalar,int AmbiantDim>
|
||||
inline Scalar AlignedBox<Scalar,AmbiantDim>::squaredExteriorDistance(const VectorType& p) const
|
||||
{
|
||||
Scalar dist2 = 0.;
|
||||
Scalar aux;
|
||||
for (int k=0; k<dim(); ++k)
|
||||
{
|
||||
if ((aux = (p[k]-m_min[k]))<0.)
|
||||
dist2 += aux*aux;
|
||||
else if ( (aux = (m_max[k]-p[k]))<0. )
|
||||
dist2 += aux*aux;
|
||||
}
|
||||
return dist2;
|
||||
}
|
||||
|
||||
#endif // EIGEN_ALIGNEDBOX_H
|
@ -0,0 +1,228 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_ANGLEAXIS_H
|
||||
#define EIGEN_ANGLEAXIS_H
|
||||
|
||||
/** \geometry_module \ingroup Geometry_Module
|
||||
*
|
||||
* \class AngleAxis
|
||||
*
|
||||
* \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
|
||||
*
|
||||
* \param _Scalar the scalar type, i.e., the type of the coefficients.
|
||||
*
|
||||
* The following two typedefs are provided for convenience:
|
||||
* \li \c AngleAxisf for \c float
|
||||
* \li \c AngleAxisd for \c double
|
||||
*
|
||||
* \addexample AngleAxisForEuler \label How to define a rotation from Euler-angles
|
||||
*
|
||||
* Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
|
||||
* mimic Euler-angles. Here is an example:
|
||||
* \include AngleAxis_mimic_euler.cpp
|
||||
* Output: \verbinclude AngleAxis_mimic_euler.out
|
||||
*
|
||||
* \note This class is not aimed to be used to store a rotation transformation,
|
||||
* but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
|
||||
* and transformation objects.
|
||||
*
|
||||
* \sa class Quaternion, class Transform, MatrixBase::UnitX()
|
||||
*/
|
||||
|
||||
template<typename _Scalar> struct ei_traits<AngleAxis<_Scalar> >
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
};
|
||||
|
||||
template<typename _Scalar>
|
||||
class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
|
||||
{
|
||||
typedef RotationBase<AngleAxis<_Scalar>,3> Base;
|
||||
|
||||
public:
|
||||
|
||||
using Base::operator*;
|
||||
|
||||
enum { Dim = 3 };
|
||||
/** the scalar type of the coefficients */
|
||||
typedef _Scalar Scalar;
|
||||
typedef Matrix<Scalar,3,3> Matrix3;
|
||||
typedef Matrix<Scalar,3,1> Vector3;
|
||||
typedef Quaternion<Scalar> QuaternionType;
|
||||
|
||||
protected:
|
||||
|
||||
Vector3 m_axis;
|
||||
Scalar m_angle;
|
||||
|
||||
public:
|
||||
|
||||
/** Default constructor without initialization. */
|
||||
AngleAxis() {}
|
||||
/** Constructs and initialize the angle-axis rotation from an \a angle in radian
|
||||
* and an \a axis which must be normalized. */
|
||||
template<typename Derived>
|
||||
inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
|
||||
/** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
|
||||
inline AngleAxis(const QuaternionType& q) { *this = q; }
|
||||
/** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
|
||||
template<typename Derived>
|
||||
inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
|
||||
|
||||
Scalar angle() const { return m_angle; }
|
||||
Scalar& angle() { return m_angle; }
|
||||
|
||||
const Vector3& axis() const { return m_axis; }
|
||||
Vector3& axis() { return m_axis; }
|
||||
|
||||
/** Concatenates two rotations */
|
||||
inline QuaternionType operator* (const AngleAxis& other) const
|
||||
{ return QuaternionType(*this) * QuaternionType(other); }
|
||||
|
||||
/** Concatenates two rotations */
|
||||
inline QuaternionType operator* (const QuaternionType& other) const
|
||||
{ return QuaternionType(*this) * other; }
|
||||
|
||||
/** Concatenates two rotations */
|
||||
friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
|
||||
{ return a * QuaternionType(b); }
|
||||
|
||||
/** Concatenates two rotations */
|
||||
inline Matrix3 operator* (const Matrix3& other) const
|
||||
{ return toRotationMatrix() * other; }
|
||||
|
||||
/** Concatenates two rotations */
|
||||
inline friend Matrix3 operator* (const Matrix3& a, const AngleAxis& b)
|
||||
{ return a * b.toRotationMatrix(); }
|
||||
|
||||
/** Applies rotation to vector */
|
||||
inline Vector3 operator* (const Vector3& other) const
|
||||
{ return toRotationMatrix() * other; }
|
||||
|
||||
/** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
|
||||
AngleAxis inverse() const
|
||||
{ return AngleAxis(-m_angle, m_axis); }
|
||||
|
||||
AngleAxis& operator=(const QuaternionType& q);
|
||||
template<typename Derived>
|
||||
AngleAxis& operator=(const MatrixBase<Derived>& m);
|
||||
|
||||
template<typename Derived>
|
||||
AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
|
||||
Matrix3 toRotationMatrix(void) const;
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
inline typename ei_cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
|
||||
{ return typename ei_cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
|
||||
|
||||
/** Copy constructor with scalar type conversion */
|
||||
template<typename OtherScalarType>
|
||||
inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
|
||||
{
|
||||
m_axis = other.axis().template cast<Scalar>();
|
||||
m_angle = Scalar(other.angle());
|
||||
}
|
||||
|
||||
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
||||
* determined by \a prec.
|
||||
*
|
||||
* \sa MatrixBase::isApprox() */
|
||||
bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
|
||||
{ return m_axis.isApprox(other.m_axis, prec) && ei_isApprox(m_angle,other.m_angle, prec); }
|
||||
};
|
||||
|
||||
/** \ingroup Geometry_Module
|
||||
* single precision angle-axis type */
|
||||
typedef AngleAxis<float> AngleAxisf;
|
||||
/** \ingroup Geometry_Module
|
||||
* double precision angle-axis type */
|
||||
typedef AngleAxis<double> AngleAxisd;
|
||||
|
||||
/** Set \c *this from a quaternion.
|
||||
* The axis is normalized.
|
||||
*/
|
||||
template<typename Scalar>
|
||||
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionType& q)
|
||||
{
|
||||
Scalar n2 = q.vec().squaredNorm();
|
||||
if (n2 < precision<Scalar>()*precision<Scalar>())
|
||||
{
|
||||
m_angle = 0;
|
||||
m_axis << 1, 0, 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_angle = 2*std::acos(q.w());
|
||||
m_axis = q.vec() / ei_sqrt(n2);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Set \c *this from a 3x3 rotation matrix \a mat.
|
||||
*/
|
||||
template<typename Scalar>
|
||||
template<typename Derived>
|
||||
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
|
||||
{
|
||||
// Since a direct conversion would not be really faster,
|
||||
// let's use the robust Quaternion implementation:
|
||||
return *this = QuaternionType(mat);
|
||||
}
|
||||
|
||||
/** Constructs and \returns an equivalent 3x3 rotation matrix.
|
||||
*/
|
||||
template<typename Scalar>
|
||||
typename AngleAxis<Scalar>::Matrix3
|
||||
AngleAxis<Scalar>::toRotationMatrix(void) const
|
||||
{
|
||||
Matrix3 res;
|
||||
Vector3 sin_axis = ei_sin(m_angle) * m_axis;
|
||||
Scalar c = ei_cos(m_angle);
|
||||
Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
|
||||
|
||||
Scalar tmp;
|
||||
tmp = cos1_axis.x() * m_axis.y();
|
||||
res.coeffRef(0,1) = tmp - sin_axis.z();
|
||||
res.coeffRef(1,0) = tmp + sin_axis.z();
|
||||
|
||||
tmp = cos1_axis.x() * m_axis.z();
|
||||
res.coeffRef(0,2) = tmp + sin_axis.y();
|
||||
res.coeffRef(2,0) = tmp - sin_axis.y();
|
||||
|
||||
tmp = cos1_axis.y() * m_axis.z();
|
||||
res.coeffRef(1,2) = tmp - sin_axis.x();
|
||||
res.coeffRef(2,1) = tmp + sin_axis.x();
|
||||
|
||||
res.diagonal() = (cos1_axis.cwise() * m_axis).cwise() + c;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
#endif // EIGEN_ANGLEAXIS_H
|
@ -0,0 +1,6 @@
|
||||
FILE(GLOB Eigen_Geometry_SRCS "*.h")
|
||||
|
||||
INSTALL(FILES
|
||||
${Eigen_Geometry_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Geometry
|
||||
)
|
@ -0,0 +1,96 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_EULERANGLES_H
|
||||
#define EIGEN_EULERANGLES_H
|
||||
|
||||
/** \geometry_module \ingroup Geometry_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2)
|
||||
*
|
||||
* Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}.
|
||||
* For instance, in:
|
||||
* \code Vector3f ea = mat.eulerAngles(2, 0, 2); \endcode
|
||||
* "2" represents the z axis and "0" the x axis, etc. The returned angles are such that
|
||||
* we have the following equality:
|
||||
* \code
|
||||
* mat == AngleAxisf(ea[0], Vector3f::UnitZ())
|
||||
* * AngleAxisf(ea[1], Vector3f::UnitX())
|
||||
* * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode
|
||||
* This corresponds to the right-multiply conventions (with right hand side frames).
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline Matrix<typename MatrixBase<Derived>::Scalar,3,1>
|
||||
MatrixBase<Derived>::eulerAngles(int a0, int a1, int a2) const
|
||||
{
|
||||
/* Implemented from Graphics Gems IV */
|
||||
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived,3,3)
|
||||
|
||||
Matrix<Scalar,3,1> res;
|
||||
typedef Matrix<typename Derived::Scalar,2,1> Vector2;
|
||||
const Scalar epsilon = precision<Scalar>();
|
||||
|
||||
const int odd = ((a0+1)%3 == a1) ? 0 : 1;
|
||||
const int i = a0;
|
||||
const int j = (a0 + 1 + odd)%3;
|
||||
const int k = (a0 + 2 - odd)%3;
|
||||
|
||||
if (a0==a2)
|
||||
{
|
||||
Scalar s = Vector2(coeff(j,i) , coeff(k,i)).norm();
|
||||
res[1] = ei_atan2(s, coeff(i,i));
|
||||
if (s > epsilon)
|
||||
{
|
||||
res[0] = ei_atan2(coeff(j,i), coeff(k,i));
|
||||
res[2] = ei_atan2(coeff(i,j),-coeff(i,k));
|
||||
}
|
||||
else
|
||||
{
|
||||
res[0] = Scalar(0);
|
||||
res[2] = (coeff(i,i)>0?1:-1)*ei_atan2(-coeff(k,j), coeff(j,j));
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
Scalar c = Vector2(coeff(i,i) , coeff(i,j)).norm();
|
||||
res[1] = ei_atan2(-coeff(i,k), c);
|
||||
if (c > epsilon)
|
||||
{
|
||||
res[0] = ei_atan2(coeff(j,k), coeff(k,k));
|
||||
res[2] = ei_atan2(coeff(i,j), coeff(i,i));
|
||||
}
|
||||
else
|
||||
{
|
||||
res[0] = Scalar(0);
|
||||
res[2] = (coeff(i,k)>0?1:-1)*ei_atan2(-coeff(k,j), coeff(j,j));
|
||||
}
|
||||
}
|
||||
if (!odd)
|
||||
res = -res;
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
#endif // EIGEN_EULERANGLES_H
|
@ -0,0 +1,268 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_HYPERPLANE_H
|
||||
#define EIGEN_HYPERPLANE_H
|
||||
|
||||
/** \geometry_module \ingroup Geometry_Module
|
||||
*
|
||||
* \class Hyperplane
|
||||
*
|
||||
* \brief A hyperplane
|
||||
*
|
||||
* A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
|
||||
* For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
|
||||
*
|
||||
* \param _Scalar the scalar type, i.e., the type of the coefficients
|
||||
* \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
|
||||
* Notice that the dimension of the hyperplane is _AmbientDim-1.
|
||||
*
|
||||
* This class represents an hyperplane as the zero set of the implicit equation
|
||||
* \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
|
||||
* and \f$ d \f$ is the distance (offset) to the origin.
|
||||
*/
|
||||
template <typename _Scalar, int _AmbientDim>
|
||||
class Hyperplane
|
||||
{
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
|
||||
enum { AmbientDimAtCompileTime = _AmbientDim };
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
|
||||
typedef Matrix<Scalar,int(AmbientDimAtCompileTime)==Dynamic
|
||||
? Dynamic
|
||||
: int(AmbientDimAtCompileTime)+1,1> Coefficients;
|
||||
typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
|
||||
|
||||
/** Default constructor without initialization */
|
||||
inline explicit Hyperplane() {}
|
||||
|
||||
/** Constructs a dynamic-size hyperplane with \a _dim the dimension
|
||||
* of the ambient space */
|
||||
inline explicit Hyperplane(int _dim) : m_coeffs(_dim+1) {}
|
||||
|
||||
/** Construct a plane from its normal \a n and a point \a e onto the plane.
|
||||
* \warning the vector normal is assumed to be normalized.
|
||||
*/
|
||||
inline Hyperplane(const VectorType& n, const VectorType& e)
|
||||
: m_coeffs(n.size()+1)
|
||||
{
|
||||
normal() = n;
|
||||
offset() = -e.dot(n);
|
||||
}
|
||||
|
||||
/** Constructs a plane from its normal \a n and distance to the origin \a d
|
||||
* such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
|
||||
* \warning the vector normal is assumed to be normalized.
|
||||
*/
|
||||
inline Hyperplane(const VectorType& n, Scalar d)
|
||||
: m_coeffs(n.size()+1)
|
||||
{
|
||||
normal() = n;
|
||||
offset() = d;
|
||||
}
|
||||
|
||||
/** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
|
||||
* is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
|
||||
*/
|
||||
static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
|
||||
{
|
||||
Hyperplane result(p0.size());
|
||||
result.normal() = (p1 - p0).unitOrthogonal();
|
||||
result.offset() = -result.normal().dot(p0);
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Constructs a hyperplane passing through the three points. The dimension of the ambient space
|
||||
* is required to be exactly 3.
|
||||
*/
|
||||
static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
|
||||
Hyperplane result(p0.size());
|
||||
result.normal() = (p2 - p0).cross(p1 - p0).normalized();
|
||||
result.offset() = -result.normal().dot(p0);
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Constructs a hyperplane passing through the parametrized line \a parametrized.
|
||||
* If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
|
||||
* so an arbitrary choice is made.
|
||||
*/
|
||||
// FIXME to be consitent with the rest this could be implemented as a static Through function ??
|
||||
explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
|
||||
{
|
||||
normal() = parametrized.direction().unitOrthogonal();
|
||||
offset() = -normal().dot(parametrized.origin());
|
||||
}
|
||||
|
||||
~Hyperplane() {}
|
||||
|
||||
/** \returns the dimension in which the plane holds */
|
||||
inline int dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : AmbientDimAtCompileTime; }
|
||||
|
||||
/** normalizes \c *this */
|
||||
void normalize(void)
|
||||
{
|
||||
m_coeffs /= normal().norm();
|
||||
}
|
||||
|
||||
/** \returns the signed distance between the plane \c *this and a point \a p.
|
||||
* \sa absDistance()
|
||||
*/
|
||||
inline Scalar signedDistance(const VectorType& p) const { return p.dot(normal()) + offset(); }
|
||||
|
||||
/** \returns the absolute distance between the plane \c *this and a point \a p.
|
||||
* \sa signedDistance()
|
||||
*/
|
||||
inline Scalar absDistance(const VectorType& p) const { return ei_abs(signedDistance(p)); }
|
||||
|
||||
/** \returns the projection of a point \a p onto the plane \c *this.
|
||||
*/
|
||||
inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
|
||||
|
||||
/** \returns a constant reference to the unit normal vector of the plane, which corresponds
|
||||
* to the linear part of the implicit equation.
|
||||
*/
|
||||
inline const NormalReturnType normal() const { return NormalReturnType(m_coeffs,0,0,dim(),1); }
|
||||
|
||||
/** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
|
||||
* to the linear part of the implicit equation.
|
||||
*/
|
||||
inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
|
||||
|
||||
/** \returns the distance to the origin, which is also the "constant term" of the implicit equation
|
||||
* \warning the vector normal is assumed to be normalized.
|
||||
*/
|
||||
inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
|
||||
|
||||
/** \returns a non-constant reference to the distance to the origin, which is also the constant part
|
||||
* of the implicit equation */
|
||||
inline Scalar& offset() { return m_coeffs(dim()); }
|
||||
|
||||
/** \returns a constant reference to the coefficients c_i of the plane equation:
|
||||
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
|
||||
*/
|
||||
inline const Coefficients& coeffs() const { return m_coeffs; }
|
||||
|
||||
/** \returns a non-constant reference to the coefficients c_i of the plane equation:
|
||||
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
|
||||
*/
|
||||
inline Coefficients& coeffs() { return m_coeffs; }
|
||||
|
||||
/** \returns the intersection of *this with \a other.
|
||||
*
|
||||
* \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
|
||||
*
|
||||
* \note If \a other is approximately parallel to *this, this method will return any point on *this.
|
||||
*/
|
||||
VectorType intersection(const Hyperplane& other)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
|
||||
Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
|
||||
// since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
|
||||
// whether the two lines are approximately parallel.
|
||||
if(ei_isMuchSmallerThan(det, Scalar(1)))
|
||||
{ // special case where the two lines are approximately parallel. Pick any point on the first line.
|
||||
if(ei_abs(coeffs().coeff(1))>ei_abs(coeffs().coeff(0)))
|
||||
return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
|
||||
else
|
||||
return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
|
||||
}
|
||||
else
|
||||
{ // general case
|
||||
Scalar invdet = Scalar(1) / det;
|
||||
return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
|
||||
invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
|
||||
}
|
||||
}
|
||||
|
||||
/** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
|
||||
*
|
||||
* \param mat the Dim x Dim transformation matrix
|
||||
* \param traits specifies whether the matrix \a mat represents an Isometry
|
||||
* or a more generic Affine transformation. The default is Affine.
|
||||
*/
|
||||
template<typename XprType>
|
||||
inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
|
||||
{
|
||||
if (traits==Affine)
|
||||
normal() = mat.inverse().transpose() * normal();
|
||||
else if (traits==Isometry)
|
||||
normal() = mat * normal();
|
||||
else
|
||||
{
|
||||
ei_assert("invalid traits value in Hyperplane::transform()");
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Applies the transformation \a t to \c *this and returns a reference to \c *this.
|
||||
*
|
||||
* \param t the transformation of dimension Dim
|
||||
* \param traits specifies whether the transformation \a t represents an Isometry
|
||||
* or a more generic Affine transformation. The default is Affine.
|
||||
* Other kind of transformations are not supported.
|
||||
*/
|
||||
inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime>& t,
|
||||
TransformTraits traits = Affine)
|
||||
{
|
||||
transform(t.linear(), traits);
|
||||
offset() -= t.translation().dot(normal());
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
inline typename ei_cast_return_type<Hyperplane,
|
||||
Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
|
||||
{
|
||||
return typename ei_cast_return_type<Hyperplane,
|
||||
Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
|
||||
}
|
||||
|
||||
/** Copy constructor with scalar type conversion */
|
||||
template<typename OtherScalarType>
|
||||
inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime>& other)
|
||||
{ m_coeffs = other.coeffs().template cast<Scalar>(); }
|
||||
|
||||
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
||||
* determined by \a prec.
|
||||
*
|
||||
* \sa MatrixBase::isApprox() */
|
||||
bool isApprox(const Hyperplane& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
|
||||
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
|
||||
|
||||
protected:
|
||||
|
||||
Coefficients m_coeffs;
|
||||
};
|
||||
|
||||
#endif // EIGEN_HYPERPLANE_H
|
@ -0,0 +1,119 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_ORTHOMETHODS_H
|
||||
#define EIGEN_ORTHOMETHODS_H
|
||||
|
||||
/** \geometry_module
|
||||
*
|
||||
* \returns the cross product of \c *this and \a other
|
||||
*
|
||||
* Here is a very good explanation of cross-product: http://xkcd.com/199/
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline typename MatrixBase<Derived>::PlainMatrixType
|
||||
MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3)
|
||||
|
||||
// Note that there is no need for an expression here since the compiler
|
||||
// optimize such a small temporary very well (even within a complex expression)
|
||||
const typename ei_nested<Derived,2>::type lhs(derived());
|
||||
const typename ei_nested<OtherDerived,2>::type rhs(other.derived());
|
||||
return typename ei_plain_matrix_type<Derived>::type(
|
||||
lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1),
|
||||
lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2),
|
||||
lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)
|
||||
);
|
||||
}
|
||||
|
||||
template<typename Derived, int Size = Derived::SizeAtCompileTime>
|
||||
struct ei_unitOrthogonal_selector
|
||||
{
|
||||
typedef typename ei_plain_matrix_type<Derived>::type VectorType;
|
||||
typedef typename ei_traits<Derived>::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
inline static VectorType run(const Derived& src)
|
||||
{
|
||||
VectorType perp(src.size());
|
||||
/* Let us compute the crossed product of *this with a vector
|
||||
* that is not too close to being colinear to *this.
|
||||
*/
|
||||
|
||||
/* unless the x and y coords are both close to zero, we can
|
||||
* simply take ( -y, x, 0 ) and normalize it.
|
||||
*/
|
||||
if((!ei_isMuchSmallerThan(src.x(), src.z()))
|
||||
|| (!ei_isMuchSmallerThan(src.y(), src.z())))
|
||||
{
|
||||
RealScalar invnm = RealScalar(1)/src.template start<2>().norm();
|
||||
perp.coeffRef(0) = -ei_conj(src.y())*invnm;
|
||||
perp.coeffRef(1) = ei_conj(src.x())*invnm;
|
||||
perp.coeffRef(2) = 0;
|
||||
}
|
||||
/* if both x and y are close to zero, then the vector is close
|
||||
* to the z-axis, so it's far from colinear to the x-axis for instance.
|
||||
* So we take the crossed product with (1,0,0) and normalize it.
|
||||
*/
|
||||
else
|
||||
{
|
||||
RealScalar invnm = RealScalar(1)/src.template end<2>().norm();
|
||||
perp.coeffRef(0) = 0;
|
||||
perp.coeffRef(1) = -ei_conj(src.z())*invnm;
|
||||
perp.coeffRef(2) = ei_conj(src.y())*invnm;
|
||||
}
|
||||
if( (Derived::SizeAtCompileTime!=Dynamic && Derived::SizeAtCompileTime>3)
|
||||
|| (Derived::SizeAtCompileTime==Dynamic && src.size()>3) )
|
||||
perp.end(src.size()-3).setZero();
|
||||
|
||||
return perp;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_unitOrthogonal_selector<Derived,2>
|
||||
{
|
||||
typedef typename ei_plain_matrix_type<Derived>::type VectorType;
|
||||
inline static VectorType run(const Derived& src)
|
||||
{ return VectorType(-ei_conj(src.y()), ei_conj(src.x())).normalized(); }
|
||||
};
|
||||
|
||||
/** \returns a unit vector which is orthogonal to \c *this
|
||||
*
|
||||
* The size of \c *this must be at least 2. If the size is exactly 2,
|
||||
* then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized().
|
||||
*
|
||||
* \sa cross()
|
||||
*/
|
||||
template<typename Derived>
|
||||
typename MatrixBase<Derived>::PlainMatrixType
|
||||
MatrixBase<Derived>::unitOrthogonal() const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return ei_unitOrthogonal_selector<Derived>::run(derived());
|
||||
}
|
||||
|
||||
#endif // EIGEN_ORTHOMETHODS_H
|
@ -0,0 +1,155 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_PARAMETRIZEDLINE_H
|
||||
#define EIGEN_PARAMETRIZEDLINE_H
|
||||
|
||||
/** \geometry_module \ingroup Geometry_Module
|
||||
*
|
||||
* \class ParametrizedLine
|
||||
*
|
||||
* \brief A parametrized line
|
||||
*
|
||||
* A parametrized line is defined by an origin point \f$ \mathbf{o} \f$ and a unit
|
||||
* direction vector \f$ \mathbf{d} \f$ such that the line corresponds to
|
||||
* the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ l \in \mathbf{R} \f$.
|
||||
*
|
||||
* \param _Scalar the scalar type, i.e., the type of the coefficients
|
||||
* \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
|
||||
*/
|
||||
template <typename _Scalar, int _AmbientDim>
|
||||
class ParametrizedLine
|
||||
{
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
||||
enum { AmbientDimAtCompileTime = _AmbientDim };
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
|
||||
|
||||
/** Default constructor without initialization */
|
||||
inline explicit ParametrizedLine() {}
|
||||
|
||||
/** Constructs a dynamic-size line with \a _dim the dimension
|
||||
* of the ambient space */
|
||||
inline explicit ParametrizedLine(int _dim) : m_origin(_dim), m_direction(_dim) {}
|
||||
|
||||
/** Initializes a parametrized line of direction \a direction and origin \a origin.
|
||||
* \warning the vector direction is assumed to be normalized.
|
||||
*/
|
||||
ParametrizedLine(const VectorType& origin, const VectorType& direction)
|
||||
: m_origin(origin), m_direction(direction) {}
|
||||
|
||||
explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
|
||||
|
||||
/** Constructs a parametrized line going from \a p0 to \a p1. */
|
||||
static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1)
|
||||
{ return ParametrizedLine(p0, (p1-p0).normalized()); }
|
||||
|
||||
~ParametrizedLine() {}
|
||||
|
||||
/** \returns the dimension in which the line holds */
|
||||
inline int dim() const { return m_direction.size(); }
|
||||
|
||||
const VectorType& origin() const { return m_origin; }
|
||||
VectorType& origin() { return m_origin; }
|
||||
|
||||
const VectorType& direction() const { return m_direction; }
|
||||
VectorType& direction() { return m_direction; }
|
||||
|
||||
/** \returns the squared distance of a point \a p to its projection onto the line \c *this.
|
||||
* \sa distance()
|
||||
*/
|
||||
RealScalar squaredDistance(const VectorType& p) const
|
||||
{
|
||||
VectorType diff = p-origin();
|
||||
return (diff - diff.dot(direction())* direction()).squaredNorm();
|
||||
}
|
||||
/** \returns the distance of a point \a p to its projection onto the line \c *this.
|
||||
* \sa squaredDistance()
|
||||
*/
|
||||
RealScalar distance(const VectorType& p) const { return ei_sqrt(squaredDistance(p)); }
|
||||
|
||||
/** \returns the projection of a point \a p onto the line \c *this. */
|
||||
VectorType projection(const VectorType& p) const
|
||||
{ return origin() + (p-origin()).dot(direction()) * direction(); }
|
||||
|
||||
Scalar intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
inline typename ei_cast_return_type<ParametrizedLine,
|
||||
ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
|
||||
{
|
||||
return typename ei_cast_return_type<ParametrizedLine,
|
||||
ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
|
||||
}
|
||||
|
||||
/** Copy constructor with scalar type conversion */
|
||||
template<typename OtherScalarType>
|
||||
inline explicit ParametrizedLine(const ParametrizedLine<OtherScalarType,AmbientDimAtCompileTime>& other)
|
||||
{
|
||||
m_origin = other.origin().template cast<Scalar>();
|
||||
m_direction = other.direction().template cast<Scalar>();
|
||||
}
|
||||
|
||||
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
||||
* determined by \a prec.
|
||||
*
|
||||
* \sa MatrixBase::isApprox() */
|
||||
bool isApprox(const ParametrizedLine& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
|
||||
{ return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); }
|
||||
|
||||
protected:
|
||||
|
||||
VectorType m_origin, m_direction;
|
||||
};
|
||||
|
||||
/** Constructs a parametrized line from a 2D hyperplane
|
||||
*
|
||||
* \warning the ambient space must have dimension 2 such that the hyperplane actually describes a line
|
||||
*/
|
||||
template <typename _Scalar, int _AmbientDim>
|
||||
inline ParametrizedLine<_Scalar, _AmbientDim>::ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
|
||||
direction() = hyperplane.normal().unitOrthogonal();
|
||||
origin() = -hyperplane.normal()*hyperplane.offset();
|
||||
}
|
||||
|
||||
/** \returns the parameter value of the intersection between \c *this and the given hyperplane
|
||||
*/
|
||||
template <typename _Scalar, int _AmbientDim>
|
||||
inline _Scalar ParametrizedLine<_Scalar, _AmbientDim>::intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane)
|
||||
{
|
||||
return -(hyperplane.offset()+origin().dot(hyperplane.normal()))
|
||||
/(direction().dot(hyperplane.normal()));
|
||||
}
|
||||
|
||||
#endif // EIGEN_PARAMETRIZEDLINE_H
|
@ -0,0 +1,530 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_QUATERNION_H
|
||||
#define EIGEN_QUATERNION_H
|
||||
|
||||
template<typename Other,
|
||||
int OtherRows=Other::RowsAtCompileTime,
|
||||
int OtherCols=Other::ColsAtCompileTime>
|
||||
struct ei_quaternion_assign_impl;
|
||||
|
||||
/** \geometry_module \ingroup Geometry_Module
|
||||
*
|
||||
* \class Quaternion
|
||||
*
|
||||
* \brief The quaternion class used to represent 3D orientations and rotations
|
||||
*
|
||||
* \param _Scalar the scalar type, i.e., the type of the coefficients
|
||||
*
|
||||
* This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
|
||||
* orientations and rotations of objects in three dimensions. Compared to other representations
|
||||
* like Euler angles or 3x3 matrices, quatertions offer the following advantages:
|
||||
* \li \b compact storage (4 scalars)
|
||||
* \li \b efficient to compose (28 flops),
|
||||
* \li \b stable spherical interpolation
|
||||
*
|
||||
* The following two typedefs are provided for convenience:
|
||||
* \li \c Quaternionf for \c float
|
||||
* \li \c Quaterniond for \c double
|
||||
*
|
||||
* \sa class AngleAxis, class Transform
|
||||
*/
|
||||
|
||||
template<typename _Scalar> struct ei_traits<Quaternion<_Scalar> >
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
};
|
||||
|
||||
template<typename _Scalar>
|
||||
class Quaternion : public RotationBase<Quaternion<_Scalar>,3>
|
||||
{
|
||||
typedef RotationBase<Quaternion<_Scalar>,3> Base;
|
||||
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,4)
|
||||
|
||||
using Base::operator*;
|
||||
|
||||
/** the scalar type of the coefficients */
|
||||
typedef _Scalar Scalar;
|
||||
|
||||
/** the type of the Coefficients 4-vector */
|
||||
typedef Matrix<Scalar, 4, 1> Coefficients;
|
||||
/** the type of a 3D vector */
|
||||
typedef Matrix<Scalar,3,1> Vector3;
|
||||
/** the equivalent rotation matrix type */
|
||||
typedef Matrix<Scalar,3,3> Matrix3;
|
||||
/** the equivalent angle-axis type */
|
||||
typedef AngleAxis<Scalar> AngleAxisType;
|
||||
|
||||
/** \returns the \c x coefficient */
|
||||
inline Scalar x() const { return m_coeffs.coeff(0); }
|
||||
/** \returns the \c y coefficient */
|
||||
inline Scalar y() const { return m_coeffs.coeff(1); }
|
||||
/** \returns the \c z coefficient */
|
||||
inline Scalar z() const { return m_coeffs.coeff(2); }
|
||||
/** \returns the \c w coefficient */
|
||||
inline Scalar w() const { return m_coeffs.coeff(3); }
|
||||
|
||||
/** \returns a reference to the \c x coefficient */
|
||||
inline Scalar& x() { return m_coeffs.coeffRef(0); }
|
||||
/** \returns a reference to the \c y coefficient */
|
||||
inline Scalar& y() { return m_coeffs.coeffRef(1); }
|
||||
/** \returns a reference to the \c z coefficient */
|
||||
inline Scalar& z() { return m_coeffs.coeffRef(2); }
|
||||
/** \returns a reference to the \c w coefficient */
|
||||
inline Scalar& w() { return m_coeffs.coeffRef(3); }
|
||||
|
||||
/** \returns a read-only vector expression of the imaginary part (x,y,z) */
|
||||
inline const Block<Coefficients,3,1> vec() const { return m_coeffs.template start<3>(); }
|
||||
|
||||
/** \returns a vector expression of the imaginary part (x,y,z) */
|
||||
inline Block<Coefficients,3,1> vec() { return m_coeffs.template start<3>(); }
|
||||
|
||||
/** \returns a read-only vector expression of the coefficients (x,y,z,w) */
|
||||
inline const Coefficients& coeffs() const { return m_coeffs; }
|
||||
|
||||
/** \returns a vector expression of the coefficients (x,y,z,w) */
|
||||
inline Coefficients& coeffs() { return m_coeffs; }
|
||||
|
||||
/** Default constructor leaving the quaternion uninitialized. */
|
||||
inline Quaternion() {}
|
||||
|
||||
/** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
|
||||
* its four coefficients \a w, \a x, \a y and \a z.
|
||||
*
|
||||
* \warning Note the order of the arguments: the real \a w coefficient first,
|
||||
* while internally the coefficients are stored in the following order:
|
||||
* [\c x, \c y, \c z, \c w]
|
||||
*/
|
||||
inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z)
|
||||
{ m_coeffs << x, y, z, w; }
|
||||
|
||||
/** Copy constructor */
|
||||
inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; }
|
||||
|
||||
/** Constructs and initializes a quaternion from the angle-axis \a aa */
|
||||
explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
|
||||
|
||||
/** Constructs and initializes a quaternion from either:
|
||||
* - a rotation matrix expression,
|
||||
* - a 4D vector expression representing quaternion coefficients.
