1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-18 03:52:11 +01:00

Adding ADC downsampling code

git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@1296 ebee16cc-31ac-478f-84a7-5cbb03baadba
This commit is contained in:
peabody124 2010-08-15 04:08:57 +00:00 committed by peabody124
parent 070ce007a0
commit cc2441d41b
3 changed files with 337 additions and 35 deletions

View File

@ -95,7 +95,6 @@ SRC += $(PIOSSTM32F10X)/pios_led.c
SRC += $(PIOSSTM32F10X)/pios_delay.c
SRC += $(PIOSSTM32F10X)/pios_usart.c
SRC += $(PIOSSTM32F10X)/pios_irq.c
SRC += $(PIOSSTM32F10X)/pios_adc.c
SRC += $(PIOSSTM32F10X)/pios_i2c.c
SRC += $(PIOSSTM32F10X)/pios_gpio.c
SRC += $(PIOSSTM32F10X)/pios_spi.c

View File

@ -1,9 +1,17 @@
/**
******************************************************************************
* @addtogroup AHRS AHRS Control
* @brief The AHRS Modules perform
*
* @{
* @addtogroup AHRS_Main
* @brief Main function which does the hardware dependent stuff
* @{
*
*
* @file ahrs.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Main AHRS functions
* @brief INSGPS Test Program
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
@ -29,9 +37,53 @@
#include "pios_opahrs_proto.h"
#include "ahrs_fsm.h" /* lfsm_state */
/* Global Variables */
/**
* State of AHRS EKF
* @arg AHRS_IDLE - waiting for data to be available for filtering
* @arg AHRS_DATA_READY - Data ready for downsampling and processing
* @arg AHRS_PROCESSING - Performing update on the available data
*/
enum {AHRS_IDLE, AHRS_DATA_READY, AHRS_PROCESSING} ahrs_state;
/* Local Variables */
/**
* @addtogroup AHRS_ADC_Configuration ADC Configuration
* @{
* Functions to configure ADC and handle interrupts
*/
void AHRS_ADC_Config(int32_t ekf_rate, int32_t adc_oversample);
void AHRS_ADC_DMA_Handler(void);
void DMA1_Channel1_IRQHandler() __attribute__ ((alias ("AHRS_ADC_DMA_Handler")));
/**
* @}
*/
/**
* @addtogroup AHRS_Definitions
* @{
*/
#define EKF_RATE 50
#define ADC_OVERSAMPLE 10
#define ADC_CONTINUOUS_CHANNELS PIOS_ADC_NUM_PINS
#define PREDICTION_COUNT 4
// TODO: Define calibration procedure including changes over temperature
#define VDD 3.3 /* supply voltage for ADC */
#define FULL_RANGE 4096 /* 12 bit ADC */
#define ACCEL_RANGE 2 /* adjustable by FS input */
#define ACCEL_GRAVITY 9.81 /* m s^-1 */
#define ACCEL_SENSITIVITY ( VDD / 5 )
#define ACCEL_SCALE ( (VDD / FULL_RANGE) / ACCEL_SENSITIVITY * 2 / ACCEL_RANGE * ACCEL_GRAVITY )
#define ACCEL_OFFSET -2048
#define GYRO_SENSITIVITY ( 2.0 / 1000 ) /* V sec deg^-1 */
#define RAD_PER_DEGREE ( 3.14159 / 180 )
#define GYRO_SCALE ( (VDD / FULL_RANGE) / GYRO_SENSITIVITY * RAD_PER_DEGREE )
#define GYRO_OFFSET -1675 /* From data sheet, zero accel output is 1.35 v */
/**
* @addtogroup AHRS_Local Local Variables
* @{
*/
struct mag_sensor {
uint8_t id[4];
struct {
@ -45,6 +97,11 @@ struct accel_sensor {
uint16_t y;
uint16_t z;
} raw;
struct {
