1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-01 09:24:10 +01:00

Remove (almost) exact copy of dosfs from F1-specific directory

The difference was in dfs_sdcard.c, line 107:

-if((status = PIOS_SDCARD_SectorRead(sector, buffer)) < 0) {
+if((status = PIOS_SDCARD_SectorRead(sector, buffer)) != 0) {

Currenly unused, kept as is.
This commit is contained in:
Oleg Semyonov 2013-03-16 15:20:08 +02:00
parent 448a07fe57
commit db0cdc6a0c
6 changed files with 1 additions and 2295 deletions

View File

@ -1,368 +0,0 @@
README.TXT (C) Copyright 2006
DOSFS Level 1 Version 1.02 Lewin A.R.W. Edwards (sysadm@zws.com)
=====================================================================
Abstract
========
DOSFS is a FAT-compatible filesystem intended for fairly low-end
embedded applications. It is not the leanest possible implementation
(the leanest FAT implementations operate in << 512 bytes of RAM, with
heavy restrictions). This code strikes a good balance between size
and functionality, with an emphasis on RAM footprint.
Intended target systems would be in the ballpark of 1K RAM, 4K ROM
or more.
Features:
* Supports FAT12, FAT16 and FAT32 volumes
* Supports storage devices up to 2048Gbytes in size (LBA32)
* Supports devices with or without MBRs (hard disks vs. floppy disks
or ZIP drives formatted as "big floppies")
* Supports multiple partitions on disks with MBRs
* Supports subdirectories
* Can be operated with a single global 512-byte sector buffer
* Fully reentrant code (assuming the underlying physical device driver
is reentrant and global sector buffers are not used). There are no
global variables in the filesystem
* Does not perform any memory allocation
* Partial support for random-access files
Applications:
* Firmware upgrades
* Failsafe IPL
* Media playback
* Data logging
* Configuration storage
There is no technical support for this free product; however, if you
have questions or suggestions, you are encouraged to email Lewin
Edwards at sysadm@zws.com. If you need custom additions to the code,
or if you have other projects for which you need engineering
assistance, please feel free to email or call (646) 549-3715.
License
=======
The license for DOSFS is very simple but verbose to state.
1. DOSFS is (C) Copyright 2006 by Lewin A.R.W. Edwards ("Author").
All rights not explicitly granted herein are reserved. The DOSFS
code is the permanent property of the Author and no transfer of
ownership is implied by this license.
2. DOSFS is an educational project, provided as-is. No guarantee of
performance or suitability for any application is stated or
implied. You use this product entirely at your own risk. Use of
this product in any manner automatically waives any right to seek
compensation or damages of any sort from the Author. Since the
products you might make are entirely out of the Author's control,
use of this product also constitutes an agreement by you to take
full responsibility for and indemnify the Author against any
action for any loss or damage (including economic loss of any
type, and specifically including patent litigation) that arises
from a product made by you that incorporates any portion of
the DOSFS code.
3. If you live under the jurisdiction of any legislation that would
prohibit or limit any condition in this license, you cannot be
licensed to use this product.
4. If you do not fall into the excluded category in point 3, you are
hereby licensed to use the DOSFS code in any application that you
see fit. You are not required to pay any fee or notify the Author
that you are using DOSFS. Any modifications made by you to the
DOSFS code are your property and you may distribute the modified
version in any manner that you wish. You are not required to
disclose sourcecode to such modifications, either to the Author or
to any third party. Any such disclosure made to the Author will
irrevocably become the property of the Author in the absence of a
formal agreement to the contrary, established prior to such
disclosure being made.
To summarize the intent of the above: DOSFS is free. You can do what
you want with it. Anything that happens as a result is entirely your
responsibility. You can't take ownership of my code and stop me from
doing whatever I want with it. If you do something nifty with DOSFS
and send me the sourcecode, I may include your changes in the next
distribution and it will be released to the world as free software.
If someone sues you because your DOSFS-containing product causes
any sort of legal, financial or other problem, it's your lawsuit,
not mine, and you'll exclude me from the proceedings.
User-Supplied Functions
=======================
You must provide functions to read sectors into memory and write
them back to the target media. The demo suite includes an emulation
module that reads/writes a disk image file (#define HOSTVER pulls
in hostemu.h which wraps the prototypes for these functions).
There are various tools for UNIX, DOS, Windows et al, to create
images from storage media; my preferred utility is dd.
The functions you must supply in your embedded app are:
DFS_ReadSector(unit,buffer,sector,count)
DFS_WriteSector(unit,buffer,sector,count)
These two functions read and write, respectively, "count" sectors of
size SECTOR_SIZE (512 bytes; see below) from/to physical sector
#"sector" of device "unit", to/from the scratch buffer "buffer". They
should return 0 for success or nonzero for failure. In the current
implementation of DOSFS, count will always be 1.
The "unit" argument is designed to permit implementation of multiple
storage devices, for example multiple media slots on a single device,
or to differentiate between master and slave devices on an ATAPI bus.
This code is designed for 512-byte sectors. Although the sector size
is a #define, you should not tinker with it because the vast majority
of FAT filesystems use 512-byte sectors, and the DOSFS code doesn't
support runtime determination of sector size. This will not affect the
vast majority of users.
Example Code
============
Refer to the tests in main.c to see how to call DOSFS functions.
(These tests are all commented out). Note that the only two files
you need to add to your project are dosfs.c and dosfs.h.
Mounting Volumes
================
--If the device has a partition table (practically all removable flash
media are formatted this way), call DFS_GetPtnStart to get the
starting sector# of the desired partition. You can optionally also
retrieve the active state, partition type byte and partition size
in this step. The reason this step is broken out separately is so
you can support devices that are formatted like a floppy disk, i.e.
the volume starts directly at physical sector 0 of the media.
--Call DFS_GetVolInfo to read filesystem info into a VOLINFO structure.
DFS_GetVolInfo needs to know the unit number and partition starting
sector (as returned by DFS_GetPtnStart, or 0 if this is a "floppy-
format" volume without an MBR).
From this point on, the VOLINFO structure is all you'll need - you can
forget the unit and partition start sector numbers.
Enumerating Directory Contents
==============================
--Call DFS_Opendir and supply a path, populated VOLINFO and a
DIRINFO structure to receive the results. Note - you must PREPOPULATE
the DIRINFO.scratch field with a pointer to a sector scratch buffer.
This buffer must remain unmolested while you have the directory open
for searching.
--Call DFS_GetNext to receive the DIRENT contents for the next directory
item. This function returns DFS_OK for no error, and DFS_EOF if there
are no more entries in the directory being searched.
Before using the DIRENT, check the first character of the name. If it
is NULL, then this is an unusable entry - call DFS_GetNext again to
keep searching. LFN directory entries are automatically tagged this way
so your application will not be pestered by them.
Note: A designed side-effect of this code is that when you locate the
file of interest, the DIRINFO.currentcluster, DIRINFO.currentsector
and DIRINFO.currententry-1 fields will identify the directory entry of
interest.
Reading a File
==============
--Call DFS_OpenFile with mode = DFS_READ and supply a path and the relevant
VOLINFO structure. DFS_OpenFile will populate a FILEINFO that can be used
to refer to the file.
--Optionally call DFS_Seek to set the file pointer. If you attempt to set
the file pointer past the end of file, the file will NOT be extended. Check
the FILEINFO.pointer value after DFS_Seek to verify that the pointer is
where you expect it to be.
--Observe that functionality similar to the "whence" parameter of fseek() can
be obtained by using simple arithmetic on the FILEINFO.pointer and
FILEINFO.filelen members.
--Call DFS_ReadFile with the FILEINFO you obtained from OpenFile, and a
pointer to a buffer plus the desired number of bytes to read, and a
pointer to a sector-sized scratch buffer. The reason a scratch sector is
required is because the underlying sector read function doesn't know
about partial reads.
--Note that a file opened for reading cannot be written. If you need r/w
access, open with mode = DFS_WRITE (see below).
Writing a file
==============
--Call DFS_OpenFile with mode = DFS_WRITE and supply a path and the relevant
VOLINFO structure. DFS_OpenFile will populate a FILEINFO that can be used to
refer to the file.
--Optionally call DFS_Seek to set the file pointer. Refer to the notes on
this topic in the section on reading files, above.
--Call DFS_WriteFile with the FILEINFO you obtained from OpenFile, and a
pointer to the source buffer, and a pointer to a sector-sized scratch
buffer.
--Note that a file open for writing can also be read.
--Files are created automatically if they do not exist. Subdirectories are
NOT automatically created.
--If you open an existing file for writing, the file pointer will start at
the beginning of the data; if you want to append, seek to the end before
writing new data.
--If you perform random-access writes to a file, the length will NOT change
unless you exceed the file's original length. There is currently no
function to truncate a file at the current pointer position.
--On-disk consistency is guaranteed when DFS_WriteFile exits, unless your
physical layer has a writeback cache in it.
Deleting a file
===============
--Call DFS_UnlinkFile
--WARNING: This call will delete a subdirectory (correctly) but will NOT
first recurse the directory to delete the contents - so you will end up
with lost clusters.
Notes
=====
Some platforms may require explicit pragmas or attributes to the structures
and unions. For example, arm-gcc will require __attribute__ ((__packed__))
otherwise it will try to be "smart" and place the uint8_t members on 4-byte
boundaries. There is no truly elegant compiler-independent method to get
around this sort of problem.
The code assumes either a von Neumann architecture, or a compiler that
is smart enough to understand where your pointers are aimed and emit
the right kind of memory read and write instructions. The implications
of this statement depend on your target processor and the compiler you
are using. Be very careful not to straddle bank boundaries on bank-
switched memory systems.
Physical 32-bit sector numbers are used throughout. Therefore, the
CHS geometry (if any) of the storage media is not known to DOSFS. Your
sector r/w functions may need to query the CHS geometry and perform
mapping.
File timestamps set by DOSFS are always 1:01:00am on Jan 1, 2006. If
your system has a concept of real time, you can enhance this.
FILEINFO structures contain a pointer to the corresponding VOLINFO
used to open the file, mainly in order to avoid mixups but also to
obviate the need for an extra parameter to every file read/write. DOSFS
assumes that the VOLINFO won't move around. If you need to move or
destroy VOLINFOs pertaining to open files, you'll have to fix up the
pointer in the FILEINFO structure yourself.
The subdirectory delimiter is a forward slash ( '/' ) by default. The
reason for this is to avoid the common programming error of forgetting
that backslash is an escape character in C strings; i.e. "\MYDIR\FILE"
is NOT what you want; "\\MYDIR\\FILE" is what you wanted to type. If you
are porting DOS code into an embedded environment, feel free to change
this #define.
DOSFS does not have a concept of "current directory". A current directory
is owned by a process, and a process is an operating system concept.
DOSFS is a filesystem library, not an operating system. Therefore, any
path you provide to a DOSFS call is assumed to be relative to the root of
the volume.
There is no call to close a file or directory that is open for reading or
writing. You can simply destroy or reuse the data structures allocated for
that operation; there is no internal state in DOSFS so no cleanup is
necessary. Similarly, there is no call to close a file that is open for
writing. (Observe that dosfs.c has no global variables. All state information
is stored in data structures provided by the caller).
MAX_PATH is defined as 64. MS-type DOS filesystems support 128 characters
or more in paths. You can increase this define, but it may GREATLY
increase memory requirements.
VFAT long filenames are not supported. There is a certain amount of
patent controversy about them, but more importantly they don't really
belong in the scope of a "minimalist embedded filesystem".
Improving Performance
=====================
Read performance is fairly good, but can be improved by implementing read
caching on the FAT (see below) and, depending on your hardware platform,
possibly by implementing multi-sector reads.
Write performance may benefit ENORMOUSLY from platform-specific
optimization, especially if you are working with a flash media type that
has a large erase block size. While it is not possible to offer detailed
platform-independent advice, my general advice is to implement writeback
caching on the FAT area. One method for doing this would be to have a
cache system that lives in the DFS_ReadSector/WriteSector functions (on
top of the physical sector r/w functions) and is initially switched off.
Once you have called DFS_GetVolInfo, you then extract the VOLINFO.fat1
and VOLINFO.rootdir parameters and pass them to your caching layer.
Sectors >= fat1 and < rootdir should be cached. The cache strategy is
determined by the physical storage medium underlying the filesystem.
CACHING HINT:
Observe that there will be numerous read-modify-write operations in the
region from VOLINFO.fat1 through VOLINFO.fat1+VOLINFO.secperfat-1, but
in the region from VOLINFO.fat1+VOLINFO.secperfat through VOLINFO.rootdir
there will ONLY be write operations.
Platform Compatibility
======================
DOSFS was derived from code originally written for ARM7TDMI but
designed to be portable. It has been tested on AVR (using avrgcc),
MSP430 (using Rowley's CrossWorks) and PPC603e (using gcc); the host
test suite has also been validated on x86 using gcc under both Cygwin
and 32-bit Fedora Core 4 Linux.
TODO list
=========
* Add function to create subdirectory
* Make DFS_UnlinkFile recognize non-empty subdirectories
* Support "fast write" files where the FAT is not updated, for
logging applications where latency is important.
Test cases for V1.02
====================
Version 1.02 has NOT been through full regression testing. However the
bugs fixed in this version are important, and people have been asking
about them.
Test cases for V1.01
====================
See below.
Test cases for V1.00
====================
These are the test cases that were used to validate the correct
functionality of the DOSFS suite. Each test was performed on FAT12,
FAT16 and FAT32 volumes. P=Pass, F=Fail.
Case F12 F16 F32
---------------------------------------------------------------------
Get volume information P P P
Open root directory P P P
List contents of root directory (fully populated) P P P
Open subdirectory P P P
List contents of subdirectory (<= 1 cluster) P P P
List contents of large subdirectory (> 1 cluster) P P P
Open 5-level nested subdirectory P P P
Open existing file for reading P P P
Open nonexistent file for reading P P P
Seek past EOF, file open for reading P P P
Seek to cluster boundary P P P
Seek past cluster boundary P P P
Seek backwards to nonzero offset, pointer > cluster size P P P
Block-read entire file >1 cluster in size, odd size P P P
Seek to odd location in file P P P
Perform <1 sector reads from random file locations P P P
Open nonexistent file for writing in root dir P P P
Open nonexistent file for writing in subdir P P P
Repeat prev. 2 tests on volume with 0 free clusters P P P
Seek past EOF, file open for writing P P P
Open existing file for writing in root dir P P P
Write random-length records to file, 20 clusters total P P P
MS-DOS 6.0 SCANDISK cross-check P P P
Revision History
================
Jan-06-2005 larwe Initial release (1.0)
Jan-29-2006 larwe Bugfix release (1.01)
- Fixed error in FAT12 FAT read on boundary of sector
- Improved compilability under avrgcc
Sep-16-2006 larwe Bugfix release (1.02)
- DFS_Seek would not correctly rewind to start of file
- DFS_Seek would not correctly seek to a position not on a cluster
boundary
- DFS_OpenFile fencepost error caused memory access at [start of
string-1] with a local variable
- DFS_OpenFile could not open a file in the root directory