|
||||
* \sa operator=(MatrixBase<Derived>)
|
||||
*/
|
||||
template<typename Derived>
|
||||
explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
|
||||
|
||||
Quaternion& operator=(const Quaternion& other);
|
||||
Quaternion& operator=(const AngleAxisType& aa);
|
||||
template<typename Derived>
|
||||
Quaternion& operator=(const MatrixBase<Derived>& m);
|
||||
|
||||
/** \returns a quaternion representing an identity rotation
|
||||
* \sa MatrixBase::Identity()
|
||||
*/
|
||||
inline static Quaternion Identity() { return Quaternion(1, 0, 0, 0); }
|
||||
|
||||
/** \sa Quaternion::Identity(), MatrixBase::setIdentity()
|
||||
*/
|
||||
inline Quaternion& setIdentity() { m_coeffs << 0, 0, 0, 1; return *this; }
|
||||
|
||||
/** \returns the squared norm of the quaternion's coefficients
|
||||
* \sa Quaternion::norm(), MatrixBase::squaredNorm()
|
||||
*/
|
||||
inline Scalar squaredNorm() const { return m_coeffs.squaredNorm(); }
|
||||
|
||||
/** \returns the norm of the quaternion's coefficients
|
||||
* \sa Quaternion::squaredNorm(), MatrixBase::norm()
|
||||
*/
|
||||
inline Scalar norm() const { return m_coeffs.norm(); }
|
||||
|
||||
/** Normalizes the quaternion \c *this
|
||||
* \sa normalized(), MatrixBase::normalize() */
|
||||
inline void normalize() { m_coeffs.normalize(); }
|
||||
/** \returns a normalized version of \c *this
|
||||
* \sa normalize(), MatrixBase::normalized() */
|
||||
inline Quaternion normalized() const { return Quaternion(m_coeffs.normalized()); }
|
||||
|
||||
/** \returns the dot product of \c *this and \a other
|
||||
* Geometrically speaking, the dot product of two unit quaternions
|
||||
* corresponds to the cosine of half the angle between the two rotations.
|
||||
* \sa angularDistance()
|
||||
*/
|
||||
inline Scalar dot(const Quaternion& other) const { return m_coeffs.dot(other.m_coeffs); }
|
||||
|
||||
inline Scalar angularDistance(const Quaternion& other) const;
|
||||
|
||||
Matrix3 toRotationMatrix(void) const;
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
Quaternion& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
|
||||
|
||||
inline Quaternion operator* (const Quaternion& q) const;
|
||||
inline Quaternion& operator*= (const Quaternion& q);
|
||||
|
||||
Quaternion inverse(void) const;
|
||||
Quaternion conjugate(void) const;
|
||||
|
||||
Quaternion slerp(Scalar t, const Quaternion& other) const;
|
||||
|
||||
template<typename Derived>
|
||||
Vector3 operator* (const MatrixBase<Derived>& vec) const;
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
inline typename ei_cast_return_type<Quaternion,Quaternion<NewScalarType> >::type cast() const
|
||||
{ return typename ei_cast_return_type<Quaternion,Quaternion<NewScalarType> >::type(*this); }
|
||||
|
||||
/** Copy constructor with scalar type conversion */
|
||||
template<typename OtherScalarType>
|
||||
inline explicit Quaternion(const Quaternion<OtherScalarType>& other)
|
||||
{ m_coeffs = other.coeffs().template cast<Scalar>(); }
|
||||
|
||||
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
||||
* determined by \a prec.
|
||||
*
|
||||
* \sa MatrixBase::isApprox() */
|
||||
bool isApprox(const Quaternion& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
|
||||
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
|
||||
|
||||
protected:
|
||||
Coefficients m_coeffs;
|
||||
};
|
||||
|
||||
/** \ingroup Geometry_Module
|
||||
* single precision quaternion type */
|
||||
typedef Quaternion<float> Quaternionf;
|
||||
/** \ingroup Geometry_Module
|
||||
* double precision quaternion type */
|
||||
typedef Quaternion<double> Quaterniond;
|
||||
|
||||
// Generic Quaternion * Quaternion product
|
||||
template<int Arch,typename Scalar> inline Quaternion<Scalar>
|
||||
ei_quaternion_product(const Quaternion<Scalar>& a, const Quaternion<Scalar>& b)
|
||||
{
|
||||
return Quaternion<Scalar>
|
||||
(
|
||||
a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
|
||||
a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
|
||||
a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
|
||||
a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
|
||||
);
|
||||
}
|
||||
|
||||
#ifdef EIGEN_VECTORIZE_SSE
|
||||
template<> inline Quaternion<float>
|
||||
ei_quaternion_product<EiArch_SSE,float>(const Quaternion<float>& _a, const Quaternion<float>& _b)
|
||||
{
|
||||
const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0,0,0,0x80000000));
|
||||
Quaternion<float> res;
|
||||
__m128 a = _a.coeffs().packet<Aligned>(0);
|
||||
__m128 b = _b.coeffs().packet<Aligned>(0);
|
||||
__m128 flip1 = _mm_xor_ps(_mm_mul_ps(ei_vec4f_swizzle1(a,1,2,0,2),
|
||||
ei_vec4f_swizzle1(b,2,0,1,2)),mask);
|
||||
__m128 flip2 = _mm_xor_ps(_mm_mul_ps(ei_vec4f_swizzle1(a,3,3,3,1),
|
||||
ei_vec4f_swizzle1(b,0,1,2,1)),mask);
|
||||
ei_pstore(&res.x(),
|
||||
_mm_add_ps(_mm_sub_ps(_mm_mul_ps(a,ei_vec4f_swizzle1(b,3,3,3,3)),
|
||||
_mm_mul_ps(ei_vec4f_swizzle1(a,2,0,1,0),
|
||||
ei_vec4f_swizzle1(b,1,2,0,0))),
|
||||
_mm_add_ps(flip1,flip2)));
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/** \returns the concatenation of two rotations as a quaternion-quaternion product */
|
||||
template <typename Scalar>
|
||||
inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const
|
||||
{
|
||||
return ei_quaternion_product<EiArch>(*this,other);
|
||||
}
|
||||
|
||||
/** \sa operator*(Quaternion) */
|
||||
template <typename Scalar>
|
||||
inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other)
|
||||
{
|
||||
return (*this = *this * other);
|
||||
}
|
||||
|
||||
/** Rotation of a vector by a quaternion.
|
||||
* \remarks If the quaternion is used to rotate several points (>1)
|
||||
* then it is much more efficient to first convert it to a 3x3 Matrix.
|
||||
* Comparison of the operation cost for n transformations:
|
||||
* - Quaternion: 30n
|
||||
* - Via a Matrix3: 24 + 15n
|
||||
*/
|
||||
template <typename Scalar>
|
||||
template<typename Derived>
|
||||
inline typename Quaternion<Scalar>::Vector3
|
||||
Quaternion<Scalar>::operator* (const MatrixBase<Derived>& v) const
|
||||
{
|
||||
// Note that this algorithm comes from the optimization by hand
|
||||
// of the conversion to a Matrix followed by a Matrix/Vector product.
|
||||
// It appears to be much faster than the common algorithm found
|
||||
// in the litterature (30 versus 39 flops). It also requires two
|
||||
// Vector3 as temporaries.
|
||||
Vector3 uv;
|
||||
uv = 2 * this->vec().cross(v);
|
||||
return v + this->w() * uv + this->vec().cross(uv);
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const Quaternion& other)
|
||||
{
|
||||
m_coeffs = other.m_coeffs;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
|
||||
*/
|
||||
template<typename Scalar>
|
||||
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const AngleAxisType& aa)
|
||||
{
|
||||
Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
|
||||
this->w() = ei_cos(ha);
|
||||
this->vec() = ei_sin(ha) * aa.axis();
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Set \c *this from the expression \a xpr:
|
||||
* - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
|
||||
* - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
|
||||
* and \a xpr is converted to a quaternion
|
||||
*/
|
||||
template<typename Scalar>
|
||||
template<typename Derived>
|
||||
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const MatrixBase<Derived>& xpr)
|
||||
{
|
||||
ei_quaternion_assign_impl<Derived>::run(*this, xpr.derived());
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Convert the quaternion to a 3x3 rotation matrix */
|
||||
template<typename Scalar>
|
||||
inline typename Quaternion<Scalar>::Matrix3
|
||||
Quaternion<Scalar>::toRotationMatrix(void) const
|
||||
{
|
||||
// NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
|
||||
// if not inlined then the cost of the return by value is huge ~ +35%,
|
||||
// however, not inlining this function is an order of magnitude slower, so
|
||||
// it has to be inlined, and so the return by value is not an issue
|
||||
Matrix3 res;
|
||||
|
||||
const Scalar tx = 2*this->x();
|
||||
const Scalar ty = 2*this->y();
|
||||
const Scalar tz = 2*this->z();
|
||||
const Scalar twx = tx*this->w();
|
||||
const Scalar twy = ty*this->w();
|
||||
const Scalar twz = tz*this->w();
|
||||
const Scalar txx = tx*this->x();
|
||||
const Scalar txy = ty*this->x();
|
||||
const Scalar txz = tz*this->x();
|
||||
const Scalar tyy = ty*this->y();
|
||||
const Scalar tyz = tz*this->y();
|
||||
const Scalar tzz = tz*this->z();
|
||||
|
||||
res.coeffRef(0,0) = 1-(tyy+tzz);
|
||||
res.coeffRef(0,1) = txy-twz;
|
||||
res.coeffRef(0,2) = txz+twy;
|
||||
res.coeffRef(1,0) = txy+twz;
|
||||
res.coeffRef(1,1) = 1-(txx+tzz);
|
||||
res.coeffRef(1,2) = tyz-twx;
|
||||
res.coeffRef(2,0) = txz-twy;
|
||||
res.coeffRef(2,1) = tyz+twx;
|
||||
res.coeffRef(2,2) = 1-(txx+tyy);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/** Sets *this to be a quaternion representing a rotation sending the vector \a a to the vector \a b.
|
||||
*
|
||||
* \returns a reference to *this.
|
||||
*
|
||||
* Note that the two input vectors do \b not have to be normalized.
|
||||
*/
|
||||
template<typename Scalar>
|
||||
template<typename Derived1, typename Derived2>
|
||||
inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
|
||||
{
|
||||
Vector3 v0 = a.normalized();
|
||||
Vector3 v1 = b.normalized();
|
||||
Scalar c = v0.dot(v1);
|
||||
|
||||
// if dot == 1, vectors are the same
|
||||
if (ei_isApprox(c,Scalar(1)))
|
||||
{
|
||||
// set to identity
|
||||
this->w() = 1; this->vec().setZero();
|
||||
return *this;
|
||||
}
|
||||
// if dot == -1, vectors are opposites
|
||||
if (ei_isApprox(c,Scalar(-1)))
|
||||
{
|
||||
this->vec() = v0.unitOrthogonal();
|
||||
this->w() = 0;
|
||||
return *this;
|
||||
}
|
||||
|
||||
Vector3 axis = v0.cross(v1);
|
||||
Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2));
|
||||
Scalar invs = Scalar(1)/s;
|
||||
this->vec() = axis * invs;
|
||||
this->w() = s * Scalar(0.5);
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \returns the multiplicative inverse of \c *this
|
||||
* Note that in most cases, i.e., if you simply want the opposite rotation,
|
||||
* and/or the quaternion is normalized, then it is enough to use the conjugate.
|
||||
*
|
||||
* \sa Quaternion::conjugate()
|
||||
*/
|
||||
template <typename Scalar>
|
||||
inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const
|
||||
{
|
||||
// FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
|
||||
Scalar n2 = this->squaredNorm();
|
||||
if (n2 > 0)
|
||||
return Quaternion(conjugate().coeffs() / n2);
|
||||
else
|
||||
{
|
||||
// return an invalid result to flag the error
|
||||
return Quaternion(Coefficients::Zero());
|
||||
}
|
||||
}
|
||||
|
||||
/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
|
||||
* if the quaternion is normalized.
|
||||
* The conjugate of a quaternion represents the opposite rotation.
|
||||
*
|
||||
* \sa Quaternion::inverse()
|
||||
*/
|
||||
template <typename Scalar>
|
||||
inline Quaternion<Scalar> Quaternion<Scalar>::conjugate() const
|
||||
{
|
||||
return Quaternion(this->w(),-this->x(),-this->y(),-this->z());
|
||||
}
|
||||
|
||||
/** \returns the angle (in radian) between two rotations
|
||||
* \sa dot()
|
||||
*/
|
||||
template <typename Scalar>
|
||||
inline Scalar Quaternion<Scalar>::angularDistance(const Quaternion& other) const
|
||||
{
|
||||
double d = ei_abs(this->dot(other));
|
||||
if (d>=1.0)
|
||||
return 0;
|
||||
return Scalar(2) * std::acos(d);
|
||||
}
|
||||
|
||||
/** \returns the spherical linear interpolation between the two quaternions
|
||||
* \c *this and \a other at the parameter \a t
|
||||
*/
|
||||
template <typename Scalar>
|
||||
Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const
|
||||
{
|
||||
static const Scalar one = Scalar(1) - machine_epsilon<Scalar>();
|
||||
Scalar d = this->dot(other);
|
||||
Scalar absD = ei_abs(d);
|
||||
|
||||
Scalar scale0;
|
||||
Scalar scale1;
|
||||
|
||||
if (absD>=one)
|
||||
{
|
||||
scale0 = Scalar(1) - t;
|
||||
scale1 = t;
|
||||
}
|
||||
else
|
||||
{
|
||||
// theta is the angle between the 2 quaternions
|
||||
Scalar theta = std::acos(absD);
|
||||
Scalar sinTheta = ei_sin(theta);
|
||||
|
||||
scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta;
|
||||
scale1 = ei_sin( ( t * theta) ) / sinTheta;
|
||||
if (d<0)
|
||||
scale1 = -scale1;
|
||||
}
|
||||
|
||||
return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
|
||||
}
|
||||
|
||||
// set from a rotation matrix
|
||||
template<typename Other>
|
||||
struct ei_quaternion_assign_impl<Other,3,3>
|
||||
{
|
||||
typedef typename Other::Scalar Scalar;
|
||||
inline static void run(Quaternion<Scalar>& q, const Other& mat)
|
||||
{
|
||||
// This algorithm comes from "Quaternion Calculus and Fast Animation",
|
||||
// Ken Shoemake, 1987 SIGGRAPH course notes
|
||||
Scalar t = mat.trace();
|
||||
if (t > 0)
|
||||
{
|
||||
t = ei_sqrt(t + Scalar(1.0));
|
||||
q.w() = Scalar(0.5)*t;
|
||||
t = Scalar(0.5)/t;
|
||||
q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
|
||||
q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
|
||||
q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
|
||||
}
|
||||
else
|
||||
{
|
||||
int i = 0;
|
||||
if (mat.coeff(1,1) > mat.coeff(0,0))
|
||||
i = 1;
|
||||
if (mat.coeff(2,2) > mat.coeff(i,i))
|
||||
i = 2;
|
||||
int j = (i+1)%3;
|
||||
int k = (j+1)%3;
|
||||
|
||||
t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
|
||||
q.coeffs().coeffRef(i) = Scalar(0.5) * t;
|
||||
t = Scalar(0.5)/t;
|
||||
q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
|
||||
q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
|
||||
q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// set from a vector of coefficients assumed to be a quaternion
|
||||
template<typename Other>
|
||||
struct ei_quaternion_assign_impl<Other,4,1>
|
||||
{
|
||||
typedef typename Other::Scalar Scalar;
|
||||
inline static void run(Quaternion<Scalar>& q, const Other& vec)
|
||||
{
|
||||
q.coeffs() = vec;
|
||||
}
|
||||
};
|
||||
|
||||
#endif // EIGEN_QUATERNION_H
|
@ -0,0 +1,159 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_ROTATION2D_H
|
||||
#define EIGEN_ROTATION2D_H
|
||||
|
||||
/** \geometry_module \ingroup Geometry_Module
|
||||
*
|
||||
* \class Rotation2D
|
||||
*
|
||||
* \brief Represents a rotation/orientation in a 2 dimensional space.
|
||||
*
|
||||
* \param _Scalar the scalar type, i.e., the type of the coefficients
|
||||
*
|
||||
* This class is equivalent to a single scalar representing a counter clock wise rotation
|
||||
* as a single angle in radian. It provides some additional features such as the automatic
|
||||
* conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
|
||||
* interface to Quaternion in order to facilitate the writing of generic algorithms
|
||||
* dealing with rotations.
|
||||
*
|
||||
* \sa class Quaternion, class Transform
|
||||
*/
|
||||
template<typename _Scalar> struct ei_traits<Rotation2D<_Scalar> >
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
};
|
||||
|
||||
template<typename _Scalar>
|
||||
class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
|
||||
{
|
||||
typedef RotationBase<Rotation2D<_Scalar>,2> Base;
|
||||
|
||||
public:
|
||||
|
||||
using Base::operator*;
|
||||
|
||||
enum { Dim = 2 };
|
||||
/** the scalar type of the coefficients */
|
||||
typedef _Scalar Scalar;
|
||||
typedef Matrix<Scalar,2,1> Vector2;
|
||||
typedef Matrix<Scalar,2,2> Matrix2;
|
||||
|
||||
protected:
|
||||
|
||||
Scalar m_angle;
|
||||
|
||||
public:
|
||||
|
||||
/** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
|
||||
inline Rotation2D(Scalar a) : m_angle(a) {}
|
||||
|
||||
/** \returns the rotation angle */
|
||||
inline Scalar angle() const { return m_angle; }
|
||||
|
||||
/** \returns a read-write reference to the rotation angle */
|
||||
inline Scalar& angle() { return m_angle; }
|
||||
|
||||
/** \returns the inverse rotation */
|
||||
inline Rotation2D inverse() const { return -m_angle; }
|
||||
|
||||
/** Concatenates two rotations */
|
||||
inline Rotation2D operator*(const Rotation2D& other) const
|
||||
{ return m_angle + other.m_angle; }
|
||||
|
||||
/** Concatenates two rotations */
|
||||
inline Rotation2D& operator*=(const Rotation2D& other)
|
||||
{ return m_angle += other.m_angle; return *this; }
|
||||
|
||||
/** Applies the rotation to a 2D vector */
|
||||
Vector2 operator* (const Vector2& vec) const
|
||||
{ return toRotationMatrix() * vec; }
|
||||
|
||||
template<typename Derived>
|
||||
Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
|
||||
Matrix2 toRotationMatrix(void) const;
|
||||
|
||||
/** \returns the spherical interpolation between \c *this and \a other using
|
||||
* parameter \a t. It is in fact equivalent to a linear interpolation.
|
||||
*/
|
||||
inline Rotation2D slerp(Scalar t, const Rotation2D& other) const
|
||||
{ return m_angle * (1-t) + other.angle() * t; }
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
inline typename ei_cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
|
||||
{ return typename ei_cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
|
||||
|
||||
/** Copy constructor with scalar type conversion */
|
||||
template<typename OtherScalarType>
|
||||
inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
|
||||
{
|
||||
m_angle = Scalar(other.angle());
|
||||
}
|
||||
|
||||
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
||||
* determined by \a prec.
|
||||
*
|
||||
* \sa MatrixBase::isApprox() */
|
||||
bool isApprox(const Rotation2D& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
|
||||
{ return ei_isApprox(m_angle,other.m_angle, prec); }
|
||||
};
|
||||
|
||||
/** \ingroup Geometry_Module
|
||||
* single precision 2D rotation type */
|
||||
typedef Rotation2D<float> Rotation2Df;
|
||||
/** \ingroup Geometry_Module
|
||||
* double precision 2D rotation type */
|
||||
typedef Rotation2D<double> Rotation2Dd;
|
||||
|
||||
/** Set \c *this from a 2x2 rotation matrix \a mat.
|
||||
* In other words, this function extract the rotation angle
|
||||
* from the rotation matrix.
|
||||
*/
|
||||
template<typename Scalar>
|
||||
template<typename Derived>
|
||||
Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
m_angle = ei_atan2(mat.coeff(1,0), mat.coeff(0,0));
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Constructs and \returns an equivalent 2x2 rotation matrix.
|
||||
*/
|
||||
template<typename Scalar>
|
||||
typename Rotation2D<Scalar>::Matrix2
|
||||
Rotation2D<Scalar>::toRotationMatrix(void) const
|
||||
{
|
||||
Scalar sinA = ei_sin(m_angle);
|
||||
Scalar cosA = ei_cos(m_angle);
|
||||
return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
|
||||
}
|
||||
|
||||
#endif // EIGEN_ROTATION2D_H
|
@ -0,0 +1,137 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_ROTATIONBASE_H
|
||||
#define EIGEN_ROTATIONBASE_H
|
||||
|
||||
// this file aims to contains the various representations of rotation/orientation
|
||||
// in 2D and 3D space excepted Matrix and Quaternion.
|
||||
|
||||
/** \class RotationBase
|
||||
*
|
||||
* \brief Common base class for compact rotation representations
|
||||
*
|
||||
* \param Derived is the derived type, i.e., a rotation type
|
||||
* \param _Dim the dimension of the space
|
||||
*/
|
||||
template<typename Derived, int _Dim>
|
||||
class RotationBase
|
||||
{
|
||||
public:
|
||||
enum { Dim = _Dim };
|
||||
/** the scalar type of the coefficients */
|
||||
typedef typename ei_traits<Derived>::Scalar Scalar;
|
||||
|
||||
/** corresponding linear transformation matrix type */
|
||||
typedef Matrix<Scalar,Dim,Dim> RotationMatrixType;
|
||||
|
||||
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||
inline Derived& derived() { return *static_cast<Derived*>(this); }
|
||||
|
||||
/** \returns an equivalent rotation matrix */
|
||||
inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); }
|
||||
|
||||
/** \returns the inverse rotation */
|
||||
inline Derived inverse() const { return derived().inverse(); }
|
||||
|
||||
/** \returns the concatenation of the rotation \c *this with a translation \a t */
|
||||
inline Transform<Scalar,Dim> operator*(const Translation<Scalar,Dim>& t) const
|
||||
{ return toRotationMatrix() * t; }
|
||||
|
||||
/** \returns the concatenation of the rotation \c *this with a scaling \a s */
|
||||
inline RotationMatrixType operator*(const Scaling<Scalar,Dim>& s) const
|
||||
{ return toRotationMatrix() * s; }
|
||||
|
||||
/** \returns the concatenation of the rotation \c *this with an affine transformation \a t */
|
||||
inline Transform<Scalar,Dim> operator*(const Transform<Scalar,Dim>& t) const
|
||||
{ return toRotationMatrix() * t; }
|
||||
};
|
||||
|
||||
/** \geometry_module
|
||||
*
|
||||
* Constructs a Dim x Dim rotation matrix from the rotation \a r
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
|
||||
template<typename OtherDerived>
|
||||
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
|
||||
::Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
|
||||
*this = r.toRotationMatrix();
|
||||
}
|
||||
|
||||
/** \geometry_module
|
||||
*
|
||||
* Set a Dim x Dim rotation matrix from the rotation \a r
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
|
||||
template<typename OtherDerived>
|
||||
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>&
|
||||
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
|
||||
::operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
|
||||
return *this = r.toRotationMatrix();
|
||||
}
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* Helper function to return an arbitrary rotation object to a rotation matrix.
|
||||
*
|
||||
* \param Scalar the numeric type of the matrix coefficients
|
||||
* \param Dim the dimension of the current space
|
||||
*
|
||||
* It returns a Dim x Dim fixed size matrix.
|
||||
*
|
||||
* Default specializations are provided for:
|
||||
* - any scalar type (2D),
|
||||
* - any matrix expression,
|
||||
* - any type based on RotationBase (e.g., Quaternion, AngleAxis, Rotation2D)
|
||||
*
|
||||
* Currently ei_toRotationMatrix is only used by Transform.
|
||||
*
|
||||
* \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
inline static Matrix<Scalar,2,2> ei_toRotationMatrix(const Scalar& s)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(Dim==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
return Rotation2D<Scalar>(s).toRotationMatrix();
|
||||
}
|
||||
|
||||
template<typename Scalar, int Dim, typename OtherDerived>
|
||||
inline static Matrix<Scalar,Dim,Dim> ei_toRotationMatrix(const RotationBase<OtherDerived,Dim>& r)
|
||||
{
|
||||
return r.toRotationMatrix();
|
||||
}
|
||||
|
||||
template<typename Scalar, int Dim, typename OtherDerived>
|
||||
inline static const MatrixBase<OtherDerived>& ei_toRotationMatrix(const MatrixBase<OtherDerived>& mat)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim,
|
||||
YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
return mat;
|
||||
}
|
||||
|
||||
#endif // EIGEN_ROTATIONBASE_H
|
181
ground/openpilotgcs/src/libs/eigen/Eigen/src/Geometry/Scaling.h
Normal file
181
ground/openpilotgcs/src/libs/eigen/Eigen/src/Geometry/Scaling.h
Normal file
@ -0,0 +1,181 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_SCALING_H
|
||||
#define EIGEN_SCALING_H
|
||||
|
||||
/** \geometry_module \ingroup Geometry_Module
|
||||
*
|
||||
* \class Scaling
|
||||
*
|
||||
* \brief Represents a possibly non uniform scaling transformation
|
||||
*
|
||||
* \param _Scalar the scalar type, i.e., the type of the coefficients.
|
||||
* \param _Dim the dimension of the space, can be a compile time value or Dynamic
|
||||
*
|
||||
* \note This class is not aimed to be used to store a scaling transformation,
|
||||
* but rather to make easier the constructions and updates of Transform objects.
|
||||
*
|
||||
* \sa class Translation, class Transform
|
||||
*/
|
||||
template<typename _Scalar, int _Dim>
|
||||
class Scaling
|
||||
{
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
|
||||
/** dimension of the space */
|
||||
enum { Dim = _Dim };
|
||||
/** the scalar type of the coefficients */
|
||||
typedef _Scalar Scalar;
|
||||
/** corresponding vector type */
|
||||
typedef Matrix<Scalar,Dim,1> VectorType;
|
||||
/** corresponding linear transformation matrix type */
|
||||
typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
|
||||
/** corresponding translation type */
|
||||
typedef Translation<Scalar,Dim> TranslationType;
|
||||
/** corresponding affine transformation type */
|
||||
typedef Transform<Scalar,Dim> TransformType;
|
||||
|
||||
protected:
|
||||
|
||||
VectorType m_coeffs;
|
||||
|
||||
public:
|
||||
|
||||
/** Default constructor without initialization. */
|
||||
Scaling() {}
|
||||
/** Constructs and initialize a uniform scaling transformation */
|
||||
explicit inline Scaling(const Scalar& s) { m_coeffs.setConstant(s); }
|
||||
/** 2D only */
|
||||
inline Scaling(const Scalar& sx, const Scalar& sy)
|
||||
{
|
||||
ei_assert(Dim==2);
|
||||
m_coeffs.x() = sx;
|
||||
m_coeffs.y() = sy;
|
||||
}
|
||||
/** 3D only */
|
||||
inline Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz)
|
||||
{
|
||||
ei_assert(Dim==3);
|
||||
m_coeffs.x() = sx;
|
||||
m_coeffs.y() = sy;
|
||||
m_coeffs.z() = sz;
|
||||
}
|
||||
/** Constructs and initialize the scaling transformation from a vector of scaling coefficients */
|
||||
explicit inline Scaling(const VectorType& coeffs) : m_coeffs(coeffs) {}
|
||||
|
||||
const VectorType& coeffs() const { return m_coeffs; }
|
||||
VectorType& coeffs() { return m_coeffs; }
|
||||
|
||||
/** Concatenates two scaling */
|
||||
inline Scaling operator* (const Scaling& other) const
|
||||
{ return Scaling(coeffs().cwise() * other.coeffs()); }
|
||||
|
||||
/** Concatenates a scaling and a translation */
|
||||
inline TransformType operator* (const TranslationType& t) const;
|
||||
|
||||
/** Concatenates a scaling and an affine transformation */
|
||||
inline TransformType operator* (const TransformType& t) const;
|
||||
|
||||
/** Concatenates a scaling and a linear transformation matrix */
|
||||
// TODO returns an expression
|
||||
inline LinearMatrixType operator* (const LinearMatrixType& other) const
|
||||
{ return coeffs().asDiagonal() * other; }
|
||||
|
||||
/** Concatenates a linear transformation matrix and a scaling */
|
||||
// TODO returns an expression
|
||||
friend inline LinearMatrixType operator* (const LinearMatrixType& other, const Scaling& s)
|
||||
{ return other * s.coeffs().asDiagonal(); }
|
||||
|
||||
template<typename Derived>
|
||||
inline LinearMatrixType operator*(const RotationBase<Derived,Dim>& r) const
|
||||
{ return *this * r.toRotationMatrix(); }
|
||||
|
||||
/** Applies scaling to vector */
|
||||
inline VectorType operator* (const VectorType& other) const
|
||||
{ return coeffs().asDiagonal() * other; }
|
||||
|
||||
/** \returns the inverse scaling */
|
||||
inline Scaling inverse() const
|
||||
{ return Scaling(coeffs().cwise().inverse()); }
|
||||
|
||||
inline Scaling& operator=(const Scaling& other)
|
||||
{
|
||||
m_coeffs = other.m_coeffs;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
inline typename ei_cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type cast() const
|
||||
{ return typename ei_cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type(*this); }
|
||||
|
||||
/** Copy constructor with scalar type conversion */
|
||||
template<typename OtherScalarType>
|
||||
inline explicit Scaling(const Scaling<OtherScalarType,Dim>& other)
|
||||
{ m_coeffs = other.coeffs().template cast<Scalar>(); }
|
||||
|
||||
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
||||
* determined by \a prec.
|
||||
*
|
||||
* \sa MatrixBase::isApprox() */
|
||||
bool isApprox(const Scaling& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
|
||||
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
|
||||
|
||||
};
|
||||
|
||||
/** \addtogroup Geometry_Module */
|
||||
//@{
|
||||
typedef Scaling<float, 2> Scaling2f;
|
||||
typedef Scaling<double,2> Scaling2d;
|
||||
typedef Scaling<float, 3> Scaling3f;
|
||||
typedef Scaling<double,3> Scaling3d;
|
||||
//@}
|
||||
|
||||
template<typename Scalar, int Dim>
|
||||
inline typename Scaling<Scalar,Dim>::TransformType
|
||||
Scaling<Scalar,Dim>::operator* (const TranslationType& t) const
|
||||
{
|
||||
TransformType res;
|
||||
res.matrix().setZero();
|
||||
res.linear().diagonal() = coeffs();
|
||||
res.translation() = m_coeffs.cwise() * t.vector();
|
||||
res(Dim,Dim) = Scalar(1);
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename Scalar, int Dim>
|
||||
inline typename Scaling<Scalar,Dim>::TransformType
|
||||
Scaling<Scalar,Dim>::operator* (const TransformType& t) const
|
||||
{
|
||||
TransformType res = t;
|
||||
res.prescale(m_coeffs);
|
||||
return res;
|
||||
}
|
||||
|
||||
#endif // EIGEN_SCALING_H
|
@ -0,0 +1,785 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_TRANSFORM_H
|
||||
#define EIGEN_TRANSFORM_H
|
||||
|
||||
/** Represents some traits of a transformation */
|
||||
enum TransformTraits {
|
||||
Isometry, ///< the transformation is a concatenation of translations and rotations
|
||||
Affine, ///< the transformation is affine (linear transformation + translation)
|
||||
Projective ///< the transformation might not be affine
|
||||
};
|
||||
|
||||
// Note that we have to pass Dim and HDim because it is not allowed to use a template
|
||||
// parameter to define a template specialization. To be more precise, in the following
|
||||
// specializations, it is not allowed to use Dim+1 instead of HDim.
|
||||
template< typename Other,
|
||||
int Dim,
|
||||
int HDim,
|
||||
int OtherRows=Other::RowsAtCompileTime,
|
||||
int OtherCols=Other::ColsAtCompileTime>
|
||||
struct ei_transform_product_impl;
|
||||
|
||||
/** \geometry_module \ingroup Geometry_Module
|
||||
*
|
||||
* \class Transform
|
||||
*
|
||||
* \brief Represents an homogeneous transformation in a N dimensional space
|
||||
*
|
||||
* \param _Scalar the scalar type, i.e., the type of the coefficients
|
||||
* \param _Dim the dimension of the space
|
||||
*
|
||||
* The homography is internally represented and stored as a (Dim+1)^2 matrix which
|
||||
* is available through the matrix() method.
|
||||
*
|
||||
* Conversion methods from/to Qt's QMatrix and QTransform are available if the
|
||||
* preprocessor token EIGEN_QT_SUPPORT is defined.
