1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-01 09:24:10 +01:00

Merge branch 'corvuscorax/OP-1309_Stabilization-Refactoring' into corvuscorax/OP-1259_Cruise_Control_Tweaks

Conflicts:
	flight/modules/Stabilization/stabilization.c
	shared/uavobjectdefinition/stabilizationsettings.xml
This commit is contained in:
Corvus Corax 2014-05-02 18:25:57 +02:00
commit c63540b2ec
56 changed files with 1767 additions and 1941 deletions

View File

@ -1,9 +1,13 @@
/**
******************************************************************************
* @addtogroup OpenPilot Math Utilities
* @{
* @addtogroup Reuseable math functions
* @{
*
* @file examplemodperiodic.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Example module to be used as a template for actual modules.
* @file mathmisc.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief Reuseable math functions
*
* @see The GNU Public License (GPL) Version 3
*
@ -23,9 +27,6 @@
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef EXAMPLEMODPERIODIC_H
#define EXAMPLEMODPERIODIC_H
int32_t ExampleModPeriodicInitialize();
int32_t GuidanceInitialize(void);
#endif // EXAMPLEMODPERIODIC_H
// space deliberately left empty, any non inline misc math functions can go here

View File

@ -0,0 +1,55 @@
/**
******************************************************************************
* @addtogroup OpenPilot Math Utilities
* @{
* @addtogroup Reuseable math functions
* @{
*
* @file mathmisc.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief Reuseable math functions
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef MATHMISC_H
#define MATHMISC_H
// returns min(boundary1,boundary2) if val<min(boundary1,boundary2)
// returns max(boundary1,boundary2) if val>max(boundary1,boundary2)
// returns val if min(boundary1,boundary2)<=val<=max(boundary1,boundary2)
static inline float boundf(float val, float boundary1, float boundary2)
{
if (boundary1 > boundary2) {
if (!(val >= boundary2)) {
return boundary2;
} else if (!(val <= boundary1)) {
return boundary1;
}
} else {
if (!(val >= boundary1)) {
return boundary1;
} else if (!(val <= boundary2)) {
return boundary2;
}
}
return val;
}
#endif /* MATHMISC_H */

View File

@ -30,11 +30,9 @@
#include "openpilot.h"
#include "pid.h"
#include <mathmisc.h>
#include <pios_math.h>
// ! Private method
static float bound(float val, float range);
// ! Store the shared time constant for the derivative cutoff.
static float deriv_tau = 7.9577e-3f;
@ -52,7 +50,7 @@ float pid_apply(struct pid *pid, const float err, float dT)
{
// Scale up accumulator by 1000 while computing to avoid losing precision
pid->iAccumulator += err * (pid->i * dT * 1000.0f);
pid->iAccumulator = bound(pid->iAccumulator, pid->iLim * 1000.0f);
pid->iAccumulator = boundf(pid->iAccumulator, pid->iLim * -1000.0f, pid->iLim * 1000.0f);
// Calculate DT1 term
float diff = (err - pid->lastErr);
@ -84,7 +82,7 @@ float pid_apply_setpoint(struct pid *pid, const float factor, const float setpoi
// Scale up accumulator by 1000 while computing to avoid losing precision
pid->iAccumulator += err * (factor * pid->i * dT * 1000.0f);
pid->iAccumulator = bound(pid->iAccumulator, pid->iLim * 1000.0f);
pid->iAccumulator = boundf(pid->iAccumulator, pid->iLim * -1000.0f, pid->iLim * 1000.0f);
// Calculate DT1 term,
float dterm = 0;
@ -142,16 +140,3 @@ void pid_configure(struct pid *pid, float p, float i, float d, float iLim)
pid->d = d;
pid->iLim = iLim;
}
/**
* Bound input value between limits
*/
static float bound(float val, float range)
{
if (val < -range) {
val = -range;
} else if (val > range) {
val = range;
}
return val;
}

View File

@ -46,7 +46,7 @@
****************************/
// ! Check a stabilization mode switch position for safety
static int32_t check_stabilization_settings(int index, bool multirotor);
static int32_t check_stabilization_settings(int index, bool multirotor, bool coptercontrol);
/**
* Run a preflight check over the hardware configuration
@ -98,34 +98,19 @@ int32_t configuration_check()
}
break;
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_STABILIZED1:
severity = (severity == SYSTEMALARMS_ALARM_OK) ? check_stabilization_settings(1, multirotor) : severity;
severity = (severity == SYSTEMALARMS_ALARM_OK) ? check_stabilization_settings(1, multirotor, coptercontrol) : severity;
break;
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_STABILIZED2:
severity = (severity == SYSTEMALARMS_ALARM_OK) ? check_stabilization_settings(2, multirotor) : severity;
severity = (severity == SYSTEMALARMS_ALARM_OK) ? check_stabilization_settings(2, multirotor, coptercontrol) : severity;
break;
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_STABILIZED3:
severity = (severity == SYSTEMALARMS_ALARM_OK) ? check_stabilization_settings(3, multirotor) : severity;
severity = (severity == SYSTEMALARMS_ALARM_OK) ? check_stabilization_settings(3, multirotor, coptercontrol) : severity;
break;
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_AUTOTUNE:
if (!PIOS_TASK_MONITOR_IsRunning(TASKINFO_RUNNING_AUTOTUNE)) {
severity = SYSTEMALARMS_ALARM_ERROR;
}
break;
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_ALTITUDEHOLD:
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_ALTITUDEVARIO:
if (coptercontrol) {
severity = SYSTEMALARMS_ALARM_ERROR;
}
// TODO: put check equivalent to TASK_MONITOR_IsRunning
// here as soon as available for delayed callbacks
break;
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_VELOCITYCONTROL:
if (coptercontrol) {
severity = SYSTEMALARMS_ALARM_ERROR;
} else if (!PIOS_TASK_MONITOR_IsRunning(TASKINFO_RUNNING_PATHFOLLOWER)) { // Revo supports altitude hold
severity = SYSTEMALARMS_ALARM_ERROR;
}
break;
case FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_POSITIONHOLD:
if (coptercontrol) {
severity = SYSTEMALARMS_ALARM_ERROR;
@ -199,7 +184,7 @@ int32_t configuration_check()
* @param[in] index Which stabilization mode to check
* @returns SYSTEMALARMS_ALARM_OK or SYSTEMALARMS_ALARM_ERROR
*/
static int32_t check_stabilization_settings(int index, bool multirotor)
static int32_t check_stabilization_settings(int index, bool multirotor, bool coptercontrol)
{
// Make sure the modes have identical sizes
if (FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_NUMELEM != FLIGHTMODESETTINGS_STABILIZATION2SETTINGS_NUMELEM ||
@ -224,18 +209,45 @@ static int32_t check_stabilization_settings(int index, bool multirotor)
return SYSTEMALARMS_ALARM_ERROR;
}
// For multirotors verify that nothing is set to "none"
// For multirotors verify that roll/pitch/yaw are not set to "none"
// (why not? might be fun to test ones reactions ;) if you dare, set your frame to "custom"!
if (multirotor) {
for (uint32_t i = 0; i < NELEMENTS(modes); i++) {
if (modes[i] == FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_NONE) {
for (uint32_t i = 0; i < FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_THRUST; i++) {
if (modes[i] == FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_MANUAL) {
return SYSTEMALARMS_ALARM_ERROR;
}
}
}
// coptercontrol cannot do altitude holding
if (coptercontrol) {
if (modes[FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_THRUST] == FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_ALTITUDEHOLD
|| modes[FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_THRUST] == FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_VERTICALVELOCITY
) {
return SYSTEMALARMS_ALARM_ERROR;
}
}
// check that thrust modes are only set to thrust axis
for (uint32_t i = 0; i < FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_THRUST; i++) {
if (modes[i] == FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_ALTITUDEHOLD
|| modes[i] == FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_VERTICALVELOCITY
) {
return SYSTEMALARMS_ALARM_ERROR;
}
}
if (!(modes[FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_THRUST] == FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_MANUAL
|| modes[FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_THRUST] == FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_ALTITUDEHOLD
|| modes[FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_THRUST] == FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_VERTICALVELOCITY
|| modes[FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_THRUST] == FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_CRUISECONTROL
)) {
return SYSTEMALARMS_ALARM_ERROR;
}
// Warning: This assumes that certain conditions in the XML file are met. That
// FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_NONE has the same numeric value for each channel
// and is the same for STABILIZATIONDESIRED_STABILIZATIONMODE_NONE
// FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_MANUAL has the same numeric value for each channel
// and is the same for STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL
// (this is checked at compile time by static constraint manualcontrol.h)
return SYSTEMALARMS_ALARM_OK;
}

View File

@ -79,7 +79,6 @@ static struct CameraStab_data {
// Private functions
static void attitudeUpdated(UAVObjEvent *ev);
static float bound(float val, float limit);
#ifdef USE_GIMBAL_FF
static void applyFeedForward(uint8_t index, float dT, float *attitude, CameraStabSettingsData *cameraStab);
@ -186,8 +185,9 @@ static void attitudeUpdated(UAVObjEvent *ev)
input_rate = accessory.AccessoryVal *
cast_struct_to_array(cameraStab.InputRate, cameraStab.InputRate.Roll)[i];
if (fabsf(input_rate) > cameraStab.MaxAxisLockRate) {
csd->inputs[i] = bound(csd->inputs[i] + input_rate * 0.001f * dT_millis,
cast_struct_to_array(cameraStab.InputRange, cameraStab.InputRange.Roll)[i]);
csd->inputs[i] = boundf(csd->inputs[i] + input_rate * 0.001f * dT_millis,
-cast_struct_to_array(cameraStab.InputRange, cameraStab.InputRange.Roll)[i],
cast_struct_to_array(cameraStab.InputRange, cameraStab.InputRange.Roll)[i]);
}
break;
default:
@ -229,7 +229,7 @@ static void attitudeUpdated(UAVObjEvent *ev)
// bounding for elevon mixing occurs on the unmixed output
// to limit the range of the mixed output you must limit the range
// of both the unmixed pitch and unmixed roll
float output = bound((attitude + csd->inputs[i]) / cast_struct_to_array(cameraStab.OutputRange, cameraStab.OutputRange.Roll)[i], 1.0f);
float output = boundf((attitude + csd->inputs[i]) / cast_struct_to_array(cameraStab.OutputRange, cameraStab.OutputRange.Roll)[i], -1.0f, 1.0f);
// set output channels
switch (i) {
@ -282,13 +282,6 @@ static void attitudeUpdated(UAVObjEvent *ev)
}
}
float bound(float val, float limit)
{
return (val > limit) ? limit :
(val < -limit) ? -limit :
val;
}
#ifdef USE_GIMBAL_FF
void applyFeedForward(uint8_t index, float dT_millis, float *attitude, CameraStabSettingsData *cameraStab)
{

View File

@ -85,7 +85,6 @@ static void updatePathVelocity();
static uint8_t updateFixedDesiredAttitude();
static void updateFixedAttitude();
static void airspeedStateUpdatedCb(UAVObjEvent *ev);
static float bound(float val, float min, float max);
/**
* Initialise the module, called on startup
@ -277,9 +276,9 @@ static void updatePathVelocity()
case PATHDESIRED_MODE_DRIVEVECTOR:
default:
groundspeed = pathDesired.StartingVelocity + (pathDesired.EndingVelocity - pathDesired.StartingVelocity) *
bound(progress.fractional_progress, 0, 1);
boundf(progress.fractional_progress, 0, 1);
altitudeSetpoint = pathDesired.Start.Down + (pathDesired.End.Down - pathDesired.Start.Down) *
bound(progress.fractional_progress, 0, 1);
boundf(progress.fractional_progress, 0, 1);
break;
}
// make sure groundspeed is not zero
@ -427,15 +426,15 @@ static uint8_t updateFixedDesiredAttitude()
// Desired ground speed
groundspeedDesired = sqrtf(velocityDesired.North * velocityDesired.North + velocityDesired.East * velocityDesired.East);
indicatedAirspeedDesired = bound(groundspeedDesired + indicatedAirspeedStateBias,
fixedwingpathfollowerSettings.HorizontalVelMin,
fixedwingpathfollowerSettings.HorizontalVelMax);
indicatedAirspeedDesired = boundf(groundspeedDesired + indicatedAirspeedStateBias,
fixedwingpathfollowerSettings.HorizontalVelMin,
fixedwingpathfollowerSettings.HorizontalVelMax);
// Airspeed error
airspeedError = indicatedAirspeedDesired - indicatedAirspeedState;
// Vertical speed error
descentspeedDesired = bound(
descentspeedDesired = boundf(
velocityDesired.Down,
-fixedwingpathfollowerSettings.VerticalVelMax,
fixedwingpathfollowerSettings.VerticalVelMax);
@ -473,14 +472,14 @@ static uint8_t updateFixedDesiredAttitude()
*/
// compute saturated integral error thrust response. Make integral leaky for better performance. Approximately 30s time constant.
if (fixedwingpathfollowerSettings.PowerPI.Ki > 0) {
powerIntegral = bound(powerIntegral + -descentspeedError * dT,
-fixedwingpathfollowerSettings.PowerPI.ILimit / fixedwingpathfollowerSettings.PowerPI.Ki,
fixedwingpathfollowerSettings.PowerPI.ILimit / fixedwingpathfollowerSettings.PowerPI.Ki
) * (1.0f - 1.0f / (1.0f + 30.0f / dT));
powerIntegral = boundf(powerIntegral + -descentspeedError * dT,
-fixedwingpathfollowerSettings.PowerPI.ILimit / fixedwingpathfollowerSettings.PowerPI.Ki,
fixedwingpathfollowerSettings.PowerPI.ILimit / fixedwingpathfollowerSettings.PowerPI.Ki
) * (1.0f - 1.0f / (1.0f + 30.0f / dT));
} else { powerIntegral = 0; }
// Compute the cross feed from vertical speed to pitch, with saturation
float speedErrorToPowerCommandComponent = bound(
float speedErrorToPowerCommandComponent = boundf(
(airspeedError / fixedwingpathfollowerSettings.HorizontalVelMin) * fixedwingpathfollowerSettings.AirspeedToPowerCrossFeed.Kp,
-fixedwingpathfollowerSettings.AirspeedToPowerCrossFeed.Max,
fixedwingpathfollowerSettings.AirspeedToPowerCrossFeed.Max
@ -497,9 +496,9 @@ static uint8_t updateFixedDesiredAttitude()
fixedwingpathfollowerStatus.Command.Power = powerCommand;
// set thrust
stabDesired.Thrust = bound(fixedwingpathfollowerSettings.ThrustLimit.Neutral + powerCommand,
fixedwingpathfollowerSettings.ThrustLimit.Min,
fixedwingpathfollowerSettings.ThrustLimit.Max);
stabDesired.Thrust = boundf(fixedwingpathfollowerSettings.ThrustLimit.Neutral + powerCommand,
fixedwingpathfollowerSettings.ThrustLimit.Min,
fixedwingpathfollowerSettings.ThrustLimit.Max);
// Error condition: plane cannot hold altitude at current speed.
fixedwingpathfollowerStatus.Errors.Lowpower = 0;
@ -529,16 +528,16 @@ static uint8_t updateFixedDesiredAttitude()
if (fixedwingpathfollowerSettings.SpeedPI.Ki > 0) {
// Integrate with saturation
airspeedErrorInt = bound(airspeedErrorInt + airspeedError * dT,
-fixedwingpathfollowerSettings.SpeedPI.ILimit / fixedwingpathfollowerSettings.SpeedPI.Ki,
fixedwingpathfollowerSettings.SpeedPI.ILimit / fixedwingpathfollowerSettings.SpeedPI.Ki);
airspeedErrorInt = boundf(airspeedErrorInt + airspeedError * dT,
-fixedwingpathfollowerSettings.SpeedPI.ILimit / fixedwingpathfollowerSettings.SpeedPI.Ki,
fixedwingpathfollowerSettings.SpeedPI.ILimit / fixedwingpathfollowerSettings.SpeedPI.Ki);
}
// Compute the cross feed from vertical speed to pitch, with saturation
float verticalSpeedToPitchCommandComponent = bound(-descentspeedError * fixedwingpathfollowerSettings.VerticalToPitchCrossFeed.Kp,
-fixedwingpathfollowerSettings.VerticalToPitchCrossFeed.Max,
fixedwingpathfollowerSettings.VerticalToPitchCrossFeed.Max
);
float verticalSpeedToPitchCommandComponent = boundf(-descentspeedError * fixedwingpathfollowerSettings.VerticalToPitchCrossFeed.Kp,
-fixedwingpathfollowerSettings.VerticalToPitchCrossFeed.Max,
fixedwingpathfollowerSettings.VerticalToPitchCrossFeed.Max
);
// Compute the pitch command as err*Kp + errInt*Ki + X_feed.
pitchCommand = -(airspeedError * fixedwingpathfollowerSettings.SpeedPI.Kp
@ -549,9 +548,9 @@ static uint8_t updateFixedDesiredAttitude()
fixedwingpathfollowerStatus.ErrorInt.Speed = airspeedErrorInt;
fixedwingpathfollowerStatus.Command.Speed = pitchCommand;
stabDesired.Pitch = bound(fixedwingpathfollowerSettings.PitchLimit.Neutral + pitchCommand,
fixedwingpathfollowerSettings.PitchLimit.Min,
fixedwingpathfollowerSettings.PitchLimit.Max);
stabDesired.Pitch = boundf(fixedwingpathfollowerSettings.PitchLimit.Neutral + pitchCommand,
fixedwingpathfollowerSettings.PitchLimit.Min,
fixedwingpathfollowerSettings.PitchLimit.Max);
// Error condition: high speed dive
fixedwingpathfollowerStatus.Errors.Pitchcontrol = 0;
@ -606,9 +605,9 @@ static uint8_t updateFixedDesiredAttitude()
courseError -= 360.0f;
}
courseIntegral = bound(courseIntegral + courseError * dT * fixedwingpathfollowerSettings.CoursePI.Ki,
-fixedwingpathfollowerSettings.CoursePI.ILimit,
fixedwingpathfollowerSettings.CoursePI.ILimit);
courseIntegral = boundf(courseIntegral + courseError * dT * fixedwingpathfollowerSettings.CoursePI.Ki,
-fixedwingpathfollowerSettings.CoursePI.ILimit,
fixedwingpathfollowerSettings.CoursePI.ILimit);
courseCommand = (courseError * fixedwingpathfollowerSettings.CoursePI.Kp +
courseIntegral);
@ -616,10 +615,10 @@ static uint8_t updateFixedDesiredAttitude()
fixedwingpathfollowerStatus.ErrorInt.Course = courseIntegral;
fixedwingpathfollowerStatus.Command.Course = courseCommand;
stabDesired.Roll = bound(fixedwingpathfollowerSettings.RollLimit.Neutral +
courseCommand,
fixedwingpathfollowerSettings.RollLimit.Min,
fixedwingpathfollowerSettings.RollLimit.Max);
stabDesired.Roll = boundf(fixedwingpathfollowerSettings.RollLimit.Neutral +
courseCommand,
fixedwingpathfollowerSettings.RollLimit.Min,
fixedwingpathfollowerSettings.RollLimit.Max);
// TODO: find a check to determine loss of directional control. Likely needs some check of derivative
@ -633,7 +632,7 @@ static uint8_t updateFixedDesiredAttitude()
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_NONE;
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
@ -642,20 +641,6 @@ static uint8_t updateFixedDesiredAttitude()
return result;
}
/**
* Bound input value between limits
*/
static float bound(float val, float min, float max)
{
if (val < min) {
val = min;
} else if (val > max) {
val = max;
}
return val;
}
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);

View File

@ -1,133 +0,0 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup ManualControl
* @brief Interpretes the control input in ManualControlCommand
* @{
*
* @file altitudehandler.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2014.
*
* @see The GNU Public License (GPL) Version 3
*
******************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "inc/manualcontrol.h"
#include <manualcontrolcommand.h>
#include <stabilizationbank.h>
#include <altitudeholddesired.h>
#include <altitudeholdsettings.h>
#include <positionstate.h>
#if defined(REVOLUTION)
// Private constants
// Private types
// Private functions
/**
* @brief Handler to control deprecated flight modes controlled by AltitudeHold module
* @input: ManualControlCommand
* @output: AltitudeHoldDesired
*/
void altitudeHandler(bool newinit)
{
const float DEADBAND = 0.20f;
const float DEADBAND_HIGH = 1.0f / 2 + DEADBAND / 2;
const float DEADBAND_LOW = 1.0f / 2 - DEADBAND / 2;
if (newinit) {
StabilizationBankInitialize();
AltitudeHoldDesiredInitialize();
AltitudeHoldSettingsInitialize();
PositionStateInitialize();
}
// this is the max speed in m/s at the extents of thrust
float thrustRate;
uint8_t thrustExp;
static uint8_t flightMode;
static bool newaltitude = true;
ManualControlCommandData cmd;
ManualControlCommandGet(&cmd);
FlightStatusFlightModeGet(&flightMode);
AltitudeHoldDesiredData altitudeHoldDesiredData;
AltitudeHoldDesiredGet(&altitudeHoldDesiredData);
AltitudeHoldSettingsThrustExpGet(&thrustExp);
AltitudeHoldSettingsThrustRateGet(&thrustRate);
StabilizationBankData stabSettings;
StabilizationBankGet(&stabSettings);
PositionStateData posState;
PositionStateGet(&posState);
altitudeHoldDesiredData.Roll = cmd.Roll * stabSettings.RollMax;
altitudeHoldDesiredData.Pitch = cmd.Pitch * stabSettings.PitchMax;
altitudeHoldDesiredData.Yaw = cmd.Yaw * stabSettings.ManualRate.Yaw;
if (newinit) {
newaltitude = true;
}
uint8_t cutOff;
AltitudeHoldSettingsCutThrustWhenZeroGet(&cutOff);
if (cutOff && cmd.Thrust < 0) {
// Cut thrust if desired
altitudeHoldDesiredData.SetPoint = cmd.Thrust;
altitudeHoldDesiredData.ControlMode = ALTITUDEHOLDDESIRED_CONTROLMODE_THRUST;
newaltitude = true;
} else if (flightMode == FLIGHTSTATUS_FLIGHTMODE_ALTITUDEVARIO && cmd.Thrust > DEADBAND_HIGH) {
// being the two band symmetrical I can divide by DEADBAND_LOW to scale it to a value betweeon 0 and 1
// then apply an "exp" f(x,k) = (k*x*x*x + (255-k)*x) / 255
altitudeHoldDesiredData.SetPoint = -((thrustExp * powf((cmd.Thrust - DEADBAND_HIGH) / (DEADBAND_LOW), 3) + (255 - thrustExp) * (cmd.Thrust - DEADBAND_HIGH) / DEADBAND_LOW) / 255 * thrustRate);
altitudeHoldDesiredData.ControlMode = ALTITUDEHOLDDESIRED_CONTROLMODE_VELOCITY;
newaltitude = true;
} else if (flightMode == FLIGHTSTATUS_FLIGHTMODE_ALTITUDEVARIO && cmd.Thrust < DEADBAND_LOW) {
altitudeHoldDesiredData.SetPoint = -(-(thrustExp * powf((DEADBAND_LOW - (cmd.Thrust < 0 ? 0 : cmd.Thrust)) / DEADBAND_LOW, 3) + (255 - thrustExp) * (DEADBAND_LOW - cmd.Thrust) / DEADBAND_LOW) / 255 * thrustRate);
altitudeHoldDesiredData.ControlMode = ALTITUDEHOLDDESIRED_CONTROLMODE_VELOCITY;
newaltitude = true;
} else if (newaltitude == true) {
altitudeHoldDesiredData.SetPoint = posState.Down;
altitudeHoldDesiredData.ControlMode = ALTITUDEHOLDDESIRED_CONTROLMODE_ALTITUDE;
newaltitude = false;
}
AltitudeHoldDesiredSet(&altitudeHoldDesiredData);
}
#else /* if defined(REVOLUTION) */
void altitudeHandler(__attribute__((unused)) bool newinit)
{
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_CRITICAL); // should not be called
}
#endif // REVOLUTION
/**
* @}
* @}
*/

