mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2024-12-02 10:24:11 +01:00
PID: Add a pid_apply_setpoint which takes in the setpoint and feedback term
This version allows performing setpoint weighting, currently on the derivative component.
This commit is contained in:
parent
11b099b1ef
commit
e4a167dca1
@ -39,17 +39,58 @@ static float bound(float val, float range);
|
||||
//! Store the shared time constant for the derivative cutoff.
|
||||
static float deriv_tau = 7.9577e-3f;
|
||||
|
||||
//! Store the setpoint weight to apply for the derivative term
|
||||
static float deriv_gamma = 1.0;
|
||||
|
||||
/**
|
||||
* Update the PID computation
|
||||
* @param[in] pid The PID struture which stores temporary information
|
||||
* @param[in] err The error term
|
||||
* @param[in] dT The time step
|
||||
* @returns Output the computed controller value
|
||||
*/
|
||||
float pid_apply(struct pid *pid, const float err, float dT)
|
||||
{
|
||||
{
|
||||
// Scale up accumulator by 1000 while computing to avoid losing precision
|
||||
pid->iAccumulator += err * (pid->i * dT * 1000.0f);
|
||||
pid->iAccumulator = bound(pid->iAccumulator, pid->iLim * 1000.0f);
|
||||
|
||||
// Calculate DT1 term
|
||||
float diff = (err - pid->lastErr);
|
||||
float dterm = 0;
|
||||
pid->lastErr = err;
|
||||
if(pid->d && dT)
|
||||
{
|
||||
dterm = pid->lastDer + dT / ( dT + deriv_tau) * ((diff * pid->d / dT) - pid->lastDer);
|
||||
pid->lastDer = dterm; // ^ set constant to 1/(2*pi*f_cutoff)
|
||||
} // 7.9577e-3 means 20 Hz f_cutoff
|
||||
|
||||
return ((err * pid->p) + pid->iAccumulator / 1000.0f + dterm);
|
||||
}
|
||||
|
||||
/**
|
||||
* Update the PID computation with setpoint weighting on the derivative
|
||||
* @param[in] pid The PID struture which stores temporary information
|
||||
* @param[in] setpoint The setpoint to use
|
||||
* @param[in] measured The measured value of output
|
||||
* @param[in] dT The time step
|
||||
* @returns Output the computed controller value
|
||||
*
|
||||
* This version of apply uses setpoint weighting for the derivative component so the gain
|
||||
* on the gyro derivative can be different than the gain on the setpoint derivative
|
||||
*/
|
||||
float pid_apply_setpoint(struct pid *pid, const float setpoint, const float measured, float dT)
|
||||
{
|
||||
float err = setpoint - measured;
|
||||
|
||||
// Scale up accumulator by 1000 while computing to avoid losing precision
|
||||
pid->iAccumulator += err * (pid->i * dT * 1000.0f);
|
||||
pid->iAccumulator = bound(pid->iAccumulator, pid->iLim * 1000.0f);
|
||||
|
||||
// Calculate DT1 term, fixed T1 timeconstant
|
||||
// Calculate DT1 term,
|
||||
float diff = ((deriv_gamma * setpoint - measured) - pid->lastErr);
|
||||
float dterm = 0;
|
||||
pid->lastErr = err;
|
||||
if(pid->d && dT)
|
||||
{
|
||||
dterm = pid->lastDer + dT / ( dT + deriv_tau) * ((diff * pid->d / dT) - pid->lastDer);
|
||||
@ -78,9 +119,10 @@ void pid_zero(struct pid *pid)
|
||||
* @param[in] cutoff The cutoff frequency (in Hz)
|
||||
* @param[in] gamma The gamma term for setpoint shaping (unsused now)
|
||||
*/
|
||||
void pid_configure_derivative(float cutoff, float gamma)
|
||||
void pid_configure_derivative(float cutoff, float g)
|
||||
{
|
||||
deriv_tau = 1.0f / (2 * F_PI * cutoff);
|
||||
deriv_gamma = g;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -44,6 +44,7 @@ struct pid {
|
||||
|
||||
//! Methods to use the pid structures
|
||||
float pid_apply(struct pid *pid, const float err, float dT);
|
||||
float pid_apply_setpoint(struct pid *pid, const float setpoint, const float measured, float dT);
|
||||
void pid_zero(struct pid *pid);
|
||||
void pid_configure(struct pid *pid, float p, float i, float d, float iLim);
|
||||
void pid_configure_derivative(float cutoff, float gamma);
|
||||
|
Loading…
Reference in New Issue
Block a user