|
||||
*
|
||||
* \sa class Matrix, class Quaternion
|
||||
*/
|
||||
template<typename _Scalar, int _Dim>
|
||||
class Transform
|
||||
{
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
|
||||
enum {
|
||||
Dim = _Dim, ///< space dimension in which the transformation holds
|
||||
HDim = _Dim+1 ///< size of a respective homogeneous vector
|
||||
};
|
||||
/** the scalar type of the coefficients */
|
||||
typedef _Scalar Scalar;
|
||||
/** type of the matrix used to represent the transformation */
|
||||
typedef Matrix<Scalar,HDim,HDim> MatrixType;
|
||||
/** type of the matrix used to represent the linear part of the transformation */
|
||||
typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
|
||||
/** type of read/write reference to the linear part of the transformation */
|
||||
typedef Block<MatrixType,Dim,Dim> LinearPart;
|
||||
/** type of a vector */
|
||||
typedef Matrix<Scalar,Dim,1> VectorType;
|
||||
/** type of a read/write reference to the translation part of the rotation */
|
||||
typedef Block<MatrixType,Dim,1> TranslationPart;
|
||||
/** corresponding translation type */
|
||||
typedef Translation<Scalar,Dim> TranslationType;
|
||||
/** corresponding scaling transformation type */
|
||||
typedef Scaling<Scalar,Dim> ScalingType;
|
||||
|
||||
protected:
|
||||
|
||||
MatrixType m_matrix;
|
||||
|
||||
public:
|
||||
|
||||
/** Default constructor without initialization of the coefficients. */
|
||||
inline Transform() { }
|
||||
|
||||
inline Transform(const Transform& other)
|
||||
{
|
||||
m_matrix = other.m_matrix;
|
||||
}
|
||||
|
||||
inline explicit Transform(const TranslationType& t) { *this = t; }
|
||||
inline explicit Transform(const ScalingType& s) { *this = s; }
|
||||
template<typename Derived>
|
||||
inline explicit Transform(const RotationBase<Derived, Dim>& r) { *this = r; }
|
||||
|
||||
inline Transform& operator=(const Transform& other)
|
||||
{ m_matrix = other.m_matrix; return *this; }
|
||||
|
||||
template<typename OtherDerived, bool BigMatrix> // MSVC 2005 will commit suicide if BigMatrix has a default value
|
||||
struct construct_from_matrix
|
||||
{
|
||||
static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
transform->matrix() = other;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename OtherDerived> struct construct_from_matrix<OtherDerived, true>
|
||||
{
|
||||
static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
transform->linear() = other;
|
||||
transform->translation().setZero();
|
||||
transform->matrix()(Dim,Dim) = Scalar(1);
|
||||
transform->matrix().template block<1,Dim>(Dim,0).setZero();
|
||||
}
|
||||
};
|
||||
|
||||
/** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
|
||||
template<typename OtherDerived>
|
||||
inline explicit Transform(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
construct_from_matrix<OtherDerived, int(OtherDerived::RowsAtCompileTime) == Dim>::run(this, other);
|
||||
}
|
||||
|
||||
/** Set \c *this from a (Dim+1)^2 matrix. */
|
||||
template<typename OtherDerived>
|
||||
inline Transform& operator=(const MatrixBase<OtherDerived>& other)
|
||||
{ m_matrix = other; return *this; }
|
||||
|
||||
#ifdef EIGEN_QT_SUPPORT
|
||||
inline Transform(const QMatrix& other);
|
||||
inline Transform& operator=(const QMatrix& other);
|
||||
inline QMatrix toQMatrix(void) const;
|
||||
inline Transform(const QTransform& other);
|
||||
inline Transform& operator=(const QTransform& other);
|
||||
inline QTransform toQTransform(void) const;
|
||||
#endif
|
||||
|
||||
/** shortcut for m_matrix(row,col);
|
||||
* \sa MatrixBase::operaror(int,int) const */
|
||||
inline Scalar operator() (int row, int col) const { return m_matrix(row,col); }
|
||||
/** shortcut for m_matrix(row,col);
|
||||
* \sa MatrixBase::operaror(int,int) */
|
||||
inline Scalar& operator() (int row, int col) { return m_matrix(row,col); }
|
||||
|
||||
/** \returns a read-only expression of the transformation matrix */
|
||||
inline const MatrixType& matrix() const { return m_matrix; }
|
||||
/** \returns a writable expression of the transformation matrix */
|
||||
inline MatrixType& matrix() { return m_matrix; }
|
||||
|
||||
/** \returns a read-only expression of the linear (linear) part of the transformation */
|
||||
inline const LinearPart linear() const { return m_matrix.template block<Dim,Dim>(0,0); }
|
||||
/** \returns a writable expression of the linear (linear) part of the transformation */
|
||||
inline LinearPart linear() { return m_matrix.template block<Dim,Dim>(0,0); }
|
||||
|
||||
/** \returns a read-only expression of the translation vector of the transformation */
|
||||
inline const TranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
|
||||
/** \returns a writable expression of the translation vector of the transformation */
|
||||
inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); }
|
||||
|
||||
/** \returns an expression of the product between the transform \c *this and a matrix expression \a other
|
||||
*
|
||||
* The right hand side \a other might be either:
|
||||
* \li a vector of size Dim,
|
||||
* \li an homogeneous vector of size Dim+1,
|
||||
* \li a transformation matrix of size Dim+1 x Dim+1.
|
||||
*/
|
||||
// note: this function is defined here because some compilers cannot find the respective declaration
|
||||
template<typename OtherDerived>
|
||||
inline const typename ei_transform_product_impl<OtherDerived,_Dim,_Dim+1>::ResultType
|
||||
operator * (const MatrixBase<OtherDerived> &other) const
|
||||
{ return ei_transform_product_impl<OtherDerived,Dim,HDim>::run(*this,other.derived()); }
|
||||
|
||||
/** \returns the product expression of a transformation matrix \a a times a transform \a b
|
||||
* The transformation matrix \a a must have a Dim+1 x Dim+1 sizes. */
|
||||
template<typename OtherDerived>
|
||||
friend inline const typename ProductReturnType<OtherDerived,MatrixType>::Type
|
||||
operator * (const MatrixBase<OtherDerived> &a, const Transform &b)
|
||||
{ return a.derived() * b.matrix(); }
|
||||
|
||||
/** Contatenates two transformations */
|
||||
inline const Transform
|
||||
operator * (const Transform& other) const
|
||||
{ return Transform(m_matrix * other.matrix()); }
|
||||
|
||||
/** \sa MatrixBase::setIdentity() */
|
||||
void setIdentity() { m_matrix.setIdentity(); }
|
||||
static const typename MatrixType::IdentityReturnType Identity()
|
||||
{
|
||||
return MatrixType::Identity();
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline Transform& scale(const MatrixBase<OtherDerived> &other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline Transform& prescale(const MatrixBase<OtherDerived> &other);
|
||||
|
||||
inline Transform& scale(Scalar s);
|
||||
inline Transform& prescale(Scalar s);
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline Transform& translate(const MatrixBase<OtherDerived> &other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
|
||||
|
||||
template<typename RotationType>
|
||||
inline Transform& rotate(const RotationType& rotation);
|
||||
|
||||
template<typename RotationType>
|
||||
inline Transform& prerotate(const RotationType& rotation);
|
||||
|
||||
Transform& shear(Scalar sx, Scalar sy);
|
||||
Transform& preshear(Scalar sx, Scalar sy);
|
||||
|
||||
inline Transform& operator=(const TranslationType& t);
|
||||
inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
|
||||
inline Transform operator*(const TranslationType& t) const;
|
||||
|
||||
inline Transform& operator=(const ScalingType& t);
|
||||
inline Transform& operator*=(const ScalingType& s) { return scale(s.coeffs()); }
|
||||
inline Transform operator*(const ScalingType& s) const;
|
||||
friend inline Transform operator*(const LinearMatrixType& mat, const Transform& t)
|
||||
{
|
||||
Transform res = t;
|
||||
res.matrix().row(Dim) = t.matrix().row(Dim);
|
||||
res.matrix().template block<Dim,HDim>(0,0) = (mat * t.matrix().template block<Dim,HDim>(0,0)).lazy();
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
inline Transform& operator=(const RotationBase<Derived,Dim>& r);
|
||||
template<typename Derived>
|
||||
inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
|
||||
template<typename Derived>
|
||||
inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
|
||||
|
||||
LinearMatrixType rotation() const;
|
||||
template<typename RotationMatrixType, typename ScalingMatrixType>
|
||||
void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
|
||||
template<typename ScalingMatrixType, typename RotationMatrixType>
|
||||
void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
|
||||
|
||||
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
|
||||
Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
|
||||
const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
|
||||
|
||||
inline const MatrixType inverse(TransformTraits traits = Affine) const;
|
||||
|
||||
/** \returns a const pointer to the column major internal matrix */
|
||||
const Scalar* data() const { return m_matrix.data(); }
|
||||
/** \returns a non-const pointer to the column major internal matrix */
|
||||
Scalar* data() { return m_matrix.data(); }
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
inline typename ei_cast_return_type<Transform,Transform<NewScalarType,Dim> >::type cast() const
|
||||
{ return typename ei_cast_return_type<Transform,Transform<NewScalarType,Dim> >::type(*this); }
|
||||
|
||||
/** Copy constructor with scalar type conversion */
|
||||
template<typename OtherScalarType>
|
||||
inline explicit Transform(const Transform<OtherScalarType,Dim>& other)
|
||||
{ m_matrix = other.matrix().template cast<Scalar>(); }
|
||||
|
||||
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
||||
* determined by \a prec.
|
||||
*
|
||||
* \sa MatrixBase::isApprox() */
|
||||
bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
|
||||
{ return m_matrix.isApprox(other.m_matrix, prec); }
|
||||
|
||||
#ifdef EIGEN_TRANSFORM_PLUGIN
|
||||
#include EIGEN_TRANSFORM_PLUGIN
|
||||
#endif
|
||||
|
||||
protected:
|
||||
|
||||
};
|
||||
|
||||
/** \ingroup Geometry_Module */
|
||||
typedef Transform<float,2> Transform2f;
|
||||
/** \ingroup Geometry_Module */
|
||||
typedef Transform<float,3> Transform3f;
|
||||
/** \ingroup Geometry_Module */
|
||||
typedef Transform<double,2> Transform2d;
|
||||
/** \ingroup Geometry_Module */
|
||||
typedef Transform<double,3> Transform3d;
|
||||
|
||||
/**************************
|
||||
*** Optional QT support ***
|
||||
**************************/
|
||||
|
||||
#ifdef EIGEN_QT_SUPPORT
|
||||
/** Initialises \c *this from a QMatrix assuming the dimension is 2.
|
||||
*
|
||||
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
Transform<Scalar,Dim>::Transform(const QMatrix& other)
|
||||
{
|
||||
*this = other;
|
||||
}
|
||||
|
||||
/** Set \c *this from a QMatrix assuming the dimension is 2.
|
||||
*
|
||||
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
m_matrix << other.m11(), other.m21(), other.dx(),
|
||||
other.m12(), other.m22(), other.dy(),
|
||||
0, 0, 1;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \returns a QMatrix from \c *this assuming the dimension is 2.
|
||||
*
|
||||
* \warning this convertion might loss data if \c *this is not affine
|
||||
*
|
||||
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
QMatrix Transform<Scalar,Dim>::toQMatrix(void) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
|
||||
m_matrix.coeff(0,1), m_matrix.coeff(1,1),
|
||||
m_matrix.coeff(0,2), m_matrix.coeff(1,2));
|
||||
}
|
||||
|
||||
/** Initialises \c *this from a QTransform assuming the dimension is 2.
|
||||
*
|
||||
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
Transform<Scalar,Dim>::Transform(const QTransform& other)
|
||||
{
|
||||
*this = other;
|
||||
}
|
||||
|
||||
/** Set \c *this from a QTransform assuming the dimension is 2.
|
||||
*
|
||||
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QTransform& other)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
m_matrix << other.m11(), other.m21(), other.dx(),
|
||||
other.m12(), other.m22(), other.dy(),
|
||||
other.m13(), other.m23(), other.m33();
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \returns a QTransform from \c *this assuming the dimension is 2.
|
||||
*
|
||||
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
QTransform Transform<Scalar,Dim>::toQTransform(void) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
|
||||
m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
|
||||
m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
|
||||
}
|
||||
#endif
|
||||
|
||||
/*********************
|
||||
*** Procedural API ***
|
||||
*********************/
|
||||
|
||||
/** Applies on the right the non uniform scale transformation represented
|
||||
* by the vector \a other to \c *this and returns a reference to \c *this.
|
||||
* \sa prescale()
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
template<typename OtherDerived>
|
||||
Transform<Scalar,Dim>&
|
||||
Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
|
||||
linear() = (linear() * other.asDiagonal()).lazy();
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Applies on the right a uniform scale of a factor \a c to \c *this
|
||||
* and returns a reference to \c *this.
|
||||
* \sa prescale(Scalar)
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::scale(Scalar s)
|
||||
{
|
||||
linear() *= s;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Applies on the left the non uniform scale transformation represented
|
||||
* by the vector \a other to \c *this and returns a reference to \c *this.
|
||||
* \sa scale()
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
template<typename OtherDerived>
|
||||
Transform<Scalar,Dim>&
|
||||
Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
|
||||
m_matrix.template block<Dim,HDim>(0,0) = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)).lazy();
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Applies on the left a uniform scale of a factor \a c to \c *this
|
||||
* and returns a reference to \c *this.
|
||||
* \sa scale(Scalar)
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::prescale(Scalar s)
|
||||
{
|
||||
m_matrix.template corner<Dim,HDim>(TopLeft) *= s;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Applies on the right the translation matrix represented by the vector \a other
|
||||
* to \c *this and returns a reference to \c *this.
|
||||
* \sa pretranslate()
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
template<typename OtherDerived>
|
||||
Transform<Scalar,Dim>&
|
||||
Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
|
||||
translation() += linear() * other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Applies on the left the translation matrix represented by the vector \a other
|
||||
* to \c *this and returns a reference to \c *this.
|
||||
* \sa translate()
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
template<typename OtherDerived>
|
||||
Transform<Scalar,Dim>&
|
||||
Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
|
||||
translation() += other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Applies on the right the rotation represented by the rotation \a rotation
|
||||
* to \c *this and returns a reference to \c *this.
|
||||
*
|
||||
* The template parameter \a RotationType is the type of the rotation which
|
||||
* must be known by ei_toRotationMatrix<>.
|
||||
*
|
||||
* Natively supported types includes:
|
||||
* - any scalar (2D),
|
||||
* - a Dim x Dim matrix expression,
|
||||
* - a Quaternion (3D),
|
||||
* - a AngleAxis (3D)
|
||||
*
|
||||
* This mechanism is easily extendable to support user types such as Euler angles,
|
||||
* or a pair of Quaternion for 4D rotations.
|
||||
*
|
||||
* \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
template<typename RotationType>
|
||||
Transform<Scalar,Dim>&
|
||||
Transform<Scalar,Dim>::rotate(const RotationType& rotation)
|
||||
{
|
||||
linear() *= ei_toRotationMatrix<Scalar,Dim>(rotation);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Applies on the left the rotation represented by the rotation \a rotation
|
||||
* to \c *this and returns a reference to \c *this.
|
||||
*
|
||||
* See rotate() for further details.
|
||||
*
|
||||
* \sa rotate()
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
template<typename RotationType>
|
||||
Transform<Scalar,Dim>&
|
||||
Transform<Scalar,Dim>::prerotate(const RotationType& rotation)
|
||||
{
|
||||
m_matrix.template block<Dim,HDim>(0,0) = ei_toRotationMatrix<Scalar,Dim>(rotation)
|
||||
* m_matrix.template block<Dim,HDim>(0,0);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Applies on the right the shear transformation represented
|
||||
* by the vector \a other to \c *this and returns a reference to \c *this.
|
||||
* \warning 2D only.
|
||||
* \sa preshear()
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
Transform<Scalar,Dim>&
|
||||
Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
VectorType tmp = linear().col(0)*sy + linear().col(1);
|
||||
linear() << linear().col(0) + linear().col(1)*sx, tmp;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Applies on the left the shear transformation represented
|
||||
* by the vector \a other to \c *this and returns a reference to \c *this.
|
||||
* \warning 2D only.
|
||||
* \sa shear()
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
Transform<Scalar,Dim>&
|
||||
Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/******************************************************
|
||||
*** Scaling, Translation and Rotation compatibility ***
|
||||
******************************************************/
|
||||
|
||||
template<typename Scalar, int Dim>
|
||||
inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const TranslationType& t)
|
||||
{
|
||||
linear().setIdentity();
|
||||
translation() = t.vector();
|
||||
m_matrix.template block<1,Dim>(Dim,0).setZero();
|
||||
m_matrix(Dim,Dim) = Scalar(1);
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename Scalar, int Dim>
|
||||
inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const TranslationType& t) const
|
||||
{
|
||||
Transform res = *this;
|
||||
res.translate(t.vector());
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename Scalar, int Dim>
|
||||
inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const ScalingType& s)
|
||||
{
|
||||
m_matrix.setZero();
|
||||
linear().diagonal() = s.coeffs();
|
||||
m_matrix.coeffRef(Dim,Dim) = Scalar(1);
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename Scalar, int Dim>
|
||||
inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const ScalingType& s) const
|
||||
{
|
||||
Transform res = *this;
|
||||
res.scale(s.coeffs());
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename Scalar, int Dim>
|
||||
template<typename Derived>
|
||||
inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const RotationBase<Derived,Dim>& r)
|
||||
{
|
||||
linear() = ei_toRotationMatrix<Scalar,Dim>(r);
|
||||
translation().setZero();
|
||||
m_matrix.template block<1,Dim>(Dim,0).setZero();
|
||||
m_matrix.coeffRef(Dim,Dim) = Scalar(1);
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename Scalar, int Dim>
|
||||
template<typename Derived>
|
||||
inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const RotationBase<Derived,Dim>& r) const
|
||||
{
|
||||
Transform res = *this;
|
||||
res.rotate(r.derived());
|
||||
return res;
|
||||
}
|
||||
|
||||
/************************
|
||||
*** Special functions ***
|
||||
************************/
|
||||
|
||||
/** \returns the rotation part of the transformation
|
||||
* \nonstableyet
|
||||
*
|
||||
* \svd_module
|
||||
*
|
||||
* \sa computeRotationScaling(), computeScalingRotation(), class SVD
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
typename Transform<Scalar,Dim>::LinearMatrixType
|
||||
Transform<Scalar,Dim>::rotation() const
|
||||
{
|
||||
LinearMatrixType result;
|
||||
computeRotationScaling(&result, (LinearMatrixType*)0);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
|
||||
* not necessarily positive.
|
||||
*
|
||||
* If either pointer is zero, the corresponding computation is skipped.
|
||||
*
|
||||
* \nonstableyet
|
||||
*
|
||||
* \svd_module
|
||||
*
|
||||
* \sa computeScalingRotation(), rotation(), class SVD
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
template<typename RotationMatrixType, typename ScalingMatrixType>
|
||||
void Transform<Scalar,Dim>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
|
||||
{
|
||||
linear().svd().computeRotationScaling(rotation, scaling);
|
||||
}
|
||||
|
||||
/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
|
||||
* not necessarily positive.
|
||||
*
|
||||
* If either pointer is zero, the corresponding computation is skipped.
|
||||
*
|
||||
* \nonstableyet
|
||||
*
|
||||
* \svd_module
|
||||
*
|
||||
* \sa computeRotationScaling(), rotation(), class SVD
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
template<typename ScalingMatrixType, typename RotationMatrixType>
|
||||
void Transform<Scalar,Dim>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
|
||||
{
|
||||
linear().svd().computeScalingRotation(scaling, rotation);
|
||||
}
|
||||
|
||||
/** Convenient method to set \c *this from a position, orientation and scale
|
||||
* of a 3D object.
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
|
||||
Transform<Scalar,Dim>&
|
||||
Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
|
||||
const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
|
||||
{
|
||||
linear() = ei_toRotationMatrix<Scalar,Dim>(orientation);
|
||||
linear() *= scale.asDiagonal();
|
||||
translation() = position;
|
||||
m_matrix.template block<1,Dim>(Dim,0).setZero();
|
||||
m_matrix(Dim,Dim) = Scalar(1);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \nonstableyet
|
||||
*
|
||||
* \returns the inverse transformation matrix according to some given knowledge
|
||||
* on \c *this.
|
||||
*
|
||||
* \param traits allows to optimize the inversion process when the transformion
|
||||
* is known to be not a general transformation. The possible values are:
|
||||
* - Projective if the transformation is not necessarily affine, i.e., if the
|
||||
* last row is not guaranteed to be [0 ... 0 1]
|
||||
* - Affine is the default, the last row is assumed to be [0 ... 0 1]
|
||||
* - Isometry if the transformation is only a concatenations of translations
|
||||
* and rotations.
|
||||
*
|
||||
* \warning unless \a traits is always set to NoShear or NoScaling, this function
|
||||
* requires the generic inverse method of MatrixBase defined in the LU module. If
|
||||
* you forget to include this module, then you will get hard to debug linking errors.
|
||||
*
|
||||
* \sa MatrixBase::inverse()
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
inline const typename Transform<Scalar,Dim>::MatrixType
|
||||
Transform<Scalar,Dim>::inverse(TransformTraits traits) const
|
||||
{
|
||||
if (traits == Projective)
|
||||
{
|
||||
return m_matrix.inverse();
|
||||
}
|
||||
else
|
||||
{
|
||||
MatrixType res;
|
||||
if (traits == Affine)
|
||||
{
|
||||
res.template corner<Dim,Dim>(TopLeft) = linear().inverse();
|
||||
}
|
||||
else if (traits == Isometry)
|
||||
{
|
||||
res.template corner<Dim,Dim>(TopLeft) = linear().transpose();
|
||||
}
|
||||
else
|
||||
{
|
||||
ei_assert("invalid traits value in Transform::inverse()");
|
||||
}
|
||||
// translation and remaining parts
|
||||
res.template corner<Dim,1>(TopRight) = - res.template corner<Dim,Dim>(TopLeft) * translation();
|
||||
res.template corner<1,Dim>(BottomLeft).setZero();
|
||||
res.coeffRef(Dim,Dim) = Scalar(1);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/*****************************************************
|
||||
*** Specializations of operator* with a MatrixBase ***
|
||||
*****************************************************/
|
||||
|
||||
template<typename Other, int Dim, int HDim>
|
||||
struct ei_transform_product_impl<Other,Dim,HDim, HDim,HDim>
|
||||
{
|
||||
typedef Transform<typename Other::Scalar,Dim> TransformType;
|
||||
typedef typename TransformType::MatrixType MatrixType;
|
||||
typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
|
||||
static ResultType run(const TransformType& tr, const Other& other)
|
||||
{ return tr.matrix() * other; }
|
||||
};
|
||||
|
||||
template<typename Other, int Dim, int HDim>
|
||||
struct ei_transform_product_impl<Other,Dim,HDim, Dim,Dim>
|
||||
{
|
||||
typedef Transform<typename Other::Scalar,Dim> TransformType;
|
||||
typedef typename TransformType::MatrixType MatrixType;
|
||||
typedef TransformType ResultType;
|
||||
static ResultType run(const TransformType& tr, const Other& other)
|
||||
{
|
||||
TransformType res;
|
||||
res.translation() = tr.translation();
|
||||
res.matrix().row(Dim) = tr.matrix().row(Dim);
|
||||
res.linear() = (tr.linear() * other).lazy();
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Other, int Dim, int HDim>
|
||||
struct ei_transform_product_impl<Other,Dim,HDim, HDim,1>
|
||||
{
|
||||
typedef Transform<typename Other::Scalar,Dim> TransformType;
|
||||
typedef typename TransformType::MatrixType MatrixType;
|
||||
typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
|
||||
static ResultType run(const TransformType& tr, const Other& other)
|
||||
{ return tr.matrix() * other; }
|
||||
};
|
||||
|
||||
template<typename Other, int Dim, int HDim>
|
||||
struct ei_transform_product_impl<Other,Dim,HDim, Dim,1>
|
||||
{
|
||||
typedef typename Other::Scalar Scalar;
|
||||
typedef Transform<Scalar,Dim> TransformType;
|
||||
typedef typename TransformType::LinearPart MatrixType;
|
||||
typedef const CwiseUnaryOp<
|
||||
ei_scalar_multiple_op<Scalar>,
|
||||
NestByValue<CwiseBinaryOp<
|
||||
ei_scalar_sum_op<Scalar>,
|
||||
NestByValue<typename ProductReturnType<NestByValue<MatrixType>,Other>::Type >,
|
||||
NestByValue<typename TransformType::TranslationPart> > >
|
||||
> ResultType;
|
||||
// FIXME should we offer an optimized version when the last row is known to be 0,0...,0,1 ?
|
||||
static ResultType run(const TransformType& tr, const Other& other)
|
||||
{ return ((tr.linear().nestByValue() * other).nestByValue() + tr.translation().nestByValue()).nestByValue()
|
||||
* (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); }
|
||||
};
|
||||
|
||||
#endif // EIGEN_TRANSFORM_H
|
@ -0,0 +1,198 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_TRANSLATION_H
|
||||
#define EIGEN_TRANSLATION_H
|
||||
|
||||
/** \geometry_module \ingroup Geometry_Module
|
||||
*
|
||||
* \class Translation
|
||||
*
|
||||
* \brief Represents a translation transformation
|
||||
*
|
||||
* \param _Scalar the scalar type, i.e., the type of the coefficients.
|
||||
* \param _Dim the dimension of the space, can be a compile time value or Dynamic
|
||||
*
|
||||
* \note This class is not aimed to be used to store a translation transformation,
|
||||
* but rather to make easier the constructions and updates of Transform objects.
|
||||
*
|
||||
* \sa class Scaling, class Transform
|
||||
*/
|
||||
template<typename _Scalar, int _Dim>
|
||||
class Translation
|
||||
{
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
|
||||
/** dimension of the space */
|
||||
enum { Dim = _Dim };
|
||||
/** the scalar type of the coefficients */
|
||||
typedef _Scalar Scalar;
|
||||
/** corresponding vector type */
|
||||
typedef Matrix<Scalar,Dim,1> VectorType;
|
||||
/** corresponding linear transformation matrix type */
|
||||
typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
|
||||
/** corresponding scaling transformation type */
|
||||
typedef Scaling<Scalar,Dim> ScalingType;
|
||||
/** corresponding affine transformation type */
|
||||
typedef Transform<Scalar,Dim> TransformType;
|
||||
|
||||
protected:
|
||||
|
||||
VectorType m_coeffs;
|
||||
|
||||
public:
|
||||
|
||||
/** Default constructor without initialization. */
|
||||
Translation() {}
|
||||
/** */
|
||||
inline Translation(const Scalar& sx, const Scalar& sy)
|
||||
{
|
||||
ei_assert(Dim==2);
|
||||
m_coeffs.x() = sx;
|
||||
m_coeffs.y() = sy;
|
||||
}
|
||||
/** */
|
||||
inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz)
|
||||
{
|
||||
ei_assert(Dim==3);
|
||||
m_coeffs.x() = sx;
|
||||
m_coeffs.y() = sy;
|
||||
m_coeffs.z() = sz;
|
||||
}
|
||||
/** Constructs and initialize the scaling transformation from a vector of scaling coefficients */
|
||||
explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {}
|
||||
|
||||
const VectorType& vector() const { return m_coeffs; }
|
||||
VectorType& vector() { return m_coeffs; }
|
||||
|
||||
/** Concatenates two translation */
|
||||
inline Translation operator* (const Translation& other) const
|
||||
{ return Translation(m_coeffs + other.m_coeffs); }
|
||||
|
||||
/** Concatenates a translation and a scaling */
|
||||
inline TransformType operator* (const ScalingType& other) const;
|
||||
|
||||
/** Concatenates a translation and a linear transformation */
|
||||
inline TransformType operator* (const LinearMatrixType& linear) const;
|
||||
|
||||
template<typename Derived>
|
||||
inline TransformType operator*(const RotationBase<Derived,Dim>& r) const
|
||||
{ return *this * r.toRotationMatrix(); }
|
||||
|
||||
/** Concatenates a linear transformation and a translation */
|
||||
// its a nightmare to define a templated friend function outside its declaration
|
||||
friend inline TransformType operator* (const LinearMatrixType& linear, const Translation& t)
|
||||
{
|
||||
TransformType res;
|
||||
res.matrix().setZero();
|
||||
res.linear() = linear;
|
||||
res.translation() = linear * t.m_coeffs;
|
||||
res.matrix().row(Dim).setZero();
|
||||
res(Dim,Dim) = Scalar(1);
|
||||
return res;
|
||||
}
|
||||
|
||||
/** Concatenates a translation and an affine transformation */
|
||||
inline TransformType operator* (const TransformType& t) const;
|
||||
|
||||
/** Applies translation to vector */
|
||||
inline VectorType operator* (const VectorType& other) const
|
||||
{ return m_coeffs + other; }
|
||||
|
||||
/** \returns the inverse translation (opposite) */
|
||||
Translation inverse() const { return Translation(-m_coeffs); }
|
||||
|
||||
Translation& operator=(const Translation& other)
|
||||
{
|
||||
m_coeffs = other.m_coeffs;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
inline typename ei_cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const
|
||||
{ return typename ei_cast_return_type<Translation,Translation<NewScalarType,Dim> >::type(*this); }
|
||||
|
||||
/** Copy constructor with scalar type conversion */
|
||||
template<typename OtherScalarType>
|
||||
inline explicit Translation(const Translation<OtherScalarType,Dim>& other)
|
||||
{ m_coeffs = other.vector().template cast<Scalar>(); }
|
||||
|
||||
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
||||
* determined by \a prec.
|
||||
*
|
||||
* \sa MatrixBase::isApprox() */
|
||||
bool isApprox(const Translation& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
|
||||
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
|
||||
|
||||
};
|
||||
|
||||
/** \addtogroup Geometry_Module */
|
||||
//@{
|
||||
typedef Translation<float, 2> Translation2f;
|
||||
typedef Translation<double,2> Translation2d;
|
||||
typedef Translation<float, 3> Translation3f;
|
||||
typedef Translation<double,3> Translation3d;
|
||||
//@}
|
||||
|
||||
|
||||
template<typename Scalar, int Dim>
|
||||
inline typename Translation<Scalar,Dim>::TransformType
|
||||
Translation<Scalar,Dim>::operator* (const ScalingType& other) const
|
||||
{
|
||||
TransformType res;
|
||||
res.matrix().setZero();
|
||||
res.linear().diagonal() = other.coeffs();
|
||||
res.translation() = m_coeffs;
|
||||
res(Dim,Dim) = Scalar(1);
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename Scalar, int Dim>
|
||||
inline typename Translation<Scalar,Dim>::TransformType
|
||||
Translation<Scalar,Dim>::operator* (const LinearMatrixType& linear) const
|
||||
{
|
||||
TransformType res;
|
||||
res.matrix().setZero();
|
||||
res.linear() = linear;
|
||||
res.translation() = m_coeffs;
|
||||
res.matrix().row(Dim).setZero();
|
||||
res(Dim,Dim) = Scalar(1);
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename Scalar, int Dim>
|
||||
inline typename Translation<Scalar,Dim>::TransformType
|
||||
Translation<Scalar,Dim>::operator* (const TransformType& t) const
|
||||
{
|
||||
TransformType res = t;
|
||||
res.pretranslate(m_coeffs);
|
||||
return res;
|
||||
}
|
||||
|
||||
#endif // EIGEN_TRANSLATION_H
|
@ -0,0 +1,6 @@
|
||||
FILE(GLOB Eigen_LU_SRCS "*.h")
|
||||
|
||||
INSTALL(FILES
|
||||
${Eigen_LU_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/LU
|
||||
)
|
122
ground/openpilotgcs/src/libs/eigen/Eigen/src/LU/Determinant.h
Normal file
122
ground/openpilotgcs/src/libs/eigen/Eigen/src/LU/Determinant.h
Normal file
@ -0,0 +1,122 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_DETERMINANT_H
|
||||
#define EIGEN_DETERMINANT_H
|
||||
|
||||
template<typename Derived>
|
||||
inline const typename Derived::Scalar ei_bruteforce_det3_helper
|
||||
(const MatrixBase<Derived>& matrix, int a, int b, int c)
|
||||
{
|
||||
return matrix.coeff(0,a)
|
||||
* (matrix.coeff(1,b) * matrix.coeff(2,c) - matrix.coeff(1,c) * matrix.coeff(2,b));
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
const typename Derived::Scalar ei_bruteforce_det4_helper
|
||||
(const MatrixBase<Derived>& matrix, int j, int k, int m, int n)
|
||||
{
|
||||
return (matrix.coeff(j,0) * matrix.coeff(k,1) - matrix.coeff(k,0) * matrix.coeff(j,1))
|
||||
* (matrix.coeff(m,2) * matrix.coeff(n,3) - matrix.coeff(n,2) * matrix.coeff(m,3));
|
||||
}
|
||||
|
||||
const int TriangularDeterminant = 0;
|
||||
|
||||
template<typename Derived,
|
||||
int DeterminantType =
|
||||
(Derived::Flags & (UpperTriangularBit | LowerTriangularBit))
|
||||
? TriangularDeterminant : Derived::RowsAtCompileTime
|
||||
> struct ei_determinant_impl
|
||||
{
|
||||
static inline typename ei_traits<Derived>::Scalar run(const Derived& m)
|
||||
{
|
||||
return m.lu().determinant();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived> struct ei_determinant_impl<Derived, TriangularDeterminant>
|
||||
{
|
||||
static inline typename ei_traits<Derived>::Scalar run(const Derived& m)
|
||||
{
|
||||
if (Derived::Flags & UnitDiagBit)
|
||||
return 1;
|
||||
else if (Derived::Flags & ZeroDiagBit)
|
||||
return 0;
|
||||
else
|
||||
return m.diagonal().redux(ei_scalar_product_op<typename ei_traits<Derived>::Scalar>());
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived> struct ei_determinant_impl<Derived, 1>
|
||||
{
|
||||
static inline typename ei_traits<Derived>::Scalar run(const Derived& m)
|
||||
{
|
||||
return m.coeff(0,0);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived> struct ei_determinant_impl<Derived, 2>
|
||||
{
|
||||
static inline typename ei_traits<Derived>::Scalar run(const Derived& m)
|
||||
{
|
||||
return m.coeff(0,0) * m.coeff(1,1) - m.coeff(1,0) * m.coeff(0,1);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived> struct ei_determinant_impl<Derived, 3>
|
||||
{
|
||||
static typename ei_traits<Derived>::Scalar run(const Derived& m)
|
||||
{
|
||||
return ei_bruteforce_det3_helper(m,0,1,2)
|
||||
- ei_bruteforce_det3_helper(m,1,0,2)
|
||||
+ ei_bruteforce_det3_helper(m,2,0,1);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived> struct ei_determinant_impl<Derived, 4>
|
||||
{
|
||||
static typename ei_traits<Derived>::Scalar run(const Derived& m)
|
||||
{
|
||||
// trick by Martin Costabel to compute 4x4 det with only 30 muls
|
||||
return ei_bruteforce_det4_helper(m,0,1,2,3)
|
||||
- ei_bruteforce_det4_helper(m,0,2,1,3)
|
||||
+ ei_bruteforce_det4_helper(m,0,3,1,2)
|
||||
+ ei_bruteforce_det4_helper(m,1,2,0,3)
|
||||
- ei_bruteforce_det4_helper(m,1,3,0,2)
|
||||
+ ei_bruteforce_det4_helper(m,2,3,0,1);
|
||||
}
|
||||
};
|
||||
|
||||
/** \lu_module
|
||||
*
|
||||
* \returns the determinant of this matrix
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename ei_traits<Derived>::Scalar MatrixBase<Derived>::determinant() const
|
||||
{
|
||||
assert(rows() == cols());
|
||||
return ei_determinant_impl<Derived>::run(derived());
|
||||
}
|
||||
|
||||
#endif // EIGEN_DETERMINANT_H
|
323
ground/openpilotgcs/src/libs/eigen/Eigen/src/LU/Inverse.h
Normal file
323
ground/openpilotgcs/src/libs/eigen/Eigen/src/LU/Inverse.h
Normal file
@ -0,0 +1,323 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_INVERSE_H
|
||||
#define EIGEN_INVERSE_H
|
||||
|
||||
/********************************************************************
|
||||
*** Part 1 : optimized implementations for fixed-size 2,3,4 cases ***
|
||||
********************************************************************/
|
||||
|
||||
template<typename XprType, typename MatrixType>
|
||||
void ei_compute_inverse_in_size2_case(const XprType& matrix, MatrixType* result)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
const Scalar invdet = Scalar(1) / matrix.determinant();
|
||||
result->coeffRef(0,0) = matrix.coeff(1,1) * invdet;
|
||||
result->coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
|
||||
result->coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
|
||||
result->coeffRef(1,1) = matrix.coeff(0,0) * invdet;
|
||||
}
|
||||
|
||||
template<typename XprType, typename MatrixType>
|
||||
bool ei_compute_inverse_in_size2_case_with_check(const XprType& matrix, MatrixType* result)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
const Scalar det = matrix.determinant();
|
||||
if(ei_isMuchSmallerThan(det, matrix.cwise().abs().maxCoeff())) return false;
|
||||
const Scalar invdet = Scalar(1) / det;
|
||||
result->coeffRef(0,0) = matrix.coeff(1,1) * invdet;
|
||||
result->coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
|
||||
result->coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
|
||||
result->coeffRef(1,1) = matrix.coeff(0,0) * invdet;
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename Derived, typename OtherDerived>
|
||||
void ei_compute_inverse_in_size3_case(const Derived& matrix, OtherDerived* result)
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
const Scalar det_minor00 = matrix.minor(0,0).determinant();
|
||||
const Scalar det_minor10 = matrix.minor(1,0).determinant();
|
||||
const Scalar det_minor20 = matrix.minor(2,0).determinant();
|
||||
const Scalar invdet = Scalar(1) / ( det_minor00 * matrix.coeff(0,0)
|
||||
- det_minor10 * matrix.coeff(1,0)
|
||||
+ det_minor20 * matrix.coeff(2,0) );
|
||||
result->coeffRef(0, 0) = det_minor00 * invdet;
|
||||
result->coeffRef(0, 1) = -det_minor10 * invdet;
|
||||
result->coeffRef(0, 2) = det_minor20 * invdet;
|
||||
result->coeffRef(1, 0) = -matrix.minor(0,1).determinant() * invdet;
|
||||
result->coeffRef(1, 1) = matrix.minor(1,1).determinant() * invdet;
|
||||
result->coeffRef(1, 2) = -matrix.minor(2,1).determinant() * invdet;
|
||||
result->coeffRef(2, 0) = matrix.minor(0,2).determinant() * invdet;
|
||||
result->coeffRef(2, 1) = -matrix.minor(1,2).determinant() * invdet;
|
||||
result->coeffRef(2, 2) = matrix.minor(2,2).determinant() * invdet;
|
||||
}
|
||||
|
||||
template<typename Derived, typename OtherDerived, typename Scalar = typename Derived::Scalar>
|
||||
struct ei_compute_inverse_in_size4_case
|
||||
{
|
||||
static void run(const Derived& matrix, OtherDerived& result)
|
||||
{
|
||||
result.coeffRef(0,0) = matrix.minor(0,0).determinant();
|
||||
result.coeffRef(1,0) = -matrix.minor(0,1).determinant();
|
||||
result.coeffRef(2,0) = matrix.minor(0,2).determinant();
|
||||
result.coeffRef(3,0) = -matrix.minor(0,3).determinant();
|
||||
result.coeffRef(0,2) = matrix.minor(2,0).determinant();
|
||||
result.coeffRef(1,2) = -matrix.minor(2,1).determinant();
|
||||
result.coeffRef(2,2) = matrix.minor(2,2).determinant();
|
||||
result.coeffRef(3,2) = -matrix.minor(2,3).determinant();
|
||||
result.coeffRef(0,1) = -matrix.minor(1,0).determinant();
|
||||
result.coeffRef(1,1) = matrix.minor(1,1).determinant();
|
||||
result.coeffRef(2,1) = -matrix.minor(1,2).determinant();
|
||||
result.coeffRef(3,1) = matrix.minor(1,3).determinant();
|
||||
result.coeffRef(0,3) = -matrix.minor(3,0).determinant();
|
||||
result.coeffRef(1,3) = matrix.minor(3,1).determinant();
|
||||
result.coeffRef(2,3) = -matrix.minor(3,2).determinant();
|
||||
result.coeffRef(3,3) = matrix.minor(3,3).determinant();
|
||||
result /= (matrix.col(0).cwise()*result.row(0).transpose()).sum();
|
||||
}
|
||||
};
|
||||
|
||||
#ifdef EIGEN_VECTORIZE_SSE
|
||||
// The SSE code for the 4x4 float matrix inverse in this file comes from the file
|
||||
// ftp://download.intel.com/design/PentiumIII/sml/24504301.pdf
|
||||
// its copyright information is:
|
||||
// Copyright (C) 1999 Intel Corporation
|
||||
// See page ii of that document for legal stuff. Not being lawyers, we just assume
|
||||
// here that if Intel makes this document publically available, with source code
|
||||
// and detailed explanations, it's because they want their CPUs to be fed with
|
||||
// good code, and therefore they presumably don't mind us using it in Eigen.