View File

@ -1,42 +0,0 @@
DOSFS has been developed by Lewin Edwards, and is provided as freeware.
See README.txt for details.
This package has been downloaded from:
http://www.larwe.com/zws/products/dosfs/
Version 1.03 from 9/30/06 is used.
dfs_sdcard has been added as access layer between DFS functions and PIOS_SDCARD functions
The original usage examples can be found under unused/main.c
Addendum:
TK 2008-12-18:
DFS_Seek was running endless, applied a patch which has been posted at
http://reza.net/wordpress/?p=110
TK 2008-12-18:
patched the patch: endcluster wasn't calculated correctly
TK 2008-12-18:
added 'DFS_CachingEnabledSet(uint8_t enable)' function to enable a simple
caching mechanism. This feature has to be explicitely enabled, as it isn't
reentrant and requires to use the same buffer pointer whenever reading a file!
TK 2008-18-12
added missing pendant to DFS_CanonicalToDir;
char *DFS_DirToCanonical(char *dest, char *src)
expects a 13 byte buffer in *dest
TK 2009-02-12
added dummy "DFS_Close" function
It has no effect if writing to SD Card, it's only used by the DosFS wrapper
in emulation
TK 2009-07-04
fixed bug in DFS_GetNext() in conjunction with the DFS_GetFreeDirEnt() function
New files where not added correctly to subdirectories

View File

@ -1,143 +0,0 @@
/**
******************************************************************************
*
* @file pios.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* Parts by Thorsten Klose (tk@midibox.org) (tk@midibox.org)
* @brief Access layer between DOSFS and PIOS
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Include files */
#include <pios.h>
#include "dosfs.h"
/* Local variables */
/* For caching - this feature has to be explicitly enabled, as it isn't reentrant */
/* and requires to use the same buffer pointer whenever reading a file. */
static uint32_t last_sector;
static uint8_t caching_enabled = 0;
void DFS_CachingEnabledSet(uint8_t enable)
{
caching_enabled = enable;
last_sector = 0xffffffff;
}
/**
* Converts directory name to canonical name
* (missing pendant to DFS_anonicalToDir)
* dest must point to a 13-byte buffer
*/
char *DFS_DirToCanonical(char *dest, char *src)
{
uint8_t pos = 0;
while( pos < 8 && src[pos] != ' ' ) {
*dest++ = src[pos++];
}
if( src[8] != ' ' ) {
*dest++ = '.';
pos = 8;
while( pos < 11 && src[pos] != ' ' ) {
*dest++ = src[pos++];
}
}
/* Terminate string */
*dest = 0;
return dest;
}
/**
* Read sector from SD Card
* Returns 0 OK, nonzero for any error
*/
uint32_t DFS_ReadSector(uint8_t unit, uint8_t *buffer, uint32_t sector, uint32_t count)
{
/* Only allow access to single unit */
if(unit != 0) {
return 1;
}
/* According to README.txt, count is always 1 - check this! */
if(count != 1) {
return 2;
}
/* Cache: */
if(caching_enabled && sector == last_sector) {
/* we assume that sector is already in *buffer */
/* since the user has to take care that the same buffer is used for file reads, this */
/* feature has to be explicitly enabled with DFS_CachingEnabledSet(uint8_t enable) */
return 0;
}
last_sector = sector;
/* Forward to PIOS */
int32_t status;
if((status = PIOS_SDCARD_SectorRead(sector, buffer)) < 0) {
/* Cannot access SD Card */
return 3;
}
/* Success */
return 0;
}
/**
* Write sector to SD Card
* Returns 0 OK, nonzero for any error
*/
uint32_t DFS_WriteSector(uint8_t unit, uint8_t *buffer, uint32_t sector, uint32_t count)
{
/* Only allow access to single unit */
if(unit != 0) {
return 1;
}
/* According to README.txt, count is always 1 - check this! */
if(count != 1) {
return 2;
}
/* Invalidate cache */
last_sector = 0xffffffff;
/* Forward to PIOS */
int32_t status;
if((status = PIOS_SDCARD_SectorWrite(sector, buffer)) < 0) {
/* Cannot access SD Card */
return 3;
}
/* Success */
return 0;
}