View File

@ -61,13 +61,6 @@ void manualHandler(bool newinit);
*/
void stabilizedHandler(bool newinit);
/**
* @brief Handler to control deprecated flight modes controlled by AltitudeHold module
* @input: ManualControlCommand
* @output: AltitudeHoldDesired
*/
void altitudeHandler(bool newinit);
/**
* @brief Handler to control Guided flightmodes. FlightControl is governed by PathFollower, control via PathDesired
* @input: NONE: fully automated mode -- TODO recursively call handler for advanced stick commands
@ -88,7 +81,7 @@ void pathPlannerHandler(bool newinit);
*/
#define assumptions1 \
( \
((int)FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_NONE == (int)STABILIZATIONDESIRED_STABILIZATIONMODE_NONE) && \
((int)FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_MANUAL == (int)STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL) && \
((int)FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_RATE == (int)STABILIZATIONDESIRED_STABILIZATIONMODE_RATE) && \
((int)FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_AXISLOCK == (int)STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK) && \
((int)FLIGHTMODESETTINGS_STABILIZATION1SETTINGS_WEAKLEVELING == (int)STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) && \
@ -97,7 +90,7 @@ void pathPlannerHandler(bool newinit);
#define assumptions3 \
( \
((int)FLIGHTMODESETTINGS_STABILIZATION2SETTINGS_NONE == (int)STABILIZATIONDESIRED_STABILIZATIONMODE_NONE) && \
((int)FLIGHTMODESETTINGS_STABILIZATION2SETTINGS_MANUAL == (int)STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL) && \
((int)FLIGHTMODESETTINGS_STABILIZATION2SETTINGS_RATE == (int)STABILIZATIONDESIRED_STABILIZATIONMODE_RATE) && \
((int)FLIGHTMODESETTINGS_STABILIZATION2SETTINGS_AXISLOCK == (int)STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK) && \
((int)FLIGHTMODESETTINGS_STABILIZATION2SETTINGS_WEAKLEVELING == (int)STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) && \
@ -106,7 +99,7 @@ void pathPlannerHandler(bool newinit);
#define assumptions5 \
( \
((int)FLIGHTMODESETTINGS_STABILIZATION3SETTINGS_NONE == (int)STABILIZATIONDESIRED_STABILIZATIONMODE_NONE) && \
((int)FLIGHTMODESETTINGS_STABILIZATION3SETTINGS_MANUAL == (int)STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL) && \
((int)FLIGHTMODESETTINGS_STABILIZATION3SETTINGS_RATE == (int)STABILIZATIONDESIRED_STABILIZATIONMODE_RATE) && \
((int)FLIGHTMODESETTINGS_STABILIZATION3SETTINGS_AXISLOCK == (int)STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK) && \
((int)FLIGHTMODESETTINGS_STABILIZATION3SETTINGS_WEAKLEVELING == (int)STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) && \
@ -119,9 +112,6 @@ void pathPlannerHandler(bool newinit);
((int)FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_STABILIZED1 == (int)FLIGHTSTATUS_FLIGHTMODE_STABILIZED1) && \
((int)FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_STABILIZED2 == (int)FLIGHTSTATUS_FLIGHTMODE_STABILIZED2) && \
((int)FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_STABILIZED3 == (int)FLIGHTSTATUS_FLIGHTMODE_STABILIZED3) && \
((int)FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_ALTITUDEHOLD == (int)FLIGHTSTATUS_FLIGHTMODE_ALTITUDEHOLD) && \
((int)FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_ALTITUDEVARIO == (int)FLIGHTSTATUS_FLIGHTMODE_ALTITUDEVARIO) && \
((int)FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_VELOCITYCONTROL == (int)FLIGHTSTATUS_FLIGHTMODE_VELOCITYCONTROL) && \
((int)FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_POSITIONHOLD == (int)FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD) && \
((int)FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_PATHPLANNER == (int)FLIGHTSTATUS_FLIGHTMODE_PATHPLANNER) && \
((int)FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_RETURNTOBASE == (int)FLIGHTSTATUS_FLIGHTMODE_RETURNTOBASE) && \

View File

@ -85,16 +85,6 @@ static const controlHandler handler_AUTOTUNE = {
};
#ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
// TODO: move the altitude handling into stabi
static const controlHandler handler_ALTITUDE = {
.controlChain = {
.Stabilization = true,
.PathFollower = false,
.PathPlanner = false,
},
.handler = &altitudeHandler,
};
static const controlHandler handler_PATHFOLLOWER = {
.controlChain = {
.Stabilization = true,
@ -206,7 +196,6 @@ static void manualControlTask(void)
handler = &handler_STABILIZED;
break;
#ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
case FLIGHTSTATUS_FLIGHTMODE_VELOCITYCONTROL:
case FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD:
case FLIGHTSTATUS_FLIGHTMODE_RETURNTOBASE:
case FLIGHTSTATUS_FLIGHTMODE_LAND:
@ -216,10 +205,6 @@ static void manualControlTask(void)
case FLIGHTSTATUS_FLIGHTMODE_PATHPLANNER:
handler = &handler_PATHPLANNER;
break;
case FLIGHTSTATUS_FLIGHTMODE_ALTITUDEHOLD:
case FLIGHTSTATUS_FLIGHTMODE_ALTITUDEVARIO:
handler = &handler_ALTITUDE;
break;
#endif
case FLIGHTSTATUS_FLIGHTMODE_AUTOTUNE:
handler = &handler_AUTOTUNE;

View File

@ -86,25 +86,25 @@ void stabilizedHandler(bool newinit)
}
stabilization.Roll =
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_NONE) ? cmd.Roll :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL) ? cmd.Roll :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATE) ? cmd.Roll * stabSettings.ManualRate.Roll :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) ? cmd.Roll * stabSettings.ManualRate.Roll :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) ? cmd.Roll * stabSettings.RollMax :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) ? cmd.Roll * stabSettings.RollMax :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK) ? cmd.Roll * stabSettings.ManualRate.Roll :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR) ? cmd.Roll :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATTITUDE) ? cmd.Roll :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATTITUDE) ? cmd.Roll * stabSettings.RollMax :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE) ? cmd.Roll * stabSettings.ManualRate.Roll :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE) ? cmd.Roll * stabSettings.RollMax :
0; // this is an invalid mode
stabilization.Pitch =
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_NONE) ? cmd.Pitch :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL) ? cmd.Pitch :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATE) ? cmd.Pitch * stabSettings.ManualRate.Pitch :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) ? cmd.Pitch * stabSettings.ManualRate.Pitch :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) ? cmd.Pitch * stabSettings.PitchMax :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) ? cmd.Pitch * stabSettings.PitchMax :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK) ? cmd.Pitch * stabSettings.ManualRate.Pitch :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR) ? cmd.Pitch :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATTITUDE) ? cmd.Pitch :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATTITUDE) ? cmd.Pitch * stabSettings.PitchMax :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE) ? cmd.Pitch * stabSettings.ManualRate.Pitch :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE) ? cmd.Pitch * stabSettings.PitchMax :
0; // this is an invalid mode
@ -120,13 +120,13 @@ void stabilizedHandler(bool newinit)
} else {
stabilization.StabilizationMode.Yaw = stab_settings[2];
stabilization.Yaw =
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_NONE) ? cmd.Yaw :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL) ? cmd.Yaw :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATE) ? cmd.Yaw * stabSettings.ManualRate.Yaw :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) ? cmd.Yaw * stabSettings.ManualRate.Yaw :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) ? cmd.Yaw * stabSettings.YawMax :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) ? cmd.Yaw * stabSettings.YawMax :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK) ? cmd.Yaw * stabSettings.ManualRate.Yaw :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR) ? cmd.Yaw :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATTITUDE) ? cmd.Yaw :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATTITUDE) ? cmd.Yaw * stabSettings.YawMax :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE) ? cmd.Yaw * stabSettings.ManualRate.Yaw :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE) ? cmd.Yaw * stabSettings.YawMax :
0; // this is an invalid mode

View File

@ -1,8 +1,8 @@
/**
******************************************************************************
*
* @file guidance.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @file altitudeloop.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2014.
* @brief This module compared @ref PositionActuatl to @ref ActiveWaypoint
* and sets @ref AttitudeDesired. It only does this when the FlightMode field
* of @ref ManualControlCommand is Auto.
@ -26,89 +26,122 @@
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input object: ActiveWaypoint
* Input object: PositionState
* Input object: ManualControlCommand
* Output object: AttitudeDesired
*
* This module will periodically update the value of the AttitudeDesired object.
*
* The module executes in its own thread in this example.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include <openpilot.h>
#include <callbackinfo.h>
#include <math.h>
#include <pid.h>
#include <altitudeloop.h>
#include <CoordinateConversions.h>
#include <altitudeholdsettings.h>
#include <altitudeholddesired.h> // object that will be updated by the module
#include <altitudeholdstatus.h>
#include <flightstatus.h>
#include <stabilizationdesired.h>
#include <accelstate.h>
#include <pios_constants.h>
#include <velocitystate.h>
#include <positionstate.h>
// Private constants
#define CALLBACK_PRIORITY CALLBACK_PRIORITY_LOW
#define CBTASK_PRIORITY CALLBACK_TASK_FLIGHTCONTROL
#define STACK_SIZE_BYTES 1024
#define DESIRED_UPDATE_RATE_MS 100 // milliseconds
#ifdef REVOLUTION
#define UPDATE_EXPECTED (1.0f / 666.0f)
#define UPDATE_MIN 1.0e-6f
#define UPDATE_MAX 1.0f
#define UPDATE_ALPHA 1.0e-2f
#define CALLBACK_PRIORITY CALLBACK_PRIORITY_LOW
#define CBTASK_PRIORITY CALLBACK_TASK_FLIGHTCONTROL
#define STACK_SIZE_BYTES 512
// Private types
// Private variables
static DelayedCallbackInfo *altitudeHoldCBInfo;
static AltitudeHoldSettingsData altitudeHoldSettings;
static struct pid pid0, pid1;
static ThrustModeType thrustMode;
static PiOSDeltatimeConfig timeval;
static float thrustSetpoint = 0.0f;
static float thrustDemand = 0.0f;
static float startThrust = 0.5f;
// Private functions
static void altitudeHoldTask(void);
static void SettingsUpdatedCb(UAVObjEvent *ev);
static void VelocityStateUpdatedCb(UAVObjEvent *ev);
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
* Setup mode and setpoint
*/
int32_t AltitudeHoldStart()
float stabilizationAltitudeHold(float setpoint, ThrustModeType mode, bool reinit)
{
// Start main task
SettingsUpdatedCb(NULL);
PIOS_CALLBACKSCHEDULER_Dispatch(altitudeHoldCBInfo);
static bool newaltitude = true;
return 0;
if (reinit) {
startThrust = setpoint;
pid_zero(&pid0);
pid_zero(&pid1);
newaltitude = true;
}
const float DEADBAND = 0.20f;
const float DEADBAND_HIGH = 1.0f / 2 + DEADBAND / 2;
const float DEADBAND_LOW = 1.0f / 2 - DEADBAND / 2;
// this is the max speed in m/s at the extents of thrust
float thrustRate;
uint8_t thrustExp;
AltitudeHoldSettingsThrustExpGet(&thrustExp);
AltitudeHoldSettingsThrustRateGet(&thrustRate);
PositionStateData posState;
PositionStateGet(&posState);
if (altitudeHoldSettings.CutThrustWhenZero && setpoint <= 0) {
// Cut thrust if desired
thrustSetpoint = 0.0f;
thrustDemand = 0.0f;
thrustMode = DIRECT;
newaltitude = true;
} else if (mode == ALTITUDEVARIO && setpoint > DEADBAND_HIGH) {
// being the two band symmetrical I can divide by DEADBAND_LOW to scale it to a value betweeon 0 and 1
// then apply an "exp" f(x,k) = (k*x*x*x + (255-k)*x) / 255
thrustSetpoint = -((thrustExp * powf((setpoint - DEADBAND_HIGH) / (DEADBAND_LOW), 3) + (255 - thrustExp) * (setpoint - DEADBAND_HIGH) / DEADBAND_LOW) / 255 * thrustRate);
thrustMode = ALTITUDEVARIO;
newaltitude = true;
} else if (mode == ALTITUDEVARIO && setpoint < DEADBAND_LOW) {
thrustSetpoint = -(-(thrustExp * powf((DEADBAND_LOW - (setpoint < 0 ? 0 : setpoint)) / DEADBAND_LOW, 3) + (255 - thrustExp) * (DEADBAND_LOW - setpoint) / DEADBAND_LOW) / 255 * thrustRate);
thrustMode = ALTITUDEVARIO;
newaltitude = true;
} else if (newaltitude == true) {
thrustSetpoint = posState.Down;
thrustMode = ALTITUDEHOLD;
newaltitude = false;
}
return thrustDemand;
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t AltitudeHoldInitialize()
void stabilizationAltitudeloopInit()
{
AltitudeHoldSettingsInitialize();
AltitudeHoldDesiredInitialize();
AltitudeHoldStatusInitialize();
PositionStateInitialize();
VelocityStateInitialize();
PIOS_DELTATIME_Init(&timeval, UPDATE_EXPECTED, UPDATE_MIN, UPDATE_MAX, UPDATE_ALPHA);
// Create object queue
altitudeHoldCBInfo = PIOS_CALLBACKSCHEDULER_Create(&altitudeHoldTask, CALLBACK_PRIORITY, CBTASK_PRIORITY, CALLBACKINFO_RUNNING_ALTITUDEHOLD, STACK_SIZE_BYTES);
AltitudeHoldSettingsConnectCallback(&SettingsUpdatedCb);
VelocityStateConnectCallback(&VelocityStateUpdatedCb);
return 0;
// Start main task
SettingsUpdatedCb(NULL);
}
MODULE_INITCALL(AltitudeHoldInitialize, AltitudeHoldStart);
/**
@ -116,44 +149,25 @@ MODULE_INITCALL(AltitudeHoldInitialize, AltitudeHoldStart);
*/
static void altitudeHoldTask(void)
{
static float startThrust = 0.5f;
// make sure we run only when we are supposed to run
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
switch (flightStatus.FlightMode) {
case FLIGHTSTATUS_FLIGHTMODE_ALTITUDEHOLD:
case FLIGHTSTATUS_FLIGHTMODE_ALTITUDEVARIO:
break;
default:
pid_zero(&pid0);
pid_zero(&pid1);
StabilizationDesiredThrustGet(&startThrust);
PIOS_CALLBACKSCHEDULER_Schedule(altitudeHoldCBInfo, DESIRED_UPDATE_RATE_MS, CALLBACK_UPDATEMODE_SOONER);
return;
break;
}
AltitudeHoldStatusData altitudeHoldStatus;
AltitudeHoldStatusGet(&altitudeHoldStatus);
// do the actual control loop(s)
AltitudeHoldDesiredData altitudeHoldDesired;
AltitudeHoldDesiredGet(&altitudeHoldDesired);
float positionStateDown;
PositionStateDownGet(&positionStateDown);
float velocityStateDown;
VelocityStateDownGet(&velocityStateDown);
switch (altitudeHoldDesired.ControlMode) {
case ALTITUDEHOLDDESIRED_CONTROLMODE_ALTITUDE:
float dT;
dT = PIOS_DELTATIME_GetAverageSeconds(&timeval);
switch (thrustMode) {
case ALTITUDEHOLD:
// altitude control loop
altitudeHoldStatus.VelocityDesired = pid_apply_setpoint(&pid0, 1.0f, altitudeHoldDesired.SetPoint, positionStateDown, 1000.0f / DESIRED_UPDATE_RATE_MS);
altitudeHoldStatus.VelocityDesired = pid_apply_setpoint(&pid0, 1.0f, thrustSetpoint, positionStateDown, dT);
break;
case ALTITUDEHOLDDESIRED_CONTROLMODE_VELOCITY:
altitudeHoldStatus.VelocityDesired = altitudeHoldDesired.SetPoint;
case ALTITUDEVARIO:
altitudeHoldStatus.VelocityDesired = thrustSetpoint;
break;
default:
altitudeHoldStatus.VelocityDesired = 0;
@ -162,37 +176,16 @@ static void altitudeHoldTask(void)
AltitudeHoldStatusSet(&altitudeHoldStatus);
float thrust;
switch (altitudeHoldDesired.ControlMode) {
case ALTITUDEHOLDDESIRED_CONTROLMODE_THRUST:
thrust = altitudeHoldDesired.SetPoint;
switch (thrustMode) {
case DIRECT:
thrustDemand = thrustSetpoint;
break;
default:
// velocity control loop
thrust = startThrust - pid_apply_setpoint(&pid1, 1.0f, altitudeHoldStatus.VelocityDesired, velocityStateDown, 1000.0f / DESIRED_UPDATE_RATE_MS);
thrustDemand = startThrust - pid_apply_setpoint(&pid1, 1.0f, altitudeHoldStatus.VelocityDesired, velocityStateDown, dT);
if (thrust >= 1.0f) {
thrust = 1.0f;
}
if (thrust <= 0.0f) {
thrust = 0.0f;
}
break;
}
StabilizationDesiredData stab;
StabilizationDesiredGet(&stab);
stab.Roll = altitudeHoldDesired.Roll;
stab.Pitch = altitudeHoldDesired.Pitch;
stab.Yaw = altitudeHoldDesired.Yaw;
stab.Thrust = thrust;
stab.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stab.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stab.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
StabilizationDesiredSet(&stab);
PIOS_CALLBACKSCHEDULER_Schedule(altitudeHoldCBInfo, DESIRED_UPDATE_RATE_MS, CALLBACK_UPDATEMODE_SOONER);
}
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
@ -203,3 +196,11 @@ static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
pid_configure(&pid1, altitudeHoldSettings.VelocityPI.Kp, altitudeHoldSettings.VelocityPI.Ki, 0, altitudeHoldSettings.VelocityPI.Ilimit);
pid_zero(&pid1);
}
static void VelocityStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
PIOS_CALLBACKSCHEDULER_Dispatch(altitudeHoldCBInfo);
}
#endif /* ifdef REVOLUTION */

View File

@ -0,0 +1,293 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup StabilizationModule Stabilization Module
* @brief cruisecontrol mode
* @note This file implements the logic for a cruisecontrol
* @{
*
* @file cruisecontrol.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2014.
* @brief Attitude stabilization module.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <openpilot.h>
#include <stabilization.h>
#include <attitudestate.h>
#include <sin_lookup.h>
static float cruisecontrol_factor = 1.0f;
static inline float CruiseControlLimitThrust(float thrust)
{
// limit to user specified absolute max thrust
return boundf(thrust, stabSettings.cruiseControl.min_thrust, stabSettings.cruiseControl.max_thrust);
}
// assumes 1.0 <= factor <= 100.0
// a factor of less than 1.0 could make it return a value less than stabSettings.cruiseControl.min_thrust
// CP helis need to have min_thrust=-1
//
// multicopters need to have min_thrust=0.05 or so
// values below that will not be subject to max / min limiting
// that means thrust can be less than min
// that means multicopter motors stop spinning at low stick
static inline float CruiseControlFactorToThrust(float factor, float thrust)
{
// don't touch thrust if it's less than min_thrust
// without that test, quadcopter props will spin up
// to min thrust even at zero throttle stick
// if Cruise Control is enabled on this flight switch position
if (thrust > stabSettings.cruiseControl.min_thrust) {
return CruiseControlLimitThrust(thrust * factor);
}
return thrust;
}
static float CruiseControlAngleToFactor(float angle)
{
float factor;
// avoid singularity
if (angle > 89.999f && angle < 90.001f) {
factor = stabSettings.settings.CruiseControlMaxPowerFactor;
} else {
// the simple bank angle boost calculation that Cruise Control revolves around
factor = 1.0f / fabsf(cos_lookup_deg(angle));
// factor in the power trim, no effect at 1.0, linear effect increases with factor
factor = (factor - 1.0f) * stabSettings.cruiseControl.power_trim + 1.0f;
// limit to user specified max power multiplier
if (factor > stabSettings.settings.CruiseControlMaxPowerFactor) {
factor = stabSettings.settings.CruiseControlMaxPowerFactor;
}
}
return factor;
}
void cruisecontrol_compute_factor(AttitudeStateData *attitude, float thrustDemand)
{
static float previous_angle;
static uint32_t previous_time = 0;
static bool previous_time_valid = false;
// For multiple, speedy flips this mainly strives to address the
// fact that (due to thrust delay) thrust didn't average straight
// down, but at an angle. For less speedy flips it acts like it
// used to. It can be turned off by setting power delay to 0.
// It takes significant time for the motors of a multi-copter to
// spin up. It takes significant time for the collective servo of
// a CP heli to move from one end to the other. Both of those are
// modeled here as linear, i.e. twice as much change takes twice
// as long. Given a correctly configured maximum delay time this
// code calculates how far in advance to start the control
// transition so that half way through the physical transition it
// is just crossing the transition angle.
// Example: Rotation rate = 360. Full stroke delay = 0.2
// Transition angle 90 degrees. Start the transition 0.1 second
// before 90 degrees (36 degrees at 360 deg/sec) and it will be
// complete 0.1 seconds after 90 degrees.
// Note that this code only handles the transition to/from inverted
// thrust. It doesn't handle the case where thrust is changed a
// lot in a small angle range when that range is close to 90 degrees.
// It doesn't handle the small constant "system delay" caused by the
// delay between reading sensors and actuators beginning to respond.
// It also assumes that the pilot is holding the throttle constant;
// when the pilot does change the throttle, the compensation is
// simply recalculated.
// This implementation of future thrust isn't perfect. That would
// probably require an iterative procedure for solving a
// transcendental equation of the form linear(x) = 1/cos(x). It's
// shortcomings generally don't hurt anything and work better than
// without it. It is designed to work perfectly if the pilot is
// using full thrust during flips and it is only activated if 70% or
// greater thrust is used.
uint32_t time = PIOS_DELAY_GetuS();
// Get roll and pitch angles, calculate combined angle, and begin
// the general algorithm.
// Example: 45 degrees roll plus 45 degrees pitch = 60 degrees
// Do it every 8th iteration to save CPU.
if (time != previous_time || previous_time_valid == false) {
float angle, angle_unmodified;
// spherical right triangle
// 0.0 <= angle <= 180.0
angle_unmodified = angle = RAD2DEG(acosf(cos_lookup_deg(attitude->Roll)
* cos_lookup_deg(attitude->Pitch)));
// Calculate rate as a combined (roll and pitch) bank angle
// change; in degrees per second. Rate is calculated over the
// most recent 8 loops through stabilization. We could have
// asked the gyros. This is probably cheaper.
if (previous_time_valid) {
float rate;
// rate can be negative.
rate = (angle - previous_angle) / ((float)(time - previous_time) / 1000000.0f);
// Define "within range" to be those transitions that should
// be executing now. Recall that each impulse transition is
// spread out over a range of time / angle.
// There is only one transition and the high power level for
// it is either:
// 1/fabsf(cos(angle)) * current thrust
// or max power factor * current thrust
// or full thrust
// You can cross the transition with angle either increasing
// or decreasing (rate positive or negative).
// Thrust is never boosted for negative values of
// thrustDemand (negative stick values)
//
// When the aircraft is upright, thrust is always boosted
// . for positive values of thrustDemand
// When the aircraft is inverted, thrust is sometimes
// . boosted or reversed (or combinations thereof) or zeroed
// . for positive values of thrustDemand
// It depends on the inverted power settings.
// Of course, you can set MaxPowerFactor to 1.0 to
// . effectively disable boost.
if (thrustDemand > 0.0f) {
// to enable the future thrust calculations, make sure
// there is a large enough transition that the result
// will be roughly on vs. off; without that, it can
// exaggerate the length of time the inverted to upright
// transition holds full throttle and reduce the length
// of time for full throttle when going upright to inverted.
if (thrustDemand > 0.7f) {
float thrust;
thrust = CruiseControlFactorToThrust(CruiseControlAngleToFactor((float)stabSettings.settings.CruiseControlMaxAngle), thrustDemand);
// determine if we are in range of the transition
// given the thrust at max_angle and thrustDemand
// (typically close to 1.0), change variable 'thrust' to
// be the proportion of the largest thrust change possible
// that occurs when going into inverted mode.
// Example: 'thrust' is 0.8 A quad has min_thrust set
// to 0.05 The difference is 0.75. The largest possible
// difference with this setup is 0.9 - 0.05 = 0.85, so
// the proportion is 0.75/0.85
// That is nearly a full throttle stroke.
// the 'thrust' variable is non-negative here
switch (stabSettings.settings.CruiseControlInvertedPowerOutput) {
case STABILIZATIONSETTINGS_CRUISECONTROLINVERTEDPOWEROUTPUT_ZERO:
// normal multi-copter case, stroke is max to zero
// technically max to constant min_thrust
// can be used by CP
thrust = (thrust - CruiseControlLimitThrust(0.0f)) / stabSettings.cruiseControl.thrust_difference;
break;
case STABILIZATIONSETTINGS_CRUISECONTROLINVERTEDPOWEROUTPUT_NORMAL:
// reversed but not boosted
// : CP heli case, stroke is max to -stick
// : thrust = (thrust - CruiseControlLimitThrust(-thrustDemand)) / stabSettings.cruiseControl.thrust_difference;
// else it is both unreversed and unboosted
// : simply turn off boost, stroke is max to +stick
// : thrust = (thrust - CruiseControlLimitThrust(thrustDemand)) / stabSettings.cruiseControl.thrust_difference;
thrust = (thrust - CruiseControlLimitThrust(
(stabSettings.settings.CruiseControlInvertedThrustReversing
== STABILIZATIONSETTINGS_CRUISECONTROLINVERTEDTHRUSTREVERSING_REVERSED)
? -thrustDemand
: thrustDemand)) / stabSettings.cruiseControl.thrust_difference;
break;
case STABILIZATIONSETTINGS_CRUISECONTROLINVERTEDPOWEROUTPUT_BOOSTED:
// if boosted and reversed
if (stabSettings.settings.CruiseControlInvertedThrustReversing
== STABILIZATIONSETTINGS_CRUISECONTROLINVERTEDTHRUSTREVERSING_REVERSED) {
// CP heli case, stroke is max to min
thrust = (thrust - CruiseControlFactorToThrust(-CruiseControlAngleToFactor((float)stabSettings.settings.CruiseControlMaxAngle), thrustDemand)) / stabSettings.cruiseControl.thrust_difference;
}
// else it is boosted and unreversed so the throttle doesn't change
else {
// CP heli case, no transition, so stroke is zero
thrust = 0.0f;
}
break;
}
// 'thrust' is now the proportion of max stroke
// multiply this proportion of max stroke,
// times the max stroke time, to get this stroke time
// we only want half of this time before the transition
// (and half after the transition)
thrust *= stabSettings.cruiseControl.half_power_delay;
// 'thrust' is now the length of time for this stroke
// multiply that times angular rate to get the lead angle
thrust *= fabsf(rate);
// if the transition is within range we use it,
// else we just use the current calculated thrust
if ((float)stabSettings.settings.CruiseControlMaxAngle - thrust <= angle
&& angle <= (float)stabSettings.settings.CruiseControlMaxAngle + thrust) {
// default to a little above max angle
angle = (float)stabSettings.settings.CruiseControlMaxAngle + 0.01f;
// if roll direction is downward
// then thrust value is taken from below max angle
// by the code that knows about the transition angle
if (rate < 0.0f) {
angle -= 0.02f;
}
}
} // if thrust > 0.7; else just use the angle we already calculated
cruisecontrol_factor = CruiseControlAngleToFactor(angle);
} else { // if thrust > 0 set factor from angle; else
cruisecontrol_factor = 1.0f;
}
if (angle >= (float)stabSettings.settings.CruiseControlMaxAngle) {
switch (stabSettings.settings.CruiseControlInvertedPowerOutput) {
case STABILIZATIONSETTINGS_CRUISECONTROLINVERTEDPOWEROUTPUT_ZERO:
cruisecontrol_factor = 0.0f;
break;
case STABILIZATIONSETTINGS_CRUISECONTROLINVERTEDPOWEROUTPUT_NORMAL:
cruisecontrol_factor = 1.0f;
break;
case STABILIZATIONSETTINGS_CRUISECONTROLINVERTEDPOWEROUTPUT_BOOSTED:
// no change, leave factor >= 1.0 alone
break;
}
if (stabSettings.settings.CruiseControlInvertedThrustReversing
== STABILIZATIONSETTINGS_CRUISECONTROLINVERTEDTHRUSTREVERSING_REVERSED) {
cruisecontrol_factor = -cruisecontrol_factor;
}
}
} // if previous_time_valid i.e. we've got a rate; else leave (angle and) factor alone
previous_time = time;
previous_time_valid = true;
previous_angle = angle_unmodified;
} // every 8th time
}
float cruisecontrol_apply_factor(float raw)
{
if (stabSettings.settings.CruiseControlMaxPowerFactor > 0.0001f) {
raw = CruiseControlFactorToThrust(cruisecontrol_factor, raw);
}
return raw;
}