|
||||
template<typename Derived, typename OtherDerived>
|
||||
struct ei_compute_inverse_in_size4_case<Derived, OtherDerived, float>
|
||||
{
|
||||
static void run(const Derived& matrix, OtherDerived& result)
|
||||
{
|
||||
// Variables (Streaming SIMD Extensions registers) which will contain cofactors and, later, the
|
||||
// lines of the inverted matrix.
|
||||
__m128 minor0, minor1, minor2, minor3;
|
||||
|
||||
// Variables which will contain the lines of the reference matrix and, later (after the transposition),
|
||||
// the columns of the original matrix.
|
||||
__m128 row0, row1, row2, row3;
|
||||
|
||||
// Temporary variables and the variable that will contain the matrix determinant.
|
||||
__m128 det, tmp1;
|
||||
|
||||
// Matrix transposition
|
||||
const float *src = matrix.data();
|
||||
tmp1 = _mm_loadh_pi(_mm_castpd_ps(_mm_load_sd((double*)src)), (__m64*)(src+ 4));
|
||||
row1 = _mm_loadh_pi(_mm_castpd_ps(_mm_load_sd((double*)(src+8))), (__m64*)(src+12));
|
||||
row0 = _mm_shuffle_ps(tmp1, row1, 0x88);
|
||||
row1 = _mm_shuffle_ps(row1, tmp1, 0xDD);
|
||||
tmp1 = _mm_loadh_pi(_mm_castpd_ps(_mm_load_sd((double*)(src+ 2))), (__m64*)(src+ 6));
|
||||
row3 = _mm_loadh_pi(_mm_castpd_ps(_mm_load_sd((double*)(src+10))), (__m64*)(src+14));
|
||||
row2 = _mm_shuffle_ps(tmp1, row3, 0x88);
|
||||
row3 = _mm_shuffle_ps(row3, tmp1, 0xDD);
|
||||
|
||||
|
||||
// Cofactors calculation. Because in the process of cofactor computation some pairs in three-
|
||||
// element products are repeated, it is not reasonable to load these pairs anew every time. The
|
||||
// values in the registers with these pairs are formed using shuffle instruction. Cofactors are
|
||||
// calculated row by row (4 elements are placed in 1 SP FP SIMD floating point register).
|
||||
|
||||
tmp1 = _mm_mul_ps(row2, row3);
|
||||
tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0xB1);
|
||||
minor0 = _mm_mul_ps(row1, tmp1);
|
||||
minor1 = _mm_mul_ps(row0, tmp1);
|
||||
tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0x4E);
|
||||
minor0 = _mm_sub_ps(_mm_mul_ps(row1, tmp1), minor0);
|
||||
minor1 = _mm_sub_ps(_mm_mul_ps(row0, tmp1), minor1);
|
||||
minor1 = _mm_shuffle_ps(minor1, minor1, 0x4E);
|
||||
// -----------------------------------------------
|
||||
tmp1 = _mm_mul_ps(row1, row2);
|
||||
tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0xB1);
|
||||
minor0 = _mm_add_ps(_mm_mul_ps(row3, tmp1), minor0);
|
||||
minor3 = _mm_mul_ps(row0, tmp1);
|
||||
tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0x4E);
|
||||
minor0 = _mm_sub_ps(minor0, _mm_mul_ps(row3, tmp1));
|
||||
minor3 = _mm_sub_ps(_mm_mul_ps(row0, tmp1), minor3);
|
||||
minor3 = _mm_shuffle_ps(minor3, minor3, 0x4E);
|
||||
// -----------------------------------------------
|
||||
tmp1 = _mm_mul_ps(_mm_shuffle_ps(row1, row1, 0x4E), row3);
|
||||
tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0xB1);
|
||||
row2 = _mm_shuffle_ps(row2, row2, 0x4E);
|
||||
minor0 = _mm_add_ps(_mm_mul_ps(row2, tmp1), minor0);
|
||||
minor2 = _mm_mul_ps(row0, tmp1);
|
||||
tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0x4E);
|
||||
minor0 = _mm_sub_ps(minor0, _mm_mul_ps(row2, tmp1));
|
||||
minor2 = _mm_sub_ps(_mm_mul_ps(row0, tmp1), minor2);
|
||||
minor2 = _mm_shuffle_ps(minor2, minor2, 0x4E);
|
||||
// -----------------------------------------------
|
||||
tmp1 = _mm_mul_ps(row0, row1);
|
||||
tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0xB1);
|
||||
minor2 = _mm_add_ps(_mm_mul_ps(row3, tmp1), minor2);
|
||||
minor3 = _mm_sub_ps(_mm_mul_ps(row2, tmp1), minor3);
|
||||
tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0x4E);
|
||||
minor2 = _mm_sub_ps(_mm_mul_ps(row3, tmp1), minor2);
|
||||
minor3 = _mm_sub_ps(minor3, _mm_mul_ps(row2, tmp1));
|
||||
// -----------------------------------------------
|
||||
tmp1 = _mm_mul_ps(row0, row3);
|
||||
tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0xB1);
|
||||
minor1 = _mm_sub_ps(minor1, _mm_mul_ps(row2, tmp1));
|
||||
minor2 = _mm_add_ps(_mm_mul_ps(row1, tmp1), minor2);
|
||||
tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0x4E);
|
||||
minor1 = _mm_add_ps(_mm_mul_ps(row2, tmp1), minor1);
|
||||
minor2 = _mm_sub_ps(minor2, _mm_mul_ps(row1, tmp1));
|
||||
// -----------------------------------------------
|
||||
tmp1 = _mm_mul_ps(row0, row2);
|
||||
tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0xB1);
|
||||
minor1 = _mm_add_ps(_mm_mul_ps(row3, tmp1), minor1);
|
||||
minor3 = _mm_sub_ps(minor3, _mm_mul_ps(row1, tmp1));
|
||||
tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0x4E);
|
||||
minor1 = _mm_sub_ps(minor1, _mm_mul_ps(row3, tmp1));
|
||||
minor3 = _mm_add_ps(_mm_mul_ps(row1, tmp1), minor3);
|
||||
|
||||
// Evaluation of determinant and its reciprocal value. In the original Intel document,
|
||||
// 1/det was evaluated using a fast rcpps command with subsequent approximation using
|
||||
// the Newton-Raphson algorithm. Here, we go for a IEEE-compliant division instead,
|
||||
// so as to not compromise precision at all.
|
||||
det = _mm_mul_ps(row0, minor0);
|
||||
det = _mm_add_ps(_mm_shuffle_ps(det, det, 0x4E), det);
|
||||
det = _mm_add_ss(_mm_shuffle_ps(det, det, 0xB1), det);
|
||||
// tmp1= _mm_rcp_ss(det);
|
||||
// det= _mm_sub_ss(_mm_add_ss(tmp1, tmp1), _mm_mul_ss(det, _mm_mul_ss(tmp1, tmp1)));
|
||||
det = _mm_div_ss(_mm_set_ss(1.0f), det); // <--- yay, one original line not copied from Intel
|
||||
det = _mm_shuffle_ps(det, det, 0x00);
|
||||
// warning, Intel's variable naming is very confusing: now 'det' is 1/det !
|
||||
|
||||
// Multiplication of cofactors by 1/det. Storing the inverse matrix to the address in pointer src.
|
||||
minor0 = _mm_mul_ps(det, minor0);
|
||||
float *dst = result.data();
|
||||
_mm_storel_pi((__m64*)(dst), minor0);
|
||||
_mm_storeh_pi((__m64*)(dst+2), minor0);
|
||||
minor1 = _mm_mul_ps(det, minor1);
|
||||
_mm_storel_pi((__m64*)(dst+4), minor1);
|
||||
_mm_storeh_pi((__m64*)(dst+6), minor1);
|
||||
minor2 = _mm_mul_ps(det, minor2);
|
||||
_mm_storel_pi((__m64*)(dst+ 8), minor2);
|
||||
_mm_storeh_pi((__m64*)(dst+10), minor2);
|
||||
minor3 = _mm_mul_ps(det, minor3);
|
||||
_mm_storel_pi((__m64*)(dst+12), minor3);
|
||||
_mm_storeh_pi((__m64*)(dst+14), minor3);
|
||||
}
|
||||
};
|
||||
#endif
|
||||
|
||||
/***********************************************
|
||||
*** Part 2 : selector and MatrixBase methods ***
|
||||
***********************************************/
|
||||
|
||||
template<typename Derived, typename OtherDerived, int Size = Derived::RowsAtCompileTime>
|
||||
struct ei_compute_inverse
|
||||
{
|
||||
static inline void run(const Derived& matrix, OtherDerived* result)
|
||||
{
|
||||
LU<Derived> lu(matrix);
|
||||
lu.computeInverse(result);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived, typename OtherDerived>
|
||||
struct ei_compute_inverse<Derived, OtherDerived, 1>
|
||||
{
|
||||
static inline void run(const Derived& matrix, OtherDerived* result)
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
result->coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived, typename OtherDerived>
|
||||
struct ei_compute_inverse<Derived, OtherDerived, 2>
|
||||
{
|
||||
static inline void run(const Derived& matrix, OtherDerived* result)
|
||||
{
|
||||
ei_compute_inverse_in_size2_case(matrix, result);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived, typename OtherDerived>
|
||||
struct ei_compute_inverse<Derived, OtherDerived, 3>
|
||||
{
|
||||
static inline void run(const Derived& matrix, OtherDerived* result)
|
||||
{
|
||||
ei_compute_inverse_in_size3_case(matrix, result);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived, typename OtherDerived>
|
||||
struct ei_compute_inverse<Derived, OtherDerived, 4>
|
||||
{
|
||||
static inline void run(const Derived& matrix, OtherDerived* result)
|
||||
{
|
||||
ei_compute_inverse_in_size4_case<Derived, OtherDerived>::run(matrix, *result);
|
||||
}
|
||||
};
|
||||
|
||||
/** \lu_module
|
||||
*
|
||||
* Computes the matrix inverse of this matrix.
|
||||
*
|
||||
* \note This matrix must be invertible, otherwise the result is undefined.
|
||||
*
|
||||
* \param result Pointer to the matrix in which to store the result.
|
||||
*
|
||||
* Example: \include MatrixBase_computeInverse.cpp
|
||||
* Output: \verbinclude MatrixBase_computeInverse.out
|
||||
*
|
||||
* \sa inverse()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline void MatrixBase<Derived>::computeInverse(MatrixBase<OtherDerived> *result) const
|
||||
{
|
||||
ei_assert(rows() == cols());
|
||||
EIGEN_STATIC_ASSERT(NumTraits<Scalar>::HasFloatingPoint,NUMERIC_TYPE_MUST_BE_FLOATING_POINT)
|
||||
ei_compute_inverse<PlainMatrixType, OtherDerived>::run(eval(), static_cast<OtherDerived*>(result));
|
||||
}
|
||||
|
||||
/** \lu_module
|
||||
*
|
||||
* \returns the matrix inverse of this matrix.
|
||||
*
|
||||
* \note This matrix must be invertible, otherwise the result is undefined.
|
||||
*
|
||||
* \note This method returns a matrix by value, which can be inefficient. To avoid that overhead,
|
||||
* use computeInverse() instead.
|
||||
*
|
||||
* Example: \include MatrixBase_inverse.cpp
|
||||
* Output: \verbinclude MatrixBase_inverse.out
|
||||
*
|
||||
* \sa computeInverse()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const typename MatrixBase<Derived>::PlainMatrixType MatrixBase<Derived>::inverse() const
|
||||
{
|
||||
PlainMatrixType result(rows(), cols());
|
||||
computeInverse(&result);
|
||||
return result;
|
||||
}
|
||||
|
||||
#endif // EIGEN_INVERSE_H
|
543
ground/openpilotgcs/src/libs/eigen/Eigen/src/LU/LU.h
Normal file
543
ground/openpilotgcs/src/libs/eigen/Eigen/src/LU/LU.h
Normal file
@ -0,0 +1,543 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_LU_H
|
||||
#define EIGEN_LU_H
|
||||
|
||||
/** \ingroup LU_Module
|
||||
*
|
||||
* \class LU
|
||||
*
|
||||
* \brief LU decomposition of a matrix with complete pivoting, and related features
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the LU decomposition
|
||||
*
|
||||
* This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A
|
||||
* is decomposed as A = PLUQ where L is unit-lower-triangular, U is upper-triangular, and P and Q
|
||||
* are permutation matrices. This is a rank-revealing LU decomposition. The eigenvalues (diagonal
|
||||
* coefficients) of U are sorted in such a way that any zeros are at the end, so that the rank
|
||||
* of A is the index of the first zero on the diagonal of U (with indices starting at 0) if any.
|
||||
*
|
||||
* This decomposition provides the generic approach to solving systems of linear equations, computing
|
||||
* the rank, invertibility, inverse, kernel, and determinant.
|
||||
*
|
||||
* This LU decomposition is very stable and well tested with large matrices. Even exact rank computation
|
||||
* works at sizes larger than 1000x1000. However there are use cases where the SVD decomposition is inherently
|
||||
* more stable when dealing with numerically damaged input. For example, computing the kernel is more stable with
|
||||
* SVD because the SVD can determine which singular values are negligible while LU has to work at the level of matrix
|
||||
* coefficients that are less meaningful in this respect.
|
||||
*
|
||||
* The data of the LU decomposition can be directly accessed through the methods matrixLU(),
|
||||
* permutationP(), permutationQ().
|
||||
*
|
||||
* As an exemple, here is how the original matrix can be retrieved:
|
||||
* \include class_LU.cpp
|
||||
* Output: \verbinclude class_LU.out
|
||||
*
|
||||
* \sa MatrixBase::lu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse()
|
||||
*/
|
||||
template<typename MatrixType> class LU
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef Matrix<int, 1, MatrixType::ColsAtCompileTime, MatrixType::Options, 1, MatrixType::MaxColsAtCompileTime> IntRowVectorType;
|
||||
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1, MatrixType::Options, MatrixType::MaxRowsAtCompileTime, 1> IntColVectorType;
|
||||
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime, MatrixType::Options, 1, MatrixType::MaxColsAtCompileTime> RowVectorType;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1, MatrixType::Options, MatrixType::MaxRowsAtCompileTime, 1> ColVectorType;
|
||||
|
||||
enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN(
|
||||
MatrixType::MaxColsAtCompileTime,
|
||||
MatrixType::MaxRowsAtCompileTime)
|
||||
};
|
||||
|
||||
typedef Matrix<typename MatrixType::Scalar,
|
||||
MatrixType::ColsAtCompileTime, // the number of rows in the "kernel matrix" is the number of cols of the original matrix
|
||||
// so that the product "matrix * kernel = zero" makes sense
|
||||
Dynamic, // we don't know at compile-time the dimension of the kernel
|
||||
MatrixType::Options,
|
||||
MatrixType::MaxColsAtCompileTime, // see explanation for 2nd template parameter
|
||||
MatrixType::MaxColsAtCompileTime // the kernel is a subspace of the domain space, whose dimension is the number
|
||||
// of columns of the original matrix
|
||||
> KernelResultType;
|
||||
|
||||
typedef Matrix<typename MatrixType::Scalar,
|
||||
MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose dimension is the number
|
||||
// of rows of the original matrix
|
||||
Dynamic, // we don't know at compile time the dimension of the image (the rank)
|
||||
MatrixType::Options,
|
||||
MatrixType::MaxRowsAtCompileTime, // the image matrix will consist of columns from the original matrix,
|
||||
MatrixType::MaxColsAtCompileTime // so it has the same number of rows and at most as many columns.
|
||||
> ImageResultType;
|
||||
|
||||
/** Constructor.
|
||||
*
|
||||
* \param matrix the matrix of which to compute the LU decomposition.
|
||||
*/
|
||||
LU(const MatrixType& matrix);
|
||||
|
||||
/** \returns the LU decomposition matrix: the upper-triangular part is U, the
|
||||
* unit-lower-triangular part is L (at least for square matrices; in the non-square
|
||||
* case, special care is needed, see the documentation of class LU).
|
||||
*
|
||||
* \sa matrixL(), matrixU()
|
||||
*/
|
||||
inline const MatrixType& matrixLU() const
|
||||
{
|
||||
return m_lu;
|
||||
}
|
||||
|
||||
/** \returns a vector of integers, whose size is the number of rows of the matrix being decomposed,
|
||||
* representing the P permutation i.e. the permutation of the rows. For its precise meaning,
|
||||
* see the examples given in the documentation of class LU.
|
||||
*
|
||||
* \sa permutationQ()
|
||||
*/
|
||||
inline const IntColVectorType& permutationP() const
|
||||
{
|
||||
return m_p;
|
||||
}
|
||||
|
||||
/** \returns a vector of integers, whose size is the number of columns of the matrix being
|
||||
* decomposed, representing the Q permutation i.e. the permutation of the columns.
|
||||
* For its precise meaning, see the examples given in the documentation of class LU.
|
||||
*
|
||||
* \sa permutationP()
|
||||
*/
|
||||
inline const IntRowVectorType& permutationQ() const
|
||||
{
|
||||
return m_q;
|
||||
}
|
||||
|
||||
/** Computes a basis of the kernel of the matrix, also called the null-space of the matrix.
|
||||
*
|
||||
* \note This method is only allowed on non-invertible matrices, as determined by
|
||||
* isInvertible(). Calling it on an invertible matrix will make an assertion fail.
|
||||
*
|
||||
* \param result a pointer to the matrix in which to store the kernel. The columns of this
|
||||
* matrix will be set to form a basis of the kernel (it will be resized
|
||||
* if necessary).
|
||||
*
|
||||
* Example: \include LU_computeKernel.cpp
|
||||
* Output: \verbinclude LU_computeKernel.out
|
||||
*
|
||||
* \sa kernel(), computeImage(), image()
|
||||
*/
|
||||
template<typename KernelMatrixType>
|
||||
void computeKernel(KernelMatrixType *result) const;
|
||||
|
||||
/** Computes a basis of the image of the matrix, also called the column-space or range of he matrix.
|
||||
*
|
||||
* \note Calling this method on the zero matrix will make an assertion fail.
|
||||
*
|
||||
* \param result a pointer to the matrix in which to store the image. The columns of this
|
||||
* matrix will be set to form a basis of the image (it will be resized
|
||||
* if necessary).
|
||||
*
|
||||
* Example: \include LU_computeImage.cpp
|
||||
* Output: \verbinclude LU_computeImage.out
|
||||
*
|
||||
* \sa image(), computeKernel(), kernel()
|
||||
*/
|
||||
template<typename ImageMatrixType>
|
||||
void computeImage(ImageMatrixType *result) const;
|
||||
|
||||
/** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
|
||||
* will form a basis of the kernel.
|
||||
*
|
||||
* \note: this method is only allowed on non-invertible matrices, as determined by
|
||||
* isInvertible(). Calling it on an invertible matrix will make an assertion fail.
|
||||
*
|
||||
* \note: this method returns a matrix by value, which induces some inefficiency.
|
||||
* If you prefer to avoid this overhead, use computeKernel() instead.
|
||||
*
|
||||
* Example: \include LU_kernel.cpp
|
||||
* Output: \verbinclude LU_kernel.out
|
||||
*
|
||||
* \sa computeKernel(), image()
|
||||
*/
|
||||
const KernelResultType kernel() const;
|
||||
|
||||
/** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
|
||||
* will form a basis of the kernel.
|
||||
*
|
||||
* \note: Calling this method on the zero matrix will make an assertion fail.
|
||||
*
|
||||
* \note: this method returns a matrix by value, which induces some inefficiency.
|
||||
* If you prefer to avoid this overhead, use computeImage() instead.
|
||||
*
|
||||
* Example: \include LU_image.cpp
|
||||
* Output: \verbinclude LU_image.out
|
||||
*
|
||||
* \sa computeImage(), kernel()
|
||||
*/
|
||||
const ImageResultType image() const;
|
||||
|
||||
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
|
||||
* *this is the LU decomposition, if any exists.
|
||||
*
|
||||
* \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
|
||||
* the only requirement in order for the equation to make sense is that
|
||||
* b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
|
||||
* \param result a pointer to the vector or matrix in which to store the solution, if any exists.
|
||||
* Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols().
|
||||
* If no solution exists, *result is left with undefined coefficients.
|
||||
*
|
||||
* \returns true if any solution exists, false if no solution exists.
|
||||
*
|
||||
* \note If there exist more than one solution, this method will arbitrarily choose one.
|
||||
* If you need a complete analysis of the space of solutions, take the one solution obtained
|
||||
* by this method and add to it elements of the kernel, as determined by kernel().
|
||||
*
|
||||
* Example: \include LU_solve.cpp
|
||||
* Output: \verbinclude LU_solve.out
|
||||
*
|
||||
* \sa MatrixBase::solveTriangular(), kernel(), computeKernel(), inverse(), computeInverse()
|
||||
*/
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
|
||||
|
||||
/** \returns the determinant of the matrix of which
|
||||
* *this is the LU decomposition. It has only linear complexity
|
||||
* (that is, O(n) where n is the dimension of the square matrix)
|
||||
* as the LU decomposition has already been computed.
|
||||
*
|
||||
* \note This is only for square matrices.
|
||||
*
|
||||
* \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
|
||||
* optimized paths.
|
||||
*
|
||||
* \warning a determinant can be very big or small, so for matrices
|
||||
* of large enough dimension, there is a risk of overflow/underflow.
|
||||
*
|
||||
* \sa MatrixBase::determinant()
|
||||
*/
|
||||
typename ei_traits<MatrixType>::Scalar determinant() const;
|
||||
|
||||
/** \returns the rank of the matrix of which *this is the LU decomposition.
|
||||
*
|
||||
* \note This is computed at the time of the construction of the LU decomposition. This
|
||||
* method does not perform any further computation.
|
||||
*/
|
||||
inline int rank() const
|
||||
{
|
||||
return m_rank;
|
||||
}
|
||||
|
||||
/** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
|
||||
*
|
||||
* \note Since the rank is computed at the time of the construction of the LU decomposition, this
|
||||
* method almost does not perform any further computation.
|
||||
*/
|
||||
inline int dimensionOfKernel() const
|
||||
{
|
||||
return m_lu.cols() - m_rank;
|
||||
}
|
||||
|
||||
/** \returns true if the matrix of which *this is the LU decomposition represents an injective
|
||||
* linear map, i.e. has trivial kernel; false otherwise.
|
||||
*
|
||||
* \note Since the rank is computed at the time of the construction of the LU decomposition, this
|
||||
* method almost does not perform any further computation.
|
||||
*/
|
||||
inline bool isInjective() const
|
||||
{
|
||||
return m_rank == m_lu.cols();
|
||||
}
|
||||
|
||||
/** \returns true if the matrix of which *this is the LU decomposition represents a surjective
|
||||
* linear map; false otherwise.
|
||||
*
|
||||
* \note Since the rank is computed at the time of the construction of the LU decomposition, this
|
||||
* method almost does not perform any further computation.
|
||||
*/
|
||||
inline bool isSurjective() const
|
||||
{
|
||||
return m_rank == m_lu.rows();
|
||||
}
|
||||
|
||||
/** \returns true if the matrix of which *this is the LU decomposition is invertible.
|
||||
*
|
||||
* \note Since the rank is computed at the time of the construction of the LU decomposition, this
|
||||
* method almost does not perform any further computation.
|
||||
*/
|
||||
inline bool isInvertible() const
|
||||
{
|
||||
return isInjective() && isSurjective();
|
||||
}
|
||||
|
||||
/** Computes the inverse of the matrix of which *this is the LU decomposition.
|
||||
*
|
||||
* \param result a pointer to the matrix into which to store the inverse. Resized if needed.
|
||||
*
|
||||
* \note If this matrix is not invertible, *result is left with undefined coefficients.
|
||||
* Use isInvertible() to first determine whether this matrix is invertible.
|
||||
*
|
||||
* \sa MatrixBase::computeInverse(), inverse()
|
||||
*/
|
||||
template<typename ResultType>
|
||||
inline void computeInverse(ResultType *result) const
|
||||
{
|
||||
solve(MatrixType::Identity(m_lu.rows(), m_lu.cols()), result);
|
||||
}
|
||||
|
||||
/** \returns the inverse of the matrix of which *this is the LU decomposition.
|
||||
*
|
||||
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
|
||||
* Use isInvertible() to first determine whether this matrix is invertible.
|
||||
*
|
||||
* \sa computeInverse(), MatrixBase::inverse()
|
||||
*/
|
||||
inline MatrixType inverse() const
|
||||
{
|
||||
MatrixType result;
|
||||
computeInverse(&result);
|
||||
return result;
|
||||
}
|
||||
|
||||
protected:
|
||||
const MatrixType& m_originalMatrix;
|
||||
MatrixType m_lu;
|
||||
IntColVectorType m_p;
|
||||
IntRowVectorType m_q;
|
||||
int m_det_pq;
|
||||
int m_rank;
|
||||
RealScalar m_precision;
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
LU<MatrixType>::LU(const MatrixType& matrix)
|
||||
: m_originalMatrix(matrix),
|
||||
m_lu(matrix),
|
||||
m_p(matrix.rows()),
|
||||
m_q(matrix.cols())
|
||||
{
|
||||
const int size = matrix.diagonal().size();
|
||||
const int rows = matrix.rows();
|
||||
const int cols = matrix.cols();
|
||||
|
||||
// this formula comes from experimenting (see "LU precision tuning" thread on the list)
|
||||
// and turns out to be identical to Higham's formula used already in LDLt.
|
||||
m_precision = machine_epsilon<Scalar>() * size;
|
||||
|
||||
IntColVectorType rows_transpositions(matrix.rows());
|
||||
IntRowVectorType cols_transpositions(matrix.cols());
|
||||
int number_of_transpositions = 0;
|
||||
|
||||
RealScalar biggest = RealScalar(0);
|
||||
m_rank = size;
|
||||
for(int k = 0; k < size; ++k)
|
||||
{
|
||||
int row_of_biggest_in_corner, col_of_biggest_in_corner;
|
||||
RealScalar biggest_in_corner;
|
||||
|
||||
biggest_in_corner = m_lu.corner(Eigen::BottomRight, rows-k, cols-k)
|
||||
.cwise().abs()
|
||||
.maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
|
||||
row_of_biggest_in_corner += k;
|
||||
col_of_biggest_in_corner += k;
|
||||
if(k==0) biggest = biggest_in_corner;
|
||||
|
||||
// if the corner is negligible, then we have less than full rank, and we can finish early
|
||||
if(ei_isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
|
||||
{
|
||||
m_rank = k;
|
||||
for(int i = k; i < size; i++)
|
||||
{
|
||||
rows_transpositions.coeffRef(i) = i;
|
||||
cols_transpositions.coeffRef(i) = i;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
|
||||
cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
|
||||
if(k != row_of_biggest_in_corner) {
|
||||
m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
|
||||
++number_of_transpositions;
|
||||
}
|
||||
if(k != col_of_biggest_in_corner) {
|
||||
m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
|
||||
++number_of_transpositions;
|
||||
}
|
||||
if(k<rows-1)
|
||||
m_lu.col(k).end(rows-k-1) /= m_lu.coeff(k,k);
|
||||
if(k<size-1)
|
||||
for(int col = k + 1; col < cols; ++col)
|
||||
m_lu.col(col).end(rows-k-1) -= m_lu.col(k).end(rows-k-1) * m_lu.coeff(k,col);
|
||||
}
|
||||
|
||||
for(int k = 0; k < matrix.rows(); ++k) m_p.coeffRef(k) = k;
|
||||
for(int k = size-1; k >= 0; --k)
|
||||
std::swap(m_p.coeffRef(k), m_p.coeffRef(rows_transpositions.coeff(k)));
|
||||
|
||||
for(int k = 0; k < matrix.cols(); ++k) m_q.coeffRef(k) = k;
|
||||
for(int k = 0; k < size; ++k)
|
||||
std::swap(m_q.coeffRef(k), m_q.coeffRef(cols_transpositions.coeff(k)));
|
||||
|
||||
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
typename ei_traits<MatrixType>::Scalar LU<MatrixType>::determinant() const
|
||||
{
|
||||
return Scalar(m_det_pq) * m_lu.diagonal().redux(ei_scalar_product_op<Scalar>());
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
template<typename KernelMatrixType>
|
||||
void LU<MatrixType>::computeKernel(KernelMatrixType *result) const
|
||||
{
|
||||
ei_assert(!isInvertible());
|
||||
const int dimker = dimensionOfKernel(), cols = m_lu.cols();
|
||||
result->resize(cols, dimker);
|
||||
|
||||
/* Let us use the following lemma:
|
||||
*
|
||||
* Lemma: If the matrix A has the LU decomposition PAQ = LU,
|
||||
* then Ker A = Q(Ker U).
|
||||
*
|
||||
* Proof: trivial: just keep in mind that P, Q, L are invertible.
|
||||
*/
|
||||
|
||||
/* Thus, all we need to do is to compute Ker U, and then apply Q.
|
||||
*
|
||||
* U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
|
||||
* Thus, the diagonal of U ends with exactly
|
||||
* m_dimKer zero's. Let us use that to construct m_dimKer linearly
|
||||
* independent vectors in Ker U.