float x;
float y;
float z;
} filtered;
};
struct gyro_sensor {
@ -53,6 +110,11 @@ struct gyro_sensor {
uint16_t y;
uint16_t z;
} raw;
struct {
float x;
float y;
float z;
} filtered;
struct {
uint16_t xy;
uint16_t z;
@ -73,6 +135,9 @@ struct attitude_solution {
float yaw;
} euler;
};
/**
* @}
*/
struct altitude_sensor {
float altitude;
@ -102,9 +167,25 @@ static struct attitude_solution attitude_data = {
/* Function Prototypes */
void process_spi_request(void);
void downsample_data();
/**
* AHRS Main function
* @addtogroup AHRS_Global_Data AHRS Global Data
* @{
* Public data. Used by both EKF and the sender
*/
int16_t fir_coeffs[ADC_OVERSAMPLE+1]; // FIR filter coefficients
int16_t raw_data_buffer[ADC_CONTINUOUS_CHANNELS * ADC_OVERSAMPLE * 2]; // Double buffer that DMA just used
int16_t * valid_data_buffer; // Swapped by interrupt handler to achieve double buffering
uint32_t ekf_too_slow = 0;
uint32_t total_conversion_blocks = 0;
/**
* @}
*/
/**
* @brief AHRS Main function
*/
int main()
{
@ -118,7 +199,7 @@ int main()
PIOS_COM_Init();
/* ADC system */
PIOS_ADC_Init();
AHRS_ADC_Config(EKF_RATE, ADC_OVERSAMPLE);
/* Magnetic sensor system */
PIOS_I2C_Init();
@ -158,21 +239,24 @@ int main()
// Get magnetic readings
PIOS_HMC5843_ReadMag(mag_data.raw.axis);
// Test ADC
accel_data.raw.x = PIOS_ADC_PinGet(4);
accel_data.raw.y = PIOS_ADC_PinGet(2);
accel_data.raw.z = PIOS_ADC_PinGet(0);
// Delay for valid data
while( ahrs_state != AHRS_DATA_READY );
ahrs_state = AHRS_PROCESSING;
gyro_data.raw.x = PIOS_ADC_PinGet(1);
gyro_data.raw.y = PIOS_ADC_PinGet(3);
gyro_data.raw.z = PIOS_ADC_PinGet(5);
downsample_data();
/* Turn this on when the temperature ADCs are configured */
gyro_data.temp.xy = PIOS_ADC_PinGet(6);
gyro_data.temp.z = PIOS_ADC_PinGet(7);
// Hacky - grab one sample from buffer to populate this. Need to send back
// all raw data if it's happening
accel_data.raw.x = valid_data_buffer[0];
accel_data.raw.y = valid_data_buffer[2];
accel_data.raw.z = valid_data_buffer[4];
//PIOS_COM_SendFormattedString(PIOS_COM_AUX, "ADC Values: %d,%d,%d,%d,%d,%d\r\n", PIOS_ADC_PinGet(0), PIOS_ADC_PinGet(1), PIOS_ADC_PinGet(2), PIOS_ADC_PinGet(3), PIOS_ADC_PinGet(4), PIOS_ADC_PinGet(5));
gyro_data.raw.x = valid_data_buffer[1];
gyro_data.raw.y = valid_data_buffer[3];
gyro_data.raw.z = valid_data_buffer[5];
gyro_data.temp.xy = valid_data_buffer[6];
gyro_data.temp.z = valid_data_buffer[7];
/* Simulate a rotating airframe */
attitude_data.quaternion.q1 += .001;
@ -196,6 +280,58 @@ int main()
return 0;
}
/**
* @brief Downsample the analog data
* @return none
*
* Tried to make as much of the filtering fixed point when possible. Need to account
* for offset for each sample before the multiplication if filter not a boxcar. Could
* precompute fixed offset as sum[fir_coeffs[i]] * ACCEL_OFFSET. Puts data into global
* data structures @ref accel_data and @ref gyro_data.