View File

@ -1,1336 +0,0 @@
/*
DOSFS Embedded FAT-Compatible Filesystem
(C) 2005 Lewin A.R.W. Edwards (sysadm@zws.com)
You are permitted to modify and/or use this code in your own projects without
payment of royalty, regardless of the license(s) you choose for those projects.
You cannot re-copyright or restrict use of the code as released by Lewin Edwards.
*/
//#include "common.h"
#include <string.h>
#include <stdlib.h>
//#include "fat.h"
#define div(a,b) ldiv(a,b)
#include "dosfs.h"
/*
Get starting sector# of specified partition on drive #unit
NOTE: This code ASSUMES an MBR on the disk.
scratchsector should point to a SECTOR_SIZE scratch area
Returns 0xffffffff for any error.
If pactive is non-NULL, this function also returns the partition active flag.
If pptype is non-NULL, this function also returns the partition type.
If psize is non-NULL, this function also returns the partition size.
*/
uint32_t DFS_GetPtnStart(uint8_t unit, uint8_t *scratchsector, uint8_t pnum, uint8_t *pactive, uint8_t *pptype, uint32_t *psize)
{
uint32_t result=0;
PMBR mbr = (PMBR) scratchsector;
// DOS ptable supports maximum 4 partitions
if (pnum > 3)
return DFS_ERRMISC;
// Read MBR from target media
if (DFS_ReadSector(unit,scratchsector,0,1)) {
return DFS_ERRMISC;
}
// check if jump to boot, VBR
if(mbr->bootcode[0]==0xEB || mbr->bootcode[0]==0xE9){
// MBR is actually VBR
return 0;
}
result = (uint32_t) mbr->ptable[pnum].start_0 |
(((uint32_t) mbr->ptable[pnum].start_1) << 8) |
(((uint32_t) mbr->ptable[pnum].start_2) << 16) |
(((uint32_t) mbr->ptable[pnum].start_3) << 24);
if (pactive)
*pactive = mbr->ptable[pnum].active;
if (pptype)
*pptype = mbr->ptable[pnum].type;
if (psize)
*psize = (uint32_t) mbr->ptable[pnum].size_0 |
(((uint32_t) mbr->ptable[pnum].size_1) << 8) |
(((uint32_t) mbr->ptable[pnum].size_2) << 16) |
(((uint32_t) mbr->ptable[pnum].size_3) << 24);
return result;
}
/*
Retrieve volume info from BPB and store it in a VOLINFO structure
You must provide the unit and starting sector of the filesystem, and
a pointer to a sector buffer for scratch
Attempts to read BPB and glean information about the FS from that.
Returns 0 OK, nonzero for any error.
*/
uint32_t DFS_GetVolInfo(uint8_t unit, uint8_t *scratchsector, uint32_t startsector, PVOLINFO volinfo)
{
PLBR lbr = (PLBR) scratchsector;
volinfo->unit = unit;
volinfo->startsector = startsector;
#ifdef DEBUG_DOSFS
printf("DFS_GetVolInfo\r\n");
#endif
if(DFS_ReadSector(unit,scratchsector,startsector,1))
return DFS_ERRMISC;
// tag: OEMID, refer dosfs.h
// strncpy(volinfo->oemid, lbr->oemid, 8);
// volinfo->oemid[8] = 0;
volinfo->secperclus = lbr->bpb.secperclus;
volinfo->reservedsecs = (uint16_t) lbr->bpb.reserved_l |
(((uint16_t) lbr->bpb.reserved_h) << 8);
volinfo->numsecs = (uint16_t) lbr->bpb.sectors_s_l |
(((uint16_t) lbr->bpb.sectors_s_h) << 8);
if (!volinfo->numsecs)
volinfo->numsecs = (uint32_t) lbr->bpb.sectors_l_0 |
(((uint32_t) lbr->bpb.sectors_l_1) << 8) |
(((uint32_t) lbr->bpb.sectors_l_2) << 16) |
(((uint32_t) lbr->bpb.sectors_l_3) << 24);
// If secperfat is 0, we must be in a FAT32 volume; get secperfat
// from the FAT32 EBPB. The volume label and system ID string are also
// in different locations for FAT12/16 vs FAT32.
volinfo->secperfat = (uint16_t) lbr->bpb.secperfat_l |
(((uint16_t) lbr->bpb.secperfat_h) << 8);
if (!volinfo->secperfat) {
volinfo->secperfat = (uint32_t) lbr->ebpb.ebpb32.fatsize_0 |
(((uint32_t) lbr->ebpb.ebpb32.fatsize_1) << 8) |
(((uint32_t) lbr->ebpb.ebpb32.fatsize_2) << 16) |
(((uint32_t) lbr->ebpb.ebpb32.fatsize_3) << 24);
memcpy(volinfo->label, lbr->ebpb.ebpb32.label, 11);
volinfo->label[11] = 0;
// tag: OEMID, refer dosfs.h
// memcpy(volinfo->system, lbr->ebpb.ebpb32.system, 8);
// volinfo->system[8] = 0;
}
else {
memcpy(volinfo->label, lbr->ebpb.ebpb.label, 11);
volinfo->label[11] = 0;
// tag: OEMID, refer dosfs.h
// memcpy(volinfo->system, lbr->ebpb.ebpb.system, 8);
// volinfo->system[8] = 0;
}
// note: if rootentries is 0, we must be in a FAT32 volume.
volinfo->rootentries = (uint16_t) lbr->bpb.rootentries_l |
(((uint16_t) lbr->bpb.rootentries_h) << 8);
// after extracting raw info we perform some useful precalculations
volinfo->fat1 = startsector + volinfo->reservedsecs;
// The calculation below is designed to round up the root directory size for FAT12/16
// and to simply ignore the root directory for FAT32, since it's a normal, expandable
// file in that situation.
if (volinfo->rootentries) {
volinfo->rootdir = volinfo->fat1 + (volinfo->secperfat * 2);
volinfo->dataarea = volinfo->rootdir + (((volinfo->rootentries * 32) + (SECTOR_SIZE - 1)) / SECTOR_SIZE);
}
else {
volinfo->dataarea = volinfo->fat1 + (volinfo->secperfat * 2);
volinfo->rootdir = (uint32_t) lbr->ebpb.ebpb32.root_0 |
(((uint32_t) lbr->ebpb.ebpb32.root_1) << 8) |
(((uint32_t) lbr->ebpb.ebpb32.root_2) << 16) |
(((uint32_t) lbr->ebpb.ebpb32.root_3) << 24);
}
// Calculate number of clusters in data area and infer FAT type from this information.
volinfo->numclusters = (volinfo->numsecs - volinfo->dataarea) / volinfo->secperclus;
if (volinfo->numclusters < 4085)
volinfo->filesystem = FAT12;
else if (volinfo->numclusters < 65525)
volinfo->filesystem = FAT16;
else
volinfo->filesystem = FAT32;
return DFS_OK;
}
/*
Fetch FAT entry for specified cluster number
You must provide a scratch buffer for one sector (SECTOR_SIZE) and a populated VOLINFO
Returns a FAT32 BAD_CLUSTER value for any error, otherwise the contents of the desired
FAT entry.
scratchcache should point to a UINT32. This variable caches the physical sector number
last read into the scratch buffer for performance enhancement reasons.
*/
uint32_t DFS_GetFAT(PVOLINFO volinfo, uint8_t *scratch, uint32_t *scratchcache, uint32_t cluster)
{
uint32_t offset=0, sector=0, result=0;
#ifdef DEBUG_DOSFS
printf("DFS_GetFAT\r\n");
#endif
if (volinfo->filesystem == FAT12) {
offset = cluster + (cluster / 2);
}
else if (volinfo->filesystem == FAT16) {
offset = cluster * 2;
}
else if (volinfo->filesystem == FAT32) {
offset = cluster * 4;
}
else
return 0x0ffffff7; // FAT32 bad cluster
// at this point, offset is the BYTE offset of the desired sector from the start
// of the FAT. Calculate the physical sector containing this FAT entry.
sector = ldiv(offset, SECTOR_SIZE).quot + volinfo->fat1;
// If this is not the same sector we last read, then read it into RAM
if (sector != *scratchcache) {
if(DFS_ReadSector(volinfo->unit, scratch, sector, 1)) {
// avoid anyone assuming that this cache value is still valid, which
// might cause disk corruption
*scratchcache = 0;
return 0x0ffffff7; // FAT32 bad cluster
}
*scratchcache = sector;
}
// At this point, we "merely" need to extract the relevant entry.
// This is easy for FAT16 and FAT32, but a royal PITA for FAT12 as a single entry
// may span a sector boundary. The normal way around this is always to read two
// FAT sectors, but that luxury is (by design intent) unavailable to DOSFS.
offset = ldiv(offset, SECTOR_SIZE).rem;
if (volinfo->filesystem == FAT12) {
// Special case for sector boundary - Store last byte of current sector.
// Then read in the next sector and put the first byte of that sector into
// the high byte of result.
if (offset == SECTOR_SIZE - 1) {
result = (uint32_t) scratch[offset];
sector++;
if(DFS_ReadSector(volinfo->unit, scratch, sector, 1)) {
// avoid anyone assuming that this cache value is still valid, which
// might cause disk corruption
*scratchcache = 0;
return 0x0ffffff7; // FAT32 bad cluster
}
*scratchcache = sector;
// Thanks to Claudio Leonel for pointing out this missing line.
result |= ((uint32_t) scratch[0]) << 8;
}
else {
result = (uint32_t) scratch[offset] |
((uint32_t) scratch[offset+1]) << 8;
}
if (cluster & 1)
result = result >> 4;
else
result = result & 0xfff;
}
else if (volinfo->filesystem == FAT16) {
result = (uint32_t) scratch[offset] |
((uint32_t) scratch[offset+1]) << 8;
}
else if (volinfo->filesystem == FAT32) {
result = ((uint32_t) scratch[offset] |
((uint32_t) scratch[offset+1]) << 8 |
((uint32_t) scratch[offset+2]) << 16 |
((uint32_t) scratch[offset+3]) << 24) & 0x0fffffff;
}
else
result = 0x0ffffff7; // FAT32 bad cluster
return result;
}
/*
Set FAT entry for specified cluster number
You must provide a scratch buffer for one sector (SECTOR_SIZE) and a populated VOLINFO
Returns DFS_ERRMISC for any error, otherwise DFS_OK
scratchcache should point to a UINT32. This variable caches the physical sector number
last read into the scratch buffer for performance enhancement reasons.
NOTE: This code is HIGHLY WRITE-INEFFICIENT, particularly for flash media. Considerable