|
||||
*/
|
||||
|
||||
Matrix<Scalar, Dynamic, Dynamic, MatrixType::Options,
|
||||
MatrixType::MaxColsAtCompileTime, MatrixType::MaxColsAtCompileTime>
|
||||
y(-m_lu.corner(TopRight, m_rank, dimker));
|
||||
|
||||
m_lu.corner(TopLeft, m_rank, m_rank)
|
||||
.template marked<UpperTriangular>()
|
||||
.solveTriangularInPlace(y);
|
||||
|
||||
for(int i = 0; i < m_rank; ++i) result->row(m_q.coeff(i)) = y.row(i);
|
||||
for(int i = m_rank; i < cols; ++i) result->row(m_q.coeff(i)).setZero();
|
||||
for(int k = 0; k < dimker; ++k) result->coeffRef(m_q.coeff(m_rank+k), k) = Scalar(1);
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
const typename LU<MatrixType>::KernelResultType
|
||||
LU<MatrixType>::kernel() const
|
||||
{
|
||||
KernelResultType result(m_lu.cols(), dimensionOfKernel());
|
||||
computeKernel(&result);
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
template<typename ImageMatrixType>
|
||||
void LU<MatrixType>::computeImage(ImageMatrixType *result) const
|
||||
{
|
||||
ei_assert(m_rank > 0);
|
||||
result->resize(m_originalMatrix.rows(), m_rank);
|
||||
for(int i = 0; i < m_rank; ++i)
|
||||
result->col(i) = m_originalMatrix.col(m_q.coeff(i));
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
const typename LU<MatrixType>::ImageResultType
|
||||
LU<MatrixType>::image() const
|
||||
{
|
||||
ImageResultType result(m_originalMatrix.rows(), m_rank);
|
||||
computeImage(&result);
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
bool LU<MatrixType>::solve(
|
||||
const MatrixBase<OtherDerived>& b,
|
||||
ResultType *result
|
||||
) const
|
||||
{
|
||||
/* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
|
||||
* So we proceed as follows:
|
||||
* Step 1: compute c = Pb.
|
||||
* Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
|
||||
* Step 3: replace c by the solution x to Ux = c. Check if a solution really exists.
|
||||
* Step 4: result = Qc;
|
||||
*/
|
||||
|
||||
const int rows = m_lu.rows(), cols = m_lu.cols();
|
||||
ei_assert(b.rows() == rows);
|
||||
const int smalldim = std::min(rows, cols);
|
||||
|
||||
typename OtherDerived::PlainMatrixType c(b.rows(), b.cols());
|
||||
|
||||
// Step 1
|
||||
for(int i = 0; i < rows; ++i) c.row(m_p.coeff(i)) = b.row(i);
|
||||
|
||||
// Step 2
|
||||
m_lu.corner(Eigen::TopLeft,smalldim,smalldim).template marked<UnitLowerTriangular>()
|
||||
.solveTriangularInPlace(
|
||||
c.corner(Eigen::TopLeft, smalldim, c.cols()));
|
||||
if(rows>cols)
|
||||
{
|
||||
c.corner(Eigen::BottomLeft, rows-cols, c.cols())
|
||||
-= m_lu.corner(Eigen::BottomLeft, rows-cols, cols) * c.corner(Eigen::TopLeft, cols, c.cols());
|
||||
}
|
||||
|
||||
// Step 3
|
||||
if(!isSurjective())
|
||||
{
|
||||
// is c is in the image of U ?
|
||||
RealScalar biggest_in_c = m_rank>0 ? c.corner(TopLeft, m_rank, c.cols()).cwise().abs().maxCoeff() : RealScalar(0);
|
||||
for(int col = 0; col < c.cols(); ++col)
|
||||
for(int row = m_rank; row < c.rows(); ++row)
|
||||
if(!ei_isMuchSmallerThan(c.coeff(row,col), biggest_in_c, m_precision))
|
||||
return false;
|
||||
}
|
||||
if(m_rank>0)
|
||||
m_lu.corner(TopLeft, m_rank, m_rank)
|
||||
.template marked<UpperTriangular>()
|
||||
.solveTriangularInPlace(c.corner(TopLeft, m_rank, c.cols()));
|
||||
|
||||
// Step 4
|
||||
result->resize(m_lu.cols(), b.cols());
|
||||
for(int i = 0; i < m_rank; ++i) result->row(m_q.coeff(i)) = c.row(i);
|
||||
for(int i = m_rank; i < m_lu.cols(); ++i) result->row(m_q.coeff(i)).setZero();
|
||||
return true;
|
||||
}
|
||||
|
||||
/** \lu_module
|
||||
*
|
||||
* \return the LU decomposition of \c *this.
|
||||
*
|
||||
* \sa class LU
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const LU<typename MatrixBase<Derived>::PlainMatrixType>
|
||||
MatrixBase<Derived>::lu() const
|
||||
{
|
||||
return LU<PlainMatrixType>(eval());
|
||||
}
|
||||
|
||||
#endif // EIGEN_LU_H
|
@ -0,0 +1,6 @@
|
||||
FILE(GLOB Eigen_LeastSquares_SRCS "*.h")
|
||||
|
||||
INSTALL(FILES
|
||||
${Eigen_LeastSquares_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/LeastSquares
|
||||
)
|
@ -0,0 +1,182 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_LEASTSQUARES_H
|
||||
#define EIGEN_LEASTSQUARES_H
|
||||
|
||||
/** \ingroup LeastSquares_Module
|
||||
*
|
||||
* \leastsquares_module
|
||||
*
|
||||
* For a set of points, this function tries to express
|
||||
* one of the coords as a linear (affine) function of the other coords.
|
||||
*
|
||||
* This is best explained by an example. This function works in full
|
||||
* generality, for points in a space of arbitrary dimension, and also over
|
||||
* the complex numbers, but for this example we will work in dimension 3
|
||||
* over the real numbers (doubles).
|
||||
*
|
||||
* So let us work with the following set of 5 points given by their
|
||||
* \f$(x,y,z)\f$ coordinates:
|
||||
* @code
|
||||
Vector3d points[5];
|
||||
points[0] = Vector3d( 3.02, 6.89, -4.32 );
|
||||
points[1] = Vector3d( 2.01, 5.39, -3.79 );
|
||||
points[2] = Vector3d( 2.41, 6.01, -4.01 );
|
||||
points[3] = Vector3d( 2.09, 5.55, -3.86 );
|
||||
points[4] = Vector3d( 2.58, 6.32, -4.10 );
|
||||
* @endcode
|
||||
* Suppose that we want to express the second coordinate (\f$y\f$) as a linear
|
||||
* expression in \f$x\f$ and \f$z\f$, that is,
|
||||
* \f[ y=ax+bz+c \f]
|
||||
* for some constants \f$a,b,c\f$. Thus, we want to find the best possible
|
||||
* constants \f$a,b,c\f$ so that the plane of equation \f$y=ax+bz+c\f$ fits
|
||||
* best the five above points. To do that, call this function as follows:
|
||||
* @code
|
||||
Vector3d coeffs; // will store the coefficients a, b, c
|
||||
linearRegression(
|
||||
5,
|
||||
&points,
|
||||
&coeffs,
|
||||
1 // the coord to express as a function of
|
||||
// the other ones. 0 means x, 1 means y, 2 means z.
|
||||
);
|
||||
* @endcode
|
||||
* Now the vector \a coeffs is approximately
|
||||
* \f$( 0.495 , -1.927 , -2.906 )\f$.
|
||||
* Thus, we get \f$a=0.495, b = -1.927, c = -2.906\f$. Let us check for
|
||||
* instance how near points[0] is from the plane of equation \f$y=ax+bz+c\f$.
|
||||
* Looking at the coords of points[0], we see that:
|
||||
* \f[ax+bz+c = 0.495 * 3.02 + (-1.927) * (-4.32) + (-2.906) = 6.91.\f]
|
||||
* On the other hand, we have \f$y=6.89\f$. We see that the values
|
||||
* \f$6.91\f$ and \f$6.89\f$
|
||||
* are near, so points[0] is very near the plane of equation \f$y=ax+bz+c\f$.
|
||||
*
|
||||
* Let's now describe precisely the parameters:
|
||||
* @param numPoints the number of points
|
||||
* @param points the array of pointers to the points on which to perform the linear regression
|
||||
* @param result pointer to the vector in which to store the result.
|
||||
This vector must be of the same type and size as the
|
||||
data points. The meaning of its coords is as follows.
|
||||
For brevity, let \f$n=Size\f$,
|
||||
\f$r_i=result[i]\f$,
|
||||
and \f$f=funcOfOthers\f$. Denote by
|
||||
\f$x_0,\ldots,x_{n-1}\f$
|
||||
the n coordinates in the n-dimensional space.
|
||||
Then the resulting equation is:
|
||||
\f[ x_f = r_0 x_0 + \cdots + r_{f-1}x_{f-1}
|
||||
+ r_{f+1}x_{f+1} + \cdots + r_{n-1}x_{n-1} + r_n. \f]
|
||||
* @param funcOfOthers Determines which coord to express as a function of the
|
||||
others. Coords are numbered starting from 0, so that a
|
||||
value of 0 means \f$x\f$, 1 means \f$y\f$,
|
||||
2 means \f$z\f$, ...
|
||||
*
|
||||
* \sa fitHyperplane()
|
||||
*/
|
||||
template<typename VectorType>
|
||||
void linearRegression(int numPoints,
|
||||
VectorType **points,
|
||||
VectorType *result,
|
||||
int funcOfOthers )
|
||||
{
|
||||
typedef typename VectorType::Scalar Scalar;
|
||||
typedef Hyperplane<Scalar, VectorType::SizeAtCompileTime> HyperplaneType;
|
||||
const int size = points[0]->size();
|
||||
result->resize(size);
|
||||
HyperplaneType h(size);
|
||||
fitHyperplane(numPoints, points, &h);
|
||||
for(int i = 0; i < funcOfOthers; i++)
|
||||
result->coeffRef(i) = - h.coeffs()[i] / h.coeffs()[funcOfOthers];
|
||||
for(int i = funcOfOthers; i < size; i++)
|
||||
result->coeffRef(i) = - h.coeffs()[i+1] / h.coeffs()[funcOfOthers];
|
||||
}
|
||||
|
||||
/** \ingroup LeastSquares_Module
|
||||
*
|
||||
* \leastsquares_module
|
||||
*
|
||||
* This function is quite similar to linearRegression(), so we refer to the
|
||||
* documentation of this function and only list here the differences.
|
||||
*
|
||||
* The main difference from linearRegression() is that this function doesn't
|
||||
* take a \a funcOfOthers argument. Instead, it finds a general equation
|
||||
* of the form
|
||||
* \f[ r_0 x_0 + \cdots + r_{n-1}x_{n-1} + r_n = 0, \f]
|
||||
* where \f$n=Size\f$, \f$r_i=retCoefficients[i]\f$, and we denote by
|
||||
* \f$x_0,\ldots,x_{n-1}\f$ the n coordinates in the n-dimensional space.
|
||||
*
|
||||
* Thus, the vector \a retCoefficients has size \f$n+1\f$, which is another
|
||||
* difference from linearRegression().
|
||||
*
|
||||
* In practice, this function performs an hyper-plane fit in a total least square sense
|
||||
* via the following steps:
|
||||
* 1 - center the data to the mean
|
||||
* 2 - compute the covariance matrix
|
||||
* 3 - pick the eigenvector corresponding to the smallest eigenvalue of the covariance matrix
|
||||
* The ratio of the smallest eigenvalue and the second one gives us a hint about the relevance
|
||||
* of the solution. This value is optionally returned in \a soundness.
|
||||
*
|
||||
* \sa linearRegression()
|
||||
*/
|
||||
template<typename VectorType, typename HyperplaneType>
|
||||
void fitHyperplane(int numPoints,
|
||||
VectorType **points,
|
||||
HyperplaneType *result,
|
||||
typename NumTraits<typename VectorType::Scalar>::Real* soundness = 0)
|
||||
{
|
||||
typedef typename VectorType::Scalar Scalar;
|
||||
typedef Matrix<Scalar,VectorType::SizeAtCompileTime,VectorType::SizeAtCompileTime> CovMatrixType;
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType)
|
||||
ei_assert(numPoints >= 1);
|
||||
int size = points[0]->size();
|
||||
ei_assert(size+1 == result->coeffs().size());
|
||||
|
||||
// compute the mean of the data
|
||||
VectorType mean = VectorType::Zero(size);
|
||||
for(int i = 0; i < numPoints; ++i)
|
||||
mean += *(points[i]);
|
||||
mean /= numPoints;
|
||||
|
||||
// compute the covariance matrix
|
||||
CovMatrixType covMat = CovMatrixType::Zero(size, size);
|
||||
VectorType remean = VectorType::Zero(size);
|
||||
for(int i = 0; i < numPoints; ++i)
|
||||
{
|
||||
VectorType diff = (*(points[i]) - mean).conjugate();
|
||||
covMat += diff * diff.adjoint();
|
||||
}
|
||||
|
||||
// now we just have to pick the eigen vector with smallest eigen value
|
||||
SelfAdjointEigenSolver<CovMatrixType> eig(covMat);
|
||||
result->normal() = eig.eigenvectors().col(0);
|
||||
if (soundness)
|
||||
*soundness = eig.eigenvalues().coeff(0)/eig.eigenvalues().coeff(1);
|
||||
|
||||
// let's compute the constant coefficient such that the
|
||||
// plane pass trough the mean point:
|
||||
result->offset() = - (result->normal().cwise()* mean).sum();
|
||||
}
|
||||
|
||||
|
||||
#endif // EIGEN_LEASTSQUARES_H
|
@ -0,0 +1,6 @@
|
||||
FILE(GLOB Eigen_QR_SRCS "*.h")
|
||||
|
||||
INSTALL(FILES
|
||||
${Eigen_QR_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/QR
|
||||
)
|
722
ground/openpilotgcs/src/libs/eigen/Eigen/src/QR/EigenSolver.h
Normal file
722
ground/openpilotgcs/src/libs/eigen/Eigen/src/QR/EigenSolver.h
Normal file
@ -0,0 +1,722 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_EIGENSOLVER_H
|
||||
#define EIGEN_EIGENSOLVER_H
|
||||
|
||||
/** \ingroup QR_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class EigenSolver
|
||||
*
|
||||
* \brief Eigen values/vectors solver for non selfadjoint matrices
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the eigen decomposition
|
||||
*
|
||||
* Currently it only support real matrices.
|
||||
*
|
||||
* \note this code was adapted from JAMA (public domain)
|
||||
*
|
||||
* \sa MatrixBase::eigenvalues(), SelfAdjointEigenSolver
|
||||
*/
|
||||
template<typename _MatrixType> class EigenSolver
|
||||
{
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef std::complex<RealScalar> Complex;
|
||||
typedef Matrix<Complex, MatrixType::ColsAtCompileTime, 1> EigenvalueType;
|
||||
typedef Matrix<Complex, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> EigenvectorType;
|
||||
typedef Matrix<RealScalar, MatrixType::ColsAtCompileTime, 1> RealVectorType;
|
||||
typedef Matrix<RealScalar, Dynamic, 1> RealVectorTypeX;
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via EigenSolver::compute(const MatrixType&).
|
||||
*/
|
||||
EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false) {}
|
||||
|
||||
EigenSolver(const MatrixType& matrix)
|
||||
: m_eivec(matrix.rows(), matrix.cols()),
|
||||
m_eivalues(matrix.cols()),
|
||||
m_isInitialized(false)
|
||||
{
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
|
||||
EigenvectorType eigenvectors(void) const;
|
||||
|
||||
/** \returns a real matrix V of pseudo eigenvectors.
|
||||
*
|
||||
* Let D be the block diagonal matrix with the real eigenvalues in 1x1 blocks,
|
||||
* and any complex values u+iv in 2x2 blocks [u v ; -v u]. Then, the matrices D
|
||||
* and V satisfy A*V = V*D.
|
||||
*
|
||||
* More precisely, if the diagonal matrix of the eigen values is:\n
|
||||
* \f$
|
||||
* \left[ \begin{array}{cccccc}
|
||||
* u+iv & & & & & \\
|
||||
* & u-iv & & & & \\
|
||||
* & & a+ib & & & \\
|
||||
* & & & a-ib & & \\
|
||||
* & & & & x & \\
|
||||
* & & & & & y \\
|
||||
* \end{array} \right]
|
||||
* \f$ \n
|
||||
* then, we have:\n
|
||||
* \f$
|
||||
* D =\left[ \begin{array}{cccccc}
|
||||
* u & v & & & & \\
|
||||
* -v & u & & & & \\
|
||||
* & & a & b & & \\
|
||||
* & & -b & a & & \\
|
||||
* & & & & x & \\
|
||||
* & & & & & y \\
|
||||
* \end{array} \right]
|
||||
* \f$
|
||||
*
|
||||
* \sa pseudoEigenvalueMatrix()
|
||||
*/
|
||||
const MatrixType& pseudoEigenvectors() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "EigenSolver is not initialized.");
|
||||
return m_eivec;
|
||||
}
|
||||
|
||||
MatrixType pseudoEigenvalueMatrix() const;
|
||||
|
||||
/** \returns the eigenvalues as a column vector */
|
||||
EigenvalueType eigenvalues() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "EigenSolver is not initialized.");
|
||||
return m_eivalues;
|
||||
}
|
||||
|
||||
void compute(const MatrixType& matrix);
|
||||
|
||||
private:
|
||||
|
||||
void orthes(MatrixType& matH, RealVectorType& ort);
|
||||
void hqr2(MatrixType& matH);
|
||||
|
||||
protected:
|
||||
MatrixType m_eivec;
|
||||
EigenvalueType m_eivalues;
|
||||
bool m_isInitialized;
|
||||
};
|
||||
|
||||
/** \returns the real block diagonal matrix D of the eigenvalues.
|
||||
*
|
||||
* See pseudoEigenvectors() for the details.
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "EigenSolver is not initialized.");
|
||||
int n = m_eivec.cols();
|
||||
MatrixType matD = MatrixType::Zero(n,n);
|
||||
for (int i=0; i<n; ++i)
|
||||
{
|
||||
if (ei_isMuchSmallerThan(ei_imag(m_eivalues.coeff(i)), ei_real(m_eivalues.coeff(i))))
|
||||
matD.coeffRef(i,i) = ei_real(m_eivalues.coeff(i));
|
||||
else
|
||||
{
|
||||
matD.template block<2,2>(i,i) << ei_real(m_eivalues.coeff(i)), ei_imag(m_eivalues.coeff(i)),
|
||||
-ei_imag(m_eivalues.coeff(i)), ei_real(m_eivalues.coeff(i));
|
||||
++i;
|
||||
}
|
||||
}
|
||||
return matD;
|
||||
}
|
||||
|
||||
/** \returns the normalized complex eigenvectors as a matrix of column vectors.
|
||||
*
|
||||
* \sa eigenvalues(), pseudoEigenvectors()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
typename EigenSolver<MatrixType>::EigenvectorType EigenSolver<MatrixType>::eigenvectors(void) const
|
||||
{
|
||||
ei_assert(m_isInitialized && "EigenSolver is not initialized.");
|
||||
int n = m_eivec.cols();
|
||||
EigenvectorType matV(n,n);
|
||||
for (int j=0; j<n; ++j)
|
||||
{
|
||||
if (ei_isMuchSmallerThan(ei_abs(ei_imag(m_eivalues.coeff(j))), ei_abs(ei_real(m_eivalues.coeff(j)))))
|
||||
{
|
||||
// we have a real eigen value
|
||||
matV.col(j) = m_eivec.col(j).template cast<Complex>();
|
||||
}
|
||||
else
|
||||
{
|
||||
// we have a pair of complex eigen values
|
||||
for (int i=0; i<n; ++i)
|
||||
{
|
||||
matV.coeffRef(i,j) = Complex(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1));
|
||||
matV.coeffRef(i,j+1) = Complex(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
|
||||
}
|
||||
matV.col(j).normalize();
|
||||
matV.col(j+1).normalize();
|
||||
++j;
|
||||
}
|
||||
}
|
||||
return matV;
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void EigenSolver<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
assert(matrix.cols() == matrix.rows());
|
||||
int n = matrix.cols();
|
||||
m_eivalues.resize(n,1);
|
||||
|
||||
MatrixType matH = matrix;
|
||||
RealVectorType ort(n);
|
||||
|
||||
// Reduce to Hessenberg form.
|
||||
orthes(matH, ort);
|
||||
|
||||
// Reduce Hessenberg to real Schur form.
|
||||
hqr2(matH);
|
||||
|
||||
m_isInitialized = true;
|
||||
}
|
||||
|
||||
// Nonsymmetric reduction to Hessenberg form.
|
||||
template<typename MatrixType>
|
||||
void EigenSolver<MatrixType>::orthes(MatrixType& matH, RealVectorType& ort)
|
||||
{
|
||||
// This is derived from the Algol procedures orthes and ortran,
|
||||
// by Martin and Wilkinson, Handbook for Auto. Comp.,
|
||||
// Vol.ii-Linear Algebra, and the corresponding
|
||||
// Fortran subroutines in EISPACK.
|
||||
|
||||
int n = m_eivec.cols();
|
||||
int low = 0;
|
||||
int high = n-1;
|
||||
|
||||
for (int m = low+1; m <= high-1; ++m)
|
||||
{
|
||||
// Scale column.
|
||||
RealScalar scale = matH.block(m, m-1, high-m+1, 1).cwise().abs().sum();
|
||||
if (scale != 0.0)
|
||||
{
|
||||
// Compute Householder transformation.
|
||||
RealScalar h = 0.0;
|
||||
// FIXME could be rewritten, but this one looks better wrt cache
|
||||
for (int i = high; i >= m; i--)
|
||||
{
|
||||
ort.coeffRef(i) = matH.coeff(i,m-1)/scale;
|
||||
h += ort.coeff(i) * ort.coeff(i);
|
||||
}
|
||||
RealScalar g = ei_sqrt(h);
|
||||
if (ort.coeff(m) > 0)
|
||||
g = -g;
|
||||
h = h - ort.coeff(m) * g;
|
||||
ort.coeffRef(m) = ort.coeff(m) - g;
|
||||
|
||||
// Apply Householder similarity transformation
|
||||
// H = (I-u*u'/h)*H*(I-u*u')/h)
|
||||
int bSize = high-m+1;
|
||||
matH.block(m, m, bSize, n-m) -= ((ort.segment(m, bSize)/h)
|
||||
* (ort.segment(m, bSize).transpose() * matH.block(m, m, bSize, n-m)).lazy()).lazy();
|
||||
|
||||
matH.block(0, m, high+1, bSize) -= ((matH.block(0, m, high+1, bSize) * ort.segment(m, bSize)).lazy()
|
||||
* (ort.segment(m, bSize)/h).transpose()).lazy();
|
||||
|
||||
ort.coeffRef(m) = scale*ort.coeff(m);
|
||||
matH.coeffRef(m,m-1) = scale*g;
|
||||
}
|
||||
}
|
||||
|
||||
// Accumulate transformations (Algol's ortran).
|
||||
m_eivec.setIdentity();
|
||||
|
||||
for (int m = high-1; m >= low+1; m--)
|
||||
{
|
||||
if (matH.coeff(m,m-1) != 0.0)
|
||||
{
|
||||
ort.segment(m+1, high-m) = matH.col(m-1).segment(m+1, high-m);
|
||||
|
||||
int bSize = high-m+1;
|
||||
m_eivec.block(m, m, bSize, bSize) += ( (ort.segment(m, bSize) / (matH.coeff(m,m-1) * ort.coeff(m) ) )
|
||||
* (ort.segment(m, bSize).transpose() * m_eivec.block(m, m, bSize, bSize)).lazy());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Complex scalar division.
|
||||
template<typename Scalar>
|
||||
std::complex<Scalar> cdiv(Scalar xr, Scalar xi, Scalar yr, Scalar yi)
|
||||
{
|
||||
Scalar r,d;
|
||||
if (ei_abs(yr) > ei_abs(yi))
|
||||
{
|
||||
r = yi/yr;
|
||||
d = yr + r*yi;
|
||||
return std::complex<Scalar>((xr + r*xi)/d, (xi - r*xr)/d);
|
||||
}
|
||||
else
|
||||
{
|
||||
r = yr/yi;
|
||||
d = yi + r*yr;
|
||||
return std::complex<Scalar>((r*xr + xi)/d, (r*xi - xr)/d);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Nonsymmetric reduction from Hessenberg to real Schur form.
|
||||
template<typename MatrixType>
|
||||
void EigenSolver<MatrixType>::hqr2(MatrixType& matH)
|
||||
{
|
||||
// This is derived from the Algol procedure hqr2,
|
||||
// by Martin and Wilkinson, Handbook for Auto. Comp.,
|
||||
// Vol.ii-Linear Algebra, and the corresponding
|
||||
// Fortran subroutine in EISPACK.
|
||||
|
||||
// Initialize
|
||||
int nn = m_eivec.cols();
|
||||
int n = nn-1;
|
||||
int low = 0;
|
||||
int high = nn-1;
|
||||
Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
|
||||
Scalar exshift = 0.0;
|
||||
Scalar p=0,q=0,r=0,s=0,z=0,t,w,x,y;
|
||||
|
||||
// Store roots isolated by balanc and compute matrix norm
|
||||
// FIXME to be efficient the following would requires a triangular reduxion code
|
||||
// Scalar norm = matH.upper().cwise().abs().sum() + matH.corner(BottomLeft,n,n).diagonal().cwise().abs().sum();
|
||||
Scalar norm = 0.0;
|
||||
for (int j = 0; j < nn; ++j)
|
||||
{
|
||||
// FIXME what's the purpose of the following since the condition is always false
|
||||
if ((j < low) || (j > high))
|
||||
{
|
||||
m_eivalues.coeffRef(j) = Complex(matH.coeff(j,j), 0.0);
|
||||
}
|
||||
norm += matH.row(j).segment(std::max(j-1,0), nn-std::max(j-1,0)).cwise().abs().sum();
|
||||
}
|
||||
|
||||
// Outer loop over eigenvalue index
|
||||
int iter = 0;
|
||||
while (n >= low)
|
||||
{
|
||||
// Look for single small sub-diagonal element
|
||||
int l = n;
|
||||
while (l > low)
|
||||
{
|
||||
s = ei_abs(matH.coeff(l-1,l-1)) + ei_abs(matH.coeff(l,l));
|
||||
if (s == 0.0)
|
||||
s = norm;
|
||||
if (ei_abs(matH.coeff(l,l-1)) < eps * s)
|
||||
break;
|
||||
l--;
|
||||
}
|
||||
|
||||
// Check for convergence
|
||||
// One root found
|
||||
if (l == n)
|
||||
{
|
||||
matH.coeffRef(n,n) = matH.coeff(n,n) + exshift;
|
||||
m_eivalues.coeffRef(n) = Complex(matH.coeff(n,n), 0.0);
|
||||
n--;
|
||||
iter = 0;
|
||||
}
|
||||
else if (l == n-1) // Two roots found
|
||||
{
|
||||
w = matH.coeff(n,n-1) * matH.coeff(n-1,n);
|
||||
p = (matH.coeff(n-1,n-1) - matH.coeff(n,n)) * Scalar(0.5);
|
||||
q = p * p + w;
|
||||
z = ei_sqrt(ei_abs(q));
|
||||
matH.coeffRef(n,n) = matH.coeff(n,n) + exshift;
|
||||
matH.coeffRef(n-1,n-1) = matH.coeff(n-1,n-1) + exshift;
|
||||
x = matH.coeff(n,n);
|
||||
|
||||
// Scalar pair
|
||||
if (q >= 0)
|
||||
{
|
||||
if (p >= 0)
|
||||
z = p + z;
|
||||
else
|
||||
z = p - z;
|
||||
|
||||
m_eivalues.coeffRef(n-1) = Complex(x + z, 0.0);
|
||||
m_eivalues.coeffRef(n) = Complex(z!=0.0 ? x - w / z : m_eivalues.coeff(n-1).real(), 0.0);
|
||||
|
||||
x = matH.coeff(n,n-1);
|
||||
s = ei_abs(x) + ei_abs(z);
|
||||
p = x / s;
|
||||
q = z / s;
|
||||
r = ei_sqrt(p * p+q * q);
|
||||
p = p / r;
|
||||
q = q / r;
|
||||
|
||||
// Row modification
|
||||
for (int j = n-1; j < nn; ++j)
|
||||
{
|
||||
z = matH.coeff(n-1,j);
|
||||
matH.coeffRef(n-1,j) = q * z + p * matH.coeff(n,j);
|
||||
matH.coeffRef(n,j) = q * matH.coeff(n,j) - p * z;
|
||||
}
|
||||
|
||||
// Column modification
|
||||
for (int i = 0; i <= n; ++i)
|
||||
{
|
||||
z = matH.coeff(i,n-1);
|
||||
matH.coeffRef(i,n-1) = q * z + p * matH.coeff(i,n);
|
||||
matH.coeffRef(i,n) = q * matH.coeff(i,n) - p * z;
|
||||
}
|
||||
|
||||
// Accumulate transformations
|
||||
for (int i = low; i <= high; ++i)
|
||||
{
|
||||
z = m_eivec.coeff(i,n-1);
|
||||
m_eivec.coeffRef(i,n-1) = q * z + p * m_eivec.coeff(i,n);
|
||||
m_eivec.coeffRef(i,n) = q * m_eivec.coeff(i,n) - p * z;
|
||||
}
|
||||
}
|
||||
else // Complex pair
|
||||
{
|
||||
m_eivalues.coeffRef(n-1) = Complex(x + p, z);
|
||||
m_eivalues.coeffRef(n) = Complex(x + p, -z);
|
||||
}
|
||||
n = n - 2;
|
||||
iter = 0;
|
||||
}
|
||||
else // No convergence yet
|
||||
{
|
||||
// Form shift
|
||||
x = matH.coeff(n,n);
|
||||
y = 0.0;
|
||||
w = 0.0;
|
||||
if (l < n)
|
||||
{
|
||||
y = matH.coeff(n-1,n-1);
|
||||
w = matH.coeff(n,n-1) * matH.coeff(n-1,n);
|
||||
}
|
||||
|
||||
// Wilkinson's original ad hoc shift
|
||||
if (iter == 10)
|
||||
{
|
||||
exshift += x;
|
||||
for (int i = low; i <= n; ++i)
|
||||
matH.coeffRef(i,i) -= x;
|
||||
s = ei_abs(matH.coeff(n,n-1)) + ei_abs(matH.coeff(n-1,n-2));
|
||||
x = y = Scalar(0.75) * s;
|
||||
w = Scalar(-0.4375) * s * s;
|
||||
}
|
||||
|
||||
// MATLAB's new ad hoc shift
|
||||
if (iter == 30)
|
||||
{
|
||||
s = Scalar((y - x) / 2.0);
|
||||
s = s * s + w;
|
||||
if (s > 0)
|
||||
{
|
||||
s = ei_sqrt(s);
|
||||
if (y < x)
|
||||
s = -s;
|
||||
s = Scalar(x - w / ((y - x) / 2.0 + s));
|
||||
for (int i = low; i <= n; ++i)
|
||||
matH.coeffRef(i,i) -= s;
|
||||
exshift += s;
|
||||
x = y = w = Scalar(0.964);
|
||||
}
|
||||
}
|
||||
|
||||
iter = iter + 1; // (Could check iteration count here.)