*/
void downsample_data()
{
int32_t accel_raw[3], gyro_raw[3];
uint16_t i;
// Get the X data. Fifth byte in. Convert to m/s
accel_raw[0] = 0;
for( i = 0; i < ADC_OVERSAMPLE; i++ )
accel_raw[0] = accel_raw[0] + ( valid_data_buffer[0 + (i-1) * ADC_CONTINUOUS_CHANNELS] + ACCEL_OFFSET ) * fir_coeffs[i];
accel_data.filtered.x = (float) accel_raw[0] / (float) fir_coeffs[ADC_OVERSAMPLE] * ACCEL_SCALE;
// Get the Y data. Third byte in. Convert to m/s
accel_raw[1] = 0;
for( i = 0; i < ADC_OVERSAMPLE; i++ )
accel_raw[1] = accel_raw[1] + ( valid_data_buffer[2 + (i-1) * ADC_CONTINUOUS_CHANNELS] + ACCEL_OFFSET ) * fir_coeffs[i];
accel_data.filtered.y = (float) accel_raw[1] / (float) fir_coeffs[ADC_OVERSAMPLE] * ACCEL_SCALE;
// Get the Z data. Third byte in. Convert to m/s
accel_raw[2] = 0;
for( i = 0; i < ADC_OVERSAMPLE; i++ )
accel_raw[2] = accel_raw[2] + ( valid_data_buffer[4 + (i-1) * ADC_CONTINUOUS_CHANNELS] + ACCEL_OFFSET ) * fir_coeffs[i];
accel_data.filtered.z = (float) accel_raw[2] / (float) fir_coeffs[ADC_OVERSAMPLE] * ACCEL_SCALE;
// Get the X gyro data. Seventh byte in. Convert to deg/s.
gyro_raw[0] = 0;
for( i = 0; i < ADC_OVERSAMPLE; i++ )
gyro_raw[0] += gyro_raw[0] + ( valid_data_buffer[1 + (i-1) * ADC_CONTINUOUS_CHANNELS] + GYRO_OFFSET ) * fir_coeffs[i];
gyro_data.filtered.x = (float) gyro_raw[0] / (float) fir_coeffs[ADC_OVERSAMPLE] * GYRO_SCALE;
// Get the Y gyro data. Second byte in. Convert to deg/s.
gyro_raw[1] = 0;
for( i = 0; i < ADC_OVERSAMPLE; i++ )
gyro_raw[1] += gyro_raw[1] + ( valid_data_buffer[3 + (i-1) * ADC_CONTINUOUS_CHANNELS] + GYRO_OFFSET ) * fir_coeffs[i];
gyro_data.filtered.y = (float) gyro_raw[1] / (float) fir_coeffs[ADC_OVERSAMPLE] * GYRO_SCALE;
// Get the Z gyro data. Fifth byte in. Convert to deg/s.
gyro_raw[2] = 0;
for( i = 0; i < ADC_OVERSAMPLE; i++ )
gyro_raw[2] += gyro_raw[2] + ( valid_data_buffer[5 + (i-1) * ADC_CONTINUOUS_CHANNELS] + GYRO_OFFSET ) * fir_coeffs[i];
gyro_data.filtered.z = (float) gyro_raw[2] / (float) fir_coeffs[ADC_OVERSAMPLE] * GYRO_SCALE;
}
void dump_spi_message(uint8_t port, const char * prefix, uint8_t * data, uint32_t len)
{
@ -322,3 +458,156 @@ void process_spi_request(void)
lfsm_user_done ();
}
/**
* ADC Configuration local variabels
*/
/* Local Variables */
static GPIO_TypeDef* ADC_GPIO_PORT[PIOS_ADC_NUM_PINS] = PIOS_ADC_PORTS;
static const uint32_t ADC_GPIO_PIN[PIOS_ADC_NUM_PINS] = PIOS_ADC_PINS;
static const uint32_t ADC_CHANNEL[PIOS_ADC_NUM_PINS] = PIOS_ADC_CHANNELS;
static ADC_TypeDef* ADC_MAPPING[PIOS_ADC_NUM_PINS] = PIOS_ADC_MAPPING;
static const uint32_t ADC_CHANNEL_MAPPING[PIOS_ADC_NUM_PINS] = PIOS_ADC_CHANNEL_MAPPING;
/**