View File

@ -0,0 +1,41 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup StabilizationModule Stabilization Module
* @brief altitudeloop mode
* @note This file implements the logic for a altitudeloop
* @{
*
* @file altitudeloop.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2014.
* @brief Attitude stabilization module.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef ALTITUDELOOP_H
#define ALTITUDELOOP_H
typedef enum { ALTITUDEHOLD = 0, ALTITUDEVARIO = 1, DIRECT = 2 } ThrustModeType;
void stabilizationAltitudeloopInit();
float stabilizationAltitudeHold(float setpoint, ThrustModeType mode, bool reinit);
#endif /* ALTITUDELOOP_H */

View File

@ -0,0 +1,42 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup StabilizationModule Stabilization Module
* @brief cruisecontrol mode
* @note This file implements the logic for a cruisecontrol
* @{
*
* @file cruisecontrol.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2014.
* @brief Attitude stabilization module.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef CRUISECONTROL_H
#define CRUISECONTROL_H
#include <openpilot.h>
#include <attitudestate.h>
void cruisecontrol_compute_factor(AttitudeStateData *attitude, float thrustDemand);
float cruisecontrol_apply_factor(float raw);
#endif /* CRUISECONTROL_H */

View File

@ -0,0 +1,38 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup StabilizationModule Stabilization Module
* @brief innerloop mode
* @note This file implements the logic for a innerloop
* @{
*
* @file innerloop.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2014.
* @brief Attitude stabilization module.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef INNERLOOP_H
#define INNERLOOP_H
void stabilizationInnerloopInit();
#endif /* INNERLOOP_H */

View File

@ -0,0 +1,38 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup StabilizationModule Stabilization Module
* @brief outerloop mode
* @note This file implements the logic for a outerloop
* @{
*
* @file outerloop.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2014.
* @brief Attitude stabilization module.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef OUTERLOOP_H
#define OUTERLOOP_H
void stabilizationOuterloopInit();
#endif /* OUTERLOOP_H */

View File

@ -33,10 +33,52 @@
#ifndef STABILIZATION_H
#define STABILIZATION_H
enum { ROLL, PITCH, YAW, MAX_AXES };
#include <openpilot.h>
#include <pid.h>
#include <stabilizationsettings.h>
#include <stabilizationbank.h>
int32_t StabilizationInitialize();
typedef struct {
StabilizationSettingsData settings;
StabilizationBankData stabBank;
float gyro_alpha;
struct {
float min_thrust;
float max_thrust;
float thrust_difference;
float power_trim;
float half_power_delay;
float max_power_factor_angle;
} cruiseControl;
struct {
int8_t gyroupdates;
int8_t rateupdates;
} monitor;
float rattitude_mode_transition_stick_position;
struct pid innerPids[3], outerPids[3];
} StabilizationData;
extern StabilizationData stabSettings;
#define AXES 4
#define FAILSAFE_TIMEOUT_MS 30
#ifndef PIOS_STABILIZATION_STACK_SIZE
#define STACK_SIZE_BYTES 800
#else
#define STACK_SIZE_BYTES PIOS_STABILIZATION_STACK_SIZE
#endif
// must be same as eventdispatcher to avoid needing additional mutexes
#define CBTASK_PRIORITY CALLBACK_TASK_FLIGHTCONTROL
// outer loop only executes every 4th uavobject update to safe CPU
#define OUTERLOOP_SKIPCOUNT 4
#endif // STABILIZATION_H
/**

View File

@ -0,0 +1,289 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup StabilizationModule Stabilization Module
* @brief Stabilization PID loops in an airframe type independent manner
* @note This object updates the @ref ActuatorDesired "Actuator Desired" based on the
* PID loops on the @ref AttitudeDesired "Attitude Desired" and @ref AttitudeState "Attitude State"
* @{
*
* @file innerloop.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2014.
* @brief Attitude stabilization module.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <openpilot.h>
#include <pios_struct_helper.h>
#include <pid.h>
#include <callbackinfo.h>
#include <ratedesired.h>
#include <actuatordesired.h>
#include <gyrostate.h>
#include <airspeedstate.h>
#include <stabilizationstatus.h>
#include <flightstatus.h>
#include <manualcontrolcommand.h>
#include <stabilizationbank.h>
#include <stabilization.h>
#include <relay_tuning.h>
#include <virtualflybar.h>
#include <cruisecontrol.h>
// Private constants
#define CALLBACK_PRIORITY CALLBACK_PRIORITY_CRITICAL
#define UPDATE_EXPECTED (1.0f / 666.0f)
#define UPDATE_MIN 1.0e-6f
#define UPDATE_MAX 1.0f
#define UPDATE_ALPHA 1.0e-2f
// Private variables
static DelayedCallbackInfo *callbackHandle;
static float gyro_filtered[3] = { 0, 0, 0 };
static float axis_lock_accum[3] = { 0, 0, 0 };
static uint8_t previous_mode[AXES] = { 255, 255, 255, 255 };
static PiOSDeltatimeConfig timeval;
static float speedScaleFactor = 1.0f;
// Private functions
static void stabilizationInnerloopTask();
static void GyroStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev);
#ifdef REVOLUTION
static void AirSpeedUpdatedCb(__attribute__((unused)) UAVObjEvent *ev);
#endif
void stabilizationInnerloopInit()
{
RateDesiredInitialize();
ActuatorDesiredInitialize();
GyroStateInitialize();
StabilizationStatusInitialize();
FlightStatusInitialize();
ManualControlCommandInitialize();
#ifdef REVOLUTION
AirspeedStateInitialize();
AirspeedStateConnectCallback(AirSpeedUpdatedCb);
#endif
PIOS_DELTATIME_Init(&timeval, UPDATE_EXPECTED, UPDATE_MIN, UPDATE_MAX, UPDATE_ALPHA);
callbackHandle = PIOS_CALLBACKSCHEDULER_Create(&stabilizationInnerloopTask, CALLBACK_PRIORITY, CBTASK_PRIORITY, CALLBACKINFO_RUNNING_STABILIZATION1, STACK_SIZE_BYTES);
GyroStateConnectCallback(GyroStateUpdatedCb);
// schedule dead calls every FAILSAFE_TIMEOUT_MS to have the watchdog cleared
PIOS_CALLBACKSCHEDULER_Schedule(callbackHandle, FAILSAFE_TIMEOUT_MS, CALLBACK_UPDATEMODE_LATER);
}
/**
* WARNING! This callback executes with critical flight control priority every
* time a gyroscope update happens do NOT put any time consuming calculations
* in this loop unless they really have to execute with every gyro update
*/
static void stabilizationInnerloopTask()
{
// watchdog and error handling
{
#ifdef PIOS_INCLUDE_WDG
PIOS_WDG_UpdateFlag(PIOS_WDG_STABILIZATION);
#endif
bool warn = false;
bool error = false;
bool crit = false;
// check if outer loop keeps executing
if (stabSettings.monitor.rateupdates > -64) {
stabSettings.monitor.rateupdates--;
}
if (stabSettings.monitor.rateupdates < -(2 * OUTERLOOP_SKIPCOUNT)) {
// warning if rate loop skipped more than 2 execution
warn = true;
}
if (stabSettings.monitor.rateupdates < -(4 * OUTERLOOP_SKIPCOUNT)) {
// error if rate loop skipped more than 4 executions
error = true;
}
// check if gyro keeps updating
if (stabSettings.monitor.gyroupdates < 1) {
// critical if gyro didn't update at all!
crit = true;
}
if (stabSettings.monitor.gyroupdates > 1) {
// warning if we missed a gyro update
warn = true;
}
if (stabSettings.monitor.gyroupdates > 3) {
// error if we missed 3 gyro updates
error = true;
}
stabSettings.monitor.gyroupdates = 0;
if (crit) {
AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION, SYSTEMALARMS_ALARM_CRITICAL);
} else if (error) {
AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION, SYSTEMALARMS_ALARM_ERROR);
} else if (warn) {
AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION, SYSTEMALARMS_ALARM_WARNING);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_STABILIZATION);
}
}
RateDesiredData rateDesired;
ActuatorDesiredData actuator;
StabilizationStatusInnerLoopData enabled;
FlightStatusControlChainData cchain;
RateDesiredGet(&rateDesired);
ActuatorDesiredGet(&actuator);
StabilizationStatusInnerLoopGet(&enabled);
FlightStatusControlChainGet(&cchain);
float *rate = &rateDesired.Roll;
float *actuatorDesiredAxis = &actuator.Roll;
int t;
float dT;
dT = PIOS_DELTATIME_GetAverageSeconds(&timeval);
for (t = 0; t < AXES; t++) {
bool reinit = (cast_struct_to_array(enabled, enabled.Roll)[t] != previous_mode[t]);
previous_mode[t] = cast_struct_to_array(enabled, enabled.Roll)[t];
if (t < STABILIZATIONSTATUS_INNERLOOP_THRUST) {
if (reinit) {
stabSettings.innerPids[t].iAccumulator = 0;
}
switch (cast_struct_to_array(enabled, enabled.Roll)[t]) {
case STABILIZATIONSTATUS_INNERLOOP_VIRTUALFLYBAR:
stabilization_virtual_flybar(gyro_filtered[t], rate[t], &actuatorDesiredAxis[t], dT, reinit, t, &stabSettings.settings);
break;
case STABILIZATIONSTATUS_INNERLOOP_RELAYTUNING:
rate[t] = boundf(rate[t],
-cast_struct_to_array(stabSettings.stabBank.MaximumRate, stabSettings.stabBank.MaximumRate.Roll)[t],
cast_struct_to_array(stabSettings.stabBank.MaximumRate, stabSettings.stabBank.MaximumRate.Roll)[t]
);
stabilization_relay_rate(rate[t] - gyro_filtered[t], &actuatorDesiredAxis[t], t, reinit);
break;
case STABILIZATIONSTATUS_INNERLOOP_AXISLOCK:
if (fabsf(rate[t]) > stabSettings.settings.MaxAxisLockRate) {
// While getting strong commands act like rate mode
axis_lock_accum[t] = 0;
} else {
// For weaker commands or no command simply attitude lock (almost) on no gyro change
axis_lock_accum[t] += (rate[t] - gyro_filtered[t]) * dT;
axis_lock_accum[t] = boundf(axis_lock_accum[t], -stabSettings.settings.MaxAxisLock, stabSettings.settings.MaxAxisLock);
rate[t] = axis_lock_accum[t] * stabSettings.settings.AxisLockKp;
}
// IMPORTANT: deliberately no "break;" here, execution continues with regular RATE control loop to avoid code duplication!
// keep order as it is, RATE must follow!
case STABILIZATIONSTATUS_INNERLOOP_RATE:
// limit rate to maximum configured limits (once here instead of 5 times in outer loop)
rate[t] = boundf(rate[t],
-cast_struct_to_array(stabSettings.stabBank.MaximumRate, stabSettings.stabBank.MaximumRate.Roll)[t],
cast_struct_to_array(stabSettings.stabBank.MaximumRate, stabSettings.stabBank.MaximumRate.Roll)[t]
);
actuatorDesiredAxis[t] = pid_apply_setpoint(&stabSettings.innerPids[t], speedScaleFactor, rate[t], gyro_filtered[t], dT);
break;
case STABILIZATIONSTATUS_INNERLOOP_DIRECT:
default:
actuatorDesiredAxis[t] = rate[t];
break;
}
} else {
switch (cast_struct_to_array(enabled, enabled.Roll)[t]) {
case STABILIZATIONSTATUS_INNERLOOP_CRUISECONTROL:
actuatorDesiredAxis[t] = cruisecontrol_apply_factor(rate[t]);
break;
case STABILIZATIONSTATUS_INNERLOOP_DIRECT:
default:
actuatorDesiredAxis[t] = rate[t];
break;
}
}
actuatorDesiredAxis[t] = boundf(actuatorDesiredAxis[t], -1.0f, 1.0f);
}
actuator.UpdateTime = dT * 1000;
if (cchain.Stabilization == FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
ActuatorDesiredSet(&actuator);
} else {
// Force all axes to reinitialize when engaged
for (t = 0; t < AXES; t++) {
previous_mode[t] = 255;
}
}
{
uint8_t armed;
FlightStatusArmedGet(&armed);
float throttleDesired;
ManualControlCommandThrottleGet(&throttleDesired);
if (armed != FLIGHTSTATUS_ARMED_ARMED ||
((stabSettings.settings.LowThrottleZeroIntegral == STABILIZATIONSETTINGS_LOWTHROTTLEZEROINTEGRAL_TRUE) && throttleDesired < 0)) {
// Force all axes to reinitialize when engaged
for (t = 0; t < AXES; t++) {
previous_mode[t] = 255;
}
}
}
PIOS_CALLBACKSCHEDULER_Schedule(callbackHandle, FAILSAFE_TIMEOUT_MS, CALLBACK_UPDATEMODE_LATER);
}
static void GyroStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
GyroStateData gyroState;
GyroStateGet(&gyroState);
gyro_filtered[0] = gyro_filtered[0] * stabSettings.gyro_alpha + gyroState.x * (1 - stabSettings.gyro_alpha);
gyro_filtered[1] = gyro_filtered[1] * stabSettings.gyro_alpha + gyroState.y * (1 - stabSettings.gyro_alpha);
gyro_filtered[2] = gyro_filtered[2] * stabSettings.gyro_alpha + gyroState.z * (1 - stabSettings.gyro_alpha);
PIOS_CALLBACKSCHEDULER_Dispatch(callbackHandle);
stabSettings.monitor.gyroupdates++;
}
#ifdef REVOLUTION
static void AirSpeedUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
// Scale PID coefficients based on current airspeed estimation - needed for fixed wing planes
AirspeedStateData airspeedState;
AirspeedStateGet(&airspeedState);
if (stabSettings.settings.ScaleToAirspeed < 0.1f || airspeedState.CalibratedAirspeed < 0.1f) {
// feature has been turned off
speedScaleFactor = 1.0f;
} else {
// scale the factor to be 1.0 at the specified airspeed (for example 10m/s) but scaled by 1/speed^2
speedScaleFactor = boundf((stabSettings.settings.ScaleToAirspeed * stabSettings.settings.ScaleToAirspeed) / (airspeedState.CalibratedAirspeed * airspeedState.CalibratedAirspeed),
stabSettings.settings.ScaleToAirspeedLimits.Min,
stabSettings.settings.ScaleToAirspeedLimits.Max);
}
}
#endif
/**
* @}
* @}
*/

View File

@ -0,0 +1,288 @@
/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup StabilizationModule Stabilization Module
* @brief Stabilization PID loops in an airframe type independent manner
* @note This object updates the @ref ActuatorDesired "Actuator Desired" based on the
* PID loops on the @ref AttitudeDesired "Attitude Desired" and @ref AttitudeState "Attitude State"
* @{
*
* @file outerloop.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2014.
* @brief Attitude stabilization module.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <openpilot.h>
#include <pios_struct_helper.h>
#include <pid.h>
#include <callbackinfo.h>
#include <ratedesired.h>
#include <stabilizationdesired.h>
#include <attitudestate.h>
#include <stabilizationstatus.h>
#include <flightstatus.h>
#include <manualcontrolcommand.h>
#include <stabilizationbank.h>
#include <stabilization.h>
#include <cruisecontrol.h>
#include <altitudeloop.h>
#include <CoordinateConversions.h>
// Private constants
#define CALLBACK_PRIORITY CALLBACK_PRIORITY_REGULAR
#define UPDATE_EXPECTED (1.0f / 666.0f)
#define UPDATE_MIN 1.0e-6f
#define UPDATE_MAX 1.0f
#define UPDATE_ALPHA 1.0e-2f
// Private variables
static DelayedCallbackInfo *callbackHandle;
static AttitudeStateData attitude;
static uint8_t previous_mode[AXES] = { 255, 255, 255, 255 };
static PiOSDeltatimeConfig timeval;
// Private functions
static void stabilizationOuterloopTask();
static void AttitudeStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev);
void stabilizationOuterloopInit()
{
RateDesiredInitialize();
StabilizationDesiredInitialize();
AttitudeStateInitialize();
StabilizationStatusInitialize();
FlightStatusInitialize();
ManualControlCommandInitialize();
PIOS_DELTATIME_Init(&timeval, UPDATE_EXPECTED, UPDATE_MIN, UPDATE_MAX, UPDATE_ALPHA);
callbackHandle = PIOS_CALLBACKSCHEDULER_Create(&stabilizationOuterloopTask, CALLBACK_PRIORITY, CBTASK_PRIORITY, CALLBACKINFO_RUNNING_STABILIZATION0, STACK_SIZE_BYTES);
AttitudeStateConnectCallback(AttitudeStateUpdatedCb);
}
/**
* WARNING! This callback executes with critical flight control priority every
* time a gyroscope update happens do NOT put any time consuming calculations
* in this loop unless they really have to execute with every gyro update
*/
static void stabilizationOuterloopTask()
{
AttitudeStateData attitudeState;
RateDesiredData rateDesired;
StabilizationDesiredData stabilizationDesired;
StabilizationStatusOuterLoopData enabled;
AttitudeStateGet(&attitudeState);
StabilizationDesiredGet(&stabilizationDesired);
RateDesiredGet(&rateDesired);
StabilizationStatusOuterLoopGet(&enabled);
float *stabilizationDesiredAxis = &stabilizationDesired.Roll;
float *rateDesiredAxis = &rateDesired.Roll;
int t;
float dT = PIOS_DELTATIME_GetAverageSeconds(&timeval);
float local_error[3];
{
#if defined(PIOS_QUATERNION_STABILIZATION)
// Quaternion calculation of error in each axis. Uses more memory.
float rpy_desired[3];
float q_desired[4];
float q_error[4];
rpy_desired[0] = stabilizationDesiredAxis[0];
rpy_desired[1] = stabilizationDesiredAxis[1];
rpy_desired[2] = stabilizationDesiredAxis[2];
RPY2Quaternion(rpy_desired, q_desired);
quat_inverse(q_desired);
quat_mult(q_desired, &attitudeState.q1, q_error);
quat_inverse(q_error);
Quaternion2RPY(q_error, local_error);
#else /* if defined(PIOS_QUATERNION_STABILIZATION) */
// Simpler algorithm for CC, less memory
local_error[0] = stabilizationDesiredAxis[0] - attitudeState.Roll;
local_error[1] = stabilizationDesiredAxis[1] - attitudeState.Pitch;
local_error[2] = stabilizationDesiredAxis[2] - attitudeState.Yaw;
// find shortest way
float modulo = fmodf(local_error[2] + 180.0f, 360.0f);
if (modulo < 0) {
local_error[2] = modulo + 180.0f;
} else {
local_error[2] = modulo - 180.0f;
}
#endif /* if defined(PIOS_QUATERNION_STABILIZATION) */
}
for (t = 0; t < AXES; t++) {
bool reinit = (cast_struct_to_array(enabled, enabled.Roll)[t] != previous_mode[t]);
previous_mode[t] = cast_struct_to_array(enabled, enabled.Roll)[t];
if (t < STABILIZATIONSTATUS_OUTERLOOP_THRUST) {
if (reinit) {
stabSettings.outerPids[t].iAccumulator = 0;
}
switch (cast_struct_to_array(enabled, enabled.Roll)[t]) {
case STABILIZATIONSTATUS_OUTERLOOP_ATTITUDE:
rateDesiredAxis[t] = pid_apply(&stabSettings.outerPids[t], local_error[t], dT);
break;
case STABILIZATIONSTATUS_OUTERLOOP_RATTITUDE:
{
float stickinput[3];
stickinput[0] = boundf(stabilizationDesiredAxis[0] / stabSettings.stabBank.RollMax, -1.0f, 1.0f);
stickinput[1] = boundf(stabilizationDesiredAxis[1] / stabSettings.stabBank.PitchMax, -1.0f, 1.0f);
stickinput[2] = boundf(stabilizationDesiredAxis[2] / stabSettings.stabBank.YawMax, -1.0f, 1.0f);
float rateDesiredAxisRate = stickinput[t] * cast_struct_to_array(stabSettings.stabBank.ManualRate, stabSettings.stabBank.ManualRate.Roll)[t];
// limit corrective rate to maximum rates to not give it overly large impact over manual rate when joined together
rateDesiredAxis[t] = boundf(pid_apply(&stabSettings.outerPids[t], local_error[t], dT),
-cast_struct_to_array(stabSettings.stabBank.ManualRate, stabSettings.stabBank.ManualRate.Roll)[t],
cast_struct_to_array(stabSettings.stabBank.ManualRate, stabSettings.stabBank.ManualRate.Roll)[t]
);
// Compute the weighted average rate desired
// Using max() rather than sqrt() for cpu speed;
// - this makes the stick region into a square;
// - this is a feature!
// - hold a roll angle and add just pitch without the stick sensitivity changing
float magnitude = fabsf(stickinput[t]);
if (t < 2) {
magnitude = fmaxf(fabsf(stickinput[0]), fabsf(stickinput[1]));
}
// modify magnitude to move the Att to Rate transition to the place
// specified by the user
// we are looking for where the stick angle == transition angle
// and the Att rate equals the Rate rate
// that's where Rate x (1-StickAngle) [Attitude pulling down max X Ratt proportion]
// == Rate x StickAngle [Rate pulling up according to stick angle]
// * StickAngle [X Ratt proportion]
// so 1-x == x*x or x*x+x-1=0 where xE(0,1)
// (-1+-sqrt(1+4))/2 = (-1+sqrt(5))/2
// and quadratic formula says that is 0.618033989f
// I tested 14.01 and came up with .61 without even remembering this number
// I thought that moving the P,I, and maxangle terms around would change this value
// and that I would have to take these into account, but varying
// all P's and I's by factors of 1/2 to 2 didn't change it noticeably
// and varying maxangle from 4 to 120 didn't either.
// so for now I'm not taking these into account
// while working with this, it occurred to me that Attitude mode,
// set up with maxangle=190 would be similar to Ratt, and it is.
#define STICK_VALUE_AT_MODE_TRANSITION 0.618033989f
// the following assumes the transition would otherwise be at 0.618033989f
// and THAT assumes that Att ramps up to max roll rate
// when a small number of degrees off of where it should be
// if below the transition angle (still in attitude mode)
// '<=' instead of '<' keeps rattitude_mode_transition_stick_position==1.0 from causing DZ
if (magnitude <= stabSettings.rattitude_mode_transition_stick_position) {
magnitude *= STICK_VALUE_AT_MODE_TRANSITION / stabSettings.rattitude_mode_transition_stick_position;
} else {
magnitude = (magnitude - stabSettings.rattitude_mode_transition_stick_position)
* (1.0f - STICK_VALUE_AT_MODE_TRANSITION)
/ (1.0f - stabSettings.rattitude_mode_transition_stick_position)
+ STICK_VALUE_AT_MODE_TRANSITION;
}
rateDesiredAxis[t] = (1.0f - magnitude) * rateDesiredAxis[t] + magnitude * rateDesiredAxisRate;
}
break;
case STABILIZATIONSTATUS_OUTERLOOP_WEAKLEVELING:
// FIXME: local_error[] is rate - attitude for Weak Leveling
// The only ramifications are:
// Weak Leveling Kp is off by a factor of 3 to 12 and may need a different default in GCS
// Changing Rate mode max rate currently requires a change to Kp
// That would be changed to Attitude mode max angle affecting Kp
// Also does not take dT into account
{
float rate_input = cast_struct_to_array(stabSettings.stabBank.ManualRate, stabSettings.stabBank.ManualRate.Roll)[t] * stabilizationDesiredAxis[t] / cast_struct_to_array(stabSettings.stabBank, stabSettings.stabBank.RollMax)[t];
float weak_leveling = local_error[t] * stabSettings.settings.WeakLevelingKp;
weak_leveling = boundf(weak_leveling, -stabSettings.settings.MaxWeakLevelingRate, stabSettings.settings.MaxWeakLevelingRate);
// Compute desired rate as input biased towards leveling
rateDesiredAxis[t] = rate_input + weak_leveling;
}
break;
case STABILIZATIONSTATUS_OUTERLOOP_DIRECT:
default:
rateDesiredAxis[t] = stabilizationDesiredAxis[t];
break;
}
} else {
switch (cast_struct_to_array(enabled, enabled.Roll)[t]) {
#ifdef REVOLUTION
case STABILIZATIONSTATUS_OUTERLOOP_ALTITUDE:
rateDesiredAxis[t] = stabilizationAltitudeHold(stabilizationDesiredAxis[t], ALTITUDEHOLD, reinit);
break;
case STABILIZATIONSTATUS_OUTERLOOP_VERTICALVELOCITY:
rateDesiredAxis[t] = stabilizationAltitudeHold(stabilizationDesiredAxis[t], ALTITUDEVARIO, reinit);
break;
#endif /* REVOLUTION */
case STABILIZATIONSTATUS_OUTERLOOP_DIRECT:
default:
rateDesiredAxis[t] = stabilizationDesiredAxis[t];
break;
}
}
}
RateDesiredSet(&rateDesired);
{
uint8_t armed;
FlightStatusArmedGet(&armed);
float throttleDesired;
ManualControlCommandThrottleGet(&throttleDesired);
if (armed != FLIGHTSTATUS_ARMED_ARMED ||
((stabSettings.settings.LowThrottleZeroIntegral == STABILIZATIONSETTINGS_LOWTHROTTLEZEROINTEGRAL_TRUE) && throttleDesired < 0)) {
// Force all axes to reinitialize when engaged
for (t = 0; t < AXES; t++) {
previous_mode[t] = 255;
}
}
}
// update cruisecontrol based on attitude
cruisecontrol_compute_factor(&attitudeState, rateDesired.Thrust);
stabSettings.monitor.rateupdates = 0;
}
static void AttitudeStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
// to reduce CPU utilisation, outer loop is not executed every state update
static uint8_t cpusafer = 0;
if ((cpusafer++ % OUTERLOOP_SKIPCOUNT) == 0) {
// this does not need mutex protection as both eventdispatcher and stabi run in same callback task!
AttitudeStateGet(&attitude);
PIOS_CALLBACKSCHEDULER_Dispatch(callbackHandle);
}
}
/**
* @}
* @}
*/