|
||||
|
||||
// Look for two consecutive small sub-diagonal elements
|
||||
int m = n-2;
|
||||
while (m >= l)
|
||||
{
|
||||
z = matH.coeff(m,m);
|
||||
r = x - z;
|
||||
s = y - z;
|
||||
p = (r * s - w) / matH.coeff(m+1,m) + matH.coeff(m,m+1);
|
||||
q = matH.coeff(m+1,m+1) - z - r - s;
|
||||
r = matH.coeff(m+2,m+1);
|
||||
s = ei_abs(p) + ei_abs(q) + ei_abs(r);
|
||||
p = p / s;
|
||||
q = q / s;
|
||||
r = r / s;
|
||||
if (m == l) {
|
||||
break;
|
||||
}
|
||||
if (ei_abs(matH.coeff(m,m-1)) * (ei_abs(q) + ei_abs(r)) <
|
||||
eps * (ei_abs(p) * (ei_abs(matH.coeff(m-1,m-1)) + ei_abs(z) +
|
||||
ei_abs(matH.coeff(m+1,m+1)))))
|
||||
{
|
||||
break;
|
||||
}
|
||||
m--;
|
||||
}
|
||||
|
||||
for (int i = m+2; i <= n; ++i)
|
||||
{
|
||||
matH.coeffRef(i,i-2) = 0.0;
|
||||
if (i > m+2)
|
||||
matH.coeffRef(i,i-3) = 0.0;
|
||||
}
|
||||
|
||||
// Double QR step involving rows l:n and columns m:n
|
||||
for (int k = m; k <= n-1; ++k)
|
||||
{
|
||||
int notlast = (k != n-1);
|
||||
if (k != m) {
|
||||
p = matH.coeff(k,k-1);
|
||||
q = matH.coeff(k+1,k-1);
|
||||
r = notlast ? matH.coeff(k+2,k-1) : Scalar(0);
|
||||
x = ei_abs(p) + ei_abs(q) + ei_abs(r);
|
||||
if (x != 0.0)
|
||||
{
|
||||
p = p / x;
|
||||
q = q / x;
|
||||
r = r / x;
|
||||
}
|
||||
}
|
||||
|
||||
if (x == 0.0)
|
||||
break;
|
||||
|
||||
s = ei_sqrt(p * p + q * q + r * r);
|
||||
|
||||
if (p < 0)
|
||||
s = -s;
|
||||
|
||||
if (s != 0)
|
||||
{
|
||||
if (k != m)
|
||||
matH.coeffRef(k,k-1) = -s * x;
|
||||
else if (l != m)
|
||||
matH.coeffRef(k,k-1) = -matH.coeff(k,k-1);
|
||||
|
||||
p = p + s;
|
||||
x = p / s;
|
||||
y = q / s;
|
||||
z = r / s;
|
||||
q = q / p;
|
||||
r = r / p;
|
||||
|
||||
// Row modification
|
||||
for (int j = k; j < nn; ++j)
|
||||
{
|
||||
p = matH.coeff(k,j) + q * matH.coeff(k+1,j);
|
||||
if (notlast)
|
||||
{
|
||||
p = p + r * matH.coeff(k+2,j);
|
||||
matH.coeffRef(k+2,j) = matH.coeff(k+2,j) - p * z;
|
||||
}
|
||||
matH.coeffRef(k,j) = matH.coeff(k,j) - p * x;
|
||||
matH.coeffRef(k+1,j) = matH.coeff(k+1,j) - p * y;
|
||||
}
|
||||
|
||||
// Column modification
|
||||
for (int i = 0; i <= std::min(n,k+3); ++i)
|
||||
{
|
||||
p = x * matH.coeff(i,k) + y * matH.coeff(i,k+1);
|
||||
if (notlast)
|
||||
{
|
||||
p = p + z * matH.coeff(i,k+2);
|
||||
matH.coeffRef(i,k+2) = matH.coeff(i,k+2) - p * r;
|
||||
}
|
||||
matH.coeffRef(i,k) = matH.coeff(i,k) - p;
|
||||
matH.coeffRef(i,k+1) = matH.coeff(i,k+1) - p * q;
|
||||
}
|
||||
|
||||
// Accumulate transformations
|
||||
for (int i = low; i <= high; ++i)
|
||||
{
|
||||
p = x * m_eivec.coeff(i,k) + y * m_eivec.coeff(i,k+1);
|
||||
if (notlast)
|
||||
{
|
||||
p = p + z * m_eivec.coeff(i,k+2);
|
||||
m_eivec.coeffRef(i,k+2) = m_eivec.coeff(i,k+2) - p * r;
|
||||
}
|
||||
m_eivec.coeffRef(i,k) = m_eivec.coeff(i,k) - p;
|
||||
m_eivec.coeffRef(i,k+1) = m_eivec.coeff(i,k+1) - p * q;
|
||||
}
|
||||
} // (s != 0)
|
||||
} // k loop
|
||||
} // check convergence
|
||||
} // while (n >= low)
|
||||
|
||||
// Backsubstitute to find vectors of upper triangular form
|
||||
if (norm == 0.0)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
for (n = nn-1; n >= 0; n--)
|
||||
{
|
||||
p = m_eivalues.coeff(n).real();
|
||||
q = m_eivalues.coeff(n).imag();
|
||||
|
||||
// Scalar vector
|
||||
if (q == 0)
|
||||
{
|
||||
int l = n;
|
||||
matH.coeffRef(n,n) = 1.0;
|
||||
for (int i = n-1; i >= 0; i--)
|
||||
{
|
||||
w = matH.coeff(i,i) - p;
|
||||
r = (matH.row(i).segment(l,n-l+1) * matH.col(n).segment(l, n-l+1))(0,0);
|
||||
|
||||
if (m_eivalues.coeff(i).imag() < 0.0)
|
||||
{
|
||||
z = w;
|
||||
s = r;
|
||||
}
|
||||
else
|
||||
{
|
||||
l = i;
|
||||
if (m_eivalues.coeff(i).imag() == 0.0)
|
||||
{
|
||||
if (w != 0.0)
|
||||
matH.coeffRef(i,n) = -r / w;
|
||||
else
|
||||
matH.coeffRef(i,n) = -r / (eps * norm);
|
||||
}
|
||||
else // Solve real equations
|
||||
{
|
||||
x = matH.coeff(i,i+1);
|
||||
y = matH.coeff(i+1,i);
|
||||
q = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
|
||||
t = (x * s - z * r) / q;
|
||||
matH.coeffRef(i,n) = t;
|
||||
if (ei_abs(x) > ei_abs(z))
|
||||
matH.coeffRef(i+1,n) = (-r - w * t) / x;
|
||||
else
|
||||
matH.coeffRef(i+1,n) = (-s - y * t) / z;
|
||||
}
|
||||
|
||||
// Overflow control
|
||||
t = ei_abs(matH.coeff(i,n));
|
||||
if ((eps * t) * t > 1)
|
||||
matH.col(n).end(nn-i) /= t;
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (q < 0) // Complex vector
|
||||
{
|
||||
std::complex<Scalar> cc;
|
||||
int l = n-1;
|
||||
|
||||
// Last vector component imaginary so matrix is triangular
|
||||
if (ei_abs(matH.coeff(n,n-1)) > ei_abs(matH.coeff(n-1,n)))
|
||||
{
|
||||
matH.coeffRef(n-1,n-1) = q / matH.coeff(n,n-1);
|
||||
matH.coeffRef(n-1,n) = -(matH.coeff(n,n) - p) / matH.coeff(n,n-1);
|
||||
}
|
||||
else
|
||||
{
|
||||
cc = cdiv<Scalar>(0.0,-matH.coeff(n-1,n),matH.coeff(n-1,n-1)-p,q);
|
||||
matH.coeffRef(n-1,n-1) = ei_real(cc);
|
||||
matH.coeffRef(n-1,n) = ei_imag(cc);
|
||||
}
|
||||
matH.coeffRef(n,n-1) = 0.0;
|
||||
matH.coeffRef(n,n) = 1.0;
|
||||
for (int i = n-2; i >= 0; i--)
|
||||
{
|
||||
Scalar ra,sa,vr,vi;
|
||||
ra = (matH.block(i,l, 1, n-l+1) * matH.block(l,n-1, n-l+1, 1)).lazy()(0,0);
|
||||
sa = (matH.block(i,l, 1, n-l+1) * matH.block(l,n, n-l+1, 1)).lazy()(0,0);
|
||||
w = matH.coeff(i,i) - p;
|
||||
|
||||
if (m_eivalues.coeff(i).imag() < 0.0)
|
||||
{
|
||||
z = w;
|
||||
r = ra;
|
||||
s = sa;
|
||||
}
|
||||
else
|
||||
{
|
||||
l = i;
|
||||
if (m_eivalues.coeff(i).imag() == 0)
|
||||
{
|
||||
cc = cdiv(-ra,-sa,w,q);
|
||||
matH.coeffRef(i,n-1) = ei_real(cc);
|
||||
matH.coeffRef(i,n) = ei_imag(cc);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Solve complex equations
|
||||
x = matH.coeff(i,i+1);
|
||||
y = matH.coeff(i+1,i);
|
||||
vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
|
||||
vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
|
||||
if ((vr == 0.0) && (vi == 0.0))
|
||||
vr = eps * norm * (ei_abs(w) + ei_abs(q) + ei_abs(x) + ei_abs(y) + ei_abs(z));
|
||||
|
||||
cc= cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
|
||||
matH.coeffRef(i,n-1) = ei_real(cc);
|
||||
matH.coeffRef(i,n) = ei_imag(cc);
|
||||
if (ei_abs(x) > (ei_abs(z) + ei_abs(q)))
|
||||
{
|
||||
matH.coeffRef(i+1,n-1) = (-ra - w * matH.coeff(i,n-1) + q * matH.coeff(i,n)) / x;
|
||||
matH.coeffRef(i+1,n) = (-sa - w * matH.coeff(i,n) - q * matH.coeff(i,n-1)) / x;
|
||||
}
|
||||
else
|
||||
{
|
||||
cc = cdiv(-r-y*matH.coeff(i,n-1),-s-y*matH.coeff(i,n),z,q);
|
||||
matH.coeffRef(i+1,n-1) = ei_real(cc);
|
||||
matH.coeffRef(i+1,n) = ei_imag(cc);
|
||||
}
|
||||
}
|
||||
|
||||
// Overflow control
|
||||
t = std::max(ei_abs(matH.coeff(i,n-1)),ei_abs(matH.coeff(i,n)));
|
||||
if ((eps * t) * t > 1)
|
||||
matH.block(i, n-1, nn-i, 2) /= t;
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Vectors of isolated roots
|
||||
for (int i = 0; i < nn; ++i)
|
||||
{
|
||||
// FIXME again what's the purpose of this test ?
|
||||
// in this algo low==0 and high==nn-1 !!
|
||||
if (i < low || i > high)
|
||||
{
|
||||
m_eivec.row(i).end(nn-i) = matH.row(i).end(nn-i);
|
||||
}
|
||||
}
|
||||
|
||||
// Back transformation to get eigenvectors of original matrix
|
||||
int bRows = high-low+1;
|
||||
for (int j = nn-1; j >= low; j--)
|
||||
{
|
||||
int bSize = std::min(j,high)-low+1;
|
||||
m_eivec.col(j).segment(low, bRows) = (m_eivec.block(low, low, bRows, bSize) * matH.col(j).segment(low, bSize));
|
||||
}
|
||||
}
|
||||
|
||||
#endif // EIGEN_EIGENSOLVER_H
|
@ -0,0 +1,250 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_HESSENBERGDECOMPOSITION_H
|
||||
#define EIGEN_HESSENBERGDECOMPOSITION_H
|
||||
|
||||
/** \ingroup QR_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class HessenbergDecomposition
|
||||
*
|
||||
* \brief Reduces a squared matrix to an Hessemberg form
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the Hessenberg decomposition
|
||||
*
|
||||
* This class performs an Hessenberg decomposition of a matrix \f$ A \f$ such that:
|
||||
* \f$ A = Q H Q^* \f$ where \f$ Q \f$ is unitary and \f$ H \f$ a Hessenberg matrix.
|
||||
*
|
||||
* \sa class Tridiagonalization, class Qr
|
||||
*/
|
||||
template<typename _MatrixType> class HessenbergDecomposition
|
||||
{
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
enum {
|
||||
Size = MatrixType::RowsAtCompileTime,
|
||||
SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic
|
||||
? Dynamic
|
||||
: MatrixType::RowsAtCompileTime-1
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, SizeMinusOne, 1> CoeffVectorType;
|
||||
typedef Matrix<RealScalar, Size, 1> DiagonalType;
|
||||
typedef Matrix<RealScalar, SizeMinusOne, 1> SubDiagonalType;
|
||||
|
||||
typedef typename NestByValue<DiagonalCoeffs<MatrixType> >::RealReturnType DiagonalReturnType;
|
||||
|
||||
typedef typename NestByValue<DiagonalCoeffs<
|
||||
NestByValue<Block<MatrixType,SizeMinusOne,SizeMinusOne> > > >::RealReturnType SubDiagonalReturnType;
|
||||
|
||||
/** This constructor initializes a HessenbergDecomposition object for
|
||||
* further use with HessenbergDecomposition::compute()
|
||||
*/
|
||||
HessenbergDecomposition(int size = Size==Dynamic ? 2 : Size)
|
||||
: m_matrix(size,size), m_hCoeffs(size-1)
|
||||
{}
|
||||
|
||||
HessenbergDecomposition(const MatrixType& matrix)
|
||||
: m_matrix(matrix),
|
||||
m_hCoeffs(matrix.cols()-1)
|
||||
{
|
||||
_compute(m_matrix, m_hCoeffs);
|
||||
}
|
||||
|
||||
/** Computes or re-compute the Hessenberg decomposition for the matrix \a matrix.
|
||||
*
|
||||
* This method allows to re-use the allocated data.
|
||||
*/
|
||||
void compute(const MatrixType& matrix)
|
||||
{
|
||||
m_matrix = matrix;
|
||||
m_hCoeffs.resize(matrix.rows()-1,1);
|
||||
_compute(m_matrix, m_hCoeffs);
|
||||
}
|
||||
|
||||
/** \returns the householder coefficients allowing to
|
||||
* reconstruct the matrix Q from the packed data.
|
||||
*
|
||||
* \sa packedMatrix()
|
||||
*/
|
||||
CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; }
|
||||
|
||||
/** \returns the internal result of the decomposition.
|
||||
*
|
||||
* The returned matrix contains the following information:
|
||||
* - the upper part and lower sub-diagonal represent the Hessenberg matrix H
|
||||
* - the rest of the lower part contains the Householder vectors that, combined with
|
||||
* Householder coefficients returned by householderCoefficients(),
|
||||
* allows to reconstruct the matrix Q as follow:
|
||||
* Q = H_{N-1} ... H_1 H_0
|
||||
* where the matrices H are the Householder transformation:
|
||||
* H_i = (I - h_i * v_i * v_i')
|
||||
* where h_i == householderCoefficients()[i] and v_i is a Householder vector:
|
||||
* v_i = [ 0, ..., 0, 1, M(i+2,i), ..., M(N-1,i) ]
|
||||
*
|
||||
* See LAPACK for further details on this packed storage.
|
||||
*/
|
||||
const MatrixType& packedMatrix(void) const { return m_matrix; }
|
||||
|
||||
MatrixType matrixQ(void) const;
|
||||
MatrixType matrixH(void) const;
|
||||
|
||||
private:
|
||||
|
||||
static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs);
|
||||
|
||||
protected:
|
||||
MatrixType m_matrix;
|
||||
CoeffVectorType m_hCoeffs;
|
||||
};
|
||||
|
||||
#ifndef EIGEN_HIDE_HEAVY_CODE
|
||||
|
||||
/** \internal
|
||||
* Performs a tridiagonal decomposition of \a matA in place.
|
||||
*
|
||||
* \param matA the input selfadjoint matrix
|
||||
* \param hCoeffs returned Householder coefficients
|
||||
*
|
||||
* The result is written in the lower triangular part of \a matA.
|
||||
*
|
||||
* Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
|
||||
*
|
||||
* \sa packedMatrix()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
void HessenbergDecomposition<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs)
|
||||
{
|
||||
assert(matA.rows()==matA.cols());
|
||||
int n = matA.rows();
|
||||
for (int i = 0; i<n-2; ++i)
|
||||
{
|
||||
// let's consider the vector v = i-th column starting at position i+1
|
||||
|
||||
// start of the householder transformation
|
||||
// squared norm of the vector v skipping the first element
|
||||
RealScalar v1norm2 = matA.col(i).end(n-(i+2)).squaredNorm();
|
||||
|
||||
if (ei_isMuchSmallerThan(v1norm2,static_cast<Scalar>(1)))
|
||||
{
|
||||
hCoeffs.coeffRef(i) = 0.;
|
||||
}
|
||||
else
|
||||
{
|
||||
Scalar v0 = matA.col(i).coeff(i+1);
|
||||
RealScalar beta = ei_sqrt(ei_abs2(v0)+v1norm2);
|
||||
if (ei_real(v0)>=0.)
|
||||
beta = -beta;
|
||||
matA.col(i).end(n-(i+2)) *= (Scalar(1)/(v0-beta));
|
||||
matA.col(i).coeffRef(i+1) = beta;
|
||||
Scalar h = (beta - v0) / beta;
|
||||
// end of the householder transformation
|
||||
|
||||
// Apply similarity transformation to remaining columns,
|
||||
// i.e., A = H' A H where H = I - h v v' and v = matA.col(i).end(n-i-1)
|
||||
matA.col(i).coeffRef(i+1) = 1;
|
||||
|
||||
// first let's do A = H A
|
||||
matA.corner(BottomRight,n-i-1,n-i-1) -= ((ei_conj(h) * matA.col(i).end(n-i-1)) *
|
||||
(matA.col(i).end(n-i-1).adjoint() * matA.corner(BottomRight,n-i-1,n-i-1))).lazy();
|
||||
|
||||
// now let's do A = A H
|
||||
matA.corner(BottomRight,n,n-i-1) -= ((matA.corner(BottomRight,n,n-i-1) * matA.col(i).end(n-i-1))
|
||||
* (h * matA.col(i).end(n-i-1).adjoint())).lazy();
|
||||
|
||||
matA.col(i).coeffRef(i+1) = beta;
|
||||
hCoeffs.coeffRef(i) = h;
|
||||
}
|
||||
}
|
||||
if (NumTraits<Scalar>::IsComplex)
|
||||
{
|
||||
// Householder transformation on the remaining single scalar
|
||||
int i = n-2;
|
||||
Scalar v0 = matA.coeff(i+1,i);
|
||||
|
||||
RealScalar beta = ei_sqrt(ei_abs2(v0));
|
||||
if (ei_real(v0)>=0.)
|
||||
beta = -beta;
|
||||
Scalar h = (beta - v0) / beta;
|
||||
hCoeffs.coeffRef(i) = h;
|
||||
|
||||
// A = H* A
|
||||
matA.corner(BottomRight,n-i-1,n-i) -= ei_conj(h) * matA.corner(BottomRight,n-i-1,n-i);
|
||||
|
||||
// A = A H
|
||||
matA.col(n-1) -= h * matA.col(n-1);
|
||||
}
|
||||
else
|
||||
{
|
||||
hCoeffs.coeffRef(n-2) = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/** reconstructs and returns the matrix Q */
|
||||
template<typename MatrixType>
|
||||
typename HessenbergDecomposition<MatrixType>::MatrixType
|
||||
HessenbergDecomposition<MatrixType>::matrixQ(void) const
|
||||
{
|
||||
int n = m_matrix.rows();
|
||||
MatrixType matQ = MatrixType::Identity(n,n);
|
||||
for (int i = n-2; i>=0; i--)
|
||||
{
|
||||
Scalar tmp = m_matrix.coeff(i+1,i);
|
||||
m_matrix.const_cast_derived().coeffRef(i+1,i) = 1;
|
||||
|
||||
matQ.corner(BottomRight,n-i-1,n-i-1) -=
|
||||
((m_hCoeffs.coeff(i) * m_matrix.col(i).end(n-i-1)) *
|
||||
(m_matrix.col(i).end(n-i-1).adjoint() * matQ.corner(BottomRight,n-i-1,n-i-1)).lazy()).lazy();
|
||||
|
||||
m_matrix.const_cast_derived().coeffRef(i+1,i) = tmp;
|
||||
}
|
||||
return matQ;
|
||||
}
|
||||
|
||||
#endif // EIGEN_HIDE_HEAVY_CODE
|
||||
|
||||
/** constructs and returns the matrix H.
|
||||
* Note that the matrix H is equivalent to the upper part of the packed matrix
|
||||
* (including the lower sub-diagonal). Therefore, it might be often sufficient
|
||||
* to directly use the packed matrix instead of creating a new one.
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
typename HessenbergDecomposition<MatrixType>::MatrixType
|
||||
HessenbergDecomposition<MatrixType>::matrixH(void) const
|
||||
{
|
||||
// FIXME should this function (and other similar) rather take a matrix as argument
|
||||
// and fill it (to avoid temporaries)
|
||||
int n = m_matrix.rows();
|
||||
MatrixType matH = m_matrix;
|
||||
if (n>2)
|
||||
matH.corner(BottomLeft,n-2, n-2).template part<LowerTriangular>().setZero();
|
||||
return matH;
|
||||
}
|
||||
|
||||
#endif // EIGEN_HESSENBERGDECOMPOSITION_H
|
340
ground/openpilotgcs/src/libs/eigen/Eigen/src/QR/QR.h
Normal file
340
ground/openpilotgcs/src/libs/eigen/Eigen/src/QR/QR.h
Normal file
@ -0,0 +1,340 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_QR_H
|
||||
#define EIGEN_QR_H
|
||||
|
||||
/** \ingroup QR_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class QR
|
||||
*
|
||||
* \brief QR decomposition of a matrix
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the QR decomposition
|
||||
*
|
||||
* This class performs a QR decomposition using Householder transformations. The result is
|
||||
* stored in a compact way compatible with LAPACK.
|
||||
*
|
||||
* \sa MatrixBase::qr()
|
||||
*/
|
||||
template<typename MatrixType> class QR
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef Block<MatrixType, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixRBlockType;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixTypeR;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via QR::compute(const MatrixType&).
|
||||
*/
|
||||
QR() : m_qr(), m_hCoeffs(), m_isInitialized(false) {}
|
||||
|
||||
QR(const MatrixType& matrix)
|
||||
: m_qr(matrix.rows(), matrix.cols()),
|
||||
m_hCoeffs(matrix.cols()),
|
||||
m_isInitialized(false)
|
||||
{
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
/** \deprecated use isInjective()
|
||||
* \returns whether or not the matrix is of full rank
|
||||
*
|
||||
* \note Since the rank is computed only once, i.e. the first time it is needed, this
|
||||
* method almost does not perform any further computation.
|
||||
*/
|
||||
EIGEN_DEPRECATED bool isFullRank() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "QR is not initialized.");
|
||||
return rank() == m_qr.cols();
|
||||
}
|
||||
|
||||
/** \returns the rank of the matrix of which *this is the QR decomposition.
|
||||
*
|
||||
* \note Since the rank is computed only once, i.e. the first time it is needed, this
|
||||
* method almost does not perform any further computation.
|
||||
*/
|
||||
int rank() const;
|
||||
|
||||
/** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
|
||||
*
|
||||
* \note Since the rank is computed only once, i.e. the first time it is needed, this
|
||||
* method almost does not perform any further computation.
|
||||
*/
|
||||
inline int dimensionOfKernel() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "QR is not initialized.");
|
||||
return m_qr.cols() - rank();
|
||||
}
|
||||
|
||||
/** \returns true if the matrix of which *this is the QR decomposition represents an injective
|
||||
* linear map, i.e. has trivial kernel; false otherwise.
|
||||
*
|
||||
* \note Since the rank is computed only once, i.e. the first time it is needed, this
|
||||
* method almost does not perform any further computation.
|
||||
*/
|
||||
inline bool isInjective() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "QR is not initialized.");
|
||||
return rank() == m_qr.cols();
|
||||
}
|
||||
|
||||
/** \returns true if the matrix of which *this is the QR decomposition represents a surjective
|
||||
* linear map; false otherwise.
|
||||
*
|
||||
* \note Since the rank is computed only once, i.e. the first time it is needed, this
|
||||
* method almost does not perform any further computation.
|
||||
*/
|
||||
inline bool isSurjective() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "QR is not initialized.");
|
||||
return rank() == m_qr.rows();
|
||||
}
|
||||
|
||||
/** \returns true if the matrix of which *this is the QR decomposition is invertible.
|
||||
*
|
||||
* \note Since the rank is computed only once, i.e. the first time it is needed, this
|
||||
* method almost does not perform any further computation.
|
||||
*/
|
||||
inline bool isInvertible() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "QR is not initialized.");
|
||||
return isInjective() && isSurjective();
|
||||
}
|
||||
|
||||
/** \returns a read-only expression of the matrix R of the actual the QR decomposition */
|
||||
const Part<NestByValue<MatrixRBlockType>, UpperTriangular>
|
||||
matrixR(void) const
|
||||
{
|
||||
ei_assert(m_isInitialized && "QR is not initialized.");
|
||||
int cols = m_qr.cols();
|
||||
return MatrixRBlockType(m_qr, 0, 0, cols, cols).nestByValue().template part<UpperTriangular>();
|
||||
}
|
||||
|
||||
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
|
||||
* *this is the QR decomposition, if any exists.
|
||||
*
|
||||
* \param b the right-hand-side of the equation to solve.
|
||||
*
|
||||
* \param result a pointer to the vector/matrix in which to store the solution, if any exists.
|
||||
* Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols().
|
||||
* If no solution exists, *result is left with undefined coefficients.
|
||||
*
|
||||
* \returns true if any solution exists, false if no solution exists.
|
||||
*
|
||||
* \note If there exist more than one solution, this method will arbitrarily choose one.
|
||||
* If you need a complete analysis of the space of solutions, take the one solution obtained
|
||||
* by this method and add to it elements of the kernel, as determined by kernel().
|
||||
*
|
||||
* \note The case where b is a matrix is not yet implemented. Also, this
|
||||
* code is space inefficient.
|
||||
*
|
||||
* Example: \include QR_solve.cpp
|
||||
* Output: \verbinclude QR_solve.out
|
||||
*
|
||||
* \sa MatrixBase::solveTriangular(), kernel(), computeKernel(), inverse(), computeInverse()
|
||||
*/
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
|
||||
|
||||
MatrixType matrixQ(void) const;
|
||||
|
||||
void compute(const MatrixType& matrix);
|
||||
|
||||
protected:
|
||||
MatrixType m_qr;
|
||||
VectorType m_hCoeffs;
|
||||
mutable int m_rank;
|
||||
mutable bool m_rankIsUptodate;
|
||||
bool m_isInitialized;
|
||||
};
|
||||
|
||||
/** \returns the rank of the matrix of which *this is the QR decomposition. */
|
||||
template<typename MatrixType>
|
||||
int QR<MatrixType>::rank() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "QR is not initialized.");
|
||||
if (!m_rankIsUptodate)
|
||||
{
|
||||
RealScalar maxCoeff = m_qr.diagonal().cwise().abs().maxCoeff();
|
||||
int n = m_qr.cols();
|
||||
m_rank = 0;
|
||||
while(m_rank<n && !ei_isMuchSmallerThan(m_qr.diagonal().coeff(m_rank), maxCoeff))
|
||||
++m_rank;
|
||||
m_rankIsUptodate = true;
|
||||
}
|
||||
return m_rank;
|
||||
}
|
||||
|
||||
#ifndef EIGEN_HIDE_HEAVY_CODE
|
||||
|
||||
template<typename MatrixType>
|
||||
void QR<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
m_rankIsUptodate = false;
|
||||
m_qr = matrix;
|
||||
m_hCoeffs.resize(matrix.cols());
|
||||
|
||||
int rows = matrix.rows();
|
||||
int cols = matrix.cols();
|
||||
RealScalar eps2 = precision<RealScalar>()*precision<RealScalar>();
|
||||
|
||||
for (int k = 0; k < cols; ++k)
|
||||
{
|
||||
int remainingSize = rows-k;
|
||||
|
||||
RealScalar beta;
|
||||
Scalar v0 = m_qr.col(k).coeff(k);
|
||||
|
||||
if (remainingSize==1)
|
||||
{
|
||||
if (NumTraits<Scalar>::IsComplex)
|
||||
{
|
||||
// Householder transformation on the remaining single scalar
|
||||
beta = ei_abs(v0);
|
||||
if (ei_real(v0)>0)
|
||||
beta = -beta;
|
||||
m_qr.coeffRef(k,k) = beta;
|
||||
m_hCoeffs.coeffRef(k) = (beta - v0) / beta;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_hCoeffs.coeffRef(k) = 0;
|
||||
}
|
||||
}
|
||||
else if ((beta=m_qr.col(k).end(remainingSize-1).squaredNorm())>eps2)
|
||||
// FIXME what about ei_imag(v0) ??
|
||||
{
|
||||
// form k-th Householder vector
|
||||
beta = ei_sqrt(ei_abs2(v0)+beta);
|
||||
if (ei_real(v0)>=0.)
|
||||
beta = -beta;
|
||||
m_qr.col(k).end(remainingSize-1) /= v0-beta;
|
||||
m_qr.coeffRef(k,k) = beta;
|
||||
Scalar h = m_hCoeffs.coeffRef(k) = (beta - v0) / beta;
|
||||
|
||||
// apply the Householder transformation (I - h v v') to remaining columns, i.e.,
|
||||
// R <- (I - h v v') * R where v = [1,m_qr(k+1,k), m_qr(k+2,k), ...]
|
||||
int remainingCols = cols - k -1;
|
||||
if (remainingCols>0)
|
||||
{
|
||||
m_qr.coeffRef(k,k) = Scalar(1);
|
||||
m_qr.corner(BottomRight, remainingSize, remainingCols) -= ei_conj(h) * m_qr.col(k).end(remainingSize)
|
||||
* (m_qr.col(k).end(remainingSize).adjoint() * m_qr.corner(BottomRight, remainingSize, remainingCols));
|
||||
m_qr.coeffRef(k,k) = beta;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
m_hCoeffs.coeffRef(k) = 0;
|
||||
}
|
||||
}
|
||||
m_isInitialized = true;
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
bool QR<MatrixType>::solve(
|
||||
const MatrixBase<OtherDerived>& b,
|
||||
ResultType *result
|
||||
) const
|
||||
{
|
||||
ei_assert(m_isInitialized && "QR is not initialized.");
|
||||
const int rows = m_qr.rows();
|
||||
ei_assert(b.rows() == rows);
|
||||
// enforce the computation of the rank
|
||||
rank();
|
||||
|
||||
result->resize(m_qr.cols(), b.cols());
|
||||
|
||||
// TODO(keir): There is almost certainly a faster way to multiply by
|
||||
// Q^T without explicitly forming matrixQ(). Investigate.
|
||||
*result = matrixQ().transpose()*b;
|
||||
|
||||
if(m_rank==0)
|
||||
return result->isZero();
|
||||
|
||||
if(!isSurjective())
|
||||
{
|
||||
// is result is in the image of R ?
|
||||
RealScalar biggest_in_res = result->corner(TopLeft, m_rank, result->cols()).cwise().abs().maxCoeff();
|
||||
for(int col = 0; col < result->cols(); ++col)
|
||||
for(int row = m_rank; row < result->rows(); ++row)
|
||||
if(!ei_isMuchSmallerThan(result->coeff(row,col), biggest_in_res))
|
||||
return false;
|
||||
}
|
||||
m_qr.corner(TopLeft, m_rank, m_rank)
|
||||
.template marked<UpperTriangular>()
|
||||
.solveTriangularInPlace(result->corner(TopLeft, m_rank, result->cols()));
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/** \returns the matrix Q */
|
||||
template<typename MatrixType>
|
||||
MatrixType QR<MatrixType>::matrixQ() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "QR is not initialized.");
|
||||
// compute the product Q_0 Q_1 ... Q_n-1,
|
||||
// where Q_k is the k-th Householder transformation I - h_k v_k v_k'
|
||||
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
|
||||
int rows = m_qr.rows();
|
||||
int cols = m_qr.cols();
|
||||
MatrixType res = MatrixType::Identity(rows, cols);
|
||||
for (int k = cols-1; k >= 0; k--)
|
||||
{
|
||||
// to make easier the computation of the transformation, let's temporarily
|
||||
// overwrite m_qr(k,k) such that the end of m_qr.col(k) is exactly our Householder vector.
|
||||
Scalar beta = m_qr.coeff(k,k);
|
||||
m_qr.const_cast_derived().coeffRef(k,k) = 1;
|
||||
int endLength = rows-k;
|
||||
res.corner(BottomRight,endLength, cols-k) -= ((m_hCoeffs.coeff(k) * m_qr.col(k).end(endLength))
|
||||
* (m_qr.col(k).end(endLength).adjoint() * res.corner(BottomRight,endLength, cols-k)).lazy()).lazy();
|
||||
m_qr.const_cast_derived().coeffRef(k,k) = beta;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
#endif // EIGEN_HIDE_HEAVY_CODE
|
||||
|
||||
/** \return the QR decomposition of \c *this.
|
||||
*
|
||||
* \sa class QR
|
||||
*/
|
||||
template<typename Derived>
|
||||
const QR<typename MatrixBase<Derived>::PlainMatrixType>
|
||||
MatrixBase<Derived>::qr() const
|
||||
{
|
||||
return QR<PlainMatrixType>(eval());
|
||||
}
|
||||
|
||||
|
||||
#endif // EIGEN_QR_H
|
@ -0,0 +1,43 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_EXTERN_INSTANTIATIONS
|
||||
#define EIGEN_EXTERN_INSTANTIATIONS
|
||||
#endif
|
||||
#include "../../Core"
|
||||
#undef EIGEN_EXTERN_INSTANTIATIONS
|
||||
|
||||
#include "../../QR"
|
||||
|
||||
namespace Eigen
|
||||
{
|
||||
|
||||
template static void ei_tridiagonal_qr_step(float* , float* , int, int, float* , int);
|
||||
template static void ei_tridiagonal_qr_step(double* , double* , int, int, double* , int);
|
||||
template static void ei_tridiagonal_qr_step(float* , float* , int, int, std::complex<float>* , int);
|
||||
template static void ei_tridiagonal_qr_step(double* , double* , int, int, std::complex<double>* , int);
|
||||
|
||||
EIGEN_QR_MODULE_INSTANTIATE();
|
||||
|
||||
}
|
@ -0,0 +1,402 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
|
||||
#define EIGEN_SELFADJOINTEIGENSOLVER_H
|
||||
|
||||
/** \qr_module \ingroup QR_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class SelfAdjointEigenSolver
|
||||
*
|
||||
* \brief Eigen values/vectors solver for selfadjoint matrix
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the eigen decomposition
|
||||
*
|
||||
* \note MatrixType must be an actual Matrix type, it can't be an expression type.
|
||||
*
|
||||
* \sa MatrixBase::eigenvalues(), class EigenSolver
|
||||
*/
|
||||
template<typename _MatrixType> class SelfAdjointEigenSolver
|
||||
{
|
||||
public:
|
||||
|
||||
enum {Size = _MatrixType::RowsAtCompileTime };
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef std::complex<RealScalar> Complex;
|
||||
typedef Matrix<RealScalar, MatrixType::ColsAtCompileTime, 1> RealVectorType;
|
||||
typedef Matrix<RealScalar, Dynamic, 1> RealVectorTypeX;
|
||||
typedef Tridiagonalization<MatrixType> TridiagonalizationType;
|
||||
|
||||
SelfAdjointEigenSolver()
|
||||
: m_eivec(int(Size), int(Size)),
|
||||
m_eivalues(int(Size))
|
||||
{
|
||||
ei_assert(Size!=Dynamic);
|
||||
}
|
||||
|
||||
SelfAdjointEigenSolver(int size)
|
||||
: m_eivec(size, size),
|
||||
m_eivalues(size)
|
||||
{}
|
||||
|
||||
/** Constructors computing the eigenvalues of the selfadjoint matrix \a matrix,
|
||||
* as well as the eigenvectors if \a computeEigenvectors is true.
|
||||
*
|
||||
* \sa compute(MatrixType,bool), SelfAdjointEigenSolver(MatrixType,MatrixType,bool)
|
||||
*/
|
||||
SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
|
||||
: m_eivec(matrix.rows(), matrix.cols()),
|
||||
m_eivalues(matrix.cols())
|
||||
{
|
||||
compute(matrix, computeEigenvectors);
|
||||
}
|
||||
|
||||
/** Constructors computing the eigenvalues of the generalized eigen problem
|
||||
* \f$ Ax = lambda B x \f$ with \a matA the selfadjoint matrix \f$ A \f$
|
||||
* and \a matB the positive definite matrix \f$ B \f$ . The eigenvectors
|
||||
* are computed if \a computeEigenvectors is true.
|
||||
*
|
||||
* \sa compute(MatrixType,MatrixType,bool), SelfAdjointEigenSolver(MatrixType,bool)
|
||||
*/
|
||||
SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
|
||||
: m_eivec(matA.rows(), matA.cols()),
|
||||
m_eivalues(matA.cols())
|
||||
{
|
||||
compute(matA, matB, computeEigenvectors);
|
||||
}
|
||||
|
||||
void compute(const MatrixType& matrix, bool computeEigenvectors = true);
|
||||
|
||||
void compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true);
|
||||
|
||||
/** \returns the computed eigen vectors as a matrix of column vectors */
|
||||
MatrixType eigenvectors(void) const
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
ei_assert(m_eigenvectorsOk);
|
||||
#endif
|
||||
return m_eivec;
|
||||
}
|
||||
|
||||
/** \returns the computed eigen values */
|
||||
RealVectorType eigenvalues(void) const { return m_eivalues; }
|
||||
|
||||
/** \returns the positive square root of the matrix
|
||||
*
|
||||
* \note the matrix itself must be positive in order for this to make sense.