* Initialise the ADC Peripheral
* @params ekf_rate
*/
void AHRS_ADC_Config(int32_t ekf_rate, int32_t adc_oversample)
{
int32_t i;
/* Setup analog pins */
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
/* Enable each ADC pin in the array */
for(i = 0; i < PIOS_ADC_NUM_PINS; i++) {
GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN[i];
GPIO_Init(ADC_GPIO_PORT[i], &GPIO_InitStructure);
}
/* Enable ADC clocks */
PIOS_ADC_CLOCK_FUNCTION;
/* Map channels to conversion slots depending on the channel selection mask */
for(i = 0; i < PIOS_ADC_NUM_PINS; i++) {
ADC_RegularChannelConfig(ADC_MAPPING[i], ADC_CHANNEL[i], ADC_CHANNEL_MAPPING[i], PIOS_ADC_SAMPLE_TIME);
}
#if (PIOS_ADC_USE_TEMP_SENSOR)
ADC_TempSensorVrefintCmd(ENABLE);
ADC_RegularChannelConfig(PIOS_ADC_TEMP_SENSOR_ADC, ADC_Channel_14, PIOS_ADC_TEMP_SENSOR_ADC_CHANNEL, PIOS_ADC_SAMPLE_TIME);
#endif
// TODO: update ADC to continuous sampling, configure the sampling rate
/* Configure ADCs */
ADC_InitTypeDef ADC_InitStructure;
ADC_StructInit(&ADC_InitStructure);
ADC_InitStructure.ADC_Mode = ADC_Mode_RegSimult;
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 4; //((PIOS_ADC_NUM_CHANNELS + 1) >> 1);
ADC_Init(ADC1, &ADC_InitStructure);
#if (PIOS_ADC_USE_ADC2)
ADC_Init(ADC2, &ADC_InitStructure);
/* Enable ADC2 external trigger conversion (to synch with ADC1) */
ADC_ExternalTrigConvCmd(ADC2, ENABLE);
#endif
//RCC_ADCCLKConfig(PIOS_ADC_ADCCLK);
/* Enable ADC1->DMA request */
ADC_DMACmd(ADC1, ENABLE);
/* ADC1 calibration */
ADC_Cmd(ADC1, ENABLE);
ADC_ResetCalibration(ADC1);
while(ADC_GetResetCalibrationStatus(ADC1));
ADC_StartCalibration(ADC1);
while(ADC_GetCalibrationStatus(ADC1));
#if (PIOS_ADC_USE_ADC2)
/* ADC2 calibration */
ADC_Cmd(ADC2, ENABLE);
ADC_ResetCalibration(ADC2);
while(ADC_GetResetCalibrationStatus(ADC2));
ADC_StartCalibration(ADC2);
while(ADC_GetCalibrationStatus(ADC2));
#endif
/* Enable DMA1 clock */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
/* Configure DMA1 channel 1 to fetch data from ADC result register */
DMA_InitTypeDef DMA_InitStructure;
DMA_StructInit(&DMA_InitStructure);
DMA_DeInit(DMA1_Channel1);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&raw_data_buffer[0];
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
/* We are double buffering half words from the ADC. Make buffer appropriately sized */
DMA_InitStructure.DMA_BufferSize = (ADC_CONTINUOUS_CHANNELS * ADC_OVERSAMPLE * 2) >> 1;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
/* Note: We read ADC1 and ADC2 in parallel making a word read, also hence the half buffer size */
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel1, &DMA_InitStructure);