performance gains can be realized by caching the sector. However this is difficult to
achieve on FAT12 without requiring 2 sector buffers of scratch space, and it is a design
requirement of this code to operate on a single 512-byte scratch.
If you are operating DOSFS over flash, you are strongly advised to implement a writeback
cache in your physical I/O driver. This will speed up your code significantly and will
also conserve power and flash write life.
*/
uint32_t DFS_SetFAT(PVOLINFO volinfo, uint8_t *scratch, uint32_t *scratchcache, uint32_t cluster, uint32_t new_contents)
{
uint32_t offset=0, sector=0, result=0;
#ifdef DEBUG_DOSFS
printf("DFS_SetFAT (%lu->%lu)\r\n",cluster,new_contents);
#endif
if (volinfo->filesystem == FAT12) {
offset = cluster + (cluster / 2);
new_contents &=0xfff;
}
else if (volinfo->filesystem == FAT16) {
offset = cluster * 2;
new_contents &=0xffff;
}
else if (volinfo->filesystem == FAT32) {
offset = cluster * 4;
new_contents &=0x0fffffff; // FAT32 is really "FAT28"
}
else
return DFS_ERRMISC;
// at this point, offset is the BYTE offset of the desired sector from the start
// of the FAT. Calculate the physical sector containing this FAT entry.
sector = ldiv(offset, SECTOR_SIZE).quot + volinfo->fat1;
// If this is not the same sector we last read, then read it into RAM
if (sector != *scratchcache) {
if(DFS_ReadSector(volinfo->unit, scratch, sector, 1)) {
// avoid anyone assuming that this cache value is still valid, which
// might cause disk corruption
*scratchcache = 0;
return DFS_ERRMISC;
}
*scratchcache = sector;
}
// At this point, we "merely" need to extract the relevant entry.
// This is easy for FAT16 and FAT32, but a royal PITA for FAT12 as a single entry
// may span a sector boundary. The normal way around this is always to read two
// FAT sectors, but that luxury is (by design intent) unavailable to DOSFS.
offset = ldiv(offset, SECTOR_SIZE).rem;
if (volinfo->filesystem == FAT12) {
// If this is an odd cluster, pre-shift the desired new contents 4 bits to
// make the calculations below simpler
if (cluster & 1)
new_contents = new_contents << 4;
// Special case for sector boundary
if (offset == SECTOR_SIZE - 1) {
// Odd cluster: High 12 bits being set
if (cluster & 1) {
scratch[offset] = (scratch[offset] & 0x0f) | (new_contents & 0xf0);
}
// Even cluster: Low 12 bits being set
else {
scratch[offset] = new_contents & 0xff;
}
result = DFS_WriteSector(volinfo->unit, scratch, *scratchcache, 1);
// mirror the FAT into copy 2
if (DFS_OK == result)
result = DFS_WriteSector(volinfo->unit, scratch, (*scratchcache)+volinfo->secperfat, 1);
// If we wrote that sector OK, then read in the subsequent sector
// and poke the first byte with the remainder of this FAT entry.
if (DFS_OK == result) {
// *scratchcache++;
++*scratchcache; // TK: to avoid warning "value computed is not used"
result = DFS_ReadSector(volinfo->unit, scratch, *scratchcache, 1);
if (DFS_OK == result) {
// Odd cluster: High 12 bits being set
if (cluster & 1) {
scratch[0] = new_contents & 0xff00;
}
// Even cluster: Low 12 bits being set
else {
scratch[0] = (scratch[0] & 0xf0) | (new_contents & 0x0f);
}
result = DFS_WriteSector(volinfo->unit, scratch, *scratchcache, 1);
// mirror the FAT into copy 2
if (DFS_OK == result)
result = DFS_WriteSector(volinfo->unit, scratch, (*scratchcache)+volinfo->secperfat, 1);
}
else {
// avoid anyone assuming that this cache value is still valid, which
// might cause disk corruption
*scratchcache = 0;
}
}
} // if (offset == SECTOR_SIZE - 1)
// Not a sector boundary. But we still have to worry about if it's an odd
// or even cluster number.
else {
// Odd cluster: High 12 bits being set
if (cluster & 1) {
scratch[offset] = (scratch[offset] & 0x0f) | (new_contents & 0xf0);
scratch[offset+1] = new_contents & 0xff00;
}
// Even cluster: Low 12 bits being set
else {
scratch[offset] = new_contents & 0xff;
scratch[offset+1] = (scratch[offset+1] & 0xf0) | (new_contents & 0x0f);
}
result = DFS_WriteSector(volinfo->unit, scratch, *scratchcache, 1);
// mirror the FAT into copy 2
if (DFS_OK == result)
result = DFS_WriteSector(volinfo->unit, scratch, (*scratchcache)+volinfo->secperfat, 1);
}
}
else if (volinfo->filesystem == FAT16) {
scratch[offset] = (new_contents & 0xff);
scratch[offset+1] = (new_contents & 0xff00) >> 8;
result = DFS_WriteSector(volinfo->unit, scratch, *scratchcache, 1);
// mirror the FAT into copy 2 - XXX
if (DFS_OK == result)
result = DFS_WriteSector(volinfo->unit, scratch, (*scratchcache)+volinfo->secperfat, 1);
}
else if (volinfo->filesystem == FAT32) {
scratch[offset] = (new_contents & 0xff);
scratch[offset+1] = (new_contents & 0xff00) >> 8;
scratch[offset+2] = (new_contents & 0xff0000) >> 16;
scratch[offset+3] = (scratch[offset+3] & 0xf0) | ((new_contents & 0x0f000000) >> 24);
// Note well from the above: Per Microsoft's guidelines we preserve the upper
// 4 bits of the FAT32 cluster value. It's unclear what these bits will be used
// for; in every example I've encountered they are always zero.
result = DFS_WriteSector(volinfo->unit, scratch, *scratchcache, 1);
// mirror the FAT into copy 2
if (DFS_OK == result)
result = DFS_WriteSector(volinfo->unit, scratch, (*scratchcache)+volinfo->secperfat, 1);
}
else
result = DFS_ERRMISC;
return result;
}
/*
Convert a filename element from canonical (8.3) to directory entry (11) form
src must point to the first non-separator character.
dest must point to a 12-byte buffer.
*/
uint8_t *DFS_CanonicalToDir(uint8_t *dest, uint8_t *src)
{
uint8_t *destptr = dest;
memset(dest, ' ', 11);
dest[11] = 0;
while (*src && (*src != DIR_SEPARATOR) && (destptr - dest < 11)) {
if (*src >= 'a' && *src <='z') {
*destptr++ = (*src - 'a') + 'A';
src++;
}
else if (*src == '.') {
src++;
destptr = dest + 8;
}
else {
*destptr++ = *src++;
}
}
return dest;
}
/*
Find the first unused FAT entry
You must provide a scratch buffer for one sector (SECTOR_SIZE) and a populated VOLINFO
Returns a FAT32 BAD_CLUSTER value for any error, otherwise the contents of the desired
FAT entry.
Returns FAT32 bad_sector (0x0ffffff7) if there is no free cluster available
*/
uint32_t DFS_GetFreeFAT(PVOLINFO volinfo, uint8_t *scratch)
{
uint32_t i, result = 0xffffffff, scratchcache = 0;
#ifdef DEBUG_DOSFS
printf("DFS_GetFreeFAT\r\n");
#endif
// Search starts at cluster 2, which is the first usable cluster
// NOTE: This search can't terminate at a bad cluster, because there might
// legitimately be bad clusters on the disk.
for (i=2; i < volinfo->numclusters; i++) {
result = DFS_GetFAT(volinfo, scratch, &scratchcache, i);
if (!result) {
return i;
}
}
return 0x0ffffff7; // Can't find a free cluster
}
/*
Open a directory for enumeration by DFS_GetNextDirEnt
You must supply a populated VOLINFO (see DFS_GetVolInfo)
** you must also make sure dirinfo->scratch is valid in the dirinfo you pass it** //reza
The empty string or a string containing only the directory separator are
considered to be the root directory.
Returns 0 OK, nonzero for any error.
*/
uint32_t DFS_OpenDir(PVOLINFO volinfo, uint8_t *dirname, PDIRINFO dirinfo)
{
// Default behavior is a regular search for existing entries
dirinfo->flags = 0;
#ifdef DEBUG_DOSFS
printf("DFS_OpenDir\r\n");
#endif
if (!strlen((char *) dirname) || (strlen((char *) dirname) == 1 && dirname[0] == DIR_SEPARATOR)) {
if (volinfo->filesystem == FAT32) {
dirinfo->currentcluster = volinfo->rootdir;
dirinfo->currentsector = 0;
dirinfo->currententry = 0;
// read first sector of directory
return DFS_ReadSector(volinfo->unit, dirinfo->scratch, volinfo->dataarea + ((volinfo->rootdir - 2) * volinfo->secperclus), 1);
}
else {
dirinfo->currentcluster = 0;
dirinfo->currentsector = 0;
dirinfo->currententry = 0;
// read first sector of directory
return DFS_ReadSector(volinfo->unit, dirinfo->scratch, volinfo->rootdir, 1);
}
}
// This is not the root directory. We need to find the start of this subdirectory.
// We do this by devious means, using our own companion function DFS_GetNext.
else {
uint8_t tmpfn[12];
uint8_t *ptr = dirname;
uint32_t result;
DIRENT de;
if (volinfo->filesystem == FAT32) {
dirinfo->currentcluster = volinfo->rootdir;
dirinfo->currentsector = 0;
dirinfo->currententry = 0;
// read first sector of directory
if (DFS_ReadSector(volinfo->unit, dirinfo->scratch, volinfo->dataarea + ((volinfo->rootdir - 2) * volinfo->secperclus), 1))
return DFS_ERRMISC;
}
else {
dirinfo->currentcluster = 0;
dirinfo->currentsector = 0;
dirinfo->currententry = 0;
// read first sector of directory
if (DFS_ReadSector(volinfo->unit, dirinfo->scratch, volinfo->rootdir, 1))
return DFS_ERRMISC;
}