|
||||
*/
|
||||
MatrixType operatorSqrt() const
|
||||
{
|
||||
return m_eivec * m_eivalues.cwise().sqrt().asDiagonal() * m_eivec.adjoint();
|
||||
}
|
||||
|
||||
/** \returns the positive inverse square root of the matrix
|
||||
*
|
||||
* \note the matrix itself must be positive definite in order for this to make sense.
|
||||
*/
|
||||
MatrixType operatorInverseSqrt() const
|
||||
{
|
||||
return m_eivec * m_eivalues.cwise().inverse().cwise().sqrt().asDiagonal() * m_eivec.adjoint();
|
||||
}
|
||||
|
||||
|
||||
protected:
|
||||
MatrixType m_eivec;
|
||||
RealVectorType m_eivalues;
|
||||
#ifndef NDEBUG
|
||||
bool m_eigenvectorsOk;
|
||||
#endif
|
||||
};
|
||||
|
||||
#ifndef EIGEN_HIDE_HEAVY_CODE
|
||||
|
||||
// from Golub's "Matrix Computations", algorithm 5.1.3
|
||||
template<typename Scalar>
|
||||
static void ei_givens_rotation(Scalar a, Scalar b, Scalar& c, Scalar& s)
|
||||
{
|
||||
if (b==0)
|
||||
{
|
||||
c = 1; s = 0;
|
||||
}
|
||||
else if (ei_abs(b)>ei_abs(a))
|
||||
{
|
||||
Scalar t = -a/b;
|
||||
s = Scalar(1)/ei_sqrt(1+t*t);
|
||||
c = s * t;
|
||||
}
|
||||
else
|
||||
{
|
||||
Scalar t = -b/a;
|
||||
c = Scalar(1)/ei_sqrt(1+t*t);
|
||||
s = c * t;
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \qr_module
|
||||
*
|
||||
* Performs a QR step on a tridiagonal symmetric matrix represented as a
|
||||
* pair of two vectors \a diag and \a subdiag.
|
||||
*
|
||||
* \param matA the input selfadjoint matrix
|
||||
* \param hCoeffs returned Householder coefficients
|
||||
*
|
||||
* For compilation efficiency reasons, this procedure does not use eigen expression
|
||||
* for its arguments.
|
||||
*
|
||||
* Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
|
||||
* "implicit symmetric QR step with Wilkinson shift"
|
||||
*/
|
||||
template<typename RealScalar, typename Scalar>
|
||||
static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, int start, int end, Scalar* matrixQ, int n);
|
||||
|
||||
/** Computes the eigenvalues of the selfadjoint matrix \a matrix,
|
||||
* as well as the eigenvectors if \a computeEigenvectors is true.
|
||||
*
|
||||
* \sa SelfAdjointEigenSolver(MatrixType,bool), compute(MatrixType,MatrixType,bool)
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
void SelfAdjointEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
m_eigenvectorsOk = computeEigenvectors;
|
||||
#endif
|
||||
assert(matrix.cols() == matrix.rows());
|
||||
int n = matrix.cols();
|
||||
m_eivalues.resize(n,1);
|
||||
|
||||
if(n==1)
|
||||
{
|
||||
m_eivalues.coeffRef(0,0) = ei_real(matrix.coeff(0,0));
|
||||
m_eivec.setOnes();
|
||||
return;
|
||||
}
|
||||
|
||||
m_eivec = matrix;
|
||||
|
||||
// FIXME, should tridiag be a local variable of this function or an attribute of SelfAdjointEigenSolver ?
|
||||
// the latter avoids multiple memory allocation when the same SelfAdjointEigenSolver is used multiple times...
|
||||
// (same for diag and subdiag)
|
||||
RealVectorType& diag = m_eivalues;
|
||||
typename TridiagonalizationType::SubDiagonalType subdiag(n-1);
|
||||
TridiagonalizationType::decomposeInPlace(m_eivec, diag, subdiag, computeEigenvectors);
|
||||
|
||||
int end = n-1;
|
||||
int start = 0;
|
||||
while (end>0)
|
||||
{
|
||||
for (int i = start; i<end; ++i)
|
||||
if (ei_isMuchSmallerThan(ei_abs(subdiag[i]),(ei_abs(diag[i])+ei_abs(diag[i+1]))))
|
||||
subdiag[i] = 0;
|
||||
|
||||
// find the largest unreduced block
|
||||
while (end>0 && subdiag[end-1]==0)
|
||||
end--;
|
||||
if (end<=0)
|
||||
break;
|
||||
start = end - 1;
|
||||
while (start>0 && subdiag[start-1]!=0)
|
||||
start--;
|
||||
|
||||
ei_tridiagonal_qr_step(diag.data(), subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n);
|
||||
}
|
||||
|
||||
// Sort eigenvalues and corresponding vectors.
|
||||
// TODO make the sort optional ?
|
||||
// TODO use a better sort algorithm !!
|
||||
for (int i = 0; i < n-1; ++i)
|
||||
{
|
||||
int k;
|
||||
m_eivalues.segment(i,n-i).minCoeff(&k);
|
||||
if (k > 0)
|
||||
{
|
||||
std::swap(m_eivalues[i], m_eivalues[k+i]);
|
||||
m_eivec.col(i).swap(m_eivec.col(k+i));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** Computes the eigenvalues of the generalized eigen problem
|
||||
* \f$ Ax = lambda B x \f$ with \a matA the selfadjoint matrix \f$ A \f$
|
||||
* and \a matB the positive definite matrix \f$ B \f$ . The eigenvectors
|
||||
* are computed if \a computeEigenvectors is true.
|
||||
*
|
||||
* \sa SelfAdjointEigenSolver(MatrixType,MatrixType,bool), compute(MatrixType,bool)
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
void SelfAdjointEigenSolver<MatrixType>::
|
||||
compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors)
|
||||
{
|
||||
ei_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows());
|
||||
|
||||
// Compute the cholesky decomposition of matB = L L'
|
||||
LLT<MatrixType> cholB(matB);
|
||||
|
||||
// compute C = inv(L) A inv(L')
|
||||
MatrixType matC = matA;
|
||||
cholB.matrixL().solveTriangularInPlace(matC);
|
||||
// FIXME since we currently do not support A * inv(L'), let's do (inv(L) A')' :
|
||||
matC = matC.adjoint().eval();
|
||||
cholB.matrixL().template marked<LowerTriangular>().solveTriangularInPlace(matC);
|
||||
matC = matC.adjoint().eval();
|
||||
// this version works too:
|
||||
// matC = matC.transpose();
|
||||
// cholB.matrixL().conjugate().template marked<LowerTriangular>().solveTriangularInPlace(matC);
|
||||
// matC = matC.transpose();
|
||||
// FIXME: this should work: (currently it only does for small matrices)
|
||||
// Transpose<MatrixType> trMatC(matC);
|
||||
// cholB.matrixL().conjugate().eval().template marked<LowerTriangular>().solveTriangularInPlace(trMatC);
|
||||
|
||||
compute(matC, computeEigenvectors);
|
||||
|
||||
if (computeEigenvectors)
|
||||
{
|
||||
// transform back the eigen vectors: evecs = inv(U) * evecs
|
||||
cholB.matrixL().adjoint().template marked<UpperTriangular>().solveTriangularInPlace(m_eivec);
|
||||
for (int i=0; i<m_eivec.cols(); ++i)
|
||||
m_eivec.col(i) = m_eivec.col(i).normalized();
|
||||
}
|
||||
}
|
||||
|
||||
#endif // EIGEN_HIDE_HEAVY_CODE
|
||||
|
||||
/** \qr_module
|
||||
*
|
||||
* \returns a vector listing the eigenvalues of this matrix.
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline Matrix<typename NumTraits<typename ei_traits<Derived>::Scalar>::Real, ei_traits<Derived>::ColsAtCompileTime, 1>
|
||||
MatrixBase<Derived>::eigenvalues() const
|
||||
{
|
||||
ei_assert(Flags&SelfAdjointBit);
|
||||
return SelfAdjointEigenSolver<typename Derived::PlainMatrixType>(eval(),false).eigenvalues();
|
||||
}
|
||||
|
||||
template<typename Derived, bool IsSelfAdjoint>
|
||||
struct ei_operatorNorm_selector
|
||||
{
|
||||
static inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
|
||||
operatorNorm(const MatrixBase<Derived>& m)
|
||||
{
|
||||
// FIXME if it is really guaranteed that the eigenvalues are already sorted,
|
||||
// then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough.
|
||||
return m.eigenvalues().cwise().abs().maxCoeff();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived> struct ei_operatorNorm_selector<Derived, false>
|
||||
{
|
||||
static inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
|
||||
operatorNorm(const MatrixBase<Derived>& m)
|
||||
{
|
||||
typename Derived::PlainMatrixType m_eval(m);
|
||||
// FIXME if it is really guaranteed that the eigenvalues are already sorted,
|
||||
// then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough.
|
||||
return ei_sqrt(
|
||||
(m_eval*m_eval.adjoint())
|
||||
.template marked<SelfAdjoint>()
|
||||
.eigenvalues()
|
||||
.maxCoeff()
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
/** \qr_module
|
||||
*
|
||||
* \returns the matrix norm of this matrix.
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
|
||||
MatrixBase<Derived>::operatorNorm() const
|
||||
{
|
||||
return ei_operatorNorm_selector<Derived, Flags&SelfAdjointBit>
|
||||
::operatorNorm(derived());
|
||||
}
|
||||
|
||||
#ifndef EIGEN_EXTERN_INSTANTIATIONS
|
||||
template<typename RealScalar, typename Scalar>
|
||||
static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, int start, int end, Scalar* matrixQ, int n)
|
||||
{
|
||||
RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
|
||||
RealScalar e2 = ei_abs2(subdiag[end-1]);
|
||||
RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * ei_sqrt(td*td + e2));
|
||||
RealScalar x = diag[start] - mu;
|
||||
RealScalar z = subdiag[start];
|
||||
|
||||
for (int k = start; k < end; ++k)
|
||||
{
|
||||
RealScalar c, s;
|
||||
ei_givens_rotation(x, z, c, s);
|
||||
|
||||
// do T = G' T G
|
||||
RealScalar sdk = s * diag[k] + c * subdiag[k];
|
||||
RealScalar dkp1 = s * subdiag[k] + c * diag[k+1];
|
||||
|
||||
diag[k] = c * (c * diag[k] - s * subdiag[k]) - s * (c * subdiag[k] - s * diag[k+1]);
|
||||
diag[k+1] = s * sdk + c * dkp1;
|
||||
subdiag[k] = c * sdk - s * dkp1;
|
||||
|
||||
if (k > start)
|
||||
subdiag[k - 1] = c * subdiag[k-1] - s * z;
|
||||
|
||||
x = subdiag[k];
|
||||
|
||||
if (k < end - 1)
|
||||
{
|
||||
z = -s * subdiag[k+1];
|
||||
subdiag[k + 1] = c * subdiag[k+1];
|
||||
}
|
||||
|
||||
// apply the givens rotation to the unit matrix Q = Q * G
|
||||
// G only modifies the two columns k and k+1
|
||||
if (matrixQ)
|
||||
{
|
||||
#ifdef EIGEN_DEFAULT_TO_ROW_MAJOR
|
||||
#else
|
||||
int kn = k*n;
|
||||
int kn1 = (k+1)*n;
|
||||
#endif
|
||||
// let's do the product manually to avoid the need of temporaries...
|
||||
for (int i=0; i<n; ++i)
|
||||
{
|
||||
#ifdef EIGEN_DEFAULT_TO_ROW_MAJOR
|
||||
Scalar matrixQ_i_k = matrixQ[i*n+k];
|
||||
matrixQ[i*n+k] = c * matrixQ_i_k - s * matrixQ[i*n+k+1];
|
||||
matrixQ[i*n+k+1] = s * matrixQ_i_k + c * matrixQ[i*n+k+1];
|
||||
#else
|
||||
Scalar matrixQ_i_k = matrixQ[i+kn];
|
||||
matrixQ[i+kn] = c * matrixQ_i_k - s * matrixQ[i+kn1];
|
||||
matrixQ[i+kn1] = s * matrixQ_i_k + c * matrixQ[i+kn1];
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // EIGEN_SELFADJOINTEIGENSOLVER_H
|
@ -0,0 +1,431 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_TRIDIAGONALIZATION_H
|
||||
#define EIGEN_TRIDIAGONALIZATION_H
|
||||
|
||||
/** \ingroup QR_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class Tridiagonalization
|
||||
*
|
||||
* \brief Trigiagonal decomposition of a selfadjoint matrix
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are performing the tridiagonalization
|
||||
*
|
||||
* This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
|
||||
* \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix.
|
||||
*
|
||||
* \sa MatrixBase::tridiagonalize()
|
||||
*/
|
||||
template<typename _MatrixType> class Tridiagonalization
|
||||
{
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type Packet;
|
||||
|
||||
enum {
|
||||
Size = MatrixType::RowsAtCompileTime,
|
||||
SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic
|
||||
? Dynamic
|
||||
: MatrixType::RowsAtCompileTime-1,
|
||||
PacketSize = ei_packet_traits<Scalar>::size
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, SizeMinusOne, 1> CoeffVectorType;
|
||||
typedef Matrix<RealScalar, Size, 1> DiagonalType;
|
||||
typedef Matrix<RealScalar, SizeMinusOne, 1> SubDiagonalType;
|
||||
|
||||
typedef typename NestByValue<DiagonalCoeffs<MatrixType> >::RealReturnType DiagonalReturnType;
|
||||
|
||||
typedef typename NestByValue<DiagonalCoeffs<
|
||||
NestByValue<Block<MatrixType,SizeMinusOne,SizeMinusOne> > > >::RealReturnType SubDiagonalReturnType;
|
||||
|
||||
/** This constructor initializes a Tridiagonalization object for
|
||||
* further use with Tridiagonalization::compute()
|
||||
*/
|
||||
Tridiagonalization(int size = Size==Dynamic ? 2 : Size)
|
||||
: m_matrix(size,size), m_hCoeffs(size-1)
|
||||
{}
|
||||
|
||||
Tridiagonalization(const MatrixType& matrix)
|
||||
: m_matrix(matrix),
|
||||
m_hCoeffs(matrix.cols()-1)
|
||||
{
|
||||
_compute(m_matrix, m_hCoeffs);
|
||||
}
|
||||
|
||||
/** Computes or re-compute the tridiagonalization for the matrix \a matrix.
|
||||
*
|
||||
* This method allows to re-use the allocated data.
|
||||
*/
|
||||
void compute(const MatrixType& matrix)
|
||||
{
|
||||
m_matrix = matrix;
|
||||
m_hCoeffs.resize(matrix.rows()-1, 1);
|
||||
_compute(m_matrix, m_hCoeffs);
|
||||
}
|
||||
|
||||
/** \returns the householder coefficients allowing to
|
||||
* reconstruct the matrix Q from the packed data.
|
||||
*
|
||||
* \sa packedMatrix()
|
||||
*/
|
||||
inline CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; }
|
||||
|
||||
/** \returns the internal result of the decomposition.
|
||||
*
|
||||
* The returned matrix contains the following information:
|
||||
* - the strict upper part is equal to the input matrix A
|
||||
* - the diagonal and lower sub-diagonal represent the tridiagonal symmetric matrix (real).
|
||||
* - the rest of the lower part contains the Householder vectors that, combined with
|
||||
* Householder coefficients returned by householderCoefficients(),
|
||||
* allows to reconstruct the matrix Q as follow:
|
||||
* Q = H_{N-1} ... H_1 H_0
|
||||
* where the matrices H are the Householder transformations:
|
||||
* H_i = (I - h_i * v_i * v_i')
|
||||
* where h_i == householderCoefficients()[i] and v_i is a Householder vector:
|
||||
* v_i = [ 0, ..., 0, 1, M(i+2,i), ..., M(N-1,i) ]
|
||||
*
|
||||
* See LAPACK for further details on this packed storage.
|
||||
*/
|
||||
inline const MatrixType& packedMatrix(void) const { return m_matrix; }
|
||||
|
||||
MatrixType matrixQ(void) const;
|
||||
MatrixType matrixT(void) const;
|
||||
const DiagonalReturnType diagonal(void) const;
|
||||
const SubDiagonalReturnType subDiagonal(void) const;
|
||||
|
||||
static void decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true);
|
||||
|
||||
private:
|
||||
|
||||
static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs);
|
||||
|
||||
static void _decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true);
|
||||
|
||||
protected:
|
||||
MatrixType m_matrix;
|
||||
CoeffVectorType m_hCoeffs;
|
||||
};
|
||||
|
||||
/** \returns an expression of the diagonal vector */
|
||||
template<typename MatrixType>
|
||||
const typename Tridiagonalization<MatrixType>::DiagonalReturnType
|
||||
Tridiagonalization<MatrixType>::diagonal(void) const
|
||||
{
|
||||
return m_matrix.diagonal().nestByValue().real();
|
||||
}
|
||||
|
||||
/** \returns an expression of the sub-diagonal vector */
|
||||
template<typename MatrixType>
|
||||
const typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
|
||||
Tridiagonalization<MatrixType>::subDiagonal(void) const
|
||||
{
|
||||
int n = m_matrix.rows();
|
||||
return Block<MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1)
|
||||
.nestByValue().diagonal().nestByValue().real();
|
||||
}
|
||||
|
||||
/** constructs and returns the tridiagonal matrix T.
|
||||
* Note that the matrix T is equivalent to the diagonal and sub-diagonal of the packed matrix.
|
||||
* Therefore, it might be often sufficient to directly use the packed matrix, or the vector
|
||||
* expressions returned by diagonal() and subDiagonal() instead of creating a new matrix.
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
typename Tridiagonalization<MatrixType>::MatrixType
|
||||
Tridiagonalization<MatrixType>::matrixT(void) const
|
||||
{
|
||||
// FIXME should this function (and other similar ones) rather take a matrix as argument
|
||||
// and fill it ? (to avoid temporaries)
|
||||
int n = m_matrix.rows();
|
||||
MatrixType matT = m_matrix;
|
||||
matT.corner(TopRight,n-1, n-1).diagonal() = subDiagonal().template cast<Scalar>().conjugate();
|
||||
if (n>2)
|
||||
{
|
||||
matT.corner(TopRight,n-2, n-2).template part<UpperTriangular>().setZero();
|
||||
matT.corner(BottomLeft,n-2, n-2).template part<LowerTriangular>().setZero();
|
||||
}
|
||||
return matT;
|
||||
}
|
||||
|
||||
#ifndef EIGEN_HIDE_HEAVY_CODE
|
||||
|
||||
/** \internal
|
||||
* Performs a tridiagonal decomposition of \a matA in place.
|
||||
*
|
||||
* \param matA the input selfadjoint matrix
|
||||
* \param hCoeffs returned Householder coefficients
|
||||
*
|
||||
* The result is written in the lower triangular part of \a matA.
|
||||
*
|
||||
* Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
|
||||
*
|
||||
* \sa packedMatrix()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs)
|
||||
{
|
||||
assert(matA.rows()==matA.cols());
|
||||
int n = matA.rows();
|
||||
// std::cerr << matA << "\n\n";
|
||||
for (int i = 0; i<n-2; ++i)
|
||||
{
|
||||
// let's consider the vector v = i-th column starting at position i+1
|
||||
|
||||
// start of the householder transformation
|
||||
// squared norm of the vector v skipping the first element
|
||||
RealScalar v1norm2 = matA.col(i).end(n-(i+2)).squaredNorm();
|
||||
|
||||
// FIXME comparing against 1
|
||||
if (ei_isMuchSmallerThan(v1norm2,static_cast<Scalar>(1)))
|
||||
{
|
||||
hCoeffs.coeffRef(i) = 0.;
|
||||
}
|
||||
else
|
||||
{
|
||||
Scalar v0 = matA.col(i).coeff(i+1);
|
||||
RealScalar beta = ei_sqrt(ei_abs2(v0)+v1norm2);
|
||||
if (ei_real(v0)>=0.)
|
||||
beta = -beta;
|
||||
matA.col(i).end(n-(i+2)) *= (Scalar(1)/(v0-beta));
|
||||
matA.col(i).coeffRef(i+1) = beta;
|
||||
Scalar h = (beta - v0) / beta;
|
||||
// end of the householder transformation
|
||||
|
||||
// Apply similarity transformation to remaining columns,
|
||||
// i.e., A = H' A H where H = I - h v v' and v = matA.col(i).end(n-i-1)
|
||||
|
||||
matA.col(i).coeffRef(i+1) = 1;
|
||||
|
||||
/* This is the initial algorithm which minimize operation counts and maximize
|
||||
* the use of Eigen's expression. Unfortunately, the first matrix-vector product
|
||||
* using Part<LowerTriangular|Selfadjoint> is very very slow */
|
||||
#ifdef EIGEN_NEVER_DEFINED
|
||||
// matrix - vector product
|
||||
hCoeffs.end(n-i-1) = (matA.corner(BottomRight,n-i-1,n-i-1).template part<LowerTriangular|SelfAdjoint>()
|
||||
* (h * matA.col(i).end(n-i-1))).lazy();
|
||||
// simple axpy
|
||||
hCoeffs.end(n-i-1) += (h * Scalar(-0.5) * matA.col(i).end(n-i-1).dot(hCoeffs.end(n-i-1)))
|
||||
* matA.col(i).end(n-i-1);
|
||||
// rank-2 update
|
||||
//Block<MatrixType,Dynamic,1> B(matA,i+1,i,n-i-1,1);
|
||||
matA.corner(BottomRight,n-i-1,n-i-1).template part<LowerTriangular>() -=
|
||||
(matA.col(i).end(n-i-1) * hCoeffs.end(n-i-1).adjoint()).lazy()
|
||||
+ (hCoeffs.end(n-i-1) * matA.col(i).end(n-i-1).adjoint()).lazy();
|
||||
#endif
|
||||
/* end initial algorithm */
|
||||
|
||||
/* If we still want to minimize operation count (i.e., perform operation on the lower part only)
|
||||
* then we could provide the following algorithm for selfadjoint - vector product. However, a full
|
||||
* matrix-vector product is still faster (at least for dynamic size, and not too small, did not check
|
||||
* small matrices). The algo performs block matrix-vector and transposed matrix vector products. */
|
||||
#ifdef EIGEN_NEVER_DEFINED
|
||||
int n4 = (std::max(0,n-4)/4)*4;
|
||||
hCoeffs.end(n-i-1).setZero();
|
||||
for (int b=i+1; b<n4; b+=4)
|
||||
{
|
||||
// the ?x4 part:
|
||||
hCoeffs.end(b-4) +=
|
||||
Block<MatrixType,Dynamic,4>(matA,b+4,b,n-b-4,4) * matA.template block<4,1>(b,i);
|
||||
// the respective transposed part:
|
||||
Block<CoeffVectorType,4,1>(hCoeffs, b, 0, 4,1) +=
|
||||
Block<MatrixType,Dynamic,4>(matA,b+4,b,n-b-4,4).adjoint() * Block<MatrixType,Dynamic,1>(matA,b+4,i,n-b-4,1);
|
||||
// the 4x4 block diagonal:
|
||||
Block<CoeffVectorType,4,1>(hCoeffs, b, 0, 4,1) +=
|
||||
(Block<MatrixType,4,4>(matA,b,b,4,4).template part<LowerTriangular|SelfAdjoint>()
|
||||
* (h * Block<MatrixType,4,1>(matA,b,i,4,1))).lazy();
|
||||
}
|
||||
#endif
|
||||
// todo: handle the remaining part
|
||||
/* end optimized selfadjoint - vector product */
|
||||
|
||||
/* Another interesting note: the above rank-2 update is much slower than the following hand written loop.
|
||||
* After an analyze of the ASM, it seems GCC (4.2) generate poor code because of the Block. Moreover,
|
||||
* if we remove the specialization of Block for Matrix then it is even worse, much worse ! */
|
||||
#ifdef EIGEN_NEVER_DEFINED
|
||||
for (int j1=i+1; j1<n; ++j1)
|
||||
for (int i1=j1; i1<n; ++i1)
|
||||
matA.coeffRef(i1,j1) -= matA.coeff(i1,i)*ei_conj(hCoeffs.coeff(j1-1))
|
||||
+ hCoeffs.coeff(i1-1)*ei_conj(matA.coeff(j1,i));
|
||||
#endif
|
||||
/* end hand writen partial rank-2 update */
|
||||
|
||||
/* The current fastest implementation: the full matrix is used, no "optimization" to use/compute
|
||||
* only half of the matrix. Custom vectorization of the inner col -= alpha X + beta Y such that access
|
||||
* to col are always aligned. Once we support that in Assign, then the algorithm could be rewriten as
|
||||
* a single compact expression. This code is therefore a good benchmark when will do that. */
|
||||
|
||||
// let's use the end of hCoeffs to store temporary values:
|
||||
hCoeffs.end(n-i-1) = (matA.corner(BottomRight,n-i-1,n-i-1) * (h * matA.col(i).end(n-i-1))).lazy();
|
||||
// FIXME in the above expr a temporary is created because of the scalar multiple by h
|
||||
|
||||
hCoeffs.end(n-i-1) += (h * Scalar(-0.5) * matA.col(i).end(n-i-1).dot(hCoeffs.end(n-i-1)))
|
||||
* matA.col(i).end(n-i-1);
|
||||
|
||||
const Scalar* EIGEN_RESTRICT pb = &matA.coeffRef(0,i);
|
||||
const Scalar* EIGEN_RESTRICT pa = (&hCoeffs.coeffRef(0)) - 1;
|
||||
for (int j1=i+1; j1<n; ++j1)
|
||||
{
|
||||
int starti = i+1;
|
||||
int alignedEnd = starti;
|
||||
if (PacketSize>1 && (int(MatrixType::Flags)&RowMajor) == 0)
|
||||
{
|
||||
int alignedStart = (starti) + ei_alignmentOffset(&matA.coeffRef(starti,j1), n-starti);
|
||||
alignedEnd = alignedStart + ((n-alignedStart)/PacketSize)*PacketSize;
|
||||
|
||||
for (int i1=starti; i1<alignedStart; ++i1)
|
||||
matA.coeffRef(i1,j1) -= matA.coeff(i1,i)*ei_conj(hCoeffs.coeff(j1-1))
|
||||
+ hCoeffs.coeff(i1-1)*ei_conj(matA.coeff(j1,i));
|
||||
|
||||
Packet tmp0 = ei_pset1(hCoeffs.coeff(j1-1));
|
||||
Packet tmp1 = ei_pset1(matA.coeff(j1,i));
|
||||
Scalar* pc = &matA.coeffRef(0,j1);
|
||||
for (int i1=alignedStart ; i1<alignedEnd; i1+=PacketSize)
|
||||
ei_pstore(pc+i1,ei_psub(ei_pload(pc+i1),
|
||||
ei_padd(ei_pmul(tmp0, ei_ploadu(pb+i1)),
|
||||
ei_pmul(tmp1, ei_ploadu(pa+i1)))));
|
||||
}
|
||||
for (int i1=alignedEnd; i1<n; ++i1)
|
||||
matA.coeffRef(i1,j1) -= matA.coeff(i1,i)*ei_conj(hCoeffs.coeff(j1-1))
|
||||
+ hCoeffs.coeff(i1-1)*ei_conj(matA.coeff(j1,i));
|
||||
}
|
||||
/* end optimized implementation */
|
||||
|
||||
// note: at that point matA(i+1,i+1) is the (i+1)-th element of the final diagonal
|
||||
// note: the sequence of the beta values leads to the subdiagonal entries
|
||||
matA.col(i).coeffRef(i+1) = beta;
|
||||
|
||||
hCoeffs.coeffRef(i) = h;
|
||||
}
|
||||
}
|
||||
if (NumTraits<Scalar>::IsComplex)
|
||||
{
|
||||
// Householder transformation on the remaining single scalar
|
||||
int i = n-2;
|
||||
Scalar v0 = matA.col(i).coeff(i+1);
|
||||
RealScalar beta = ei_abs(v0);
|
||||
if (ei_real(v0)>=0.)
|
||||
beta = -beta;
|
||||
matA.col(i).coeffRef(i+1) = beta;
|
||||
if(ei_isMuchSmallerThan(beta, Scalar(1))) hCoeffs.coeffRef(i) = Scalar(0);
|
||||
else hCoeffs.coeffRef(i) = (beta - v0) / beta;
|
||||
}
|
||||
else
|
||||
{
|
||||
hCoeffs.coeffRef(n-2) = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/** reconstructs and returns the matrix Q */
|
||||
template<typename MatrixType>
|
||||
typename Tridiagonalization<MatrixType>::MatrixType
|
||||
Tridiagonalization<MatrixType>::matrixQ(void) const
|
||||
{
|
||||
int n = m_matrix.rows();
|
||||
MatrixType matQ = MatrixType::Identity(n,n);
|
||||
for (int i = n-2; i>=0; i--)
|
||||
{
|
||||
Scalar tmp = m_matrix.coeff(i+1,i);
|
||||
m_matrix.const_cast_derived().coeffRef(i+1,i) = 1;
|
||||
|
||||
matQ.corner(BottomRight,n-i-1,n-i-1) -=
|
||||
((m_hCoeffs.coeff(i) * m_matrix.col(i).end(n-i-1)) *
|
||||
(m_matrix.col(i).end(n-i-1).adjoint() * matQ.corner(BottomRight,n-i-1,n-i-1)).lazy()).lazy();
|
||||
|
||||
m_matrix.const_cast_derived().coeffRef(i+1,i) = tmp;
|
||||
}
|
||||
return matQ;
|
||||
}
|
||||
|
||||
/** Performs a full decomposition in place */
|
||||
template<typename MatrixType>
|
||||
void Tridiagonalization<MatrixType>::decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
|
||||
{
|
||||
int n = mat.rows();
|
||||
ei_assert(mat.cols()==n && diag.size()==n && subdiag.size()==n-1);
|
||||
if (n==3 && (!NumTraits<Scalar>::IsComplex) )
|
||||
{
|
||||
_decomposeInPlace3x3(mat, diag, subdiag, extractQ);
|
||||
}
|
||||
else
|
||||
{
|
||||
Tridiagonalization tridiag(mat);
|
||||
diag = tridiag.diagonal();
|
||||
subdiag = tridiag.subDiagonal();
|
||||
if (extractQ)
|
||||
mat = tridiag.matrixQ();
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* Optimized path for 3x3 matrices.
|
||||
* Especially useful for plane fitting.