View File

@ -63,7 +63,7 @@ int stabilization_relay_rate(float error, float *output, int axis, bool reinit)
portTickType thisTime = xTaskGetTickCount();
static bool rateRelayRunning[MAX_AXES];
static bool rateRelayRunning[3];
// This indicates the current estimate of the smoothed error. So when it is high
// we are waiting for it to go low.

View File

@ -33,128 +33,55 @@
#include <openpilot.h>
#include <pios_struct_helper.h>
#include "stabilization.h"
#include "stabilizationsettings.h"
#include "stabilizationbank.h"
#include "stabilizationsettingsbank1.h"
#include "stabilizationsettingsbank2.h"
#include "stabilizationsettingsbank3.h"
#include "actuatordesired.h"
#include "ratedesired.h"
#include "relaytuning.h"
#include "relaytuningsettings.h"
#include "stabilizationdesired.h"
#include "attitudestate.h"
#include "airspeedstate.h"
#include "gyrostate.h"
#include "flightstatus.h"
#include "manualcontrolsettings.h"
#include "manualcontrolcommand.h"
#include "flightmodesettings.h"
#include "taskinfo.h"
#include <pid.h>
#include <manualcontrolcommand.h>
#include <flightmodesettings.h>
#include <stabilizationsettings.h>
#include <stabilizationdesired.h>
#include <stabilizationstatus.h>
#include <stabilizationbank.h>
#include <stabilizationsettingsbank1.h>
#include <stabilizationsettingsbank2.h>
#include <stabilizationsettingsbank3.h>
#include <relaytuning.h>
#include <relaytuningsettings.h>
#include <ratedesired.h>
#include <sin_lookup.h>
#include <stabilization.h>
#include <innerloop.h>
#include <outerloop.h>
#include <altitudeloop.h>
// Math libraries
#include "CoordinateConversions.h"
#include "pid.h"
#include "sin_lookup.h"
// Includes for various stabilization algorithms
#include "relay_tuning.h"
#include "virtualflybar.h"
// Includes for various stabilization algorithms
#include "relay_tuning.h"
// Private constants
#define UPDATE_EXPECTED (1.0f / 666.0f)
#define UPDATE_MIN 1.0e-6f
#define UPDATE_MAX 1.0f
#define UPDATE_ALPHA 1.0e-2f
#define MAX_QUEUE_SIZE 1
#if defined(PIOS_STABILIZATION_STACK_SIZE)
#define STACK_SIZE_BYTES PIOS_STABILIZATION_STACK_SIZE
#else
#define STACK_SIZE_BYTES 860
#endif
#define TASK_PRIORITY (tskIDLE_PRIORITY + 3) // FLIGHT CONTROL priority
#define FAILSAFE_TIMEOUT_MS 30
// The PID_RATE_ROLL set is used by Rate mode and the rate portion of Attitude mode
// The PID_RATE set is used by the attitude portion of Attitude mode
enum { PID_RATE_ROLL, PID_RATE_PITCH, PID_RATE_YAW, PID_ROLL, PID_PITCH, PID_YAW, PID_MAX };
enum { RATE_P, RATE_I, RATE_D, RATE_LIMIT, RATE_OFFSET };
enum { ATT_P, ATT_I, ATT_LIMIT, ATT_OFFSET };
// Public variables
StabilizationData stabSettings;
// Private variables
static xTaskHandle taskHandle;
static StabilizationSettingsData settings;
static xQueueHandle queue;
float gyro_alpha = 0;
float axis_lock_accum[3] = { 0, 0, 0 };
uint8_t max_axis_lock = 0;
uint8_t max_axislock_rate = 0;
float weak_leveling_kp = 0;
uint8_t weak_leveling_max = 0;
bool lowThrottleZeroIntegral;
float vbar_decay = 0.991f;
struct pid pids[PID_MAX];
int cur_flight_mode = -1;
static float rattitude_mode_transition_stick_position;
static float cruise_control_min_thrust;
static float cruise_control_max_thrust;
static float cruise_control_thrust_difference;
static float cruise_control_max_angle;
static float cruise_control_max_power_factor;
static float cruise_control_power_trim;
static float cruise_control_max_power_factor_angle;
static float cruise_control_half_power_delay;
static uint8_t cruise_control_flight_mode_switch_pos_enable[FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_NUMELEM];
static uint8_t cruise_control_inverted_thrust_reversing;
static uint8_t cruise_control_inverted_power_output;
static int cur_flight_mode = -1;
// Private functions
static void stabilizationTask(void *parameters);
static float bound(float val, float range);
static void ZeroPids(void);
static void SettingsUpdatedCb(UAVObjEvent *ev);
static void BankUpdatedCb(UAVObjEvent *ev);
static void SettingsBankUpdatedCb(UAVObjEvent *ev);
static float CruiseControlAngleToFactor(float angle);
static float CruiseControlFactorToThrust(float factor, float stick_thrust);
static float CruiseControlLimitThrust(float thrust);
static void FlightModeSwitchUpdatedCb(UAVObjEvent *ev);
static void StabilizationDesiredUpdatedCb(UAVObjEvent *ev);
/**
* Module initialization
*/
int32_t StabilizationStart()
{
// Initialize variables
// Create object queue
queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent));
// Listen for updates.
// AttitudeStateConnectQueue(queue);
GyroStateConnectQueue(queue);
StabilizationSettingsConnectCallback(SettingsUpdatedCb);
SettingsUpdatedCb(StabilizationSettingsHandle());
ManualControlCommandConnectCallback(FlightModeSwitchUpdatedCb);
StabilizationBankConnectCallback(BankUpdatedCb);
StabilizationSettingsBank1ConnectCallback(SettingsBankUpdatedCb);
StabilizationSettingsBank2ConnectCallback(SettingsBankUpdatedCb);
StabilizationSettingsBank3ConnectCallback(SettingsBankUpdatedCb);
StabilizationDesiredConnectCallback(StabilizationDesiredUpdatedCb);
SettingsUpdatedCb(StabilizationSettingsHandle());
StabilizationDesiredUpdatedCb(StabilizationDesiredHandle());
FlightModeSwitchUpdatedCb(ManualControlCommandHandle());
// Start main task
xTaskCreate(stabilizationTask, (signed char *)"Stabilization", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &taskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_STABILIZATION, taskHandle);
#ifdef PIOS_INCLUDE_WDG
PIOS_WDG_RegisterFlag(PIOS_WDG_STABILIZATION);
#endif
@ -167,875 +94,189 @@ int32_t StabilizationStart()
int32_t StabilizationInitialize()
{
// Initialize variables
ManualControlCommandInitialize();
ManualControlSettingsInitialize();
FlightStatusInitialize();
StabilizationDesiredInitialize();
StabilizationSettingsInitialize();
StabilizationStatusInitialize();
StabilizationBankInitialize();
StabilizationSettingsBank1Initialize();
StabilizationSettingsBank2Initialize();
StabilizationSettingsBank3Initialize();
ActuatorDesiredInitialize();
#ifdef DIAG_RATEDESIRED
RateDesiredInitialize();
#endif
#ifdef REVOLUTION
AirspeedStateInitialize();
#endif
ManualControlCommandInitialize(); // only used for PID bank selection based on flight mode switch
// Code required for relay tuning
sin_lookup_initalize();
RelayTuningSettingsInitialize();
RelayTuningInitialize();
stabilizationOuterloopInit();
stabilizationInnerloopInit();
#ifdef REVOLUTION
stabilizationAltitudeloopInit();
#endif
pid_zero(&stabSettings.outerPids[0]);
pid_zero(&stabSettings.outerPids[1]);
pid_zero(&stabSettings.outerPids[2]);
pid_zero(&stabSettings.innerPids[0]);
pid_zero(&stabSettings.innerPids[1]);
pid_zero(&stabSettings.innerPids[2]);
return 0;
}
MODULE_INITCALL(StabilizationInitialize, StabilizationStart);
/**
* Module task
*/
static void stabilizationTask(__attribute__((unused)) void *parameters)
static void StabilizationDesiredUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
UAVObjEvent ev;
PiOSDeltatimeConfig timeval;
PIOS_DELTATIME_Init(&timeval, UPDATE_EXPECTED, UPDATE_MIN, UPDATE_MAX, UPDATE_ALPHA);
ActuatorDesiredData actuatorDesired;
StabilizationDesiredData stabDesired;
float throttleDesired;
RateDesiredData rateDesired;
AttitudeStateData attitudeState;
GyroStateData gyroStateData;
FlightStatusData flightStatus;
StabilizationBankData stabBank;
#ifdef REVOLUTION
AirspeedStateData airspeedState;
#endif
SettingsUpdatedCb((UAVObjEvent *)NULL);
// Main task loop
ZeroPids();
while (1) {
float dT;
#ifdef PIOS_INCLUDE_WDG
PIOS_WDG_UpdateFlag(PIOS_WDG_STABILIZATION);
#endif
// Wait until the Gyro object is updated, if a timeout then go to failsafe
if (xQueueReceive(queue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE) {
AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION, SYSTEMALARMS_ALARM_WARNING);
continue;
}
dT = PIOS_DELTATIME_GetAverageSeconds(&timeval);
FlightStatusGet(&flightStatus);
StabilizationDesiredGet(&stabDesired);
ManualControlCommandThrottleGet(&throttleDesired);
AttitudeStateGet(&attitudeState);
GyroStateGet(&gyroStateData);
StabilizationBankGet(&stabBank);
#ifdef DIAG_RATEDESIRED
RateDesiredGet(&rateDesired);
#endif
uint8_t flight_mode_switch_position;
ManualControlCommandFlightModeSwitchPositionGet(&flight_mode_switch_position);
if (cur_flight_mode != flight_mode_switch_position) {
cur_flight_mode = flight_mode_switch_position;
SettingsBankUpdatedCb(NULL);
}
#ifdef REVOLUTION
float speedScaleFactor;
// Scale PID coefficients based on current airspeed estimation - needed for fixed wing planes
AirspeedStateGet(&airspeedState);
if (settings.ScaleToAirspeed < 0.1f || airspeedState.CalibratedAirspeed < 0.1f) {
// feature has been turned off
speedScaleFactor = 1.0f;
} else {
// scale the factor to be 1.0 at the specified airspeed (for example 10m/s) but scaled by 1/speed^2
speedScaleFactor = (settings.ScaleToAirspeed * settings.ScaleToAirspeed) / (airspeedState.CalibratedAirspeed * airspeedState.CalibratedAirspeed);
if (speedScaleFactor < settings.ScaleToAirspeedLimits.Min) {
speedScaleFactor = settings.ScaleToAirspeedLimits.Min;
}
if (speedScaleFactor > settings.ScaleToAirspeedLimits.Max) {
speedScaleFactor = settings.ScaleToAirspeedLimits.Max;
}
}
#else
const float speedScaleFactor = 1.0f;
#endif
#if defined(PIOS_QUATERNION_STABILIZATION)
// Quaternion calculation of error in each axis. Uses more memory.
float rpy_desired[3];
float q_desired[4];
float q_error[4];
float local_error[3];
// Essentially zero errors for anything in rate or none
if (stabDesired.StabilizationMode.Roll == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) {
rpy_desired[0] = stabDesired.Roll;
} else {
rpy_desired[0] = attitudeState.Roll;
}
if (stabDesired.StabilizationMode.Pitch == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) {
rpy_desired[1] = stabDesired.Pitch;
} else {
rpy_desired[1] = attitudeState.Pitch;
}
if (stabDesired.StabilizationMode.Yaw == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) {
rpy_desired[2] = stabDesired.Yaw;
} else {
rpy_desired[2] = attitudeState.Yaw;
}
RPY2Quaternion(rpy_desired, q_desired);
quat_inverse(q_desired);
quat_mult(q_desired, &attitudeState.q1, q_error);
quat_inverse(q_error);
Quaternion2RPY(q_error, local_error);
#else /* if defined(PIOS_QUATERNION_STABILIZATION) */
// Simpler algorithm for CC, less memory
float local_error[3] = { stabDesired.Roll - attitudeState.Roll,
stabDesired.Pitch - attitudeState.Pitch,
stabDesired.Yaw - attitudeState.Yaw };
// find shortest way
float modulo = fmodf(local_error[2] + 180.0f, 360.0f);
if (modulo < 0) {
local_error[2] = modulo + 180.0f;
} else {
local_error[2] = modulo - 180.0f;
}
#endif /* if defined(PIOS_QUATERNION_STABILIZATION) */
float gyro_filtered[3];
gyro_filtered[0] = gyro_filtered[0] * gyro_alpha + gyroStateData.x * (1 - gyro_alpha);
gyro_filtered[1] = gyro_filtered[1] * gyro_alpha + gyroStateData.y * (1 - gyro_alpha);
gyro_filtered[2] = gyro_filtered[2] * gyro_alpha + gyroStateData.z * (1 - gyro_alpha);
float *stabDesiredAxis = &stabDesired.Roll;
float *actuatorDesiredAxis = &actuatorDesired.Roll;
float *rateDesiredAxis = &rateDesired.Roll;
ActuatorDesiredGet(&actuatorDesired);
// A flag to track which stabilization mode each axis is in
static uint8_t previous_mode[MAX_AXES] = { 255, 255, 255 };
bool error = false;
// Run the selected stabilization algorithm on each axis:
for (uint8_t i = 0; i < MAX_AXES; i++) {
// Check whether this axis mode needs to be reinitialized
bool reinit = (cast_struct_to_array(stabDesired.StabilizationMode, stabDesired.StabilizationMode.Roll)[i] != previous_mode[i]);
previous_mode[i] = cast_struct_to_array(stabDesired.StabilizationMode, stabDesired.StabilizationMode.Roll)[i];
// Apply the selected control law
switch (cast_struct_to_array(stabDesired.StabilizationMode, stabDesired.StabilizationMode.Roll)[i]) {
case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE:
if (reinit) {
pids[PID_RATE_ROLL + i].iAccumulator = 0;
}
// Store to rate desired variable for storing to UAVO
rateDesiredAxis[i] =
bound(stabDesiredAxis[i], cast_struct_to_array(stabBank.ManualRate, stabBank.ManualRate.Roll)[i]);
// Compute the inner loop
actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_RATE_ROLL + i], speedScaleFactor, rateDesiredAxis[i], gyro_filtered[i], dT);
actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f);
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE:
if (reinit) {
pids[PID_ROLL + i].iAccumulator = 0;
pids[PID_RATE_ROLL + i].iAccumulator = 0;
}
// Compute the outer loop
rateDesiredAxis[i] = pid_apply(&pids[PID_ROLL + i], local_error[i], dT);
rateDesiredAxis[i] = bound(rateDesiredAxis[i],
cast_struct_to_array(stabBank.MaximumRate, stabBank.MaximumRate.Roll)[i]);
// Compute the inner loop
actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_RATE_ROLL + i], speedScaleFactor, rateDesiredAxis[i], gyro_filtered[i], dT);
actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f);
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_RATTITUDE:
// A parameterization from Attitude mode at center stick
// - to Rate mode at full stick
// This is done by parameterizing to use the rotation rate that Attitude mode
// - would use at center stick to using the rotation rate that Rate mode
// - would use at full stick in a weighted average sort of way.
{
if (reinit) {
pids[PID_ROLL + i].iAccumulator = 0;
pids[PID_RATE_ROLL + i].iAccumulator = 0;
}
// Compute what Rate mode would give for this stick angle's rate
// Save Rate's rate in a temp for later merging with Attitude's rate
float rateDesiredAxisRate;
rateDesiredAxisRate = bound(stabDesiredAxis[i], 1.0f)
* cast_struct_to_array(stabBank.ManualRate, stabBank.ManualRate.Roll)[i];
// Compute what Attitude mode would give for this stick angle's rate
// stabDesired for this mode is [-1.0f,+1.0f]
// - multiply by Attitude mode max angle to get desired angle
// - subtract off the actual angle to get the angle error
// This is what local_error[] holds for Attitude mode
float attitude_error = stabDesiredAxis[i]
* cast_struct_to_array(stabBank.RollMax, stabBank.RollMax)[i]
- cast_struct_to_array(attitudeState.Roll, attitudeState.Roll)[i];
// Compute the outer loop just like Attitude mode does
float rateDesiredAxisAttitude;
rateDesiredAxisAttitude = pid_apply(&pids[PID_ROLL + i], attitude_error, dT);
rateDesiredAxisAttitude = bound(rateDesiredAxisAttitude,
cast_struct_to_array(stabBank.ManualRate,
stabBank.ManualRate.Roll)[i]);
// Compute the weighted average rate desired
// Using max() rather than sqrt() for cpu speed;
// - this makes the stick region into a square;
// - this is a feature!
// - hold a roll angle and add just pitch without the stick sensitivity changing
// magnitude = sqrt(stabDesired.Roll*stabDesired.Roll + stabDesired.Pitch*stabDesired.Pitch);
float magnitude;
magnitude = fmaxf(fabsf(stabDesired.Roll), fabsf(stabDesired.Pitch));
// modify magnitude to move the Att to Rate transition to the place
// specified by the user
// we are looking for where the stick angle == transition angle
// and the Att rate equals the Rate rate
// that's where Rate x (1-StickAngle) [Attitude pulling down max X Ratt proportion]
// == Rate x StickAngle [Rate pulling up according to stick angle]
// * StickAngle [X Ratt proportion]
// so 1-x == x*x or x*x+x-1=0 where xE(0,1)
// (-1+-sqrt(1+4))/2 = (-1+sqrt(5))/2
// and quadratic formula says that is 0.618033989f
// I tested 14.01 and came up with .61 without even remembering this number
// I thought that moving the P,I, and maxangle terms around would change this value
// and that I would have to take these into account, but varying
// all P's and I's by factors of 1/2 to 2 didn't change it noticeably
// and varying maxangle from 4 to 120 didn't either.
// so for now I'm not taking these into account
// while working with this, it occurred to me that Attitude mode,
// set up with maxangle=190 would be similar to Ratt, and it is.
#define STICK_VALUE_AT_MODE_TRANSITION 0.618033989f
// the following assumes the transition would otherwise be at 0.618033989f
// and THAT assumes that Att ramps up to max roll rate
// when a small number of degrees off of where it should be
// if below the transition angle (still in attitude mode)
// '<=' instead of '<' keeps rattitude_mode_transition_stick_position==1.0 from causing DZ
if (magnitude <= rattitude_mode_transition_stick_position) {
magnitude *= STICK_VALUE_AT_MODE_TRANSITION / rattitude_mode_transition_stick_position;
} else {
magnitude = (magnitude - rattitude_mode_transition_stick_position)
* (1.0f - STICK_VALUE_AT_MODE_TRANSITION)
/ (1.0f - rattitude_mode_transition_stick_position)
+ STICK_VALUE_AT_MODE_TRANSITION;
}
rateDesiredAxis[i] = (1.0f - magnitude) * rateDesiredAxisAttitude
+ magnitude * rateDesiredAxisRate;
// Compute the inner loop for the averaged rate
// actuatorDesiredAxis[i] is the weighted average
actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_RATE_ROLL + i], speedScaleFactor,
rateDesiredAxis[i], gyro_filtered[i], dT);
actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f);
break;
}
case STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR:
// Store for debugging output
rateDesiredAxis[i] = stabDesiredAxis[i];
// Run a virtual flybar stabilization algorithm on this axis
stabilization_virtual_flybar(gyro_filtered[i], rateDesiredAxis[i], &actuatorDesiredAxis[i], dT, reinit, i, &settings);
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING:
// FIXME: local_error[] is rate - attitude for Weak Leveling
// The only ramifications are:
// Weak Leveling Kp is off by a factor of 3 to 12 and may need a different default in GCS
// Changing Rate mode max rate currently requires a change to Kp
// That would be changed to Attitude mode max angle affecting Kp
// Also does not take dT into account
{
if (reinit) {
pids[PID_RATE_ROLL + i].iAccumulator = 0;
}
float weak_leveling = local_error[i] * weak_leveling_kp;
weak_leveling = bound(weak_leveling, weak_leveling_max);
// Compute desired rate as input biased towards leveling
rateDesiredAxis[i] = stabDesiredAxis[i] + weak_leveling;
actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_RATE_ROLL + i], speedScaleFactor, rateDesiredAxis[i], gyro_filtered[i], dT);
actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f);
break;
}
case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK:
if (reinit) {
pids[PID_RATE_ROLL + i].iAccumulator = 0;
}
if (fabsf(stabDesiredAxis[i]) > max_axislock_rate) {
// While getting strong commands act like rate mode
rateDesiredAxis[i] = stabDesiredAxis[i];
axis_lock_accum[i] = 0;
} else {
// For weaker commands or no command simply attitude lock (almost) on no gyro change
axis_lock_accum[i] += (stabDesiredAxis[i] - gyro_filtered[i]) * dT;
axis_lock_accum[i] = bound(axis_lock_accum[i], max_axis_lock);
rateDesiredAxis[i] = pid_apply(&pids[PID_ROLL + i], axis_lock_accum[i], dT);
}
rateDesiredAxis[i] = bound(rateDesiredAxis[i],
cast_struct_to_array(stabBank.ManualRate, stabBank.ManualRate.Roll)[i]);
actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_RATE_ROLL + i], speedScaleFactor, rateDesiredAxis[i], gyro_filtered[i], dT);
actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f);
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE:
// Store to rate desired variable for storing to UAVO
rateDesiredAxis[i] = bound(stabDesiredAxis[i],
cast_struct_to_array(stabBank.ManualRate, stabBank.ManualRate.Roll)[i]);
// Run the relay controller which also estimates the oscillation parameters
stabilization_relay_rate(rateDesiredAxis[i] - gyro_filtered[i], &actuatorDesiredAxis[i], i, reinit);
actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f);
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE:
if (reinit) {
pids[PID_ROLL + i].iAccumulator = 0;
}
// Compute the outer loop like attitude mode
rateDesiredAxis[i] = pid_apply(&pids[PID_ROLL + i], local_error[i], dT);
rateDesiredAxis[i] = bound(rateDesiredAxis[i],
cast_struct_to_array(stabBank.MaximumRate, stabBank.MaximumRate.Roll)[i]);
// Run the relay controller which also estimates the oscillation parameters
stabilization_relay_rate(rateDesiredAxis[i] - gyro_filtered[i], &actuatorDesiredAxis[i], i, reinit);
actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f);
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_NONE:
actuatorDesiredAxis[i] = bound(stabDesiredAxis[i], 1.0f);
break;
default:
error = true;
break;
}
}
if (settings.VbarPiroComp == STABILIZATIONSETTINGS_VBARPIROCOMP_TRUE) {
stabilization_virtual_flybar_pirocomp(gyro_filtered[2], dT);
}
#ifdef DIAG_RATEDESIRED
RateDesiredSet(&rateDesired);
#endif
// Save dT
actuatorDesired.UpdateTime = dT * 1000;
actuatorDesired.Thrust = stabDesired.Thrust;
///////////////////////////////////////////////////////////////////////
// Cruise Control
// modify thrust according to 1/cos(bank angle)
// to maintain same altitude with changing bank angle
// but without manually adjusting thrust
// do it here and all the various flight modes (e.g. Altitude Hold) can use it
///////////////////////////////////////////////////////////////////////
// Detect if the flight mode switch has changed. If it has, there
// could be a time gap. E.g. enabled, then disabled for 30 seconds
// then enabled again. Previous_angle will also be invalid because
// of the time spent with Cruise Control off.
static bool previous_time_valid; // initially false
static uint8_t previous_flight_mode_switch_position = 250;
if (flight_mode_switch_position != previous_flight_mode_switch_position) {
previous_flight_mode_switch_position = flight_mode_switch_position;
// Force calculations on this pass (usually every 8th pass),
// but ignore rate calculations (uses time, previous_time, angle,
// previous_angle)
previous_time_valid = false;
}
if (flight_mode_switch_position < FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_NUMELEM
&& cruise_control_flight_mode_switch_pos_enable[flight_mode_switch_position] != (uint8_t)0
&& cruise_control_max_power_factor > 0.0001f) {
static float factor;
static float previous_angle;
static uint32_t previous_time;
static uint8_t calc_count;
uint32_t time;
// For multiple, speedy flips this mainly strives to address the
// fact that (due to thrust delay) thrust didn't average straight
// down, but at an angle. For less speedy flips it acts like it
// used to. It can be turned off by setting power delay to 0.
// It takes significant time for the motors of a multi-copter to
// spin up. It takes significant time for the collective servo of
// a CP heli to move from one end to the other. Both of those are
// modeled here as linear, i.e. twice as much change takes twice
// as long. Given a correctly configured maximum delay time this
// code calculates how far in advance to start the control
// transition so that half way through the physical transition it
// is just crossing the transition angle.
// Example: Rotation rate = 360. Full stroke delay = 0.2