// skip leading path separators
while (*ptr == DIR_SEPARATOR && *ptr)
ptr++;
// Scan the path from left to right, finding the start cluster of each entry
// Observe that this code is inelegant, but obviates the need for recursion.
while (*ptr) {
DFS_CanonicalToDir(tmpfn, ptr);
de.name[0] = 0;
do {
result = DFS_GetNext(volinfo, dirinfo, &de);
} while (!result && memcmp(de.name, tmpfn, 11));
if (!memcmp(de.name, tmpfn, 11) && ((de.attr & ATTR_DIRECTORY) == ATTR_DIRECTORY)) {
if (volinfo->filesystem == FAT32) {
dirinfo->currentcluster = (uint32_t) de.startclus_l_l |
((uint32_t) de.startclus_l_h) << 8 |
((uint32_t) de.startclus_h_l) << 16 |
((uint32_t) de.startclus_h_h) << 24;
}
else {
dirinfo->currentcluster = (uint32_t) de.startclus_l_l |
((uint32_t) de.startclus_l_h) << 8;
}
dirinfo->currentsector = 0;
dirinfo->currententry = 0;
if (DFS_ReadSector(volinfo->unit, dirinfo->scratch, volinfo->dataarea + ((dirinfo->currentcluster - 2) * volinfo->secperclus), 1))
return DFS_ERRMISC;
}
else if (!memcmp(de.name, tmpfn, 11) && !(de.attr & ATTR_DIRECTORY))
return DFS_NOTFOUND;
// seek to next item in list
while (*ptr != DIR_SEPARATOR && *ptr)
ptr++;
if (*ptr == DIR_SEPARATOR)
ptr++;
}
if (!dirinfo->currentcluster)
return DFS_NOTFOUND;
}
return DFS_OK;
}
/*
Get next entry in opened directory structure. Copies fields into the dirent
structure, updates dirinfo. Note that it is the _caller's_ responsibility to
handle the '.' and '..' entries.
A deleted file will be returned as a NULL entry (first char of filename=0)
by this code. Filenames beginning with 0x05 will be translated to 0xE5
automatically. Long file name entries will be returned as NULL.
returns DFS_EOF if there are no more entries, DFS_OK if this entry is valid,
or DFS_ERRMISC for a media error
*/
uint32_t DFS_GetNext(PVOLINFO volinfo, PDIRINFO dirinfo, PDIRENT dirent)
{
uint32_t tempint; // required by DFS_GetFAT
#ifdef DEBUG_DOSFS
printf("DFS_GetNext\r\n");
#endif
// Do we need to read the next sector of the directory?
if (dirinfo->currententry >= SECTOR_SIZE / sizeof(DIRENT)) {
dirinfo->currententry = 0;
dirinfo->currentsector++;
// Root directory; special case handling
// Note that currentcluster will only ever be zero if both:
// (a) this is the root directory, and
// (b) we are on a FAT12/16 volume, where the root dir can't be expanded
if (dirinfo->currentcluster == 0) {
// Trying to read past end of root directory?
if (dirinfo->currentsector * (SECTOR_SIZE / sizeof(DIRENT)) >= volinfo->rootentries)
return DFS_EOF;
// Otherwise try to read the next sector
if (DFS_ReadSector(volinfo->unit, dirinfo->scratch, volinfo->rootdir + dirinfo->currentsector, 1))
return DFS_ERRMISC;
}
// Normal handling
else {
if (dirinfo->currentsector >= volinfo->secperclus) {
dirinfo->currentsector = 0;
if ((dirinfo->currentcluster >= 0xff7 && volinfo->filesystem == FAT12) ||
(dirinfo->currentcluster >= 0xfff7 && volinfo->filesystem == FAT16) ||
(dirinfo->currentcluster >= 0x0ffffff7 && volinfo->filesystem == FAT32)) {
// We are at the end of the directory chain. If this is a normal
// find operation, we should indicate that there is nothing more
// to see.
if (!(dirinfo->flags & DFS_DI_BLANKENT))
return DFS_EOF;
// On the other hand, if this is a "find free entry" search,
// we need to tell the caller to allocate a new cluster
else
return DFS_ALLOCNEW;
}
dirinfo->currentcluster = DFS_GetFAT(volinfo, dirinfo->scratch, &tempint, dirinfo->currentcluster);
}
if (DFS_ReadSector(volinfo->unit, dirinfo->scratch, volinfo->dataarea + ((dirinfo->currentcluster - 2) * volinfo->secperclus) + dirinfo->currentsector, 1))
return DFS_ERRMISC;
}
}
memcpy(dirent, &(((PDIRENT) dirinfo->scratch)[dirinfo->currententry]), sizeof(DIRENT));
if (dirent->name[0] == 0) { // no more files in this directory
// If this is a "find blank" then we can reuse this name.
#if 0
if (dirinfo->flags & DFS_DI_BLANKENT)
return DFS_OK;
#else
// TK: DFS_GetFreeDirEnt() expects that currententry has been incremented by 1
if (dirinfo->flags & DFS_DI_BLANKENT) {
dirinfo->currententry++;
return DFS_OK;
}
#endif
else
return DFS_EOF;
}
if (dirent->name[0] == 0xe5) // handle deleted file entries
dirent->name[0] = 0;
#if 1
// TK: ensure that DFS_GetFreeDirEnt() doesn't return entries with long name
else if( dirinfo->flags & DFS_DI_BLANKENT )
{} // do nothing..
#endif
else if ((dirent->attr & ATTR_LONG_NAME) == ATTR_LONG_NAME)
dirent->name[0] = 0;
else if (dirent->name[0] == 0x05) // handle kanji filenames beginning with 0xE5
dirent->name[0] = 0xe5;
dirinfo->currententry++;
return DFS_OK;
}
/*
INTERNAL
Find a free directory entry in the directory specified by path
This function MAY cause a disk write if it is necessary to extend the directory
size.
Note - di.scratch must be preinitialized to point to a sector scratch buffer
de is a scratch structure
Returns DFS_ERRMISC if a new entry could not be located or created
de is updated with the same return information you would expect from DFS_GetNext
*/
uint32_t DFS_GetFreeDirEnt(PVOLINFO volinfo, uint8_t *path, PDIRINFO di, PDIRENT de)
{
uint32_t tempclus=0,i=0;
#ifdef DEBUG_DOSFS
printf("DFS_GetFreeDirEnt\r\n");
#endif
if (DFS_OpenDir(volinfo, path, di))
return DFS_NOTFOUND;
// Set "search for empty" flag so DFS_GetNext knows what we're doing
di->flags |= DFS_DI_BLANKENT;
// We seek through the directory looking for an empty entry
// Note we are reusing tempclus as a temporary result holder.
tempclus = 0;
do {
tempclus = DFS_GetNext(volinfo, di, de);
// Empty entry found
if (tempclus == DFS_OK && (!de->name[0])) {
return DFS_OK;
}
// End of root directory reached
else if (tempclus == DFS_EOF)
return DFS_ERRMISC;
else if (tempclus == DFS_ALLOCNEW) {
tempclus = DFS_GetFreeFAT(volinfo, di->scratch);
if (tempclus == 0x0ffffff7)
return DFS_ERRMISC;
// write out zeroed sectors to the new cluster
memset(di->scratch, 0, SECTOR_SIZE);
for (i=0;i<volinfo->secperclus;i++) {
if (DFS_WriteSector(volinfo->unit, di->scratch, volinfo->dataarea + ((tempclus - 2) * volinfo->secperclus) + i, 1))
return DFS_ERRMISC;
}
// Point old end cluster to newly allocated cluster
i = 0;
DFS_SetFAT(volinfo, di->scratch, &i, di->currentcluster, tempclus);
// Update DIRINFO so caller knows where to place the new file
di->currentcluster = tempclus;
di->currentsector = 0;
di->currententry = 1; // since the code coming after this expects to subtract 1
// Mark newly allocated cluster as end of chain
switch(volinfo->filesystem) {
case FAT12: tempclus = 0xff8; break;
case FAT16: tempclus = 0xfff8; break;
case FAT32: tempclus = 0x0ffffff8; break;
default: return DFS_ERRMISC;
}
DFS_SetFAT(volinfo, di->scratch, &i, di->currentcluster, tempclus);
}
} while (!tempclus);
// We shouldn't get here
return DFS_ERRMISC;
}
/*
Open a file for reading or writing. You supply populated VOLINFO, a path to the file,
mode (DFS_READ or DFS_WRITE) and an empty fileinfo structure. You also need to
provide a pointer to a sector-sized scratch buffer.
Returns various DFS_* error states. If the result is DFS_OK, fileinfo can be used
to access the file from this point on.
*/
uint32_t DFS_OpenFile(PVOLINFO volinfo, uint8_t *path, uint8_t mode, uint8_t *scratch, PFILEINFO fileinfo)
{
uint8_t tmppath[MAX_PATH];
uint8_t filename[12];
uint8_t *p;
DIRINFO di;
DIRENT de;
uint32_t temp;
#ifdef DEBUG_DOSFS
printf("DFS_OpenFile\r\n");
#endif
// larwe 2006-09-16 +1 zero out file structure
memset(fileinfo, 0, sizeof(FILEINFO));
// save access mode
fileinfo->mode = mode;
// Get a local copy of the path. If it's longer than MAX_PATH, abort.
strncpy((char *) tmppath, (char *) path, MAX_PATH);
tmppath[MAX_PATH - 1] = 0;
if (strcmp((char *) path,(char *) tmppath)) {
return DFS_PATHLEN;
}
// strip leading path separators
while (tmppath[0] == DIR_SEPARATOR)
strcpy((char *) tmppath, (char *) tmppath + 1);
// Parse filename off the end of the supplied path
p = tmppath;
while (*(p++));
p--;
while (p > tmppath && *p != DIR_SEPARATOR) // larwe 9/16/06 ">=" to ">" bugfix
p--;
if (*p == DIR_SEPARATOR)
p++;
DFS_CanonicalToDir(filename, p);
if (p > tmppath)
p--;
if (*p == DIR_SEPARATOR || p == tmppath) // larwe 9/16/06 +"|| p == tmppath" bugfix
*p = 0;
// At this point, if our path was MYDIR/MYDIR2/FILE.EXT, filename = "FILE EXT" and
// tmppath = "MYDIR/MYDIR2".
di.scratch = scratch;
if (DFS_OpenDir(volinfo, tmppath, &di))
return DFS_NOTFOUND;
while (!DFS_GetNext(volinfo, &di, &de)) {
if (!memcmp(de.name, filename, 11)) {
// You can't use this function call to open a directory.
if (de.attr & ATTR_DIRECTORY)
return DFS_NOTFOUND;
fileinfo->volinfo = volinfo;
fileinfo->pointer = 0;