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
void Tridiagonalization<MatrixType>::_decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
|
||||
{
|
||||
diag[0] = ei_real(mat(0,0));
|
||||
RealScalar v1norm2 = ei_abs2(mat(0,2));
|
||||
if (ei_isMuchSmallerThan(v1norm2, RealScalar(1)))
|
||||
{
|
||||
diag[1] = ei_real(mat(1,1));
|
||||
diag[2] = ei_real(mat(2,2));
|
||||
subdiag[0] = ei_real(mat(0,1));
|
||||
subdiag[1] = ei_real(mat(1,2));
|
||||
if (extractQ)
|
||||
mat.setIdentity();
|
||||
}
|
||||
else
|
||||
{
|
||||
RealScalar beta = ei_sqrt(ei_abs2(mat(0,1))+v1norm2);
|
||||
RealScalar invBeta = RealScalar(1)/beta;
|
||||
Scalar m01 = mat(0,1) * invBeta;
|
||||
Scalar m02 = mat(0,2) * invBeta;
|
||||
Scalar q = RealScalar(2)*m01*mat(1,2) + m02*(mat(2,2) - mat(1,1));
|
||||
diag[1] = ei_real(mat(1,1) + m02*q);
|
||||
diag[2] = ei_real(mat(2,2) - m02*q);
|
||||
subdiag[0] = beta;
|
||||
subdiag[1] = ei_real(mat(1,2) - m01 * q);
|
||||
if (extractQ)
|
||||
{
|
||||
mat(0,0) = 1;
|
||||
mat(0,1) = 0;
|
||||
mat(0,2) = 0;
|
||||
mat(1,0) = 0;
|
||||
mat(1,1) = m01;
|
||||
mat(1,2) = m02;
|
||||
mat(2,0) = 0;
|
||||
mat(2,1) = m02;
|
||||
mat(2,2) = -m01;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif // EIGEN_HIDE_HEAVY_CODE
|
||||
|
||||
#endif // EIGEN_TRIDIAGONALIZATION_H
|
@ -0,0 +1,6 @@
|
||||
FILE(GLOB Eigen_SVD_SRCS "*.h")
|
||||
|
||||
INSTALL(FILES
|
||||
${Eigen_SVD_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/SVD
|
||||
)
|
649
ground/openpilotgcs/src/libs/eigen/Eigen/src/SVD/SVD.h
Normal file
649
ground/openpilotgcs/src/libs/eigen/Eigen/src/SVD/SVD.h
Normal file
@ -0,0 +1,649 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_SVD_H
|
||||
#define EIGEN_SVD_H
|
||||
|
||||
/** \ingroup SVD_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class SVD
|
||||
*
|
||||
* \brief Standard SVD decomposition of a matrix and associated features
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
|
||||
*
|
||||
* This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N
|
||||
* with \c M \>= \c N.
|
||||
*
|
||||
*
|
||||
* \sa MatrixBase::SVD()
|
||||
*/
|
||||
template<typename MatrixType> class SVD
|
||||
{
|
||||
private:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
|
||||
enum {
|
||||
PacketSize = ei_packet_traits<Scalar>::size,
|
||||
AlignmentMask = int(PacketSize)-1,
|
||||
MinSize = EIGEN_SIZE_MIN(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime)
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVector;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> RowVector;
|
||||
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MinSize> MatrixUType;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixVType;
|
||||
typedef Matrix<Scalar, MinSize, 1> SingularValuesType;
|
||||
|
||||
public:
|
||||
|
||||
SVD() {} // a user who relied on compiler-generated default compiler reported problems with MSVC in 2.0.7
|
||||
|
||||
SVD(const MatrixType& matrix)
|
||||
: m_matU(matrix.rows(), std::min(matrix.rows(), matrix.cols())),
|
||||
m_matV(matrix.cols(),matrix.cols()),
|
||||
m_sigma(std::min(matrix.rows(),matrix.cols()))
|
||||
{
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const;
|
||||
|
||||
const MatrixUType& matrixU() const { return m_matU; }
|
||||
const SingularValuesType& singularValues() const { return m_sigma; }
|
||||
const MatrixVType& matrixV() const { return m_matV; }
|
||||
|
||||
void compute(const MatrixType& matrix);
|
||||
SVD& sort();
|
||||
|
||||
template<typename UnitaryType, typename PositiveType>
|
||||
void computeUnitaryPositive(UnitaryType *unitary, PositiveType *positive) const;
|
||||
template<typename PositiveType, typename UnitaryType>
|
||||
void computePositiveUnitary(PositiveType *positive, UnitaryType *unitary) const;
|
||||
template<typename RotationType, typename ScalingType>
|
||||
void computeRotationScaling(RotationType *unitary, ScalingType *positive) const;
|
||||
template<typename ScalingType, typename RotationType>
|
||||
void computeScalingRotation(ScalingType *positive, RotationType *unitary) const;
|
||||
|
||||
protected:
|
||||
/** \internal */
|
||||
MatrixUType m_matU;
|
||||
/** \internal */
|
||||
MatrixVType m_matV;
|
||||
/** \internal */
|
||||
SingularValuesType m_sigma;
|
||||
};
|
||||
|
||||
/** Computes / recomputes the SVD decomposition A = U S V^* of \a matrix
|
||||
*
|
||||
* \note this code has been adapted from JAMA (public domain)
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
void SVD<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
const int m = matrix.rows();
|
||||
const int n = matrix.cols();
|
||||
const int nu = std::min(m,n);
|
||||
ei_assert(m>=n && "In Eigen 2.0, SVD only works for MxN matrices with M>=N. Sorry!");
|
||||
ei_assert(m>1 && "In Eigen 2.0, SVD doesn't work on 1x1 matrices");
|
||||
|
||||
m_matU.resize(m, nu);
|
||||
m_matU.setZero();
|
||||
m_sigma.resize(std::min(m,n));
|
||||
m_matV.resize(n,n);
|
||||
|
||||
RowVector e(n);
|
||||
ColVector work(m);
|
||||
MatrixType matA(matrix);
|
||||
const bool wantu = true;
|
||||
const bool wantv = true;
|
||||
int i=0, j=0, k=0;
|
||||
|
||||
// Reduce A to bidiagonal form, storing the diagonal elements
|
||||
// in s and the super-diagonal elements in e.
|
||||
int nct = std::min(m-1,n);
|
||||
int nrt = std::max(0,std::min(n-2,m));
|
||||
for (k = 0; k < std::max(nct,nrt); ++k)
|
||||
{
|
||||
if (k < nct)
|
||||
{
|
||||
// Compute the transformation for the k-th column and
|
||||
// place the k-th diagonal in m_sigma[k].
|
||||
m_sigma[k] = matA.col(k).end(m-k).norm();
|
||||
if (m_sigma[k] != 0.0) // FIXME
|
||||
{
|
||||
if (matA(k,k) < 0.0)
|
||||
m_sigma[k] = -m_sigma[k];
|
||||
matA.col(k).end(m-k) /= m_sigma[k];
|
||||
matA(k,k) += 1.0;
|
||||
}
|
||||
m_sigma[k] = -m_sigma[k];
|
||||
}
|
||||
|
||||
for (j = k+1; j < n; ++j)
|
||||
{
|
||||
if ((k < nct) && (m_sigma[k] != 0.0))
|
||||
{
|
||||
// Apply the transformation.
|
||||
Scalar t = matA.col(k).end(m-k).dot(matA.col(j).end(m-k)); // FIXME dot product or cwise prod + .sum() ??
|
||||
t = -t/matA(k,k);
|
||||
matA.col(j).end(m-k) += t * matA.col(k).end(m-k);
|
||||
}
|
||||
|
||||
// Place the k-th row of A into e for the
|
||||
// subsequent calculation of the row transformation.
|
||||
e[j] = matA(k,j);
|
||||
}
|
||||
|
||||
// Place the transformation in U for subsequent back multiplication.
|
||||
if (wantu & (k < nct))
|
||||
m_matU.col(k).end(m-k) = matA.col(k).end(m-k);
|
||||
|
||||
if (k < nrt)
|
||||
{
|
||||
// Compute the k-th row transformation and place the
|
||||
// k-th super-diagonal in e[k].
|
||||
e[k] = e.end(n-k-1).norm();
|
||||
if (e[k] != 0.0)
|
||||
{
|
||||
if (e[k+1] < 0.0)
|
||||
e[k] = -e[k];
|
||||
e.end(n-k-1) /= e[k];
|
||||
e[k+1] += 1.0;
|
||||
}
|
||||
e[k] = -e[k];
|
||||
if ((k+1 < m) & (e[k] != 0.0))
|
||||
{
|
||||
// Apply the transformation.
|
||||
work.end(m-k-1) = matA.corner(BottomRight,m-k-1,n-k-1) * e.end(n-k-1);
|
||||
for (j = k+1; j < n; ++j)
|
||||
matA.col(j).end(m-k-1) += (-e[j]/e[k+1]) * work.end(m-k-1);
|
||||
}
|
||||
|
||||
// Place the transformation in V for subsequent back multiplication.
|
||||
if (wantv)
|
||||
m_matV.col(k).end(n-k-1) = e.end(n-k-1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Set up the final bidiagonal matrix or order p.
|
||||
int p = std::min(n,m+1);
|
||||
if (nct < n)
|
||||
m_sigma[nct] = matA(nct,nct);
|
||||
if (m < p)
|
||||
m_sigma[p-1] = 0.0;
|
||||
if (nrt+1 < p)
|
||||
e[nrt] = matA(nrt,p-1);
|
||||
e[p-1] = 0.0;
|
||||
|
||||
// If required, generate U.
|
||||
if (wantu)
|
||||
{
|
||||
for (j = nct; j < nu; ++j)
|
||||
{
|
||||
m_matU.col(j).setZero();
|
||||
m_matU(j,j) = 1.0;
|
||||
}
|
||||
for (k = nct-1; k >= 0; k--)
|
||||
{
|
||||
if (m_sigma[k] != 0.0)
|
||||
{
|
||||
for (j = k+1; j < nu; ++j)
|
||||
{
|
||||
Scalar t = m_matU.col(k).end(m-k).dot(m_matU.col(j).end(m-k)); // FIXME is it really a dot product we want ?
|
||||
t = -t/m_matU(k,k);
|
||||
m_matU.col(j).end(m-k) += t * m_matU.col(k).end(m-k);
|
||||
}
|
||||
m_matU.col(k).end(m-k) = - m_matU.col(k).end(m-k);
|
||||
m_matU(k,k) = Scalar(1) + m_matU(k,k);
|
||||
if (k-1>0)
|
||||
m_matU.col(k).start(k-1).setZero();
|
||||
}
|
||||
else
|
||||
{
|
||||
m_matU.col(k).setZero();
|
||||
m_matU(k,k) = 1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If required, generate V.
|
||||
if (wantv)
|
||||
{
|
||||
for (k = n-1; k >= 0; k--)
|
||||
{
|
||||
if ((k < nrt) & (e[k] != 0.0))
|
||||
{
|
||||
for (j = k+1; j < nu; ++j)
|
||||
{
|
||||
Scalar t = m_matV.col(k).end(n-k-1).dot(m_matV.col(j).end(n-k-1)); // FIXME is it really a dot product we want ?
|
||||
t = -t/m_matV(k+1,k);
|
||||
m_matV.col(j).end(n-k-1) += t * m_matV.col(k).end(n-k-1);
|
||||
}
|
||||
}
|
||||
m_matV.col(k).setZero();
|
||||
m_matV(k,k) = 1.0;
|
||||
}
|
||||
}
|
||||
|
||||
// Main iteration loop for the singular values.
|
||||
int pp = p-1;
|
||||
int iter = 0;
|
||||
Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
|
||||
while (p > 0)
|
||||
{
|
||||
int k=0;
|
||||
int kase=0;
|
||||
|
||||
// Here is where a test for too many iterations would go.
|
||||
|
||||
// This section of the program inspects for
|
||||
// negligible elements in the s and e arrays. On
|
||||
// completion the variables kase and k are set as follows.
|
||||
|
||||
// kase = 1 if s(p) and e[k-1] are negligible and k<p
|
||||
// kase = 2 if s(k) is negligible and k<p
|
||||
// kase = 3 if e[k-1] is negligible, k<p, and
|
||||
// s(k), ..., s(p) are not negligible (qr step).
|
||||
// kase = 4 if e(p-1) is negligible (convergence).
|
||||
|
||||
for (k = p-2; k >= -1; --k)
|
||||
{
|
||||
if (k == -1)
|
||||
break;
|
||||
if (ei_abs(e[k]) <= eps*(ei_abs(m_sigma[k]) + ei_abs(m_sigma[k+1])))
|
||||
{
|
||||
e[k] = 0.0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (k == p-2)
|
||||
{
|
||||
kase = 4;
|
||||
}
|
||||
else
|
||||
{
|
||||
int ks;
|
||||
for (ks = p-1; ks >= k; --ks)
|
||||
{
|
||||
if (ks == k)
|
||||
break;
|
||||
Scalar t = (ks != p ? ei_abs(e[ks]) : Scalar(0)) + (ks != k+1 ? ei_abs(e[ks-1]) : Scalar(0));
|
||||
if (ei_abs(m_sigma[ks]) <= eps*t)
|
||||
{
|
||||
m_sigma[ks] = 0.0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (ks == k)
|
||||
{
|
||||
kase = 3;
|
||||
}
|
||||
else if (ks == p-1)
|
||||
{
|
||||
kase = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
kase = 2;
|
||||
k = ks;
|
||||
}
|
||||
}
|
||||
++k;
|
||||
|
||||
// Perform the task indicated by kase.
|
||||
switch (kase)
|
||||
{
|
||||
|
||||
// Deflate negligible s(p).
|
||||
case 1:
|
||||
{
|
||||
Scalar f(e[p-2]);
|
||||
e[p-2] = 0.0;
|
||||
for (j = p-2; j >= k; --j)
|
||||
{
|
||||
Scalar t(ei_hypot(m_sigma[j],f));
|
||||
Scalar cs(m_sigma[j]/t);
|
||||
Scalar sn(f/t);
|
||||
m_sigma[j] = t;
|
||||
if (j != k)
|
||||
{
|
||||
f = -sn*e[j-1];
|
||||
e[j-1] = cs*e[j-1];
|
||||
}
|
||||
if (wantv)
|
||||
{
|
||||
for (i = 0; i < n; ++i)
|
||||
{
|
||||
t = cs*m_matV(i,j) + sn*m_matV(i,p-1);
|
||||
m_matV(i,p-1) = -sn*m_matV(i,j) + cs*m_matV(i,p-1);
|
||||
m_matV(i,j) = t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
// Split at negligible s(k).
|
||||
case 2:
|
||||
{
|
||||
Scalar f(e[k-1]);
|
||||
e[k-1] = 0.0;
|
||||
for (j = k; j < p; ++j)
|
||||
{
|
||||
Scalar t(ei_hypot(m_sigma[j],f));
|
||||
Scalar cs( m_sigma[j]/t);
|
||||
Scalar sn(f/t);
|
||||
m_sigma[j] = t;
|
||||
f = -sn*e[j];
|
||||
e[j] = cs*e[j];
|
||||
if (wantu)
|
||||
{
|
||||
for (i = 0; i < m; ++i)
|
||||
{
|
||||
t = cs*m_matU(i,j) + sn*m_matU(i,k-1);
|
||||
m_matU(i,k-1) = -sn*m_matU(i,j) + cs*m_matU(i,k-1);
|
||||
m_matU(i,j) = t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
// Perform one qr step.
|
||||
case 3:
|
||||
{
|
||||
// Calculate the shift.
|
||||
Scalar scale = std::max(std::max(std::max(std::max(
|
||||
ei_abs(m_sigma[p-1]),ei_abs(m_sigma[p-2])),ei_abs(e[p-2])),
|
||||
ei_abs(m_sigma[k])),ei_abs(e[k]));
|
||||
Scalar sp = m_sigma[p-1]/scale;
|
||||
Scalar spm1 = m_sigma[p-2]/scale;
|
||||
Scalar epm1 = e[p-2]/scale;
|
||||
Scalar sk = m_sigma[k]/scale;
|
||||
Scalar ek = e[k]/scale;
|
||||
Scalar b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/Scalar(2);
|
||||
Scalar c = (sp*epm1)*(sp*epm1);
|
||||
Scalar shift = 0.0;
|
||||
if ((b != 0.0) || (c != 0.0))
|
||||
{
|
||||
shift = ei_sqrt(b*b + c);
|
||||
if (b < 0.0)
|
||||
shift = -shift;
|
||||
shift = c/(b + shift);
|
||||
}
|
||||
Scalar f = (sk + sp)*(sk - sp) + shift;
|
||||
Scalar g = sk*ek;
|
||||
|
||||
// Chase zeros.
|
||||
|
||||
for (j = k; j < p-1; ++j)
|
||||
{
|
||||
Scalar t = ei_hypot(f,g);
|
||||
Scalar cs = f/t;
|
||||
Scalar sn = g/t;
|
||||
if (j != k)
|
||||
e[j-1] = t;
|
||||
f = cs*m_sigma[j] + sn*e[j];
|
||||
e[j] = cs*e[j] - sn*m_sigma[j];
|
||||
g = sn*m_sigma[j+1];
|
||||
m_sigma[j+1] = cs*m_sigma[j+1];
|
||||
if (wantv)
|
||||
{
|
||||
for (i = 0; i < n; ++i)
|
||||
{
|
||||
t = cs*m_matV(i,j) + sn*m_matV(i,j+1);
|
||||
m_matV(i,j+1) = -sn*m_matV(i,j) + cs*m_matV(i,j+1);
|
||||
m_matV(i,j) = t;
|
||||
}
|
||||
}
|
||||
t = ei_hypot(f,g);
|
||||
cs = f/t;
|
||||
sn = g/t;
|
||||
m_sigma[j] = t;
|
||||
f = cs*e[j] + sn*m_sigma[j+1];
|
||||
m_sigma[j+1] = -sn*e[j] + cs*m_sigma[j+1];
|
||||
g = sn*e[j+1];
|
||||
e[j+1] = cs*e[j+1];
|
||||
if (wantu && (j < m-1))
|
||||
{
|
||||
for (i = 0; i < m; ++i)
|
||||
{
|
||||
t = cs*m_matU(i,j) + sn*m_matU(i,j+1);
|
||||
m_matU(i,j+1) = -sn*m_matU(i,j) + cs*m_matU(i,j+1);
|
||||
m_matU(i,j) = t;
|
||||
}
|
||||
}
|
||||
}
|
||||
e[p-2] = f;
|
||||
iter = iter + 1;
|
||||
}
|
||||
break;
|
||||
|
||||
// Convergence.
|
||||
case 4:
|
||||
{
|
||||
// Make the singular values positive.
|
||||
if (m_sigma[k] <= 0.0)
|
||||
{
|
||||
m_sigma[k] = m_sigma[k] < Scalar(0) ? -m_sigma[k] : Scalar(0);
|
||||
if (wantv)
|
||||
m_matV.col(k).start(pp+1) = -m_matV.col(k).start(pp+1);
|
||||
}
|
||||
|
||||
// Order the singular values.
|
||||
while (k < pp)
|
||||
{
|
||||
if (m_sigma[k] >= m_sigma[k+1])
|
||||
break;
|
||||
Scalar t = m_sigma[k];
|
||||
m_sigma[k] = m_sigma[k+1];
|
||||
m_sigma[k+1] = t;
|
||||
if (wantv && (k < n-1))
|
||||
m_matV.col(k).swap(m_matV.col(k+1));
|
||||
if (wantu && (k < m-1))
|
||||
m_matU.col(k).swap(m_matU.col(k+1));
|
||||
++k;
|
||||
}
|
||||
iter = 0;
|
||||
p--;
|
||||
}
|
||||
break;
|
||||
} // end big switch
|
||||
} // end iterations
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
SVD<MatrixType>& SVD<MatrixType>::sort()
|
||||
{
|
||||
int mu = m_matU.rows();
|
||||
int mv = m_matV.rows();
|
||||
int n = m_matU.cols();
|
||||
|
||||
for (int i=0; i<n; ++i)
|
||||
{
|
||||
int k = i;
|
||||
Scalar p = m_sigma.coeff(i);
|
||||
|
||||
for (int j=i+1; j<n; ++j)
|
||||
{
|
||||
if (m_sigma.coeff(j) > p)
|
||||
{
|
||||
k = j;
|
||||
p = m_sigma.coeff(j);
|
||||
}
|
||||
}
|
||||
if (k != i)
|
||||
{
|
||||
m_sigma.coeffRef(k) = m_sigma.coeff(i); // i.e.
|
||||
m_sigma.coeffRef(i) = p; // swaps the i-th and the k-th elements
|
||||
|
||||
int j = mu;
|
||||
for(int s=0; j!=0; ++s, --j)
|
||||
std::swap(m_matU.coeffRef(s,i), m_matU.coeffRef(s,k));
|
||||
|
||||
j = mv;
|
||||
for (int s=0; j!=0; ++s, --j)
|
||||
std::swap(m_matV.coeffRef(s,i), m_matV.coeffRef(s,k));
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \returns the solution of \f$ A x = b \f$ using the current SVD decomposition of A.
|
||||
* The parts of the solution corresponding to zero singular values are ignored.
|
||||
*
|
||||
* \sa MatrixBase::svd(), LU::solve(), LLT::solve()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
bool SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const
|
||||
{
|
||||
const int rows = m_matU.rows();
|
||||
ei_assert(b.rows() == rows);
|
||||
|
||||
Scalar maxVal = m_sigma.cwise().abs().maxCoeff();
|
||||
for (int j=0; j<b.cols(); ++j)
|
||||
{
|
||||
Matrix<Scalar,MatrixUType::RowsAtCompileTime,1> aux = m_matU.transpose() * b.col(j);
|
||||
|
||||
for (int i = 0; i <m_matU.cols(); ++i)
|
||||
{
|
||||
Scalar si = m_sigma.coeff(i);
|
||||
if (ei_isMuchSmallerThan(ei_abs(si),maxVal))
|
||||
aux.coeffRef(i) = 0;
|
||||
else
|
||||
aux.coeffRef(i) /= si;
|
||||
}
|
||||
|
||||
result->col(j) = m_matV * aux;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/** Computes the polar decomposition of the matrix, as a product unitary x positive.
|
||||
*
|
||||
* If either pointer is zero, the corresponding computation is skipped.
|
||||
*
|
||||
* Only for square matrices.
|
||||
*
|
||||
* \sa computePositiveUnitary(), computeRotationScaling()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
template<typename UnitaryType, typename PositiveType>
|
||||
void SVD<MatrixType>::computeUnitaryPositive(UnitaryType *unitary,
|
||||
PositiveType *positive) const
|
||||
{
|
||||
ei_assert(m_matU.cols() == m_matV.cols() && "Polar decomposition is only for square matrices");
|
||||
if(unitary) *unitary = m_matU * m_matV.adjoint();
|
||||
if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint();
|
||||
}
|
||||
|
||||
/** Computes the polar decomposition of the matrix, as a product positive x unitary.
|
||||
*
|
||||
* If either pointer is zero, the corresponding computation is skipped.
|
||||
*
|
||||
* Only for square matrices.
|
||||
*
|
||||
* \sa computeUnitaryPositive(), computeRotationScaling()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
template<typename UnitaryType, typename PositiveType>
|
||||
void SVD<MatrixType>::computePositiveUnitary(UnitaryType *positive,
|
||||
PositiveType *unitary) const
|
||||
{
|
||||
ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
|
||||
if(unitary) *unitary = m_matU * m_matV.adjoint();
|
||||
if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint();
|
||||
}
|
||||
|
||||
/** decomposes the matrix as a product rotation x scaling, the scaling being
|
||||
* not necessarily positive.
|
||||
*
|
||||
* If either pointer is zero, the corresponding computation is skipped.
|
||||
*
|
||||
* This method requires the Geometry module.
|
||||
*
|
||||
* \sa computeScalingRotation(), computeUnitaryPositive()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
template<typename RotationType, typename ScalingType>
|
||||
void SVD<MatrixType>::computeRotationScaling(RotationType *rotation, ScalingType *scaling) const
|
||||
{
|
||||
ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
|
||||
Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
|
||||
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
|
||||
sv.coeffRef(0) *= x;
|
||||
if(scaling) scaling->lazyAssign(m_matV * sv.asDiagonal() * m_matV.adjoint());
|
||||
if(rotation)
|
||||
{
|
||||
MatrixType m(m_matU);
|
||||
m.col(0) /= x;
|
||||
rotation->lazyAssign(m * m_matV.adjoint());
|
||||
}
|
||||
}
|
||||
|
||||
/** decomposes the matrix as a product scaling x rotation, the scaling being
|
||||
* not necessarily positive.
|
||||
*
|
||||
* If either pointer is zero, the corresponding computation is skipped.
|
||||
*
|
||||
* This method requires the Geometry module.
|
||||
*
|
||||
* \sa computeRotationScaling(), computeUnitaryPositive()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
template<typename ScalingType, typename RotationType>
|
||||
void SVD<MatrixType>::computeScalingRotation(ScalingType *scaling, RotationType *rotation) const
|
||||
{
|
||||
ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
|
||||
Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
|
||||
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
|
||||
sv.coeffRef(0) *= x;
|
||||
if(scaling) scaling->lazyAssign(m_matU * sv.asDiagonal() * m_matU.adjoint());
|
||||
if(rotation)
|
||||
{
|
||||
MatrixType m(m_matU);
|
||||
m.col(0) /= x;
|
||||
rotation->lazyAssign(m * m_matV.adjoint());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/** \svd_module
|
||||
* \returns the SVD decomposition of \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline SVD<typename MatrixBase<Derived>::PlainMatrixType>
|
||||
MatrixBase<Derived>::svd() const
|
||||
{
|
||||
return SVD<PlainMatrixType>(derived());
|
||||
}
|
||||
|
||||
#endif // EIGEN_SVD_H
|
379
ground/openpilotgcs/src/libs/eigen/Eigen/src/Sparse/AmbiVector.h
Normal file
379
ground/openpilotgcs/src/libs/eigen/Eigen/src/Sparse/AmbiVector.h
Normal file
@ -0,0 +1,379 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_AMBIVECTOR_H
|
||||
#define EIGEN_AMBIVECTOR_H
|
||||
|
||||
/** \internal
|
||||
* Hybrid sparse/dense vector class designed for intensive read-write operations.
|
||||
*
|
||||
* See BasicSparseLLT and SparseProduct for usage examples.
|
||||
*/
|
||||
template<typename _Scalar> class AmbiVector
|
||||
{
|
||||
public:
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
AmbiVector(int size)
|
||||
: m_buffer(0), m_size(0), m_allocatedSize(0), m_allocatedElements(0), m_mode(-1)
|
||||
{
|
||||
resize(size);
|
||||
}
|
||||
|
||||
void init(RealScalar estimatedDensity);
|
||||
void init(int mode);
|
||||
|
||||
void nonZeros() const;
|
||||
|
||||
/** Specifies a sub-vector to work on */
|
||||
void setBounds(int start, int end) { m_start = start; m_end = end; }
|
||||
|
||||
void setZero();
|
||||
|
||||
void restart();
|
||||
Scalar& coeffRef(int i);
|
||||
Scalar coeff(int i);
|
||||
|
||||
class Iterator;
|
||||
|
||||
~AmbiVector() { delete[] m_buffer; }
|
||||
|
||||
void resize(int size)
|
||||
{
|
||||
if (m_allocatedSize < size)
|
||||
reallocate(size);
|
||||
m_size = size;
|
||||
}
|
||||
|
||||
int size() const { return m_size; }
|
||||
|
||||
protected:
|
||||
|
||||
void reallocate(int size)
|
||||
{
|
||||
// if the size of the matrix is not too large, let's allocate a bit more than needed such
|
||||
// that we can handle dense vector even in sparse mode.
|
||||
delete[] m_buffer;
|
||||
if (size<1000)
|
||||
{
|
||||
int allocSize = (size * sizeof(ListEl))/sizeof(Scalar);
|
||||
m_allocatedElements = (allocSize*sizeof(Scalar))/sizeof(ListEl);
|
||||
m_buffer = new Scalar[allocSize];
|
||||
}
|
||||
else
|
||||
{
|
||||
m_allocatedElements = (size*sizeof(Scalar))/sizeof(ListEl);
|
||||
m_buffer = new Scalar[size];
|
||||
}
|
||||
m_size = size;
|
||||
m_start = 0;
|
||||
m_end = m_size;
|
||||
}
|
||||
|
||||
void reallocateSparse()
|
||||
{
|
||||
int copyElements = m_allocatedElements;
|
||||
m_allocatedElements = std::min(int(m_allocatedElements*1.5),m_size);
|
||||
int allocSize = m_allocatedElements * sizeof(ListEl);
|
||||
allocSize = allocSize/sizeof(Scalar) + (allocSize%sizeof(Scalar)>0?1:0);
|
||||
Scalar* newBuffer = new Scalar[allocSize];
|
||||
std::memcpy(newBuffer, m_buffer, copyElements * sizeof(ListEl));
|
||||
delete[] m_buffer;
|
||||
m_buffer = newBuffer;
|
||||
}
|
||||
|
||||
protected:
|
||||
// element type of the linked list
|
||||
struct ListEl
|
||||
{
|
||||
int next;
|
||||
int index;
|
||||
Scalar value;
|
||||
};
|
||||
|
||||
// used to store data in both mode
|
||||
Scalar* m_buffer;
|
||||
int m_size;
|
||||
int m_start;
|
||||
int m_end;
|
||||
int m_allocatedSize;
|
||||
int m_allocatedElements;
|
||||
int m_mode;
|
||||
|
||||
// linked list mode
|
||||
int m_llStart;
|
||||
int m_llCurrent;
|
||||
int m_llSize;
|
||||
|
||||
private:
|
||||
AmbiVector(const AmbiVector&);
|
||||
|
||||
};
|
||||
|
||||
/** \returns the number of non zeros in the current sub vector */
|
||||
template<typename Scalar>
|
||||
void AmbiVector<Scalar>::nonZeros() const
|
||||
{
|
||||
if (m_mode==IsSparse)
|
||||
return m_llSize;
|
||||
else
|
||||
return m_end - m_start;
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
void AmbiVector<Scalar>::init(RealScalar estimatedDensity)
|
||||
{
|
||||
if (estimatedDensity>0.1)
|
||||
init(IsDense);
|
||||
else
|
||||
init(IsSparse);
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
void AmbiVector<Scalar>::init(int mode)
|
||||
{
|
||||
m_mode = mode;
|
||||
if (m_mode==IsSparse)
|
||||
{
|
||||
m_llSize = 0;
|
||||
m_llStart = -1;
|
||||
}
|
||||
}
|
||||
|
||||
/** Must be called whenever we might perform a write access
|
||||
* with an index smaller than the previous one.
|
||||
*
|
||||
* Don't worry, this function is extremely cheap.
|
||||
*/
|
||||
template<typename Scalar>
|
||||
void AmbiVector<Scalar>::restart()
|
||||
{
|
||||
m_llCurrent = m_llStart;
|
||||
}
|
||||
|
||||
/** Set all coefficients of current subvector to zero */
|
||||
template<typename Scalar>
|
||||
void AmbiVector<Scalar>::setZero()
|
||||
{
|
||||
if (m_mode==IsDense)
|
||||
{
|
||||
for (int i=m_start; i<m_end; ++i)
|
||||
m_buffer[i] = Scalar(0);
|
||||
}
|
||||
else
|
||||
{
|
||||
ei_assert(m_mode==IsSparse);
|
||||
m_llSize = 0;
|
||||
m_llStart = -1;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
Scalar& AmbiVector<Scalar>::coeffRef(int i)
|
||||
{
|
||||
if (m_mode==IsDense)
|
||||
return m_buffer[i];
|
||||
else
|
||||
{
|
||||
ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
|
||||
// TODO factorize the following code to reduce code generation
|
||||
ei_assert(m_mode==IsSparse);
|
||||
if (m_llSize==0)
|
||||
{
|
||||
// this is the first element
|
||||
m_llStart = 0;
|
||||
m_llCurrent = 0;
|
||||
++m_llSize;
|
||||
llElements[0].value = Scalar(0);
|
||||
llElements[0].index = i;
|
||||
llElements[0].next = -1;
|
||||
return llElements[0].value;
|
||||
}
|
||||
else if (i<llElements[m_llStart].index)
|
||||
{
|
||||
// this is going to be the new first element of the list
|
||||
ListEl& el = llElements[m_llSize];
|
||||
el.value = Scalar(0);
|
||||
el.index = i;
|
||||
el.next = m_llStart;
|
||||
m_llStart = m_llSize;
|
||||
++m_llSize;
|
||||
m_llCurrent = m_llStart;
|
||||
return el.value;
|
||||
}
|
||||
else
|
||||
{
|
||||
int nextel = llElements[m_llCurrent].next;
|
||||
ei_assert(i>=llElements[m_llCurrent].index && "you must call restart() before inserting an element with lower or equal index");
|
||||
while (nextel >= 0 && llElements[nextel].index<=i)
|
||||
{
|
||||
m_llCurrent = nextel;
|
||||
nextel = llElements[nextel].next;
|
||||
}
|
||||
|
||||
if (llElements[m_llCurrent].index==i)
|
||||
{
|
||||
// the coefficient already exists and we found it !
|
||||
return llElements[m_llCurrent].value;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (m_llSize>=m_allocatedElements)
|
||||
{
|
||||
reallocateSparse();
|
||||
llElements = reinterpret_cast<ListEl*>(m_buffer);
|
||||
}
|
||||
ei_internal_assert(m_llSize<m_allocatedElements && "internal error: overflow in sparse mode");
|
||||
// let's insert a new coefficient
|
||||
ListEl& el = llElements[m_llSize];
|
||||
el.value = Scalar(0);
|
||||
el.index = i;
|
||||
el.next = llElements[m_llCurrent].next;
|
||||
llElements[m_llCurrent].next = m_llSize;
|
||||
++m_llSize;
|
||||
return el.value;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
Scalar AmbiVector<Scalar>::coeff(int i)
|
||||
{
|
||||
if (m_mode==IsDense)
|
||||
return m_buffer[i];
|
||||
else
|
||||
{
|
||||
ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
|
||||
ei_assert(m_mode==IsSparse);
|
||||
if ((m_llSize==0) || (i<llElements[m_llStart].index))
|
||||
{
|
||||
return Scalar(0);
|
||||
}
|
||||
else
|
||||
{
|
||||
int elid = m_llStart;
|
||||
while (elid >= 0 && llElements[elid].index<i)
|
||||
elid = llElements[elid].next;
|
||||
|
||||
if (llElements[elid].index==i)
|
||||
return llElements[m_llCurrent].value;
|
||||
else
|
||||
return Scalar(0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** Iterator over the nonzero coefficients */
|
||||
template<typename _Scalar>
|
||||
class AmbiVector<_Scalar>::Iterator
|
||||
{
|
||||
public:
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
/** Default constructor
|
||||
* \param vec the vector on which we iterate
|
||||
* \param epsilon the minimal value used to prune zero coefficients.
|
||||
* In practice, all coefficients having a magnitude smaller than \a epsilon
|
||||
* are skipped.
|
||||
*/
|
||||
Iterator(const AmbiVector& vec, RealScalar epsilon = RealScalar(0.1)*precision<RealScalar>())
|
||||
: m_vector(vec)
|
||||
{
|
||||
m_epsilon = epsilon;
|
||||
m_isDense = m_vector.m_mode==IsDense;
|
||||
if (m_isDense)
|
||||
{
|
||||
m_cachedIndex = m_vector.m_start-1;
|
||||
++(*this);
|
||||
}
|
||||
else
|
||||
{
|
||||
ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
|
||||
m_currentEl = m_vector.m_llStart;
|
||||
while (m_currentEl>=0 && ei_abs(llElements[m_currentEl].value)<m_epsilon)
|
||||
m_currentEl = llElements[m_currentEl].next;
|
||||
if (m_currentEl<0)
|
||||
{
|
||||
m_cachedIndex = -1;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_cachedIndex = llElements[m_currentEl].index;
|
||||
m_cachedValue = llElements[m_currentEl].value;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int index() const { return m_cachedIndex; }
|
||||
Scalar value() const { return m_cachedValue; }
|
||||
|
||||
operator bool() const { return m_cachedIndex>=0; }
|
||||
|
||||
Iterator& operator++()
|
||||
{
|
||||
if (m_isDense)
|
||||
{
|
||||
do {
|
||||
++m_cachedIndex;
|
||||
} while (m_cachedIndex<m_vector.m_end && ei_abs(m_vector.m_buffer[m_cachedIndex])<m_epsilon);
|
||||
if (m_cachedIndex<m_vector.m_end)
|
||||
m_cachedValue = m_vector.m_buffer[m_cachedIndex];
|
||||
else
|
||||
m_cachedIndex=-1;
|
||||
}
|
||||
else
|
||||
{
|
||||
ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
|
||||
do {
|
||||
m_currentEl = llElements[m_currentEl].next;
|
||||
} while (m_currentEl>=0 && ei_abs(llElements[m_currentEl].value)<m_epsilon);
|
||||
if (m_currentEl<0)
|
||||
{
|
||||
m_cachedIndex = -1;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_cachedIndex = llElements[m_currentEl].index;
|
||||
m_cachedValue = llElements[m_currentEl].value;
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
protected:
|
||||
const AmbiVector& m_vector; // the target vector
|
||||
int m_currentEl; // the current element in sparse/linked-list mode
|
||||
RealScalar m_epsilon; // epsilon used to prune zero coefficients
|
||||
int m_cachedIndex; // current coordinate
|
||||
Scalar m_cachedValue; // current value
|
||||
bool m_isDense; // mode of the vector
|
||||
|
||||
private:
|
||||
Iterator& operator=(const Iterator&);
|
||||
};
|
||||
|
||||
|
||||
#endif // EIGEN_AMBIVECTOR_H
|
@ -0,0 +1,6 @@
|
||||
FILE(GLOB Eigen_Sparse_SRCS "*.h")
|
||||
|
||||
INSTALL(FILES
|
||||
${Eigen_Sparse_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Sparse COMPONENT Devel
|
||||
)
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user