// Transition angle 90 degrees. Start the transition 0.1 second
// before 90 degrees (36 degrees at 360 deg/sec) and it will be
// complete 0.1 seconds after 90 degrees.
// Note that this code only handles the transition to/from inverted
// thrust. It doesn't handle the case where thrust is changed a
// lot in a small angle range when that range is close to 90 degrees.
// It doesn't handle the small constant "system delay" caused by the
// delay between reading sensors and actuators beginning to respond.
// It also assumes that the pilot is holding the throttle constant;
// when the pilot does change the throttle, the compensation is
// simply recalculated.
// This implementation of future thrust isn't perfect. That would
// probably require an iterative procedure for solving a
// transcendental equation of the form linear(x) = 1/cos(x). It's
// shortcomings generally don't hurt anything and work better than
// without it. It is designed to work perfectly if the pilot is
// using full thrust during flips and it is only activated if 70% or
// greater thrust is used.
time = PIOS_DELAY_GetuS();
// Get roll and pitch angles, calculate combined angle, and begin
// the general algorithm.
// Example: 45 degrees roll plus 45 degrees pitch = 60 degrees
// Do it every 8th iteration to save CPU.
if ((time != previous_time && calc_count++ >= 8) || previous_time_valid == false) {
float angle, angle_unmodified;
calc_count = 0;
// spherical right triangle
// 0.0 <= angle <= 180.0
angle_unmodified = angle = RAD2DEG(acosf(cos_lookup_deg(attitudeState.Roll)
* cos_lookup_deg(attitudeState.Pitch)));
// Calculate rate as a combined (roll and pitch) bank angle
// change; in degrees per second. Rate is calculated over the
// most recent 8 loops through stabilization. We could have
// asked the gyros. This is probably cheaper.
if (previous_time_valid) {
float rate;
// rate can be negative.
rate = (angle - previous_angle) / ((float) (time - previous_time) / 1000000.0f);
// Define "within range" to be those transitions that should
// be executing now. Recall that each impulse transition is
// spread out over a range of time / angle.
// There is only one transition and the high power level for
// it is either:
// 1/fabsf(cos(angle)) * current thrust
// or max power factor * current thrust
// or full thrust
// You can cross the transition with angle either increasing
// or decreasing (rate positive or negative).
// Thrust is never boosted for negative values of
// actuatorDesired.Thrust (negative stick values)
//
// When the aircraft is upright, thrust is always boosted
// . for positive values of actuatorDesired.Thrust
// When the aircraft is inverted, thrust is sometimes
// . boosted or reversed (or combinations thereof) or zeroed
// . for positive values of actuatorDesired.Thrust
// It depends on the inverted power settings.
// Of course, you can set MaxPowerFactor to 1.0 to
// . effectively disable boost.
if (actuatorDesired.Thrust > 0.0f) {
// to enable the future thrust calculations, make sure
// there is a large enough transition that the result
// will be roughly on vs. off; without that, it can
// exaggerate the length of time the inverted to upright
// transition holds full throttle and reduce the length
// of time for full throttle when going upright to inverted.
if (actuatorDesired.Thrust > 0.7f) {
float thrust;
thrust = CruiseControlFactorToThrust(CruiseControlAngleToFactor(cruise_control_max_angle), actuatorDesired.Thrust);
// determine if we are in range of the transition
// given the thrust at max_angle and actuatorDesired.Thrust
// (typically close to 1.0), change variable 'thrust' to
// be the proportion of the largest thrust change possible
// that occurs when going into inverted mode.
// Example: 'thrust' is 0.8 A quad has min_thrust set
// to 0.05 The difference is 0.75. The largest possible
// difference with this setup is 0.9 - 0.05 = 0.85, so
// the proportion is 0.75/0.85
// That is nearly a full throttle stroke.
// the 'thrust' variable is non-negative here
switch (cruise_control_inverted_power_output) {
case STABILIZATIONSETTINGS_CRUISECONTROLINVERTEDPOWEROUTPUT_ZERO:
// normal multi-copter case, stroke is max to zero
// technically max to constant min_thrust
// can be used by CP
thrust = (thrust - CruiseControlLimitThrust(0.0f)) / cruise_control_thrust_difference;
break;
case STABILIZATIONSETTINGS_CRUISECONTROLINVERTEDPOWEROUTPUT_NORMAL:
// reversed but not boosted
// : CP heli case, stroke is max to -stick
// : thrust = (thrust - CruiseControlLimitThrust(-actuatorDesired.Thrust)) / cruise_control_thrust_difference;
// else it is both unreversed and unboosted
// : simply turn off boost, stroke is max to +stick
// : thrust = (thrust - CruiseControlLimitThrust(actuatorDesired.Thrust)) / cruise_control_thrust_difference;
thrust = (thrust - CruiseControlLimitThrust(
(cruise_control_inverted_thrust_reversing
== STABILIZATIONSETTINGS_CRUISECONTROLINVERTEDTHRUSTREVERSING_REVERSED)
? -actuatorDesired.Thrust
: actuatorDesired.Thrust)) / cruise_control_thrust_difference;
break;
case STABILIZATIONSETTINGS_CRUISECONTROLINVERTEDPOWEROUTPUT_BOOSTED:
// if boosted and reversed
if (cruise_control_inverted_thrust_reversing
== STABILIZATIONSETTINGS_CRUISECONTROLINVERTEDTHRUSTREVERSING_REVERSED) {
// CP heli case, stroke is max to min
thrust = (thrust - CruiseControlFactorToThrust(-CruiseControlAngleToFactor(cruise_control_max_angle), actuatorDesired.Thrust)) / cruise_control_thrust_difference;
}
// else it is boosted and unreversed so the throttle doesn't change
else {
// CP heli case, no transition, so stroke is zero
thrust = 0.0f;
}
break;
}
// 'thrust' is now the proportion of max stroke
// multiply this proportion of max stroke,
// times the max stroke time, to get this stroke time
// we only want half of this time before the transition
// (and half after the transition)
thrust *= cruise_control_half_power_delay;
// 'thrust' is now the length of time for this stroke
// multiply that times angular rate to get the lead angle
thrust *= fabsf(rate);
// if the transition is within range we use it,
// else we just use the current calculated thrust
if (cruise_control_max_angle - thrust <= angle
&& angle <= cruise_control_max_angle + thrust) {
// default to a little above max angle
angle = cruise_control_max_angle + 0.01f;
// if roll direction is downward
// then thrust value is taken from below max angle
// by the code that knows about the transition angle
if (rate < 0.0f) {
angle -= 0.02f;
}
}
} // if thrust > 0.7; else just use the angle we already calculated
factor = CruiseControlAngleToFactor(angle);
} else { // if thrust > 0 set factor from angle; else
factor = 1.0f;
}
if (angle >= cruise_control_max_angle) {
switch (cruise_control_inverted_power_output) {
case STABILIZATIONSETTINGS_CRUISECONTROLINVERTEDPOWEROUTPUT_ZERO:
factor = 0.0f;
break;
case STABILIZATIONSETTINGS_CRUISECONTROLINVERTEDPOWEROUTPUT_NORMAL:
factor = 1.0f;
break;
case STABILIZATIONSETTINGS_CRUISECONTROLINVERTEDPOWEROUTPUT_BOOSTED:
// no change, leave factor >= 1.0 alone
break;
}
if (cruise_control_inverted_thrust_reversing
== STABILIZATIONSETTINGS_CRUISECONTROLINVERTEDTHRUSTREVERSING_REVERSED) {
factor = -factor;
}
}
} // if previous_time_valid i.e. we've got a rate; else leave (angle and) factor alone
previous_time = time;
previous_time_valid = true;
previous_angle = angle_unmodified;
} // every 8th time
// don't touch thrust if it's less than min_thrust
// without that test, quadcopter props will spin up
// to min thrust even at zero throttle stick
actuatorDesired.Thrust = CruiseControlFactorToThrust(factor, actuatorDesired.Thrust);
} // if Cruise Control is enabled on this flight switch position
if (flightStatus.ControlChain.Stabilization == FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
ActuatorDesiredSet(&actuatorDesired);
} else {
// Force all axes to reinitialize when engaged
for (uint8_t i = 0; i < MAX_AXES; i++) {
previous_mode[i] = 255;
}
}
if (flightStatus.Armed != FLIGHTSTATUS_ARMED_ARMED ||
(lowThrottleZeroIntegral && throttleDesired < 0)) {
// Force all axes to reinitialize when engaged
for (uint8_t i = 0; i < MAX_AXES; i++) {
previous_mode[i] = 255;
}
}
// Clear or set alarms. Done like this to prevent toggline each cycle
// and hammering system alarms
if (error) {
AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION, SYSTEMALARMS_ALARM_ERROR);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_STABILIZATION);
StabilizationStatusData status;
StabilizationDesiredStabilizationModeData mode;
int t;
StabilizationDesiredStabilizationModeGet(&mode);
for (t = 0; t < AXES; t++) {
switch (cast_struct_to_array(mode, mode.Roll)[t]) {
case STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL:
cast_struct_to_array(status.OuterLoop, status.OuterLoop.Roll)[t] = STABILIZATIONSTATUS_OUTERLOOP_DIRECT;
cast_struct_to_array(status.InnerLoop, status.InnerLoop.Roll)[t] = STABILIZATIONSTATUS_INNERLOOP_DIRECT;
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE:
cast_struct_to_array(status.OuterLoop, status.OuterLoop.Roll)[t] = STABILIZATIONSTATUS_OUTERLOOP_DIRECT;
cast_struct_to_array(status.InnerLoop, status.InnerLoop.Roll)[t] = STABILIZATIONSTATUS_INNERLOOP_RATE;
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE:
cast_struct_to_array(status.OuterLoop, status.OuterLoop.Roll)[t] = STABILIZATIONSTATUS_OUTERLOOP_ATTITUDE;
cast_struct_to_array(status.InnerLoop, status.InnerLoop.Roll)[t] = STABILIZATIONSTATUS_INNERLOOP_RATE;
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK:
cast_struct_to_array(status.OuterLoop, status.OuterLoop.Roll)[t] = STABILIZATIONSTATUS_OUTERLOOP_DIRECT;
cast_struct_to_array(status.InnerLoop, status.InnerLoop.Roll)[t] = STABILIZATIONSTATUS_INNERLOOP_AXISLOCK;
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING:
cast_struct_to_array(status.OuterLoop, status.OuterLoop.Roll)[t] = STABILIZATIONSTATUS_OUTERLOOP_WEAKLEVELING;
cast_struct_to_array(status.InnerLoop, status.InnerLoop.Roll)[t] = STABILIZATIONSTATUS_INNERLOOP_RATE;
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR:
cast_struct_to_array(status.OuterLoop, status.OuterLoop.Roll)[t] = STABILIZATIONSTATUS_OUTERLOOP_DIRECT;
cast_struct_to_array(status.InnerLoop, status.InnerLoop.Roll)[t] = STABILIZATIONSTATUS_INNERLOOP_VIRTUALFLYBAR;
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_RATTITUDE:
cast_struct_to_array(status.OuterLoop, status.OuterLoop.Roll)[t] = STABILIZATIONSTATUS_OUTERLOOP_RATTITUDE;
cast_struct_to_array(status.InnerLoop, status.InnerLoop.Roll)[t] = STABILIZATIONSTATUS_INNERLOOP_RATE;
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE:
cast_struct_to_array(status.OuterLoop, status.OuterLoop.Roll)[t] = STABILIZATIONSTATUS_OUTERLOOP_DIRECT;
cast_struct_to_array(status.InnerLoop, status.InnerLoop.Roll)[t] = STABILIZATIONSTATUS_INNERLOOP_RELAYTUNING;
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE:
cast_struct_to_array(status.OuterLoop, status.OuterLoop.Roll)[t] = STABILIZATIONSTATUS_OUTERLOOP_ATTITUDE;
cast_struct_to_array(status.InnerLoop, status.InnerLoop.Roll)[t] = STABILIZATIONSTATUS_INNERLOOP_RELAYTUNING;
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_ALTITUDEHOLD:
cast_struct_to_array(status.OuterLoop, status.OuterLoop.Roll)[t] = STABILIZATIONSTATUS_OUTERLOOP_ALTITUDE;
cast_struct_to_array(status.InnerLoop, status.InnerLoop.Roll)[t] = STABILIZATIONSTATUS_INNERLOOP_CRUISECONTROL;
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_VERTICALVELOCITY:
cast_struct_to_array(status.OuterLoop, status.OuterLoop.Roll)[t] = STABILIZATIONSTATUS_OUTERLOOP_VERTICALVELOCITY;
cast_struct_to_array(status.InnerLoop, status.InnerLoop.Roll)[t] = STABILIZATIONSTATUS_INNERLOOP_CRUISECONTROL;
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_CRUISECONTROL:
cast_struct_to_array(status.OuterLoop, status.OuterLoop.Roll)[t] = STABILIZATIONSTATUS_OUTERLOOP_DIRECT;
cast_struct_to_array(status.InnerLoop, status.InnerLoop.Roll)[t] = STABILIZATIONSTATUS_INNERLOOP_CRUISECONTROL;
break;
}
}
StabilizationStatusSet(&status);
}
/**
* Clear the accumulators and derivatives for all the axes
*/
static void ZeroPids(void)
static void FlightModeSwitchUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
for (uint32_t i = 0; i < PID_MAX; i++) {
pid_zero(&pids[i]);
}
uint8_t fm;
ManualControlCommandFlightModeSwitchPositionGet(&fm);
for (uint8_t i = 0; i < 3; i++) {
axis_lock_accum[i] = 0.0f;
if (fm == cur_flight_mode) {
return;
}
cur_flight_mode = fm;
SettingsBankUpdatedCb(NULL);
}
/**
* Bound input value between limits
*/
static float bound(float val, float range)
{
if (val < -range) {
return -range;
} else if (val > range) {
return range;
}
return val;
}
static void SettingsBankUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
if (cur_flight_mode < 0 || cur_flight_mode >= FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_NUMELEM) {
return;
}
if ((ev) && ((settings.FlightModeMap[cur_flight_mode] == 0 && ev->obj != StabilizationSettingsBank1Handle()) ||
(settings.FlightModeMap[cur_flight_mode] == 1 && ev->obj != StabilizationSettingsBank2Handle()) ||
(settings.FlightModeMap[cur_flight_mode] == 2 && ev->obj != StabilizationSettingsBank3Handle()) ||
settings.FlightModeMap[cur_flight_mode] > 2)) {
if ((ev) && ((stabSettings.settings.FlightModeMap[cur_flight_mode] == 0 && ev->obj != StabilizationSettingsBank1Handle()) ||
(stabSettings.settings.FlightModeMap[cur_flight_mode] == 1 && ev->obj != StabilizationSettingsBank2Handle()) ||
(stabSettings.settings.FlightModeMap[cur_flight_mode] == 2 && ev->obj != StabilizationSettingsBank3Handle()) ||
stabSettings.settings.FlightModeMap[cur_flight_mode] > 2)) {
return;
}
StabilizationBankData bank;
switch (settings.FlightModeMap[cur_flight_mode]) {
switch (stabSettings.settings.FlightModeMap[cur_flight_mode]) {
case 0:
StabilizationSettingsBank1Get((StabilizationSettingsBank1Data *)&bank);
StabilizationSettingsBank1Get((StabilizationSettingsBank1Data *)&stabSettings.stabBank);
break;
case 1:
StabilizationSettingsBank2Get((StabilizationSettingsBank2Data *)&bank);
StabilizationSettingsBank2Get((StabilizationSettingsBank2Data *)&stabSettings.stabBank);
break;
case 2:
StabilizationSettingsBank3Get((StabilizationSettingsBank3Data *)&bank);
StabilizationSettingsBank3Get((StabilizationSettingsBank3Data *)&stabSettings.stabBank);
break;
}
StabilizationBankSet(&bank);
StabilizationBankSet(&stabSettings.stabBank);
}
static void BankUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
StabilizationBankData bank;
StabilizationBankGet(&bank);
// this code will be needed if any other modules alter stabilizationbank
/*
StabilizationBankData curBank;
if(flight_mode < 0) return;
switch(cast_struct_to_array(settings.FlightModeMap, settings.FlightModeMap.Stabilized1)[flight_mode])
{
case 0:
StabilizationSettingsBank1Get((StabilizationSettingsBank1Data *) &curBank);
if(memcmp(&curBank, &bank, sizeof(StabilizationBankDataPacked)) != 0)
{
StabilizationSettingsBank1Set((StabilizationSettingsBank1Data *) &bank);
}
break;
case 1:
StabilizationSettingsBank2Get((StabilizationSettingsBank2Data *) &curBank);
if(memcmp(&curBank, &bank, sizeof(StabilizationBankDataPacked)) != 0)
{
StabilizationSettingsBank2Set((StabilizationSettingsBank2Data *) &bank);
}
break;
case 2:
StabilizationSettingsBank3Get((StabilizationSettingsBank3Data *) &curBank);
if(memcmp(&curBank, &bank, sizeof(StabilizationBankDataPacked)) != 0)
{
StabilizationSettingsBank3Set((StabilizationSettingsBank3Data *) &bank);
}
break;
default:
return; //invalid bank number
}
*/
StabilizationBankGet(&stabSettings.stabBank);
// Set the roll rate PID constants
pid_configure(&pids[PID_RATE_ROLL], bank.RollRatePID.Kp,
bank.RollRatePID.Ki,
bank.RollRatePID.Kd,
bank.RollRatePID.ILimit);
pid_configure(&stabSettings.innerPids[0], stabSettings.stabBank.RollRatePID.Kp,
stabSettings.stabBank.RollRatePID.Ki,
stabSettings.stabBank.RollRatePID.Kd,
stabSettings.stabBank.RollRatePID.ILimit);
// Set the pitch rate PID constants
pid_configure(&pids[PID_RATE_PITCH], bank.PitchRatePID.Kp,
bank.PitchRatePID.Ki,
bank.PitchRatePID.Kd,
bank.PitchRatePID.ILimit);
pid_configure(&stabSettings.innerPids[1], stabSettings.stabBank.PitchRatePID.Kp,
stabSettings.stabBank.PitchRatePID.Ki,
stabSettings.stabBank.PitchRatePID.Kd,
stabSettings.stabBank.PitchRatePID.ILimit);
// Set the yaw rate PID constants
pid_configure(&pids[PID_RATE_YAW], bank.YawRatePID.Kp,
bank.YawRatePID.Ki,
bank.YawRatePID.Kd,
bank.YawRatePID.ILimit);
pid_configure(&stabSettings.innerPids[2], stabSettings.stabBank.YawRatePID.Kp,
stabSettings.stabBank.YawRatePID.Ki,
stabSettings.stabBank.YawRatePID.Kd,
stabSettings.stabBank.YawRatePID.ILimit);
// Set the roll attitude PI constants
pid_configure(&pids[PID_ROLL], bank.RollPI.Kp,
bank.RollPI.Ki,
pid_configure(&stabSettings.outerPids[0], stabSettings.stabBank.RollPI.Kp,
stabSettings.stabBank.RollPI.Ki,
0,
bank.RollPI.ILimit);
stabSettings.stabBank.RollPI.ILimit);
// Set the pitch attitude PI constants
pid_configure(&pids[PID_PITCH], bank.PitchPI.Kp,
bank.PitchPI.Ki,
pid_configure(&stabSettings.outerPids[1], stabSettings.stabBank.PitchPI.Kp,
stabSettings.stabBank.PitchPI.Ki,
0,
bank.PitchPI.ILimit);
stabSettings.stabBank.PitchPI.ILimit);
// Set the yaw attitude PI constants
pid_configure(&pids[PID_YAW], bank.YawPI.Kp,
bank.YawPI.Ki,
pid_configure(&stabSettings.outerPids[2], stabSettings.stabBank.YawPI.Kp,
stabSettings.stabBank.YawPI.Ki,
0,
bank.YawPI.ILimit);
}
static float CruiseControlAngleToFactor(float angle)
{
float factor;
// avoid singularity
if (angle > 89.999f && angle < 90.001f) {
factor = cruise_control_max_power_factor;
} else {
// the simple bank angle boost calculation that Cruise Control revolves around
factor = 1.0f / fabsf(cos_lookup_deg(angle));
// factor in the power trim, no effect at 1.0, linear effect increases with factor
factor = (factor - 1.0f) * cruise_control_power_trim + 1.0f;
// limit to user specified max power multiplier
if (factor > cruise_control_max_power_factor) {
factor = cruise_control_max_power_factor;
}
}
return (factor);
}
// assumes 1.0 <= factor <= 100.0
// a factor of less than 1.0 could make it return a value less than cruise_control_min_thrust
// CP helis need to have min_thrust=-1
//
// multicopters need to have min_thrust=0.05 or so
// values below that will not be subject to max / min limiting
// that means thrust can be less than min
// that means multicopter motors stop spinning at low stick
static float CruiseControlFactorToThrust(float factor, float thrust)
{
// don't touch if below min_thrust so we don't limit to min of min_thrust
// e.g. multicopter motors always spin
if (thrust > cruise_control_min_thrust) {
thrust = CruiseControlLimitThrust(thrust * factor);
}
return (thrust);
}
static float CruiseControlLimitThrust(float thrust)
{
// limit to user specified absolute max thrust
if (thrust > cruise_control_max_thrust) {
thrust = cruise_control_max_thrust;
} else if (thrust < cruise_control_min_thrust) {
thrust = cruise_control_min_thrust;
}
return (thrust);
stabSettings.stabBank.YawPI.ILimit);
}
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
StabilizationSettingsGet(&settings);
// needs no mutex, as long as eventdispatcher and Stabilization are both TASK_PRIORITY_CRITICAL
StabilizationSettingsGet(&stabSettings.settings);
// Set up the derivative term
pid_configure_derivative(settings.DerivativeCutoff, settings.DerivativeGamma);
// Maximum deviation to accumulate for axis lock
max_axis_lock = settings.MaxAxisLock;
max_axislock_rate = settings.MaxAxisLockRate;
// Settings for weak leveling
weak_leveling_kp = settings.WeakLevelingKp;
weak_leveling_max = settings.MaxWeakLevelingRate;
// Whether to zero the PID integrals while thrust is low
lowThrottleZeroIntegral = settings.LowThrottleZeroIntegral == STABILIZATIONSETTINGS_LOWTHROTTLEZEROINTEGRAL_TRUE;
pid_configure_derivative(stabSettings.settings.DerivativeCutoff, stabSettings.settings.DerivativeGamma);
// The dT has some jitter iteration to iteration that we don't want to
// make thie result unpredictable. Still, it's nicer to specify the constant
@ -1043,42 +284,29 @@ static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
// update rates on OP (~300 Hz) and CC (~475 Hz) is negligible for this
// calculation
const float fakeDt = 0.0025f;
if (settings.GyroTau < 0.0001f) {
gyro_alpha = 0; // not trusting this to resolve to 0
if (stabSettings.settings.GyroTau < 0.0001f) {
stabSettings.gyro_alpha = 0; // not trusting this to resolve to 0
} else {
gyro_alpha = expf(-fakeDt / settings.GyroTau);
stabSettings.gyro_alpha = expf(-fakeDt / stabSettings.settings.GyroTau);
}
// Compute time constant for vbar decay term based on a tau
vbar_decay = expf(-fakeDt / settings.VbarTau);
// force flight mode update
cur_flight_mode = -1;
// Rattitude stick angle where the attitude to rate transition happens
if (settings.RattitudeModeTransition < (uint8_t)10) {
rattitude_mode_transition_stick_position = 10.0f / 100.0f;
if (stabSettings.settings.RattitudeModeTransition < (uint8_t)10) {
stabSettings.rattitude_mode_transition_stick_position = 10.0f / 100.0f;
} else {
rattitude_mode_transition_stick_position = (float)settings.RattitudeModeTransition / 100.0f;
stabSettings.rattitude_mode_transition_stick_position = (float)stabSettings.settings.RattitudeModeTransition / 100.0f;
}
cruise_control_min_thrust = (float)settings.CruiseControlMinThrust / 100.0f;
cruise_control_max_thrust = (float)settings.CruiseControlMaxThrust / 100.0f;
cruise_control_thrust_difference = cruise_control_max_thrust - cruise_control_min_thrust;
stabSettings.cruiseControl.min_thrust = (float)stabSettings.settings.CruiseControlMinThrust / 100.0f;
stabSettings.cruiseControl.max_thrust = (float)stabSettings.settings.CruiseControlMaxThrust / 100.0f;
stabSettings.cruiseControl.thrust_difference = stabSettings.cruiseControl.max_thrust - stabSettings.cruiseControl.min_thrust;
cruise_control_max_angle = (float) settings.CruiseControlMaxAngle;
cruise_control_max_power_factor = settings.CruiseControlMaxPowerFactor;
cruise_control_power_trim = settings.CruiseControlPowerTrim / 100.0f;
cruise_control_half_power_delay = settings.CruiseControlPowerDelayComp / 2.0f;
cruise_control_max_power_factor_angle = RAD2DEG(acosf(1.0f / settings.CruiseControlMaxPowerFactor));
cruise_control_inverted_thrust_reversing = settings.CruiseControlInvertedThrustReversing;
cruise_control_inverted_power_output = settings.CruiseControlInvertedPowerOutput;
memcpy(
cruise_control_flight_mode_switch_pos_enable,
settings.CruiseControlFlightModeSwitchPosEnable,
sizeof(cruise_control_flight_mode_switch_pos_enable));
stabSettings.cruiseControl.power_trim = stabSettings.settings.CruiseControlPowerTrim / 100.0f;
stabSettings.cruiseControl.half_power_delay = stabSettings.settings.CruiseControlPowerDelayComp / 2.0f;
stabSettings.cruiseControl.max_power_factor_angle = RAD2DEG(acosf(1.0f / stabSettings.settings.CruiseControlMaxPowerFactor));
}
/**