// The reason we store this extra info about the file is so that we can
// speedily update the file size, modification date, etc. on a file that is
// opened for writing.
if (di.currentcluster == 0)
fileinfo->dirsector = volinfo->rootdir + di.currentsector;
else
fileinfo->dirsector = volinfo->dataarea + ((di.currentcluster - 2) * volinfo->secperclus) + di.currentsector;
fileinfo->diroffset = di.currententry - 1;
if (volinfo->filesystem == FAT32) {
fileinfo->cluster = (uint32_t) de.startclus_l_l |
((uint32_t) de.startclus_l_h) << 8 |
((uint32_t) de.startclus_h_l) << 16 |
((uint32_t) de.startclus_h_h) << 24;
}
else {
fileinfo->cluster = (uint32_t) de.startclus_l_l |
((uint32_t) de.startclus_l_h) << 8;
}
fileinfo->firstcluster = fileinfo->cluster;
fileinfo->filelen = (uint32_t) de.filesize_0 |
((uint32_t) de.filesize_1) << 8 |
((uint32_t) de.filesize_2) << 16 |
((uint32_t) de.filesize_3) << 24;
return DFS_OK;
}
}
// At this point, we KNOW the file does not exist. If the file was opened
// with write access, we can create it.
if (mode & DFS_WRITE) {
uint32_t cluster;
// Locate or create a directory entry for this file
if (DFS_OK != DFS_GetFreeDirEnt(volinfo, tmppath, &di, &de))
return DFS_ERRMISC;
// put sane values in the directory entry
memset(&de, 0, sizeof(de));
memcpy(de.name, filename, 11);
de.crttime_l = 0x20; // 01:01:00am, Jan 1, 2006.
de.crttime_h = 0x08;
de.crtdate_l = 0x11;
de.crtdate_h = 0x34;
de.lstaccdate_l = 0x11;
de.lstaccdate_h = 0x34;
de.wrttime_l = 0x20;
de.wrttime_h = 0x08;
de.wrtdate_l = 0x11;
de.wrtdate_h = 0x34;
// allocate a starting cluster for the directory entry
cluster = DFS_GetFreeFAT(volinfo, scratch);
de.startclus_l_l = cluster & 0xff;
de.startclus_l_h = (cluster & 0xff00) >> 8;
de.startclus_h_l = (cluster & 0xff0000) >> 16;
de.startclus_h_h = (cluster & 0xff000000) >> 24;
// update FILEINFO for our caller's sake
fileinfo->volinfo = volinfo;
fileinfo->pointer = 0;
// The reason we store this extra info about the file is so that we can
// speedily update the file size, modification date, etc. on a file that is
// opened for writing.
if (di.currentcluster == 0)
fileinfo->dirsector = volinfo->rootdir + di.currentsector;
else
fileinfo->dirsector = volinfo->dataarea + ((di.currentcluster - 2) * volinfo->secperclus) + di.currentsector;
fileinfo->diroffset = di.currententry - 1;
fileinfo->cluster = cluster;
fileinfo->firstcluster = cluster;
fileinfo->filelen = 0;
// write the directory entry
// note that we no longer have the sector containing the directory entry,
// tragically, so we have to re-read it
if (DFS_ReadSector(volinfo->unit, scratch, fileinfo->dirsector, 1))
return DFS_ERRMISC;
memcpy(&(((PDIRENT) scratch)[di.currententry-1]), &de, sizeof(DIRENT));
if (DFS_WriteSector(volinfo->unit, scratch, fileinfo->dirsector, 1))
return DFS_ERRMISC;
// Mark newly allocated cluster as end of chain
switch(volinfo->filesystem) {
case FAT12: cluster = 0xff8; break;
case FAT16: cluster = 0xfff8; break;
case FAT32: cluster = 0x0ffffff8; break;
default: return DFS_ERRMISC;
}
temp = 0;
DFS_SetFAT(volinfo, scratch, &temp, fileinfo->cluster, cluster);
return DFS_OK;
}
return DFS_NOTFOUND;
}
/*
Read an open file
You must supply a prepopulated FILEINFO as provided by DFS_OpenFile, and a
pointer to a SECTOR_SIZE scratch buffer.
Note that returning DFS_EOF is not an error condition. This function updates the
successcount field with the number of bytes actually read.
*/
uint32_t DFS_ReadFile(PFILEINFO fileinfo, uint8_t *scratch, uint8_t *buffer, uint32_t *successcount, uint32_t len)
{
uint32_t remain=0;
uint32_t result = DFS_OK;
uint32_t sector=0;
uint32_t bytesread=0;
#ifdef DEBUG_DOSFS
printf("DFS_ReadFile\r\n");
#endif
// Don't try to read past EOF
if (len > fileinfo->filelen - fileinfo->pointer)
len = fileinfo->filelen - fileinfo->pointer;
remain = len;
*successcount = 0;
while (remain && result == DFS_OK) {
// This is a bit complicated. The sector we want to read is addressed at a cluster
// granularity by the fileinfo->cluster member. The file pointer tells us how many
// extra sectors to add to that number.
sector = fileinfo->volinfo->dataarea +
((fileinfo->cluster - 2) * fileinfo->volinfo->secperclus) +
div(div(fileinfo->pointer,fileinfo->volinfo->secperclus * SECTOR_SIZE).rem, SECTOR_SIZE).quot;
// Case 1 - File pointer is not on a sector boundary
if (div(fileinfo->pointer, SECTOR_SIZE).rem) {
uint16_t tempreadsize;
// We always have to go through scratch in this case
result = DFS_ReadSector(fileinfo->volinfo->unit, scratch, sector, 1);
// This is the number of bytes that we actually care about in the sector
// just read.
tempreadsize = SECTOR_SIZE - (div(fileinfo->pointer, SECTOR_SIZE).rem);
// Case 1A - We want the entire remainder of the sector. After this
// point, all passes through the read loop will be aligned on a sector
// boundary, which allows us to go through the optimal path 2A below.
if (remain >= tempreadsize) {
memcpy(buffer, scratch + (SECTOR_SIZE - tempreadsize), tempreadsize);
bytesread = tempreadsize;
buffer += tempreadsize;
fileinfo->pointer += tempreadsize;
remain -= tempreadsize;
}
// Case 1B - This read concludes the file read operation
else {
memcpy(buffer, scratch + (SECTOR_SIZE - tempreadsize), remain);
buffer += remain;
fileinfo->pointer += remain;
bytesread = remain;
remain = 0;
}
}
// Case 2 - File pointer is on sector boundary
else {
// Case 2A - We have at least one more full sector to read and don't have
// to go through the scratch buffer. You could insert optimizations here to
// read multiple sectors at a time, if you were thus inclined (note that
// the maximum multi-read you could perform is a single cluster, so it would
// be advantageous to have code similar to case 1A above that would round the
// pointer to a cluster boundary the first pass through, so all subsequent
// [large] read requests would be able to go a cluster at a time).
if (remain >= SECTOR_SIZE) {
result = DFS_ReadSector(fileinfo->volinfo->unit, buffer, sector, 1);
remain -= SECTOR_SIZE;
buffer += SECTOR_SIZE;
fileinfo->pointer += SECTOR_SIZE;
bytesread = SECTOR_SIZE;
}
// Case 2B - We are only reading a partial sector
else {
result = DFS_ReadSector(fileinfo->volinfo->unit, scratch, sector, 1);
memcpy(buffer, scratch, remain);
buffer += remain;
fileinfo->pointer += remain;
bytesread = remain;
remain = 0;
}
}
*successcount += bytesread;
// check to see if we stepped over a cluster boundary
if (div(fileinfo->pointer - bytesread, fileinfo->volinfo->secperclus * SECTOR_SIZE).quot !=
div(fileinfo->pointer, fileinfo->volinfo->secperclus * SECTOR_SIZE).quot) {
// An act of minor evil - we use bytesread as a scratch integer, knowing that
// its value is not used after updating *successcount above
bytesread = 0;
if (((fileinfo->volinfo->filesystem == FAT12) && (fileinfo->cluster >= 0xff8)) ||
((fileinfo->volinfo->filesystem == FAT16) && (fileinfo->cluster >= 0xfff8)) ||
((fileinfo->volinfo->filesystem == FAT32) && (fileinfo->cluster >= 0x0ffffff8)))
result = DFS_EOF;
else
fileinfo->cluster = DFS_GetFAT(fileinfo->volinfo, scratch, &bytesread, fileinfo->cluster);
}
}
return result;
}
/*
Seek file pointer to a given position
This function does not return status - refer to the fileinfo->pointer value
to see where the pointer wound up.
Requires a SECTOR_SIZE scratch buffer
*/
void DFS_Seek(PFILEINFO fileinfo, uint32_t offset, uint8_t *scratch)
{
uint32_t tempint;
uint16_t endcluster=0; //canny/reza 5/7 fixed
#ifdef DEBUG_DOSFS
printf("DFS_Seek\r\n");
#endif
// larwe 9/16/06 bugfix split case 0a/0b and changed fallthrough handling
// Case 0a - Return immediately for degenerate case
if (offset == fileinfo->pointer) {
return;
}
// Case 0b - Don't allow the user to seek past the end of the file
if (offset > fileinfo->filelen) {
offset = fileinfo->filelen;
// NOTE NO RETURN HERE!
}
// Case 1 - Simple rewind to start
// Note _intentional_ fallthrough from Case 0b above
if (offset == 0) {
fileinfo->cluster = fileinfo->firstcluster;
fileinfo->pointer = 0;
return; // larwe 9/16/06 +1 bugfix
}
// Case 2 - Seeking backwards. Need to reset and seek forwards
else if (offset < fileinfo->pointer) {
fileinfo->cluster = fileinfo->firstcluster;
fileinfo->pointer = 0;
// NOTE NO RETURN HERE!
}
// Case 3 - Seeking forwards
// Note _intentional_ fallthrough from Case 2 above
// Case 3a - Seek size does not cross cluster boundary -
// very simple case
// larwe 9/16/06 changed .rem to .quot in both div calls, bugfix
if (div(fileinfo->pointer, fileinfo->volinfo->secperclus * SECTOR_SIZE).quot ==
div(fileinfo->pointer + offset, fileinfo->volinfo->secperclus * SECTOR_SIZE).quot) {