DMA_Cmd(DMA1_Channel1, ENABLE);
/* Trigger interrupt when for half conversions too to indicate double buffer */
DMA_ITConfig(DMA1_Channel1, DMA_IT_TC, ENABLE);
DMA_ITConfig(DMA1_Channel1, DMA_IT_HT, ENABLE);
/* Configure and enable DMA interrupt */
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = PIOS_ADC_IRQ_PRIO;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Finally start initial conversion */
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
}
void AHRS_ADC_DMA_Handler(void)
{
if ( ahrs_state == AHRS_IDLE )
{
// Ideally this would have a mutex, but I think we can avoid it (and don't have RTOS features)
if( DMA_GetFlagStatus( DMA1_IT_TC1 ) ) // whole double buffer filled
valid_data_buffer = &raw_data_buffer[ ADC_CONTINUOUS_CHANNELS * ADC_OVERSAMPLE ];
else if ( DMA_GetFlagStatus(DMA1_IT_HT1) )
valid_data_buffer = &raw_data_buffer[0];
else {
// lets cause a seg fault and catch whatever is going on
valid_data_buffer = 0;
}
ahrs_state = AHRS_DATA_READY;
}
else {
// Track how many times an interrupt occurred before EKF finished processing
ekf_too_slow++;
}
total_conversion_blocks++;
// Clear all interrupt from DMA 1 - regardless if buffer swapped
DMA_ClearFlag( DMA1_IT_GL1 );
}

View File

@ -134,9 +134,9 @@ TIM8 | | | |
#define PIOS_ADC_TEMP_SENSOR_ADC ADC1
#define PIOS_ADC_TEMP_SENSOR_ADC_CHANNEL 1
#define PIOS_ADC_PIN1_GPIO_PORT GPIOA // PA0 (Accel Z)
#define PIOS_ADC_PIN1_GPIO_PIN GPIO_Pin_0 // ADC12_IN0
#define PIOS_ADC_PIN1_GPIO_CHANNEL ADC_Channel_0
#define PIOS_ADC_PIN1_GPIO_PORT GPIOA // PA2 (Accel X)
#define PIOS_ADC_PIN1_GPIO_PIN GPIO_Pin_2 // ADC12_IN2
#define PIOS_ADC_PIN1_GPIO_CHANNEL ADC_Channel_2
#define PIOS_ADC_PIN1_ADC ADC1
#define PIOS_ADC_PIN1_ADC_NUMBER 1
@ -146,13 +146,17 @@ TIM8 | | | |
#define PIOS_ADC_PIN2_ADC ADC1
#define PIOS_ADC_PIN2_ADC_NUMBER 2
#define PIOS_ADC_PIN3_GPIO_PORT GPIOA // PA1 (Accel X)
#define PIOS_ADC_PIN3_GPIO_PIN GPIO_Pin_2 // ADC12_IN2
#define PIOS_ADC_PIN3_GPIO_CHANNEL ADC_Channel_2
#define PIOS_ADC_PIN3_GPIO_PORT GPIOA // PA0 (Accel Z)
#define PIOS_ADC_PIN3_GPIO_PIN GPIO_Pin_0 // ADC12_IN0
#define PIOS_ADC_PIN3_GPIO_CHANNEL ADC_Channel_0
#define PIOS_ADC_PIN3_ADC ADC1
#define PIOS_ADC_PIN3_ADC_NUMBER 3
<<<<<<< HEAD
#define PIOS_ADC_PIN4_GPIO_PORT GPIOA // PA6 (XY Temp)
=======
#define PIOS_ADC_PIN4_GPIO_PORT GPIOA // PA6 (Temp_XY)
>>>>>>> Adding ADC downsampling code
#define PIOS_ADC_PIN4_GPIO_PIN GPIO_Pin_6 // ADC12_IN6
#define PIOS_ADC_PIN4_GPIO_CHANNEL ADC_Channel_6
#define PIOS_ADC_PIN4_ADC ADC1
@ -176,15 +180,24 @@ TIM8 | | | |
#define PIOS_ADC_PIN7_ADC ADC2
#define PIOS_ADC_PIN7_ADC_NUMBER 3
<<<<<<< HEAD