View File

@ -37,12 +37,9 @@
#include "stabilizationsettings.h"
// ! Private variables
static float vbar_integral[MAX_AXES];
static float vbar_integral[3];
static float vbar_decay = 0.991f;
// ! Private methods
static float bound(float val, float range);
int stabilization_virtual_flybar(float gyro, float command, float *output, float dT, bool reinit, uint32_t axis, StabilizationSettingsData *settings)
{
float gyro_gain = 1.0f;
@ -54,7 +51,7 @@ int stabilization_virtual_flybar(float gyro, float command, float *output, float
// Track the angle of the virtual flybar which includes a slow decay
vbar_integral[axis] = vbar_integral[axis] * vbar_decay + gyro * dT;
vbar_integral[axis] = bound(vbar_integral[axis], settings->VbarMaxAngle);
vbar_integral[axis] = boundf(vbar_integral[axis], -settings->VbarMaxAngle, settings->VbarMaxAngle);
// Command signal can indicate how much to disregard the gyro feedback (fast flips)
if (settings->VbarGyroSuppress > 0) {
@ -64,15 +61,15 @@ int stabilization_virtual_flybar(float gyro, float command, float *output, float
// Get the settings for the correct axis
switch (axis) {
case ROLL:
case 0:
kp = settings->VbarRollPI.Kp;
ki = settings->VbarRollPI.Ki;
break;
case PITCH:
case 1:
kp = settings->VbarPitchPI.Kp;
ki = settings->VbarPitchPI.Ki;;
break;
case YAW:
case 2:
kp = settings->VbarYawPI.Kp;
ki = settings->VbarYawPI.Ki;
break;
@ -105,16 +102,3 @@ int stabilization_virtual_flybar_pirocomp(float z_gyro, float dT)
return 0;
}
/**
* Bound input value between limits
*/
static float bound(float val, float range)
{
if (val < -range) {
val = -range;
} else if (val > range) {
val = range;
}
return val;
}

View File

@ -155,6 +155,10 @@ static stateFilter cfmFilter;
static stateFilter ekf13iFilter;
static stateFilter ekf13Filter;
// this is a hack to provide a computational shortcut for faster gyro state progression
static float gyroRaw[3];
static float gyroDelta[3];
// preconfigured filter chains selectable via revoSettings.FusionAlgorithm
static const filterPipeline *cfQueue = &(filterPipeline) {
.filter = &magFilter,
@ -415,6 +419,11 @@ static void StateEstimationCb(void)
// fetch sensors, check values, and load into state struct
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(GyroSensor, gyro, x, y, z);
if (IS_SET(states.updated, SENSORUPDATES_gyro)) {
gyroRaw[0] = states.gyro[0];
gyroRaw[1] = states.gyro[1];
gyroRaw[2] = states.gyro[2];
}
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(AccelSensor, accel, x, y, z);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(MagSensor, mag, x, y, z);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(GPSVelocitySensor, vel, North, East, Down);
@ -453,7 +462,12 @@ static void StateEstimationCb(void)
case RUNSTATE_SAVE:
// the final output of filters is saved in state variables
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(GyroState, gyro, x, y, z);
// EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(GyroState, gyro, x, y, z) // replaced by performance shortcut
if (IS_SET(states.updated, SENSORUPDATES_gyro)) {
gyroDelta[0] = states.gyro[0] - gyroRaw[0];
gyroDelta[1] = states.gyro[1] - gyroRaw[1];
gyroDelta[2] = states.gyro[2] - gyroRaw[2];
}
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(AccelState, accel, x, y, z);
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(MagState, mag, x, y, z);
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(PositionState, pos, North, East, Down);
@ -540,6 +554,14 @@ static void sensorUpdatedCb(UAVObjEvent *ev)
if (ev->obj == GyroSensorHandle()) {
updatedSensors |= SENSORUPDATES_gyro;
// shortcut - update GyroState right away
GyroSensorData s;
GyroStateData t;
GyroSensorGet(&s);
t.x = s.x + gyroDelta[0];
t.y = s.y + gyroDelta[1];
t.z = s.z + gyroDelta[2];
GyroStateSet(&t);
}
if (ev->obj == AccelSensorHandle()) {

View File

@ -101,7 +101,6 @@ static void updatePathVelocity();
static void updateEndpointVelocity();
static void updateFixedAttitude(float *attitude);
static void updateVtolDesiredAttitude(bool yaw_attitude);
static float bound(float val, float min, float max);
static bool vtolpathfollower_enabled;
static void accessoryUpdated(UAVObjEvent *ev);
@ -394,7 +393,7 @@ static void updatePathVelocity()
break;
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_DRIVEENDPOINT:
groundspeed = pathDesired.EndingVelocity - pathDesired.EndingVelocity * bound(progress.fractional_progress, 0, 1);
groundspeed = pathDesired.EndingVelocity - pathDesired.EndingVelocity * boundf(progress.fractional_progress, 0, 1);
if (progress.fractional_progress > 1) {
groundspeed = 0;
}
@ -403,7 +402,7 @@ static void updatePathVelocity()
case PATHDESIRED_MODE_DRIVEVECTOR:
default:
groundspeed = pathDesired.StartingVelocity
+ (pathDesired.EndingVelocity - pathDesired.StartingVelocity) * bound(progress.fractional_progress, 0, 1);
+ (pathDesired.EndingVelocity - pathDesired.StartingVelocity) * boundf(progress.fractional_progress, 0, 1);
if (progress.fractional_progress > 1) {
groundspeed = 0;
}
@ -427,14 +426,14 @@ static void updatePathVelocity()
velocityDesired.North += progress.correction_direction[0] * error_speed * scale;
velocityDesired.East += progress.correction_direction[1] * error_speed * scale;
float altitudeSetpoint = pathDesired.Start.Down + (pathDesired.End.Down - pathDesired.Start.Down) * bound(progress.fractional_progress, 0, 1);
float altitudeSetpoint = pathDesired.Start.Down + (pathDesired.End.Down - pathDesired.Start.Down) * boundf(progress.fractional_progress, 0, 1);
float downError = altitudeSetpoint - positionState.Down;
downPosIntegral = bound(downPosIntegral + downError * dT * vtolpathfollowerSettings.VerticalPosPI.Ki,
-vtolpathfollowerSettings.VerticalPosPI.ILimit,
vtolpathfollowerSettings.VerticalPosPI.ILimit);
downPosIntegral = boundf(downPosIntegral + downError * dT * vtolpathfollowerSettings.VerticalPosPI.Ki,
-vtolpathfollowerSettings.VerticalPosPI.ILimit,
vtolpathfollowerSettings.VerticalPosPI.ILimit);
downCommand = (downError * vtolpathfollowerSettings.VerticalPosPI.Kp + downPosIntegral);
velocityDesired.Down = bound(downCommand, -vtolpathfollowerSettings.VerticalVelMax, vtolpathfollowerSettings.VerticalVelMax);
velocityDesired.Down = boundf(downCommand, -vtolpathfollowerSettings.VerticalVelMax, vtolpathfollowerSettings.VerticalVelMax);
// update pathstatus
pathStatus.error = progress.error;
@ -472,15 +471,15 @@ void updateEndpointVelocity()
// Compute desired north command
northError = pathDesired.End.North - positionState.North;
northPosIntegral = bound(northPosIntegral + northError * dT * vtolpathfollowerSettings.HorizontalPosPI.Ki,
-vtolpathfollowerSettings.HorizontalPosPI.ILimit,
vtolpathfollowerSettings.HorizontalPosPI.ILimit);
northPosIntegral = boundf(northPosIntegral + northError * dT * vtolpathfollowerSettings.HorizontalPosPI.Ki,
-vtolpathfollowerSettings.HorizontalPosPI.ILimit,
vtolpathfollowerSettings.HorizontalPosPI.ILimit);
northCommand = (northError * vtolpathfollowerSettings.HorizontalPosPI.Kp + northPosIntegral);
eastError = pathDesired.End.East - positionState.East;
eastPosIntegral = bound(eastPosIntegral + eastError * dT * vtolpathfollowerSettings.HorizontalPosPI.Ki,
-vtolpathfollowerSettings.HorizontalPosPI.ILimit,
vtolpathfollowerSettings.HorizontalPosPI.ILimit);
eastPosIntegral = boundf(eastPosIntegral + eastError * dT * vtolpathfollowerSettings.HorizontalPosPI.Ki,
-vtolpathfollowerSettings.HorizontalPosPI.ILimit,
vtolpathfollowerSettings.HorizontalPosPI.ILimit);
eastCommand = (eastError * vtolpathfollowerSettings.HorizontalPosPI.Kp + eastPosIntegral);
// Limit the maximum velocity
@ -494,11 +493,11 @@ void updateEndpointVelocity()
velocityDesired.East = eastCommand * scale;
downError = pathDesired.End.Down - positionState.Down;
downPosIntegral = bound(downPosIntegral + downError * dT * vtolpathfollowerSettings.VerticalPosPI.Ki,
-vtolpathfollowerSettings.VerticalPosPI.ILimit,
vtolpathfollowerSettings.VerticalPosPI.ILimit);
downPosIntegral = boundf(downPosIntegral + downError * dT * vtolpathfollowerSettings.VerticalPosPI.Ki,
-vtolpathfollowerSettings.VerticalPosPI.ILimit,
vtolpathfollowerSettings.VerticalPosPI.ILimit);
downCommand = (downError * vtolpathfollowerSettings.VerticalPosPI.Kp + downPosIntegral);
velocityDesired.Down = bound(downCommand, -vtolpathfollowerSettings.VerticalVelMax, vtolpathfollowerSettings.VerticalVelMax);
velocityDesired.Down = boundf(downCommand, -vtolpathfollowerSettings.VerticalVelMax, vtolpathfollowerSettings.VerticalVelMax);
VelocityDesiredSet(&velocityDesired);
}
@ -595,18 +594,18 @@ static void updateVtolDesiredAttitude(bool yaw_attitude)
// Compute desired north command
northError = velocityDesired.North - northVel;
northVelIntegral = bound(northVelIntegral + northError * dT * vtolpathfollowerSettings.HorizontalVelPID.Ki,
-vtolpathfollowerSettings.HorizontalVelPID.ILimit,
vtolpathfollowerSettings.HorizontalVelPID.ILimit);
northVelIntegral = boundf(northVelIntegral + northError * dT * vtolpathfollowerSettings.HorizontalVelPID.Ki,
-vtolpathfollowerSettings.HorizontalVelPID.ILimit,
vtolpathfollowerSettings.HorizontalVelPID.ILimit);
northCommand = (northError * vtolpathfollowerSettings.HorizontalVelPID.Kp + northVelIntegral
- nedAccel.North * vtolpathfollowerSettings.HorizontalVelPID.Kd
+ velocityDesired.North * vtolpathfollowerSettings.VelocityFeedforward);
// Compute desired east command
eastError = velocityDesired.East - eastVel;
eastVelIntegral = bound(eastVelIntegral + eastError * dT * vtolpathfollowerSettings.HorizontalVelPID.Ki,
-vtolpathfollowerSettings.HorizontalVelPID.ILimit,
vtolpathfollowerSettings.HorizontalVelPID.ILimit);
eastVelIntegral = boundf(eastVelIntegral + eastError * dT * vtolpathfollowerSettings.HorizontalVelPID.Ki,
-vtolpathfollowerSettings.HorizontalVelPID.ILimit,
vtolpathfollowerSettings.HorizontalVelPID.ILimit);
eastCommand = (eastError * vtolpathfollowerSettings.HorizontalVelPID.Kp + eastVelIntegral
- nedAccel.East * vtolpathfollowerSettings.HorizontalVelPID.Kd
+ velocityDesired.East * vtolpathfollowerSettings.VelocityFeedforward);
@ -615,22 +614,22 @@ static void updateVtolDesiredAttitude(bool yaw_attitude)
downError = velocityDesired.Down - downVel;
// Must flip this sign
downError = -downError;
downVelIntegral = bound(downVelIntegral + downError * dT * vtolpathfollowerSettings.VerticalVelPID.Ki,
-vtolpathfollowerSettings.VerticalVelPID.ILimit,
vtolpathfollowerSettings.VerticalVelPID.ILimit);
downVelIntegral = boundf(downVelIntegral + downError * dT * vtolpathfollowerSettings.VerticalVelPID.Ki,
-vtolpathfollowerSettings.VerticalVelPID.ILimit,
vtolpathfollowerSettings.VerticalVelPID.ILimit);
downCommand = (downError * vtolpathfollowerSettings.VerticalVelPID.Kp + downVelIntegral
- nedAccel.Down * vtolpathfollowerSettings.VerticalVelPID.Kd);
stabDesired.Thrust = bound(downCommand + thrustOffset, 0, 1);
stabDesired.Thrust = boundf(downCommand + thrustOffset, 0, 1);
// Project the north and east command signals into the pitch and roll based on yaw. For this to behave well the
// craft should move similarly for 5 deg roll versus 5 deg pitch
stabDesired.Pitch = bound(-northCommand * cosf(DEG2RAD(attitudeState.Yaw)) +
-eastCommand * sinf(DEG2RAD(attitudeState.Yaw)),
-vtolpathfollowerSettings.MaxRollPitch, vtolpathfollowerSettings.MaxRollPitch);
stabDesired.Roll = bound(-northCommand * sinf(DEG2RAD(attitudeState.Yaw)) +
eastCommand * cosf(DEG2RAD(attitudeState.Yaw)),
-vtolpathfollowerSettings.MaxRollPitch, vtolpathfollowerSettings.MaxRollPitch);
stabDesired.Pitch = boundf(-northCommand * cosf(DEG2RAD(attitudeState.Yaw)) +
-eastCommand * sinf(DEG2RAD(attitudeState.Yaw)),
-vtolpathfollowerSettings.MaxRollPitch, vtolpathfollowerSettings.MaxRollPitch);
stabDesired.Roll = boundf(-northCommand * sinf(DEG2RAD(attitudeState.Yaw)) +
eastCommand * cosf(DEG2RAD(attitudeState.Yaw)),
-vtolpathfollowerSettings.MaxRollPitch, vtolpathfollowerSettings.MaxRollPitch);
if (vtolpathfollowerSettings.ThrustControl == VTOLPATHFOLLOWERSETTINGS_THRUSTCONTROL_FALSE) {
// For now override thrust with manual control. Disable at your risk, quad goes to China.
@ -692,19 +691,6 @@ static void updateNedAccel()
NedAccelSet(&accelData);
}
/**
* Bound input value between limits
*/
static float bound(float val, float min, float max)
{
if (val < min) {
val = min;
} else if (val > max) {
val = max;
}
return val;
}
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
VtolPathFollowerSettingsGet(&vtolpathfollowerSettings);

View File

@ -87,6 +87,7 @@ ifndef TESTAPP
SRC += $(OPUAVSYNTHDIR)/stabilizationsettingsbank1.c
SRC += $(OPUAVSYNTHDIR)/stabilizationsettingsbank2.c
SRC += $(OPUAVSYNTHDIR)/stabilizationsettingsbank3.c
SRC += $(OPUAVSYNTHDIR)/stabilizationstatus.c
SRC += $(OPUAVSYNTHDIR)/stabilizationbank.c
SRC += $(OPUAVSYNTHDIR)/actuatorcommand.c
SRC += $(OPUAVSYNTHDIR)/actuatordesired.c

View File

@ -39,6 +39,7 @@
#include <uavtalk.h>
#include "alarms.h"
#include <mathmisc.h>
/* Global Functions */
void OpenPilotInit(void);

View File

@ -160,7 +160,7 @@
#define PIOS_ACTUATOR_STACK_SIZE 820
#define PIOS_MANUAL_STACK_SIZE 635
#define PIOS_RECEIVER_STACK_SIZE 620
#define PIOS_STABILIZATION_STACK_SIZE 780
#define PIOS_STABILIZATION_STACK_SIZE 400
#ifdef DIAG_TASKS
#define PIOS_SYSTEM_STACK_SIZE 740

View File

@ -40,6 +40,7 @@
#include <uavtalk.h>
#include "alarms.h"
#include <mathmisc.h>
/* Global Functions */
void OpenPilotInit(void);

View File

@ -39,6 +39,7 @@
#include <uavtalk.h>
#include "alarms.h"
#include <mathmisc.h>
/* Global Functions */
void OpenPilotInit(void);

View File

@ -33,7 +33,7 @@ MODULES += Sensors
MODULES += StateEstimation # use instead of Attitude
MODULES += Altitude/revolution
MODULES += Airspeed
MODULES += AltitudeHold
#MODULES += AltitudeHold # now integrated in Stabilization
MODULES += Stabilization
MODULES += VtolPathFollower
MODULES += ManualControl

View File

@ -87,6 +87,7 @@ UAVOBJSRCFILENAMES += stabilizationsettings
UAVOBJSRCFILENAMES += stabilizationsettingsbank1
UAVOBJSRCFILENAMES += stabilizationsettingsbank2
UAVOBJSRCFILENAMES += stabilizationsettingsbank3
UAVOBJSRCFILENAMES += stabilizationstatus
UAVOBJSRCFILENAMES += stabilizationbank
UAVOBJSRCFILENAMES += systemalarms
UAVOBJSRCFILENAMES += systemsettings
@ -105,7 +106,6 @@ UAVOBJSRCFILENAMES += altitudeholdsettings
UAVOBJSRCFILENAMES += oplinksettings
UAVOBJSRCFILENAMES += oplinkstatus
UAVOBJSRCFILENAMES += altitudefiltersettings
UAVOBJSRCFILENAMES += altitudeholddesired
UAVOBJSRCFILENAMES += altitudeholdstatus
UAVOBJSRCFILENAMES += waypoint
UAVOBJSRCFILENAMES += waypointactive

View File

@ -40,6 +40,7 @@
#include <uavtalk.h>
#include "alarms.h"
#include <mathmisc.h>
/* Global Functions */
void OpenPilotInit(void);

View File

@ -144,7 +144,7 @@
#define PIOS_GPS_SETS_HOMELOCATION
/* Stabilization options */
/* #define PIOS_QUATERNION_STABILIZATION */
#define PIOS_QUATERNION_STABILIZATION
/* Performance counters */
#define IDLE_COUNTS_PER_SEC_AT_NO_LOAD 8379692

View File

@ -33,7 +33,7 @@ MODULES += Sensors
MODULES += StateEstimation # use instead of Attitude
MODULES += Altitude/revolution
MODULES += Airspeed
MODULES += AltitudeHold
#MODULES += AltitudeHold # now integrated in Stabilization
MODULES += Stabilization
MODULES += VtolPathFollower
MODULES += ManualControl

View File

@ -87,6 +87,7 @@ UAVOBJSRCFILENAMES += stabilizationsettings
UAVOBJSRCFILENAMES += stabilizationsettingsbank1
UAVOBJSRCFILENAMES += stabilizationsettingsbank2
UAVOBJSRCFILENAMES += stabilizationsettingsbank3
UAVOBJSRCFILENAMES += stabilizationstatus
UAVOBJSRCFILENAMES += stabilizationbank
UAVOBJSRCFILENAMES += systemalarms
UAVOBJSRCFILENAMES += systemsettings
@ -105,7 +106,6 @@ UAVOBJSRCFILENAMES += altitudeholdsettings
UAVOBJSRCFILENAMES += oplinksettings
UAVOBJSRCFILENAMES += oplinkstatus
UAVOBJSRCFILENAMES += altitudefiltersettings
UAVOBJSRCFILENAMES += altitudeholddesired
UAVOBJSRCFILENAMES += altitudeholdstatus
UAVOBJSRCFILENAMES += waypoint
UAVOBJSRCFILENAMES += waypointactive

View File

@ -40,6 +40,7 @@
#include <uavtalk.h>
#include "alarms.h"
#include <mathmisc.h>
/* Global Functions */
void OpenPilotInit(void);