fileinfo->pointer = offset;
}
// Case 3b - Seeking across cluster boundary(ies)
else {
// round file pointer down to cluster boundary
fileinfo->pointer = div(fileinfo->pointer, fileinfo->volinfo->secperclus * SECTOR_SIZE).quot *
fileinfo->volinfo->secperclus * SECTOR_SIZE;
// seek by clusters
// larwe 9/30/06 bugfix changed .rem to .quot in both div calls
// canny/reza 5/7 added endcluster related code
// TK 2008-12-18: fixed endcluster calculation
// old: endcluster = div(fileinfo->pointer + offset, fileinfo->volinfo->secperclus * SECTOR_SIZE).quot;
endcluster = div(offset, fileinfo->volinfo->secperclus * SECTOR_SIZE).quot;
while (div(fileinfo->pointer, fileinfo->volinfo->secperclus * SECTOR_SIZE).quot !=endcluster) {
fileinfo->cluster = DFS_GetFAT(fileinfo->volinfo, scratch, &tempint, fileinfo->cluster);
// Abort if there was an error
if (fileinfo->cluster == 0x0ffffff7) {
fileinfo->pointer = 0;
fileinfo->cluster = fileinfo->firstcluster;
return;
}
fileinfo->pointer += SECTOR_SIZE * fileinfo->volinfo->secperclus;
}
// since we know the cluster is right, we have no more work to do
fileinfo->pointer = offset;
}
}
/*
Delete a file
scratch must point to a sector-sized buffer
*/
uint32_t DFS_UnlinkFile(PVOLINFO volinfo, uint8_t *path, uint8_t *scratch)
{
// PDIRENT de = (PDIRENT) scratch;
FILEINFO fi;
uint32_t cache = 0;
uint32_t tempclus = 0;
#ifdef DEBUG_DOSFS
printf("DFS_UnlinkFile\r\n");
#endif
// DFS_OpenFile gives us all the information we need to delete it
if (DFS_OK != DFS_OpenFile(volinfo, path, DFS_READ, scratch, &fi))
return DFS_NOTFOUND;
// First, read the directory sector and delete that entry
if (DFS_ReadSector(volinfo->unit, scratch, fi.dirsector, 1))
return DFS_ERRMISC;
((PDIRENT) scratch)[fi.diroffset].name[0] = 0xe5;
if (DFS_WriteSector(volinfo->unit, scratch, fi.dirsector, 1))
return DFS_ERRMISC;
// Now follow the cluster chain to free the file space
while (!((volinfo->filesystem == FAT12 && fi.firstcluster >= 0x0ff7) ||
(volinfo->filesystem == FAT16 && fi.firstcluster >= 0xfff7) ||
(volinfo->filesystem == FAT32 && fi.firstcluster >= 0x0ffffff7))) {
tempclus = fi.firstcluster;
fi.firstcluster = DFS_GetFAT(volinfo, scratch, &cache, fi.firstcluster);
DFS_SetFAT(volinfo, scratch, &cache, tempclus, 0);
}
return DFS_OK;
}
/*
Write an open file
You must supply a prepopulated FILEINFO as provided by DFS_OpenFile, and a
pointer to a SECTOR_SIZE scratch buffer.
This function updates the successcount field with the number of bytes actually written.
*/
uint32_t DFS_WriteFile(PFILEINFO fileinfo, uint8_t *scratch, uint8_t *buffer, uint32_t *successcount, uint32_t len)
{
uint32_t remain=0;
uint32_t result = DFS_OK;
uint32_t sector=0;
uint32_t byteswritten=0;
#ifdef DEBUG_DOSFS
printf("DFS_WriteFile\r\n");
#endif
// Don't allow writes to a file that's open as readonly
if (!(fileinfo->mode & DFS_WRITE))
return DFS_ERRMISC;
remain = len;
*successcount = 0;
while (remain && result == DFS_OK) {
// This is a bit complicated. The sector we want to read is addressed at a cluster
// granularity by the fileinfo->cluster member. The file pointer tells us how many
// extra sectors to add to that number.
sector = fileinfo->volinfo->dataarea +
((fileinfo->cluster - 2) * fileinfo->volinfo->secperclus) +
div(div(fileinfo->pointer,fileinfo->volinfo->secperclus * SECTOR_SIZE).rem, SECTOR_SIZE).quot;
// Case 1 - File pointer is not on a sector boundary
if (div(fileinfo->pointer, SECTOR_SIZE).rem) {
uint16_t tempsize;
// We always have to go through scratch in this case
result = DFS_ReadSector(fileinfo->volinfo->unit, scratch, sector, 1);
// This is the number of bytes that we don't want to molest in the
// scratch sector just read.
tempsize = div(fileinfo->pointer, SECTOR_SIZE).rem;
// Case 1A - We are writing the entire remainder of the sector. After
// this point, all passes through the read loop will be aligned on a
// sector boundary, which allows us to go through the optimal path
// 2A below.
if (remain >= SECTOR_SIZE - tempsize) {
memcpy(scratch + tempsize, buffer, SECTOR_SIZE - tempsize);
if (!result)
result = DFS_WriteSector(fileinfo->volinfo->unit, scratch, sector, 1);
byteswritten = SECTOR_SIZE - tempsize;
buffer += SECTOR_SIZE - tempsize;
fileinfo->pointer += SECTOR_SIZE - tempsize;
if (fileinfo->filelen < fileinfo->pointer) {
fileinfo->filelen = fileinfo->pointer;
}
remain -= SECTOR_SIZE - tempsize;
}
// Case 1B - This concludes the file write operation
else {
memcpy(scratch + tempsize, buffer, remain);
if (!result)
result = DFS_WriteSector(fileinfo->volinfo->unit, scratch, sector, 1);
buffer += remain;
fileinfo->pointer += remain;
if (fileinfo->filelen < fileinfo->pointer) {
fileinfo->filelen = fileinfo->pointer;
}
byteswritten = remain;
remain = 0;
}
} // case 1
// Case 2 - File pointer is on sector boundary
else {
// Case 2A - We have at least one more full sector to write and don't have
// to go through the scratch buffer. You could insert optimizations here to
// write multiple sectors at a time, if you were thus inclined. Refer to
// similar notes in DFS_ReadFile.
if (remain >= SECTOR_SIZE) {
result = DFS_WriteSector(fileinfo->volinfo->unit, buffer, sector, 1);
remain -= SECTOR_SIZE;
buffer += SECTOR_SIZE;
fileinfo->pointer += SECTOR_SIZE;
if (fileinfo->filelen < fileinfo->pointer) {
fileinfo->filelen = fileinfo->pointer;
}
byteswritten = SECTOR_SIZE;
}
// Case 2B - We are only writing a partial sector and potentially need to
// go through the scratch buffer.
else {
// If the current file pointer is not yet at or beyond the file
// length, we are writing somewhere in the middle of the file and
// need to load the original sector to do a read-modify-write.
if (fileinfo->pointer < fileinfo->filelen) {
result = DFS_ReadSector(fileinfo->volinfo->unit, scratch, sector, 1);
if (!result) {
memcpy(scratch, buffer, remain);
result = DFS_WriteSector(fileinfo->volinfo->unit, scratch, sector, 1);
}
}
else {
result = DFS_WriteSector(fileinfo->volinfo->unit, buffer, sector, 1);
}
buffer += remain;
fileinfo->pointer += remain;
if (fileinfo->filelen < fileinfo->pointer) {
fileinfo->filelen = fileinfo->pointer;
}
byteswritten = remain;
remain = 0;
}
}
*successcount += byteswritten;
// check to see if we stepped over a cluster boundary
if (div(fileinfo->pointer - byteswritten, fileinfo->volinfo->secperclus * SECTOR_SIZE).quot !=
div(fileinfo->pointer, fileinfo->volinfo->secperclus * SECTOR_SIZE).quot) {
uint32_t lastcluster;
// We've transgressed into another cluster. If we were already at EOF,
// we need to allocate a new cluster.
// An act of minor evil - we use byteswritten as a scratch integer, knowing
// that its value is not used after updating *successcount above
byteswritten = 0;
lastcluster = fileinfo->cluster;
fileinfo->cluster = DFS_GetFAT(fileinfo->volinfo, scratch, &byteswritten, fileinfo->cluster);
// Allocate a new cluster?
if (((fileinfo->volinfo->filesystem == FAT12) && (fileinfo->cluster >= 0xff8)) ||
((fileinfo->volinfo->filesystem == FAT16) && (fileinfo->cluster >= 0xfff8)) ||
((fileinfo->volinfo->filesystem == FAT32) && (fileinfo->cluster >= 0x0ffffff8))) {
uint32_t tempclus;
tempclus = DFS_GetFreeFAT(fileinfo->volinfo, scratch);
byteswritten = 0; // invalidate cache
if (tempclus == 0x0ffffff7)
return DFS_ERRMISC;
// Link new cluster onto file
DFS_SetFAT(fileinfo->volinfo, scratch, &byteswritten, lastcluster, tempclus);
fileinfo->cluster = tempclus;
// Mark newly allocated cluster as end of chain
switch(fileinfo->volinfo->filesystem) {
case FAT12: tempclus = 0xff8; break;
case FAT16: tempclus = 0xfff8; break;
case FAT32: tempclus = 0x0ffffff8; break;
default: return DFS_ERRMISC;
}
DFS_SetFAT(fileinfo->volinfo, scratch, &byteswritten, fileinfo->cluster, tempclus);
result = DFS_OK;
}
// No else clause is required.
}
}
// Update directory entry
if (DFS_ReadSector(fileinfo->volinfo->unit, scratch, fileinfo->dirsector, 1))
return DFS_ERRMISC;
((PDIRENT) scratch)[fileinfo->diroffset].filesize_0 = fileinfo->filelen & 0xff;
((PDIRENT) scratch)[fileinfo->diroffset].filesize_1 = (fileinfo->filelen & 0xff00) >> 8;
((PDIRENT) scratch)[fileinfo->diroffset].filesize_2 = (fileinfo->filelen & 0xff0000) >> 16;
((PDIRENT) scratch)[fileinfo->diroffset].filesize_3 = (fileinfo->filelen & 0xff000000) >> 24;
if (DFS_WriteSector(fileinfo->volinfo->unit, scratch, fileinfo->dirsector, 1))
return DFS_ERRMISC;
return result;
}
/*
// TK: added 2009-02-12
Close a file
No original function of DosFS driver
It has no effect if writing to SD Card, it's only used by the DosFS wrapper in emulation
*/
uint32_t DFS_Close(PFILEINFO fileinfo)
{
return DFS_OK;
}