#define PIOS_ADC_PIN8_GPIO_PORT GPIOB // PA7 (Gyro Z)
#define PIOS_ADC_PIN8_GPIO_PIN GPIO_Pin_1 // ADC12_IN7
=======
#define PIOS_ADC_PIN8_GPIO_PORT GPIOB // PB1 (Z Temp)
#define PIOS_ADC_PIN8_GPIO_PIN GPIO_Pin_1 // ADC12_IN9
>>>>>>> Adding ADC downsampling code
#define PIOS_ADC_PIN8_GPIO_CHANNEL ADC_Channel_9
#define PIOS_ADC_PIN8_ADC ADC2
#define PIOS_ADC_PIN8_ADC_NUMBER 4
#define PIOS_ADC_NUM_PINS 8
<<<<<<< HEAD
#define PIOS_ADC_PORTS { PIOS_ADC_PIN1_GPIO_PORT, PIOS_ADC_PIN2_GPIO_PORT, PIOS_ADC_PIN3_GPIO_PORT, PIOS_ADC_PIN4_GPIO_PORT, PIOS_ADC_PIN5_GPIO_PORT, PIOS_ADC_PIN6_GPIO_PORT, PIOS_ADC_PIN7_GPIO_PORT, PIOS_ADC_PIN7_GPIO_PORT }
=======
#define PIOS_ADC_PORTS { PIOS_ADC_PIN1_GPIO_PORT, PIOS_ADC_PIN2_GPIO_PORT, PIOS_ADC_PIN3_GPIO_PORT, PIOS_ADC_PIN4_GPIO_PORT, PIOS_ADC_PIN5_GPIO_PORT, PIOS_ADC_PIN6_GPIO_PORT, PIOS_ADC_PIN7_GPIO_PORT, PIOS_ADC_PIN8_GPIO_PORT }
>>>>>>> Adding ADC downsampling code
#define PIOS_ADC_PINS { PIOS_ADC_PIN1_GPIO_PIN, PIOS_ADC_PIN2_GPIO_PIN, PIOS_ADC_PIN3_GPIO_PIN, PIOS_ADC_PIN4_GPIO_PIN, PIOS_ADC_PIN5_GPIO_PIN, PIOS_ADC_PIN6_GPIO_PIN, PIOS_ADC_PIN7_GPIO_PIN, PIOS_ADC_PIN8_GPIO_PIN }
#define PIOS_ADC_CHANNELS { PIOS_ADC_PIN1_GPIO_CHANNEL, PIOS_ADC_PIN2_GPIO_CHANNEL, PIOS_ADC_PIN3_GPIO_CHANNEL, PIOS_ADC_PIN4_GPIO_CHANNEL, PIOS_ADC_PIN5_GPIO_CHANNEL, PIOS_ADC_PIN6_GPIO_CHANNEL, PIOS_ADC_PIN7_GPIO_CHANNEL, PIOS_ADC_PIN8_GPIO_CHANNEL }
#define PIOS_ADC_MAPPING { PIOS_ADC_PIN1_ADC, PIOS_ADC_PIN2_ADC, PIOS_ADC_PIN3_ADC, PIOS_ADC_PIN4_ADC, PIOS_ADC_PIN5_ADC, PIOS_ADC_PIN6_ADC, PIOS_ADC_PIN7_ADC, PIOS_ADC_PIN8_ADC }
@ -194,17 +207,18 @@ TIM8 | | | |
#define PIOS_ADC_USE_ADC2 1
#define PIOS_ADC_CLOCK_FUNCTION RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_ADC2, ENABLE)
#define PIOS_ADC_ADCCLK RCC_PCLK2_Div8
/* RCC_PCLK2_Div2: ADC clock = PCLK2/2 */
/* RCC_PCLK2_Div4: ADC clock = PCLK2/4 */
/* RCC_PCLK2_Div6: ADC clock = PCLK2/6 */
/* RCC_PCLK2_Div8: ADC clock = PCLK2/8 */
/* RCC_PCLK2_Div2: ADC clock = PCLK2/2 */
/* RCC_PCLK2_Div4: ADC clock = PCLK2/4 */
/* RCC_PCLK2_Div6: ADC clock = PCLK2/6 */
/* RCC_PCLK2_Div8: ADC clock = PCLK2/8 */
#define PIOS_ADC_SAMPLE_TIME ADC_SampleTime_239Cycles5
/* Sample time: */
/* With an ADCCLK = 14 MHz and a sampling time of 293.5 cycles: */
/* Tconv = 239.5 + 12.5 = 252 cycles = 18<31>s */
/* (1 / (ADCCLK / CYCLES)) = Sample Time (<28>S) */
/* Sample time: */
/* With an ADCCLK = 14 MHz and a sampling time of 293.5 cycles: */
/* Tconv = 239.5 + 12.5 = 252 cycles = 18<31>s */
/* (1 / (ADCCLK / CYCLES)) = Sample Time (<28>S) */
#define PIOS_ADC_IRQ_PRIO PIOS_IRQ_PRIO_HIGH
//-------------------------
// GPIO
//-------------------------