View File

@ -42,7 +42,7 @@ MODULES += FirmwareIAP
MODULES += StateEstimation
#MODULES += Sensors/simulated/Sensors
MODULES += Airspeed
MODULES += AltitudeHold
#MODULES += AltitudeHold # now integrated in Stabilization
#MODULES += OveroSync
# Paths
@ -96,6 +96,7 @@ SRC += $(FLIGHTLIB)/sanitycheck.c
SRC += $(MATHLIB)/sin_lookup.c
SRC += $(MATHLIB)/pid.c
SRC += $(MATHLIB)/mathmisc.c
SRC += $(PIOSCORECOMMON)/pios_task_monitor.c
SRC += $(PIOSCORECOMMON)/pios_dosfs_logfs.c

View File

@ -86,6 +86,7 @@ UAVOBJSRCFILENAMES += stabilizationsettings
UAVOBJSRCFILENAMES += stabilizationsettingsbank1
UAVOBJSRCFILENAMES += stabilizationsettingsbank2
UAVOBJSRCFILENAMES += stabilizationsettingsbank3
UAVOBJSRCFILENAMES += stabilizationstatus
UAVOBJSRCFILENAMES += stabilizationbank
UAVOBJSRCFILENAMES += systemalarms
UAVOBJSRCFILENAMES += systemsettings
@ -107,7 +108,6 @@ UAVOBJSRCFILENAMES += camerastabsettings
UAVOBJSRCFILENAMES += altitudeholdsettings
UAVOBJSRCFILENAMES += altitudefiltersettings
UAVOBJSRCFILENAMES += revosettings
UAVOBJSRCFILENAMES += altitudeholddesired
UAVOBJSRCFILENAMES += altitudeholdstatus
UAVOBJSRCFILENAMES += ekfconfiguration
UAVOBJSRCFILENAMES += ekfstatevariance

View File

@ -40,6 +40,7 @@
#include <uavtalk.h>
#include "alarms.h"
#include <mathmisc.h>
/* Global Functions */
void OpenPilotInit(void);

View File

@ -152,6 +152,9 @@ ConfigInputWidget::ConfigInputWidget(QWidget *parent) :
addWidgetBinding("FlightModeSettings", "Stabilization1Settings", ui->fmsSsPos1Yaw, "Yaw", 1, true);
addWidgetBinding("FlightModeSettings", "Stabilization2Settings", ui->fmsSsPos2Yaw, "Yaw", 1, true);
addWidgetBinding("FlightModeSettings", "Stabilization3Settings", ui->fmsSsPos3Yaw, "Yaw", 1, true);
addWidgetBinding("FlightModeSettings", "Stabilization1Settings", ui->fmsSsPos1Thrust, "Thrust", 1, true);
addWidgetBinding("FlightModeSettings", "Stabilization2Settings", ui->fmsSsPos2Thrust, "Thrust", 1, true);
addWidgetBinding("FlightModeSettings", "Stabilization3Settings", ui->fmsSsPos3Thrust, "Thrust", 1, true);
addWidgetBinding("FlightModeSettings", "Arming", ui->armControl);
addWidgetBinding("FlightModeSettings", "ArmedTimeout", ui->armTimeout, 0, 1000);
@ -1324,32 +1327,26 @@ void ConfigInputWidget::updatePositionSlider()
default:
case 6:
ui->fmsModePos6->setEnabled(true);
ui->cc_box_5->setEnabled(true);
ui->pidBankSs1_5->setEnabled(true);
// pass through
case 5:
ui->fmsModePos5->setEnabled(true);
ui->cc_box_4->setEnabled(true);
ui->pidBankSs1_4->setEnabled(true);
// pass through
case 4:
ui->fmsModePos4->setEnabled(true);
ui->cc_box_3->setEnabled(true);
ui->pidBankSs1_3->setEnabled(true);
// pass through
case 3:
ui->fmsModePos3->setEnabled(true);
ui->cc_box_2->setEnabled(true);
ui->pidBankSs1_2->setEnabled(true);
// pass through
case 2:
ui->fmsModePos2->setEnabled(true);
ui->cc_box_1->setEnabled(true);
ui->pidBankSs1_1->setEnabled(true);
// pass through
case 1:
ui->fmsModePos1->setEnabled(true);
ui->cc_box_0->setEnabled(true);
ui->pidBankSs1_0->setEnabled(true);
// pass through
case 0:
@ -1359,32 +1356,26 @@ void ConfigInputWidget::updatePositionSlider()
switch (manualSettingsDataPriv.FlightModeNumber) {
case 0:
ui->fmsModePos1->setEnabled(false);
ui->cc_box_0->setEnabled(false);
ui->pidBankSs1_0->setEnabled(false);
// pass through
case 1:
ui->fmsModePos2->setEnabled(false);
ui->cc_box_1->setEnabled(false);
ui->pidBankSs1_1->setEnabled(false);
// pass through
case 2:
ui->fmsModePos3->setEnabled(false);
ui->cc_box_2->setEnabled(false);
ui->pidBankSs1_2->setEnabled(false);
// pass through
case 3:
ui->fmsModePos4->setEnabled(false);
ui->cc_box_3->setEnabled(false);
ui->pidBankSs1_3->setEnabled(false);
// pass through
case 4:
ui->fmsModePos5->setEnabled(false);
ui->cc_box_4->setEnabled(false);
ui->pidBankSs1_4->setEnabled(false);
// pass through
case 5:
ui->fmsModePos6->setEnabled(false);
ui->cc_box_5->setEnabled(false);
ui->pidBankSs1_5->setEnabled(false);
// pass through
case 6:

View File

@ -17,7 +17,7 @@
<item>
<widget class="QTabWidget" name="tabWidget">
<property name="currentIndex">
<number>0</number>
<number>1</number>
</property>
<widget class="QWidget" name="RCInput">
<attribute name="title">
@ -27,16 +27,7 @@
<property name="spacing">
<number>0</number>
</property>
<property name="leftMargin">
<number>0</number>
</property>
<property name="topMargin">
<number>0</number>
</property>
<property name="rightMargin">
<number>0</number>
</property>
<property name="bottomMargin">
<property name="margin">
<number>0</number>
</property>
<item>
@ -117,20 +108,11 @@
<x>0</x>
<y>0</y>
<width>774</width>
<height>748</height>
<height>753</height>
</rect>
</property>
<layout class="QGridLayout" name="gridLayout">
<property name="leftMargin">
<number>12</number>
</property>
<property name="topMargin">
<number>12</number>
</property>
<property name="rightMargin">
<number>12</number>
</property>
<property name="bottomMargin">
<property name="margin">
<number>12</number>
</property>
<property name="verticalSpacing">
@ -161,16 +143,7 @@
</property>
<widget class="QWidget" name="advancedPage">
<layout class="QVBoxLayout" name="verticalLayout_3">
<property name="leftMargin">
<number>12</number>
</property>
<property name="topMargin">
<number>12</number>
</property>
<property name="rightMargin">
<number>12</number>
</property>
<property name="bottomMargin">
<property name="margin">
<number>12</number>
</property>
<item>
@ -269,16 +242,7 @@
</widget>
<widget class="QWidget" name="wizard">
<layout class="QVBoxLayout" name="verticalLayout_5">
<property name="leftMargin">
<number>12</number>
</property>
<property name="topMargin">
<number>12</number>
</property>
<property name="rightMargin">
<number>12</number>
</property>
<property name="bottomMargin">
<property name="margin">
<number>12</number>
</property>
<item>
@ -457,16 +421,7 @@
<string>Flight Mode Switch Settings</string>
</attribute>
<layout class="QVBoxLayout" name="verticalLayout_8">
<property name="leftMargin">
<number>0</number>
</property>
<property name="topMargin">
<number>0</number>
</property>
<property name="rightMargin">
<number>0</number>
</property>
<property name="bottomMargin">
<property name="margin">
<number>0</number>
</property>
<item>
@ -546,21 +501,12 @@
<rect>
<x>0</x>
<y>0</y>
<width>768</width>
<height>742</height>
<width>774</width>
<height>753</height>
</rect>
</property>
<layout class="QGridLayout" name="gridLayout_7" rowstretch="1,0,0,0">
<property name="leftMargin">
<number>12</number>
</property>
<property name="topMargin">
<number>12</number>
</property>
<property name="rightMargin">
<number>12</number>
</property>
<property name="bottomMargin">
<property name="margin">
<number>12</number>
</property>
<item row="3" column="0">
@ -587,7 +533,7 @@
<property name="title">
<string>Stabilization Modes Configuration</string>
</property>
<layout class="QGridLayout" name="gridLayout_2" columnstretch="0,0,0,0,0,0,0,0,0,0,0">
<layout class="QGridLayout" name="gridLayout_2" columnstretch="0,0,0,0,0,0,0,0,0,0,0,0,0">
<property name="leftMargin">
<number>9</number>
</property>
@ -626,6 +572,51 @@
</property>
</spacer>
</item>
<item row="1" column="10">
<spacer name="horizontalSpacer_15">
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
<property name="sizeType">
<enum>QSizePolicy::Fixed</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
<width>10</width>
<height>20</height>
</size>
</property>
</spacer>
</item>
<item row="0" column="11">
<widget class="QLabel" name="label_11">
<property name="minimumSize">
<size>
<width>120</width>
<height>20</height>
</size>
</property>
<property name="maximumSize">
<size>
<width>16777215</width>
<height>20</height>
</size>
</property>
<property name="styleSheet">
<string notr="true">background-color: qlineargradient(spread:reflect, x1:0.507, y1:0, x2:0.507, y2:0.772, stop:0.208955 rgba(74, 74, 74, 255), stop:0.78607 rgba(36, 36, 36, 255));
color: rgb(255, 255, 255);
border-radius: 5;
font: bold 12px;
margin:1px;</string>
</property>
<property name="text">
<string>Thrust</string>
</property>
<property name="alignment">
<set>Qt::AlignCenter</set>
</property>
</widget>
</item>
<item row="0" column="9">
<widget class="QLabel" name="label_10">
<property name="minimumSize">
@ -684,7 +675,7 @@ margin:1px;</string>
</property>
</widget>
</item>
<item row="1" column="10">
<item row="1" column="12">
<spacer name="horizontalSpacer_11">
<property name="orientation">
<enum>Qt::Horizontal</enum>
@ -792,16 +783,7 @@ margin:1px;</string>
<enum>QFrame::Raised</enum>
</property>
<layout class="QVBoxLayout" name="verticalLayout_10">
<property name="leftMargin">
<number>1</number>
</property>
<property name="topMargin">
<number>1</number>
</property>
<property name="rightMargin">
<number>1</number>
</property>
<property name="bottomMargin">
<property name="margin">
<number>1</number>
</property>
<item>
@ -843,16 +825,7 @@ margin:1px;</string>
<enum>QFrame::Raised</enum>
</property>
<layout class="QVBoxLayout" name="verticalLayout_14">
<property name="leftMargin">
<number>1</number>
</property>
<property name="topMargin">
<number>1</number>
</property>
<property name="rightMargin">
<number>1</number>
</property>
<property name="bottomMargin">
<property name="margin">
<number>1</number>
</property>
<item>
@ -894,16 +867,7 @@ margin:1px;</string>
<enum>QFrame::Raised</enum>
</property>
<layout class="QVBoxLayout" name="verticalLayout_15">
<property name="leftMargin">
<number>1</number>
</property>
<property name="topMargin">
<number>1</number>
</property>
<property name="rightMargin">
<number>1</number>
</property>
<property name="bottomMargin">
<property name="margin">
<number>1</number>
</property>
<item>
@ -936,6 +900,48 @@ margin:1px;</string>
</layout>
</widget>
</item>
<item row="1" column="11">
<widget class="QFrame" name="frame_7">
<property name="frameShape">
<enum>QFrame::NoFrame</enum>
</property>
<property name="frameShadow">
<enum>QFrame::Raised</enum>
</property>
<layout class="QVBoxLayout" name="verticalLayout_16">
<property name="margin">
<number>1</number>
</property>
<item>
<widget class="QComboBox" name="fmsSsPos1Thrust">
<property name="minimumSize">
<size>
<width>0</width>
<height>0</height>
</size>
</property>
<property name="focusPolicy">
<enum>Qt::StrongFocus</enum>
</property>
</widget>
</item>
<item>
<widget class="QComboBox" name="fmsSsPos2Thrust">
<property name="focusPolicy">
<enum>Qt::StrongFocus</enum>
</property>
</widget>
</item>
<item>
<widget class="QComboBox" name="fmsSsPos3Thrust">
<property name="focusPolicy">
<enum>Qt::StrongFocus</enum>
</property>
</widget>
</item>
</layout>
</widget>
</item>
<item row="1" column="2">
<spacer name="horizontalSpacer_14">
<property name="orientation">
@ -973,23 +979,14 @@ margin:1px;</string>
<string>Flight Mode Switch Positions</string>
</property>
<layout class="QGridLayout" name="gridLayout_4">
<property name="leftMargin">
<number>9</number>
</property>
<property name="topMargin">
<number>9</number>
</property>
<property name="rightMargin">
<number>9</number>
</property>
<property name="bottomMargin">
<property name="margin">
<number>9</number>
</property>
<property name="horizontalSpacing">
<number>6</number>
</property>
<item row="0" column="6">
<widget class="QLabel" name="label_11">
<widget class="QLabel" name="label_111">
<property name="minimumSize">
<size>
<width>80</width>
@ -1078,7 +1075,7 @@ channel value for each flight mode.</string>
<item row="2" column="10">
<widget class="QLabel" name="label_15">
<property name="sizePolicy">
<sizepolicy hsizetype="Preferred" vsizetype="Preferred">
<sizepolicy hsizetype="Ignored" vsizetype="Preferred">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
@ -1090,7 +1087,7 @@ channel value for each flight mode.</string>
</font>
</property>
<property name="text">
<string>Avoid &quot;Manual&quot; for multirotors!</string>
<string>Avoid &quot;Manual&quot; for multirotors! Never select &quot;Altitude&quot;, &quot;VelocityControl&quot; or &quot;CruiseControl&quot; on a fixed wing!</string>
</property>
<property name="alignment">
<set>Qt::AlignCenter</set>
@ -1116,22 +1113,6 @@ channel value for each flight mode.</string>
</property>
</spacer>
</item>
<item row="1" column="5">
<spacer name="horizontalSpacer_15">
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
<property name="sizeType">
<enum>QSizePolicy::Fixed</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
<width>10</width>
<height>20</height>
</size>
</property>
</spacer>
</item>
<item row="1" column="7">
<spacer name="horizontalSpacer_16">
<property name="orientation">
@ -1164,35 +1145,6 @@ channel value for each flight mode.</string>
</property>
</spacer>
</item>
<item row="0" column="4">
<widget class="QLabel" name="label_12">
<property name="minimumSize">
<size>
<width>105</width>
<height>20</height>
</size>
</property>
<property name="maximumSize">
<size>
<width>16777215</width>
<height>20</height>
</size>
</property>
<property name="styleSheet">
<string notr="true">background-color: qlineargradient(spread:reflect, x1:0.507, y1:0, x2:0.507, y2:0.772, stop:0.208955 rgba(74, 74, 74, 255), stop:0.78607 rgba(36, 36, 36, 255));
color: rgb(255, 255, 255);
border-radius: 5;
font: bold 12px;
margin:1px;</string>
</property>
<property name="text">
<string>Cruise Control</string>
</property>
<property name="alignment">
<set>Qt::AlignCenter</set>
</property>
</widget>
</item>
<item row="0" column="8" rowspan="3">
<widget class="Line" name="line">
<property name="orientation">
@ -1229,294 +1181,6 @@ margin:1px;</string>
</property>
</widget>
</item>
<item row="1" column="4" rowspan="2">
<widget class="QFrame" name="frame_4">
<property name="minimumSize">
<size>
<width>30</width>
<height>0</height>
</size>
</property>
<property name="maximumSize">
<size>
<width>16777215</width>
<height>16777215</height>
</size>
</property>
<layout class="QVBoxLayout" name="verticalLayout_4">
<property name="spacing">
<number>6</number>
</property>
<property name="leftMargin">
<number>1</number>
</property>
<property name="topMargin">
<number>1</number>
</property>
<property name="rightMargin">
<number>1</number>
</property>
<property name="bottomMargin">
<number>1</number>
</property>
<item alignment="Qt::AlignHCenter">
<widget class="QCheckBox" name="cc_box_0">
<property name="sizePolicy">
<sizepolicy hsizetype="Fixed" vsizetype="Minimum">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
<property name="minimumSize">
<size>
<width>0</width>
<height>20</height>
</size>
</property>
<property name="maximumSize">
<size>
<width>16777215</width>
<height>20</height>
</size>
</property>
<property name="font">
<font>
<weight>75</weight>
<bold>true</bold>
</font>
</property>
<property name="toolTip">
<string>&lt;html&gt;&lt;head/&gt;&lt;body&gt;&lt;p&gt;Enabling this checkbox will enable Cruise Control for Flight Mode Switch position #1.&lt;/p&gt;&lt;/body&gt;&lt;/html&gt;</string>
</property>
<property name="layoutDirection">
<enum>Qt::RightToLeft</enum>
</property>
<property name="text">
<string/>
</property>
<property name="objrelation" stdset="0">
<stringlist>
<string>objname:StabilizationSettings</string>
<string>fieldname:CruiseControlFlightModeSwitchPosEnable</string>
<string>index:0</string>
<string>haslimits:no</string>
<string>scale:1</string>
</stringlist>
</property>
</widget>
</item>
<item alignment="Qt::AlignHCenter">
<widget class="QCheckBox" name="cc_box_1">
<property name="minimumSize">
<size>
<width>0</width>
<height>20</height>
</size>
</property>
<property name="maximumSize">
<size>
<width>16777215</width>
<height>20</height>
</size>
</property>
<property name="font">
<font>
<weight>75</weight>
<bold>true</bold>
</font>
</property>
<property name="toolTip">
<string>&lt;html&gt;&lt;head/&gt;&lt;body&gt;&lt;p&gt;Enabling this checkbox will enable Cruise Control for Flight Mode Switch position #2.&lt;/p&gt;&lt;/body&gt;&lt;/html&gt;</string>
</property>
<property name="layoutDirection">
<enum>Qt::RightToLeft</enum>
</property>
<property name="text">
<string/>
</property>
<property name="objrelation" stdset="0">
<stringlist>
<string>objname:StabilizationSettings</string>
<string>fieldname:CruiseControlFlightModeSwitchPosEnable</string>
<string>index:1</string>
<string>haslimits:no</string>
<string>scale:1</string>
</stringlist>
</property>
</widget>
</item>
<item alignment="Qt::AlignHCenter">
<widget class="QCheckBox" name="cc_box_2">
<property name="minimumSize">
<size>
<width>0</width>
<height>20</height>
</size>
</property>
<property name="maximumSize">
<size>
<width>16777215</width>
<height>20</height>
</size>
</property>
<property name="font">
<font>
<weight>75</weight>
<bold>true</bold>
</font>
</property>
<property name="toolTip">
<string>&lt;html&gt;&lt;head/&gt;&lt;body&gt;&lt;p&gt;Enabling this checkbox will enable Cruise Control for Flight Mode Switch position #3.&lt;/p&gt;&lt;/body&gt;&lt;/html&gt;</string>
</property>
<property name="layoutDirection">
<enum>Qt::RightToLeft</enum>
</property>
<property name="text">
<string/>
</property>
<property name="objrelation" stdset="0">
<stringlist>
<string>objname:StabilizationSettings</string>
<string>fieldname:CruiseControlFlightModeSwitchPosEnable</string>
<string>index:2</string>
<string>haslimits:no</string>
<string>scale:1</string>
</stringlist>
</property>
</widget>
</item>
<item alignment="Qt::AlignHCenter">
<widget class="QCheckBox" name="cc_box_3">
<property name="enabled">
<bool>false</bool>
</property>
<property name="minimumSize">
<size>
<width>0</width>
<height>20</height>
</size>
</property>
<property name="maximumSize">
<size>
<width>16777215</width>
<height>20</height>
</size>
</property>
<property name="font">
<font>
<weight>75</weight>
<bold>true</bold>
</font>
</property>
<property name="toolTip">
<string>&lt;html&gt;&lt;head/&gt;&lt;body&gt;&lt;p&gt;Enabling this checkbox will enable Cruise Control for Flight Mode Switch position #4.&lt;/p&gt;&lt;/body&gt;&lt;/html&gt;</string>
</property>
<property name="layoutDirection">
<enum>Qt::RightToLeft</enum>
</property>
<property name="text">
<string/>
</property>
<property name="objrelation" stdset="0">
<stringlist>
<string>objname:StabilizationSettings</string>
<string>fieldname:CruiseControlFlightModeSwitchPosEnable</string>
<string>index:3</string>
<string>haslimits:no</string>
<string>scale:1</string>
</stringlist>
</property>
</widget>
</item>
<item alignment="Qt::AlignHCenter">
<widget class="QCheckBox" name="cc_box_4">
<property name="enabled">
<bool>false</bool>
</property>
<property name="minimumSize">
<size>
<width>0</width>
<height>20</height>
</size>
</property>
<property name="maximumSize">
<size>
<width>16777215</width>
<height>20</height>
</size>
</property>
<property name="font">
<font>
<weight>75</weight>
<bold>true</bold>
</font>
</property>
<property name="toolTip">
<string>&lt;html&gt;&lt;head/&gt;&lt;body&gt;&lt;p&gt;Enabling this checkbox will enable Cruise Control for Flight Mode Switch position #5.&lt;/p&gt;&lt;/body&gt;&lt;/html&gt;</string>
</property>
<property name="layoutDirection">
<enum>Qt::RightToLeft</enum>
</property>
<property name="text">
<string/>
</property>
<property name="objrelation" stdset="0">
<stringlist>
<string>objname:StabilizationSettings</string>
<string>fieldname:CruiseControlFlightModeSwitchPosEnable</string>
<string>index:4</string>
<string>haslimits:no</string>
<string>scale:1</string>
</stringlist>
</property>
</widget>
</item>
<item alignment="Qt::AlignHCenter">
<widget class="QCheckBox" name="cc_box_5">
<property name="enabled">
<bool>false</bool>
</property>
<property name="minimumSize">
<size>
<width>0</width>
<height>20</height>
</size>
</property>
<property name="maximumSize">
<size>
<width>16777215</width>
<height>20</height>
</size>
</property>
<property name="font">
<font>
<weight>75</weight>
<bold>true</bold>
</font>
</property>
<property name="toolTip">
<string>&lt;html&gt;&lt;head/&gt;&lt;body&gt;&lt;p&gt;Enabling this checkbox will enable Cruise Control for Flight Mode Switch position #6.&lt;/p&gt;&lt;/body&gt;&lt;/html&gt;</string>
</property>
<property name="layoutDirection">
<enum>Qt::RightToLeft</enum>
</property>
<property name="text">
<string/>
</property>
<property name="objrelation" stdset="0">
<stringlist>
<string>objname:StabilizationSettings</string>
<string>fieldname:CruiseControlFlightModeSwitchPosEnable</string>
<string>index:5</string>
<string>haslimits:no</string>
<string>scale:1</string>
</stringlist>
</property>
</widget>
</item>
</layout>
</widget>
</item>
<item row="1" column="0" rowspan="2">
<widget class="QFrame" name="frame">
<property name="minimumSize">
@ -1538,21 +1202,12 @@ margin:1px;</string>
<enum>QFrame::Raised</enum>
</property>
<layout class="QGridLayout" name="gridLayout_8">
<property name="leftMargin">
<number>1</number>
</property>
<property name="topMargin">
<number>1</number>
</property>
<property name="rightMargin">
<number>1</number>
</property>
<property name="bottomMargin">
<number>1</number>
</property>
<property name="horizontalSpacing">
<number>10</number>
</property>
<property name="margin">
<number>1</number>
</property>
<item row="4" column="1">
<widget class="QLabel" name="label_pos5">
<property name="sizePolicy">
@ -1770,16 +1425,7 @@ Setup the flight mode channel on the RC Input tab if you have not done so alread
</size>
</property>
<layout class="QGridLayout" name="gridLayout_6">
<property name="leftMargin">
<number>1</number>
</property>
<property name="topMargin">
<number>1</number>
</property>
<property name="rightMargin">
<number>1</number>
</property>
<property name="bottomMargin">
<property name="margin">
<number>1</number>
</property>
<item row="5" column="1">
@ -1867,7 +1513,7 @@ Setup the flight mode channel on the RC Input tab if you have not done so alread
</widget>
</item>
<item row="1" column="6" rowspan="2">
<widget class="QFrame" name="frame_7">
<widget class="QFrame" name="frame_8">
<property name="minimumSize">
<size>
<width>75</width>
@ -1881,16 +1527,7 @@ Setup the flight mode channel on the RC Input tab if you have not done so alread
</size>
</property>
<layout class="QVBoxLayout" name="verticalLayout_9">
<property name="leftMargin">
<number>1</number>
</property>
<property name="topMargin">
<number>1</number>
</property>
<property name="rightMargin">
<number>1</number>
</property>
<property name="bottomMargin">
<property name="margin">
<number>1</number>
</property>
<item>
@ -2075,16 +1712,7 @@ Setup the flight mode channel on the RC Input tab if you have not done so alread
<string>Arming Settings</string>
</attribute>
<layout class="QVBoxLayout" name="verticalLayout_12">
<property name="leftMargin">
<number>0</number>
</property>
<property name="topMargin">
<number>0</number>
</property>
<property name="rightMargin">
<number>0</number>
</property>
<property name="bottomMargin">
<property name="margin">
<number>0</number>
</property>
<item>
@ -2164,21 +1792,12 @@ Setup the flight mode channel on the RC Input tab if you have not done so alread
<rect>
<x>0</x>
<y>0</y>
<width>768</width>
<height>742</height>
<width>774</width>
<height>753</height>
</rect>
</property>
<layout class="QVBoxLayout" name="verticalLayout_2">
<property name="leftMargin">
<number>12</number>
</property>
<property name="topMargin">
<number>12</number>
</property>
<property name="rightMargin">
<number>12</number>
</property>
<property name="bottomMargin">
<property name="margin">
<number>12</number>
</property>
<item>