View File

@ -1,405 +0,0 @@
/*
DOSFS Embedded FAT-Compatible Filesystem
(C) 2005 Lewin A.R.W. Edwards (sysadm@zws.com)
*/
#ifndef _DOSFS_H
#define _DOSFS_H
#include <stdint.h>
//===================================================================
// User-supplied functions
uint32_t DFS_ReadSector(uint8_t unit, uint8_t *buffer, uint32_t sector, uint32_t count);
uint32_t DFS_WriteSector(uint8_t unit, uint8_t *buffer, uint32_t sector, uint32_t count);
//===================================================================
// Configurable items
#define MAX_PATH 64 // Maximum path length (increasing this will
// GREATLY increase stack requirements!)
#define DIR_SEPARATOR '/' // character separating directory components
// End of configurable items
//===================================================================
//===================================================================
// 32-bit error codes
#define DFS_OK 0 // no error
#define DFS_EOF 1 // end of file (not an error)
#define DFS_WRITEPROT 2 // volume is write protected
#define DFS_NOTFOUND 3 // path or file not found
#define DFS_PATHLEN 4 // path too long
#define DFS_ALLOCNEW 5 // must allocate new directory cluster
#define DFS_ERRMISC 0xffffffff // generic error
//===================================================================
// File access modes
#define DFS_READ 1 // read-only
#define DFS_WRITE 2 // write-only
//===================================================================
// Miscellaneous constants
#define SECTOR_SIZE 512 // sector size in bytes
//===================================================================
// Internal subformat identifiers
#define FAT12 0
#define FAT16 1
#define FAT32 2
//===================================================================
// DOS attribute bits
#define ATTR_READ_ONLY 0x01
#define ATTR_HIDDEN 0x02
#define ATTR_SYSTEM 0x04
#define ATTR_VOLUME_ID 0x08
#define ATTR_DIRECTORY 0x10
#define ATTR_ARCHIVE 0x20
#define ATTR_LONG_NAME (ATTR_READ_ONLY | ATTR_HIDDEN | ATTR_SYSTEM | ATTR_VOLUME_ID)
/*
Directory entry structure
note: if name[0] == 0xe5, this is a free dir entry
if name[0] == 0x00, this is a free entry and all subsequent entries are free
if name[0] == 0x05, the first character of the name is 0xe5 [a kanji nicety]
Date format: bit 0-4 = day of month (1-31)
bit 5-8 = month, 1=Jan..12=Dec
bit 9-15 = count of years since 1980 (0-127)
Time format: bit 0-4 = 2-second count, (0-29)
bit 5-10 = minutes (0-59)
bit 11-15= hours (0-23)
*/
typedef struct _tagDIRENT {
uint8_t name[11]; // filename
uint8_t attr; // attributes (see ATTR_* constant definitions)
uint8_t reserved; // reserved, must be 0
uint8_t crttimetenth; // create time, 10ths of a second (0-199 are valid)
uint8_t crttime_l; // creation time low byte
uint8_t crttime_h; // creation time high byte
uint8_t crtdate_l; // creation date low byte
uint8_t crtdate_h; // creation date high byte
uint8_t lstaccdate_l; // last access date low byte
uint8_t lstaccdate_h; // last access date high byte
uint8_t startclus_h_l; // high word of first cluster, low byte (FAT32)
uint8_t startclus_h_h; // high word of first cluster, high byte (FAT32)
uint8_t wrttime_l; // last write time low byte
uint8_t wrttime_h; // last write time high byte
uint8_t wrtdate_l; // last write date low byte
uint8_t wrtdate_h; // last write date high byte
uint8_t startclus_l_l; // low word of first cluster, low byte
uint8_t startclus_l_h; // low word of first cluster, high byte
uint8_t filesize_0; // file size, low byte
uint8_t filesize_1; //
uint8_t filesize_2; //
uint8_t filesize_3; // file size, high byte
} DIRENT, *PDIRENT;
/*
Partition table entry structure
*/
typedef struct _tagPTINFO {
uint8_t active; // 0x80 if partition active
uint8_t start_h; // starting head
uint8_t start_cs_l; // starting cylinder and sector (low byte)
uint8_t start_cs_h; // starting cylinder and sector (high byte)
uint8_t type; // type ID byte
uint8_t end_h; // ending head
uint8_t end_cs_l; // ending cylinder and sector (low byte)
uint8_t end_cs_h; // ending cylinder and sector (high byte)
uint8_t start_0; // starting sector# (low byte)
uint8_t start_1; //
uint8_t start_2; //
uint8_t start_3; // starting sector# (high byte)
uint8_t size_0; // size of partition (low byte)
uint8_t size_1; //
uint8_t size_2; //
uint8_t size_3; // size of partition (high byte)
} PTINFO, *PPTINFO;
/*
Master Boot Record structure
*/
typedef struct _tagMBR {
uint8_t bootcode[0x1be]; // boot sector
PTINFO ptable[4]; // four partition table structures
uint8_t sig_55; // 0x55 signature byte
uint8_t sig_aa; // 0xaa signature byte
} MBR, *PMBR;
/*
BIOS Parameter Block structure (FAT12/16)
*/
typedef struct _tagBPB {
uint8_t bytepersec_l; // bytes per sector low byte (0x00)
uint8_t bytepersec_h; // bytes per sector high byte (0x02)
uint8_t secperclus; // sectors per cluster (1,2,4,8,16,32,64,128 are valid)
uint8_t reserved_l; // reserved sectors low byte
uint8_t reserved_h; // reserved sectors high byte
uint8_t numfats; // number of FAT copies (2)
uint8_t rootentries_l; // number of root dir entries low byte (0x00 normally)
uint8_t rootentries_h; // number of root dir entries high byte (0x02 normally)
uint8_t sectors_s_l; // small num sectors low byte
uint8_t sectors_s_h; // small num sectors high byte
uint8_t mediatype; // media descriptor byte
uint8_t secperfat_l; // sectors per FAT low byte
uint8_t secperfat_h; // sectors per FAT high byte
uint8_t secpertrk_l; // sectors per track low byte
uint8_t secpertrk_h; // sectors per track high byte
uint8_t heads_l; // heads low byte
uint8_t heads_h; // heads high byte
uint8_t hidden_0; // hidden sectors low byte
uint8_t hidden_1; // (note - this is the number of MEDIA sectors before
uint8_t hidden_2; // first sector of VOLUME - we rely on the MBR instead)
uint8_t hidden_3; // hidden sectors high byte
uint8_t sectors_l_0; // large num sectors low byte
uint8_t sectors_l_1; //
uint8_t sectors_l_2; //
uint8_t sectors_l_3; // large num sectors high byte
} BPB, *PBPB;
/*
Extended BIOS Parameter Block structure (FAT12/16)
*/
typedef struct _tagEBPB {
uint8_t unit; // int 13h drive#
uint8_t head; // archaic, used by Windows NT-class OSes for flags
uint8_t signature; // 0x28 or 0x29
uint8_t serial_0; // serial#
uint8_t serial_1; // serial#
uint8_t serial_2; // serial#
uint8_t serial_3; // serial#
uint8_t label[11]; // volume label
uint8_t system[8]; // filesystem ID
} EBPB, *PEBPB;
/*
Extended BIOS Parameter Block structure (FAT32)
*/
typedef struct _tagEBPB32 {
uint8_t fatsize_0; // big FAT size in sectors low byte
uint8_t fatsize_1; //
uint8_t fatsize_2; //
uint8_t fatsize_3; // big FAT size in sectors high byte
uint8_t extflags_l; // extended flags low byte
uint8_t extflags_h; // extended flags high byte
uint8_t fsver_l; // filesystem version (0x00) low byte
uint8_t fsver_h; // filesystem version (0x00) high byte
uint8_t root_0; // cluster of root dir, low byte
uint8_t root_1; //
uint8_t root_2; //
uint8_t root_3; // cluster of root dir, high byte
uint8_t fsinfo_l; // sector pointer to FSINFO within reserved area, low byte (2)
uint8_t fsinfo_h; // sector pointer to FSINFO within reserved area, high byte (0)
uint8_t bkboot_l; // sector pointer to backup boot sector within reserved area, low byte (6)
uint8_t bkboot_h; // sector pointer to backup boot sector within reserved area, high byte (0)
uint8_t reserved[12]; // reserved, should be 0
uint8_t unit; // int 13h drive#
uint8_t head; // archaic, used by Windows NT-class OSes for flags
uint8_t signature; // 0x28 or 0x29
uint8_t serial_0; // serial#
uint8_t serial_1; // serial#
uint8_t serial_2; // serial#
uint8_t serial_3; // serial#
uint8_t label[11]; // volume label
uint8_t system[8]; // filesystem ID
} EBPB32, *PEBPB32;
/*
Logical Boot Record structure (volume boot sector)
*/
typedef struct _tagLBR {
uint8_t jump[3]; // JMP instruction
uint8_t oemid[8]; // OEM ID, space-padded
BPB bpb; // BIOS Parameter Block
union {
EBPB ebpb; // FAT12/16 Extended BIOS Parameter Block
EBPB32 ebpb32; // FAT32 Extended BIOS Parameter Block
} ebpb;
uint8_t code[420]; // boot sector code
uint8_t sig_55; // 0x55 signature byte
uint8_t sig_aa; // 0xaa signature byte
} LBR, *PLBR;
/*
Volume information structure (Internal to DOSFS)
*/
typedef struct _tagVOLINFO {
uint8_t unit; // unit on which this volume resides
uint8_t filesystem; // formatted filesystem
// These two fields aren't very useful, so support for them has been commented out to
// save memory. (Note that the "system" tag is not actually used by DOS to determine
// filesystem type - that decision is made entirely on the basis of how many clusters
// the drive contains. DOSFS works the same way).
// See tag: OEMID in dosfs.c
// uint8_t oemid[9]; // OEM ID ASCIIZ
// uint8_t system[9]; // system ID ASCIIZ
uint8_t label[12]; // volume label ASCIIZ
uint32_t startsector; // starting sector of filesystem
uint8_t secperclus; // sectors per cluster
uint16_t reservedsecs; // reserved sectors
uint32_t numsecs; // number of sectors in volume
uint32_t secperfat; // sectors per FAT
uint16_t rootentries; // number of root dir entries
uint32_t numclusters; // number of clusters on drive
// The fields below are PHYSICAL SECTOR NUMBERS.
uint32_t fat1; // starting sector# of FAT copy 1
uint32_t rootdir; // starting sector# of root directory (FAT12/FAT16) or cluster (FAT32)
uint32_t dataarea; // starting sector# of data area (cluster #2)
} VOLINFO, *PVOLINFO;
/*
Flags in DIRINFO.flags
*/
#define DFS_DI_BLANKENT 0x01 // Searching for blank entry
/*
Directory search structure (Internal to DOSFS)
*/
typedef struct _tagDIRINFO {
uint32_t currentcluster; // current cluster in dir
uint8_t currentsector; // current sector in cluster
uint8_t currententry; // current dir entry in sector
uint8_t *scratch; // ptr to user-supplied scratch buffer (one sector)
uint8_t flags; // internal DOSFS flags
} DIRINFO, *PDIRINFO;
/*
File handle structure (Internal to DOSFS)
*/
typedef struct _tagFILEINFO {
PVOLINFO volinfo; // VOLINFO used to open this file
uint32_t dirsector; // physical sector containing dir entry of this file
uint8_t diroffset; // # of this entry within the dir sector
uint8_t mode; // mode in which this file was opened
uint32_t firstcluster; // first cluster of file
uint32_t filelen; // byte length of file
uint32_t cluster; // current cluster
uint32_t pointer; // current (BYTE) pointer
} FILEINFO, *PFILEINFO;
/*
Get starting sector# of specified partition on drive #unit
NOTE: This code ASSUMES an MBR on the disk.
scratchsector should point to a SECTOR_SIZE scratch area
Returns 0xffffffff for any error.
If pactive is non-NULL, this function also returns the partition active flag.
If pptype is non-NULL, this function also returns the partition type.
If psize is non-NULL, this function also returns the partition size.
*/
uint32_t DFS_GetPtnStart(uint8_t unit, uint8_t *scratchsector, uint8_t pnum, uint8_t *pactive, uint8_t *pptype, uint32_t *psize);
/*
Retrieve volume info from BPB and store it in a VOLINFO structure
You must provide the unit and starting sector of the filesystem, and
a pointer to a sector buffer for scratch
Attempts to read BPB and glean information about the FS from that.
Returns 0 OK, nonzero for any error.
*/
uint32_t DFS_GetVolInfo(uint8_t unit, uint8_t *scratchsector, uint32_t startsector, PVOLINFO volinfo);
/*
Open a directory for enumeration by DFS_GetNextDirEnt
You must supply a populated VOLINFO (see DFS_GetVolInfo)
The empty string or a string containing only the directory separator are
considered to be the root directory.
Returns 0 OK, nonzero for any error.
*/
uint32_t DFS_OpenDir(PVOLINFO volinfo, uint8_t *dirname, PDIRINFO dirinfo);
/*
Get next entry in opened directory structure. Copies fields into the dirent
structure, updates dirinfo. Note that it is the _caller's_ responsibility to
handle the '.' and '..' entries.
A deleted file will be returned as a NULL entry (first char of filename=0)
by this code. Filenames beginning with 0x05 will be translated to 0xE5
automatically. Long file name entries will be returned as NULL.
returns DFS_EOF if there are no more entries, DFS_OK if this entry is valid,
or DFS_ERRMISC for a media error
*/
uint32_t DFS_GetNext(PVOLINFO volinfo, PDIRINFO dirinfo, PDIRENT dirent);
/*
Open a file for reading or writing. You supply populated VOLINFO, a path to the file,
mode (DFS_READ or DFS_WRITE) and an empty fileinfo structure. You also need to
provide a pointer to a sector-sized scratch buffer.
Returns various DFS_* error states. If the result is DFS_OK, fileinfo can be used
to access the file from this point on.
*/
uint32_t DFS_OpenFile(PVOLINFO volinfo, uint8_t *path, uint8_t mode, uint8_t *scratch, PFILEINFO fileinfo);
/*
Read an open file
You must supply a prepopulated FILEINFO as provided by DFS_OpenFile, and a
pointer to a SECTOR_SIZE scratch buffer.
Note that returning DFS_EOF is not an error condition. This function updates the
successcount field with the number of bytes actually read.
*/
uint32_t DFS_ReadFile(PFILEINFO fileinfo, uint8_t *scratch, uint8_t *buffer, uint32_t *successcount, uint32_t len);
/*
Write an open file
You must supply a prepopulated FILEINFO as provided by DFS_OpenFile, and a
pointer to a SECTOR_SIZE scratch buffer.
This function updates the successcount field with the number of bytes actually written.
*/
uint32_t DFS_WriteFile(PFILEINFO fileinfo, uint8_t *scratch, uint8_t *buffer, uint32_t *successcount, uint32_t len);
/*
Seek file pointer to a given position
This function does not return status - refer to the fileinfo->pointer value
to see where the pointer wound up.
Requires a SECTOR_SIZE scratch buffer
*/
void DFS_Seek(PFILEINFO fileinfo, uint32_t offset, uint8_t *scratch);
/*
Delete a file
scratch must point to a sector-sized buffer
*/
uint32_t DFS_UnlinkFile(PVOLINFO volinfo, uint8_t *path, uint8_t *scratch);
/*
Fetch FAT entry for specified cluster number
You must provide a scratch buffer for one sector (SECTOR_SIZE) and a populated VOLINFO
Returns a FAT32 BAD_CLUSTER value for any error, otherwise the contents of the desired
FAT entry.
scratchcache should point to a UINT32. This variable caches the physical sector number
last read into the scratch buffer for performance enhancement reasons.
*/
uint32_t DFS_GetFAT(PVOLINFO volinfo, uint8_t *scratch, uint32_t *scratchcache, uint32_t cluster);
/*
// TK: added 2009-02-12
Close a file
No original function of DosFS driver
It has no effect if writing to SD Card, it's only used by the DosFS wrapper in emulation
*/
uint32_t DFS_Close(PFILEINFO fileinfo);
// TK: added 2008-18-12
// for caching - this feature has to be explicitely enabled, as it isn't reentrant
// and requires to use the same buffer pointer whenever reading a file
void DFS_CachingEnabledSet(uint8_t enable);
// TK: added 2008-18-12
// missing pendant to DFS_CanonicalToDir
char *DFS_DirToCanonical(char *dest, char *src);
// If we are building a host-emulation version, include host support
#ifdef HOSTVER
#include "hostemu.h"
#endif
#endif // _DOSFS_H

View File

@ -75,8 +75,8 @@ ifeq ($(MCU),cortex-m3)
STMUSBSRCDIR = $(STMUSBDIR)/src
STMUSBINCDIR = $(STMUSBDIR)/inc
CMSISDIR = $(STMLIBDIR)/CMSIS/Core/CM3
DOSFSDIR = $(APPLIBDIR)/dosfs
MSDDIR = $(APPLIBDIR)/msd
DOSFSDIR = $(PIOSCOMMON)/Libraries/dosfs
RTOSDIR = $(PIOSCOMMON)/Libraries/FreeRTOS
RTOSSRCDIR = $(RTOSDIR)/Source
RTOSINCDIR = $(RTOSSRCDIR)/include