View File

@ -8444,7 +8444,7 @@ border-radius: 5;</string>
<string notr="true"/>
</property>
<property name="text">
<string>Max rate attitude (deg/s)</string>
<string>Max rate limit (all modes) (deg/s)</string>
</property>
<property name="alignment">
<set>Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter</set>

View File

@ -318,18 +318,21 @@ void VehicleConfigurationHelper::applyFlighModeConfiguration()
data.Stabilization1Settings[0] = FlightModeSettings::STABILIZATION1SETTINGS_ATTITUDE;
data.Stabilization1Settings[1] = FlightModeSettings::STABILIZATION1SETTINGS_ATTITUDE;
data.Stabilization1Settings[2] = FlightModeSettings::STABILIZATION1SETTINGS_AXISLOCK;
data.Stabilization1Settings[3] = FlightModeSettings::STABILIZATION1SETTINGS_MANUAL;
data.Stabilization2Settings[0] = FlightModeSettings::STABILIZATION2SETTINGS_ATTITUDE;
data.Stabilization2Settings[1] = FlightModeSettings::STABILIZATION2SETTINGS_ATTITUDE;
data.Stabilization2Settings[2] = FlightModeSettings::STABILIZATION2SETTINGS_RATE;
data.Stabilization2Settings[3] = FlightModeSettings::STABILIZATION1SETTINGS_MANUAL;
data.Stabilization3Settings[0] = FlightModeSettings::STABILIZATION3SETTINGS_RATE;
data.Stabilization3Settings[1] = FlightModeSettings::STABILIZATION3SETTINGS_RATE;
data.Stabilization3Settings[2] = FlightModeSettings::STABILIZATION3SETTINGS_RATE;
data.Stabilization3Settings[3] = FlightModeSettings::STABILIZATION1SETTINGS_MANUAL;
data2.FlightModeNumber = 3;
data.FlightModePosition[0] = FlightModeSettings::FLIGHTMODEPOSITION_STABILIZED1;
data.FlightModePosition[1] = FlightModeSettings::FLIGHTMODEPOSITION_STABILIZED2;
data.FlightModePosition[2] = FlightModeSettings::FLIGHTMODEPOSITION_STABILIZED3;
data.FlightModePosition[3] = FlightModeSettings::FLIGHTMODEPOSITION_ALTITUDEHOLD;
data.FlightModePosition[4] = FlightModeSettings::FLIGHTMODEPOSITION_POSITIONHOLD;
data.FlightModePosition[3] = FlightModeSettings::FLIGHTMODEPOSITION_MANUAL;
data.FlightModePosition[4] = FlightModeSettings::FLIGHTMODEPOSITION_MANUAL;
data.FlightModePosition[5] = FlightModeSettings::FLIGHTMODEPOSITION_MANUAL;
modeSettings->setData(data);
addModifiedObject(modeSettings, tr("Writing flight mode settings 1/2"));

View File

@ -35,7 +35,6 @@ HEADERS += \
$$UAVOBJECT_SYNTHETICS/airspeedstate.h \
$$UAVOBJECT_SYNTHETICS/attitudestate.h \
$$UAVOBJECT_SYNTHETICS/attitudesimulated.h \
$$UAVOBJECT_SYNTHETICS/altitudeholddesired.h \
$$UAVOBJECT_SYNTHETICS/altitudeholdsettings.h \
$$UAVOBJECT_SYNTHETICS/altitudeholdstatus.h \
$$UAVOBJECT_SYNTHETICS/altitudefiltersettings.h \
@ -62,6 +61,7 @@ HEADERS += \
$$UAVOBJECT_SYNTHETICS/overosyncstats.h \
$$UAVOBJECT_SYNTHETICS/overosyncsettings.h \
$$UAVOBJECT_SYNTHETICS/systemsettings.h \
$$UAVOBJECT_SYNTHETICS/stabilizationstatus.h \
$$UAVOBJECT_SYNTHETICS/stabilizationsettings.h \
$$UAVOBJECT_SYNTHETICS/stabilizationsettingsbank1.h \
$$UAVOBJECT_SYNTHETICS/stabilizationsettingsbank2.h \
@ -136,7 +136,6 @@ SOURCES += \
$$UAVOBJECT_SYNTHETICS/airspeedstate.cpp \
$$UAVOBJECT_SYNTHETICS/attitudestate.cpp \
$$UAVOBJECT_SYNTHETICS/attitudesimulated.cpp \
$$UAVOBJECT_SYNTHETICS/altitudeholddesired.cpp \
$$UAVOBJECT_SYNTHETICS/altitudeholdsettings.cpp \
$$UAVOBJECT_SYNTHETICS/altitudeholdstatus.cpp \
$$UAVOBJECT_SYNTHETICS/debuglogsettings.cpp \
@ -163,6 +162,7 @@ SOURCES += \
$$UAVOBJECT_SYNTHETICS/overosyncstats.cpp \
$$UAVOBJECT_SYNTHETICS/overosyncsettings.cpp \
$$UAVOBJECT_SYNTHETICS/systemsettings.cpp \
$$UAVOBJECT_SYNTHETICS/stabilizationstatus.cpp \
$$UAVOBJECT_SYNTHETICS/stabilizationsettings.cpp \
$$UAVOBJECT_SYNTHETICS/stabilizationsettingsbank1.cpp \
$$UAVOBJECT_SYNTHETICS/stabilizationsettingsbank2.cpp \

View File

@ -106,6 +106,7 @@ SRC += $(FLIGHTLIB)/sanitycheck.c
SRC += $(FLIGHTLIB)/CoordinateConversions.c
SRC += $(MATHLIB)/sin_lookup.c
SRC += $(MATHLIB)/pid.c
SRC += $(MATHLIB)/mathmisc.c
SRC += $(FLIGHTLIB)/printf-stdarg.c
## Modules

View File

@ -1,14 +0,0 @@
<xml>
<object name="AltitudeHoldDesired" singleinstance="true" settings="false" category="Control">
<description>Holds the desired altitude (from manual control) as well as the desired attitude to pass through</description>
<field name="SetPoint" units="" type="float" elements="1"/>
<field name="ControlMode" units="" type="enum" elements="1" options="Altitude,Velocity,Thrust" />
<field name="Roll" units="deg" type="float" elements="1"/>
<field name="Pitch" units="deg" type="float" elements="1"/>
<field name="Yaw" units="deg/s" type="float" elements="1"/>
<access gcs="readwrite" flight="readwrite"/>
<telemetrygcs acked="false" updatemode="manual" period="0"/>
<telemetryflight acked="false" updatemode="periodic" period="1000"/>
<logging updatemode="manual" period="0"/>
</object>
</xml>

View File

@ -6,6 +6,8 @@
<elementname>EventDispatcher</elementname>
<elementname>StateEstimation</elementname>
<elementname>AltitudeHold</elementname>
<elementname>Stabilization0</elementname>
<elementname>Stabilization1</elementname>
<elementname>PathPlanner0</elementname>
<elementname>PathPlanner1</elementname>
<elementname>ManualControl</elementname>
@ -16,6 +18,8 @@
<elementname>EventDispatcher</elementname>
<elementname>StateEstimation</elementname>
<elementname>AltitudeHold</elementname>
<elementname>Stabilization0</elementname>
<elementname>Stabilization1</elementname>
<elementname>PathPlanner0</elementname>
<elementname>PathPlanner1</elementname>
<elementname>ManualControl</elementname>
@ -30,6 +34,8 @@
<elementname>EventDispatcher</elementname>
<elementname>StateEstimation</elementname>
<elementname>AltitudeHold</elementname>
<elementname>Stabilization0</elementname>
<elementname>Stabilization1</elementname>
<elementname>PathPlanner0</elementname>
<elementname>PathPlanner1</elementname>
<elementname>ManualControl</elementname>

View File

@ -6,20 +6,38 @@
<!-- Note these options should be identical to those in StabilizationDesired.StabilizationMode -->
<field name="Stabilization1Settings" units="" type="enum"
elementnames="Roll,Pitch,Yaw"
options="None,Rate,Attitude,AxisLock,WeakLeveling,VirtualBar,Rattitude,RelayRate,RelayAttitude"
defaultvalue="Attitude,Attitude,AxisLock"
limits="%NE:RelayRate:RelayAttitude; %NE:RelayRate:RelayAttitude; %NE:RelayRate:RelayAttitude;"/>
elementnames="Roll,Pitch,Yaw,Thrust"
options="Manual,Rate,Attitude,AxisLock,WeakLeveling,VirtualBar,Rattitude,RelayRate,RelayAttitude,AltitudeHold,VerticalVelocity,CruiseControl"
defaultvalue="Attitude,Attitude,AxisLock,Manual"
limits="%NE:RelayRate:RelayAttitude:AltitudeHold:VerticalVelocity:CruiseControl; \
%NE:RelayRate:RelayAttitude:AltitudeHold:VerticalVelocity:CruiseControl; \
%NE:RelayRate:RelayAttitude:AltitudeHold:VerticalVelocity:CruiseControl; \
%NE:Rate:Attitude:AxisLock:WeakLeveling:VirtualBar:Rattitude:RelayRate:RelayAttitude,\
%0401NE:Rate:Attitude:AxisLock:WeakLeveling:VirtualBar:Rattitude:RelayRate:RelayAttitude:AltitudeHold:VerticalVelocity,\
%0402NE:Rate:Attitude:AxisLock:WeakLeveling:VirtualBar:Rattitude:RelayRate:RelayAttitude:AltitudeHold:VerticalVelocity;"
/>
<field name="Stabilization2Settings" units="" type="enum"
elementnames="Roll,Pitch,Yaw"
options="None,Rate,Attitude,AxisLock,WeakLeveling,VirtualBar,Rattitude,RelayRate,RelayAttitude"
defaultvalue="Attitude,Attitude,Rate"
limits="%NE:RelayRate:RelayAttitude; %NE:RelayRate:RelayAttitude; %NE:RelayRate:RelayAttitude;"/>
elementnames="Roll,Pitch,Yaw,Thrust"
options="Manual,Rate,Attitude,AxisLock,WeakLeveling,VirtualBar,Rattitude,RelayRate,RelayAttitude,AltitudeHold,VerticalVelocity,CruiseControl"
defaultvalue="Attitude,Attitude,Rate,Manual"
limits="%NE:RelayRate:RelayAttitude:AltitudeHold:VerticalVelocity:CruiseControl; \
%NE:RelayRate:RelayAttitude:AltitudeHold:VerticalVelocity:CruiseControl; \
%NE:RelayRate:RelayAttitude:AltitudeHold:VerticalVelocity:CruiseControl; \
%NE:Rate:Attitude:AxisLock:WeakLeveling:VirtualBar:Rattitude:RelayRate:RelayAttitude,\
%0401NE:Rate:Attitude:AxisLock:WeakLeveling:VirtualBar:Rattitude:RelayRate:RelayAttitude:AltitudeHold:VerticalVelocity,\
%0402NE:Rate:Attitude:AxisLock:WeakLeveling:VirtualBar:Rattitude:RelayRate:RelayAttitude:AltitudeHold:VerticalVelocity;"
/>
<field name="Stabilization3Settings" units="" type="enum"
elementnames="Roll,Pitch,Yaw"
options="None,Rate,Attitude,AxisLock,WeakLeveling,VirtualBar,Rattitude,RelayRate,RelayAttitude"
defaultvalue="Rate,Rate,Rate"
limits="%NE:RelayRate:RelayAttitude; %NE:RelayRate:RelayAttitude; %NE:RelayRate:RelayAttitude;"/>
elementnames="Roll,Pitch,Yaw,Thrust"
options="Manual,Rate,Attitude,AxisLock,WeakLeveling,VirtualBar,Rattitude,RelayRate,RelayAttitude,AltitudeHold,VerticalVelocity,CruiseControl"
defaultvalue="Rate,Rate,Rate,Manual"
limits="%NE:RelayRate:RelayAttitude:AltitudeHold:VerticalVelocity:CruiseControl; \
%NE:RelayRate:RelayAttitude:AltitudeHold:VerticalVelocity:CruiseControl; \
%NE:RelayRate:RelayAttitude:AltitudeHold:VerticalVelocity:CruiseControl; \
%NE:Rate:Attitude:AxisLock:WeakLeveling:VirtualBar:Rattitude:RelayRate:RelayAttitude,\
%0401NE:Rate:Attitude:AxisLock:WeakLeveling:VirtualBar:Rattitude:RelayRate:RelayAttitude:AltitudeHold:VerticalVelocity,\
%0402NE:Rate:Attitude:AxisLock:WeakLeveling:VirtualBar:Rattitude:RelayRate:RelayAttitude:AltitudeHold:VerticalVelocity;"
/>
<!-- Note these options values should be identical to those defined in FlightMode -->
<!-- Currently only some modes are enabled for UI using limits attribute per board. Update when more modes will be operational -->
@ -27,32 +45,32 @@
units=""
type="enum"
elements="6"
options="Manual,Stabilized1,Stabilized2,Stabilized3,Autotune,AltitudeHold,AltitudeVario,VelocityControl,PositionHold,ReturnToBase,Land,PathPlanner,POI"
defaultvalue="Stabilized1,Stabilized2,Stabilized3,AltitudeHold,AltitudeVario,Manual"
options="Manual,Stabilized1,Stabilized2,Stabilized3,Autotune,PositionHold,ReturnToBase,Land,PathPlanner,POI"
defaultvalue="Stabilized1,Stabilized2,Stabilized3,Manual,Manual,Manual"
limits="\
%0401NE:Autotune:AltitudeVario:AltitudeHold:VelocityControl:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0402NE:Autotune:AltitudeVario:AltitudeHold:VelocityControl:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0903NE:Autotune:VelocityControl:PositionHold:ReturnToBase:Land:PathPlanner:POI;\
%0401NE:Autotune:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0402NE:Autotune:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0903NE:Autotune:PositionHold:ReturnToBase:Land:PathPlanner:POI;\
\
%0401NE:Autotune:AltitudeVario:AltitudeHold:VelocityControl:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0402NE:Autotune:AltitudeVario:AltitudeHold:VelocityControl:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0903NE:Autotune:VelocityControl:PositionHold:ReturnToBase:Land:PathPlanner:POI;\
%0401NE:Autotune:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0402NE:Autotune:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0903NE:Autotune:PositionHold:ReturnToBase:Land:PathPlanner:POI;\
\
%0401NE:Autotune:AltitudeVario:AltitudeHold:VelocityControl:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0402NE:Autotune:AltitudeVario:AltitudeHold:VelocityControl:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0903NE:Autotune:VelocityControl:PositionHold:ReturnToBase:Land:PathPlanner:POI;\
%0401NE:Autotune:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0402NE:Autotune:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0903NE:Autotune:PositionHold:ReturnToBase:Land:PathPlanner:POI;\
\
%0401NE:Autotune:AltitudeVario:AltitudeHold:VelocityControl:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0402NE:Autotune:AltitudeVario:AltitudeHold:VelocityControl:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0903NE:Autotune:VelocityControl:PositionHold:ReturnToBase:Land:PathPlanner:POI;\
%0401NE:Autotune:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0402NE:Autotune:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0903NE:Autotune:PositionHold:ReturnToBase:Land:PathPlanner:POI;\
\
%0401NE:Autotune:AltitudeVario:AltitudeHold:VelocityControl:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0402NE:Autotune:AltitudeVario:AltitudeHold:VelocityControl:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0903NE:Autotune:VelocityControl:PositionHold:ReturnToBase:Land:PathPlanner:POI;\
%0401NE:Autotune:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0402NE:Autotune:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0903NE:Autotune:PositionHold:ReturnToBase:Land:PathPlanner:POI;\
\
%0401NE:Autotune:AltitudeVario:AltitudeHold:VelocityControl:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0402NE:Autotune:AltitudeVario:AltitudeHold:VelocityControl:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0903NE:Autotune:VelocityControl:PositionHold:ReturnToBase:Land:PathPlanner:POI"/>
%0401NE:Autotune:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0402NE:Autotune:PositionHold:ReturnToBase:Land:PathPlanner:POI,\
%0903NE:Autotune:PositionHold:ReturnToBase:Land:PathPlanner:POI"/>
<field name="ArmedTimeout" units="ms" type="uint16" elements="1" defaultvalue="30000"/>
<field name="ArmingSequenceTime" units="ms" type="uint16" elements="1" defaultvalue="1000"/>

View File

@ -4,7 +4,7 @@
<field name="Armed" units="" type="enum" elements="1" options="Disarmed,Arming,Armed" defaultvalue="Disarmed"/>
<!-- Note these enumerated values should be the same as ManualControlSettings -->
<field name="FlightMode" units="" type="enum" elements="1" options="Manual,Stabilized1,Stabilized2,Stabilized3,Autotune,AltitudeHold,AltitudeVario,VelocityControl,PositionHold,ReturnToBase,Land,PathPlanner,POI"/>
<field name="FlightMode" units="" type="enum" elements="1" options="Manual,Stabilized1,Stabilized2,Stabilized3,Autotune,PositionHold,ReturnToBase,Land,PathPlanner,POI"/>
<field name="ControlChain" units="bool" type="enum" options="false,true">
<elementnames>

View File

@ -4,6 +4,7 @@
<field name="Roll" units="deg/s" type="float" elements="1"/>
<field name="Pitch" units="deg/s" type="float" elements="1"/>
<field name="Yaw" units="deg/s" type="float" elements="1"/>
<field name="Thrust" units="%" type="float" elements="1"/>
<access gcs="readwrite" flight="readwrite"/>
<telemetrygcs acked="false" updatemode="manual" period="0"/>
<telemetryflight acked="false" updatemode="periodic" period="1000"/>

View File

@ -5,9 +5,8 @@
<field name="Pitch" units="degrees" type="float" elements="1"/>
<field name="Yaw" units="degrees" type="float" elements="1"/>
<field name="Thrust" units="%" type="float" elements="1"/>
<!-- These values should match those in ManualControlCommand.Stabilization{1,2,3}Settings -->
<field name="StabilizationMode" units="" type="enum" elementnames="Roll,Pitch,Yaw" options="None,Rate,Attitude,AxisLock,WeakLeveling,VirtualBar,Rattitude,RelayRate,RelayAttitude"/>
<field name="ThrustStabilizationMode" units="" type="enum" elements="1" options="None"/>
<!-- These values should match those in FlightModeSettings.Stabilization{1,2,3}Settings -->
<field name="StabilizationMode" units="" type="enum" elementnames="Roll,Pitch,Yaw,Thrust" options="Manual,Rate,Attitude,AxisLock,WeakLeveling,VirtualBar,Rattitude,RelayRate,RelayAttitude,AltitudeHold,VerticalVelocity,CruiseControl"/>
<access gcs="readwrite" flight="readwrite"/>
<telemetrygcs acked="false" updatemode="manual" period="0"/>
<telemetryflight acked="false" updatemode="periodic" period="1000"/>

View File

@ -22,6 +22,7 @@
<field name="DerivativeCutoff" units="Hz" type="uint8" elements="1" defaultvalue="20"/>
<field name="DerivativeGamma" units="" type="float" elements="1" defaultvalue="1"/>
<field name="AxisLockKp" units="" type="float" elements="1" defaultvalue="2.5"/>
<field name="MaxAxisLock" units="deg" type="uint8" elements="1" defaultvalue="30"/>
<field name="MaxAxisLockRate" units="deg/s" type="uint8" elements="1" defaultvalue="2"/>

View File

@ -6,7 +6,7 @@
<field name="PitchMax" units="degrees" type="uint8" elements="1" defaultvalue="42" limits="%BE:0:180"/>
<field name="YawMax" units="degrees" type="uint8" elements="1" defaultvalue="42" limits="%BE:0:180"/>
<field name="ManualRate" units="degrees/sec" type="float" elementnames="Roll,Pitch,Yaw" defaultvalue="150,150,175" limits="%BE:0:500; %BE:0:500; %BE:0:500"/>
<field name="MaximumRate" units="degrees/sec" type="float" elementnames="Roll,Pitch,Yaw" defaultvalue="300,300,50" limits="%BE:0:500; %BE:0:500; %BE:0:500"/>
<field name="MaximumRate" units="degrees/sec" type="float" elementnames="Roll,Pitch,Yaw" defaultvalue="300,300,300" limits="%BE:0:500; %BE:0:500; %BE:0:500"/>
<field name="RollRatePID" units="" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="0.003,0.003,0.00002,0.3" limits="%BE:0:0.01; %BE:0:0.01; ; "/>
<field name="PitchRatePID" units="" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="0.003,0.003,0.00002,0.3" limits="%BE:0:0.01; %BE:0:0.01; ; "/>

View File

@ -6,7 +6,7 @@
<field name="PitchMax" units="degrees" type="uint8" elements="1" defaultvalue="42" limits="%BE:0:180"/>
<field name="YawMax" units="degrees" type="uint8" elements="1" defaultvalue="42" limits="%BE:0:180"/>
<field name="ManualRate" units="degrees/sec" type="float" elementnames="Roll,Pitch,Yaw" defaultvalue="150,150,175" limits="%BE:0:500; %BE:0:500; %BE:0:500"/>
<field name="MaximumRate" units="degrees/sec" type="float" elementnames="Roll,Pitch,Yaw" defaultvalue="300,300,50" limits="%BE:0:500; %BE:0:500; %BE:0:500"/>
<field name="MaximumRate" units="degrees/sec" type="float" elementnames="Roll,Pitch,Yaw" defaultvalue="300,300,300" limits="%BE:0:500; %BE:0:500; %BE:0:500"/>
<field name="RollRatePID" units="" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="0.003,0.003,0.00002,0.3" limits="%BE:0:0.01; %BE:0:0.01; ; "/>
<field name="PitchRatePID" units="" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="0.003,0.003,0.00002,0.3" limits="%BE:0:0.01; %BE:0:0.01; ; "/>

View File

@ -6,7 +6,7 @@
<field name="PitchMax" units="degrees" type="uint8" elements="1" defaultvalue="42" limits="%BE:0:180"/>
<field name="YawMax" units="degrees" type="uint8" elements="1" defaultvalue="42" limits="%BE:0:180"/>
<field name="ManualRate" units="degrees/sec" type="float" elementnames="Roll,Pitch,Yaw" defaultvalue="150,150,175" limits="%BE:0:500; %BE:0:500; %BE:0:500"/>
<field name="MaximumRate" units="degrees/sec" type="float" elementnames="Roll,Pitch,Yaw" defaultvalue="300,300,50" limits="%BE:0:500; %BE:0:500; %BE:0:500"/>
<field name="MaximumRate" units="degrees/sec" type="float" elementnames="Roll,Pitch,Yaw" defaultvalue="300,300,300" limits="%BE:0:500; %BE:0:500; %BE:0:500"/>
<field name="RollRatePID" units="" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="0.003,0.003,0.00002,0.3" limits="%BE:0:0.01; %BE:0:0.01; ; "/>
<field name="PitchRatePID" units="" type="float" elementnames="Kp,Ki,Kd,ILimit" defaultvalue="0.003,0.003,0.00002,0.3" limits="%BE:0:0.01; %BE:0:0.01; ; "/>

View File

@ -0,0 +1,28 @@
<xml>
<object name="StabilizationStatus" singleinstance="true" settings="false" category="Control">
<description>Contains status information to control submodules for stabilization.</description>
<field name="OuterLoop" units="" type="enum" options="Direct,Attitude,Rattitude,Weakleveling,Altitude,VerticalVelocity">
<elementnames>
<elementname>Roll</elementname>
<elementname>Pitch</elementname>
<elementname>Yaw</elementname>
<elementname>Thrust</elementname>
</elementnames>
</field>
<field name="InnerLoop" units="" type="enum" options="Direct,VirtualFlyBar,RelayTuning,AxisLock,Rate,CruiseControl">
<elementnames>
<elementname>Roll</elementname>
<elementname>Pitch</elementname>
<elementname>Yaw</elementname>
<elementname>Thrust</elementname>
</elementnames>
</field>
<access gcs="readwrite" flight="readwrite"/>
<telemetrygcs acked="false" updatemode="manual" period="0"/>
<telemetryflight acked="false" updatemode="periodic" period="5000"/>
<logging updatemode="manual" period="0"/>
</object>
</xml>