1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-17 02:52:12 +01:00

RFM22B device now fully interrupt driven. Packet handeling moved to RadioComBridge module.

This commit is contained in:
Brian Webb 2012-04-05 20:24:50 -07:00
parent 1669f00456
commit fff93910e2
6 changed files with 753 additions and 1089 deletions

View File

@ -60,7 +60,8 @@ typedef struct {
uint8_t data_size;
} PHPacketHeader;
#define PH_MAX_DATA (PH_MAX_PACKET - sizeof(PHPacketHeader) - RS_ECC_NPARITY)
#define PH_MAX_DATA (PIOS_PH_MAX_PACKET - sizeof(PHPacketHeader) - RS_ECC_NPARITY)
#define PH_PACKET_SIZE(p) (p->data + p->header.data_size - (uint8_t*)p + RS_ECC_NPARITY)
typedef struct {
PHPacketHeader header;
uint8_t data[PH_MAX_DATA + RS_ECC_NPARITY];
@ -70,24 +71,20 @@ typedef struct {
uint8_t txWinSize;
uint16_t maxConnections;
uint32_t id;
void *dev;
uint8_t (*output_stream)(void *dev, PHPacketHandle packet);
void (*set_baud)(uint32_t baud);
void (*data_handler)(void *dev, uint8_t *data, uint8_t len);
void (*receiver_handler)(void *dev, uint8_t *data, uint8_t len);
} PacketHandlerConfig;
typedef int32_t (*PHOutputStream)(PHPacketHandle packet);
typedef void (*PHDataHandler)(uint8_t *data, uint8_t len);
typedef void* PHInstHandle;
// Public functions
PHInstHandle PHInitialize(PacketHandlerConfig *cfg);
void PHRegisterOutputStream(PHInstHandle h, PHOutputStream f);
void PHRegisterDataHandler(PHInstHandle h, PHDataHandler f);
uint32_t PHConnect(PHInstHandle h, uint32_t dest_id);
PHPacketHandle PHGetRXPacket(PHInstHandle h);
PHPacketHandle PHGetTXPacket(PHInstHandle h);
PHPacketHandle PHReserveTXPacket(PHInstHandle h);
void PHReleaseLock(PHInstHandle h, bool keep_packet);
void PHReleaseTXPacket(PHInstHandle h, PHPacketHandle p);
uint8_t PHTransmitPacket(PHInstHandle h, PHPacketHandle p);
uint8_t PHReceivePacket(PHInstHandle h, PHPacketHandle p);

View File

@ -32,6 +32,8 @@
#include "aes.h"
#include "ecc.h"
extern char *debug_msg;
// Private types and constants
typedef struct {
PacketHandlerConfig cfg;
@ -42,6 +44,8 @@ typedef struct {
PHPacket rx_packet;
PHOutputStream stream;
xSemaphoreHandle lock;
PHOutputStream output_stream;
PHDataHandler data_handler;
} PHPacketData, *PHPacketDataHandle;
// Private functions
@ -49,14 +53,6 @@ static uint8_t PHLSendAck(PHPacketDataHandle data, PHPacketHandle p);
static uint8_t PHLSendNAck(PHPacketDataHandle data, PHPacketHandle p);
static uint8_t PHLTransmitPacket(PHPacketDataHandle data, PHPacketHandle p);
/*
static void
byte_err (int err, int loc, unsigned char *dst)
{
dst[loc-1] ^= err;
}
*/
/**
* Initialize the Packet Handler library
* \param[in] txWinSize The transmission window size (number of tx packet buffers).
@ -92,6 +88,30 @@ PHInstHandle PHInitialize(PacketHandlerConfig *cfg)
return (PHInstHandle)data;
}
/**
* Register an output stream handler
* \param[in] h The packet handler instance data pointer.
* \param[in] f The output stream handler function
*/
void PHRegisterOutputStream(PHInstHandle h, PHOutputStream f)
{
PHPacketDataHandle data = (PHPacketDataHandle)h;
data->output_stream = f;
}
/**
* Register a data handler
* \param[in] h The packet handler instance data pointer.
* \param[in] f The data handler function
*/
void PHRegisterDataHandler(PHInstHandle h, PHDataHandler f)
{
PHPacketDataHandle data = (PHPacketDataHandle)h;
data->data_handler = f;
}
/**
* Get a packet out of the transmit buffer.
* \param[in] h The packet handler instance data pointer.
@ -104,58 +124,6 @@ uint32_t PHConnect(PHInstHandle h, uint32_t dest_id)
return 1;
}
/**
* Temporarily reserve the next packet in the TX packet window.
* This function places a tempoary hold on the next TX packet and
* retains the packet handler lock.
*
* NOTE: PHReleaseLock must be called to release the lock and retain
* or release the reserved packet.
*
* \param[in] h The packet handler instance data pointer.
* \return PHPacketHandle A pointer to the packet buffer.
* \return 0 No packets buffers avaiable in the transmit window.
*/
PHPacketHandle PHReserveTXPacket(PHInstHandle h)
{
PHPacketDataHandle data = (PHPacketDataHandle)h;
// Lock
xSemaphoreTakeRecursive(data->lock, portMAX_DELAY);
// Is the window full?
uint8_t next_end = (data->tx_win_end + 1) % data->cfg.txWinSize;
if(next_end == data->tx_win_start) {
// Release the lock
xSemaphoreGiveRecursive(data->lock);
return NULL;
}
// Return a pointer to the packet at the end of the TX window.
return data->tx_packets + data->tx_win_end;
}
/**
* Get a packet out of the transmit buffer and keep the lock.
* NOTE: PHReleaseLock must be called to release the lock.
* \param[in] h The packet handler instance data pointer.
* \param[in] keep_packet Maintain a permanent (until released) lock on the packet.
*/
void PHReleaseLock(PHInstHandle h, bool keep_packet)
{
PHPacketDataHandle data = (PHPacketDataHandle)h;
uint8_t next_end = (data->tx_win_end + 1) % data->cfg.txWinSize;
// Increment the end index if packet is being kept.
if (keep_packet)
data->tx_win_end = next_end;
// Release lock
xSemaphoreGiveRecursive(data->lock);
}
/**
* Get a packet out of the transmit buffer.
* \param[in] h The packet handler instance data pointer.
@ -164,8 +132,22 @@ void PHReleaseLock(PHInstHandle h, bool keep_packet)
*/
PHPacketHandle PHGetTXPacket(PHInstHandle h)
{
PHPacketHandle p = PHReserveTXPacket(h);
PHReleaseLock(p, 1);
PHPacketDataHandle data = (PHPacketDataHandle)h;
// Lock
xSemaphoreTakeRecursive(data->lock, portMAX_DELAY);
PHPacketHandle p = data->tx_packets + data->tx_win_end;
// Is the window full?
uint8_t next_end = (data->tx_win_end + 1) % data->cfg.txWinSize;
if(next_end == data->tx_win_start)
return NULL;
data->tx_win_end = next_end;
// Release lock
xSemaphoreGiveRecursive(data->lock);
// Return a pointer to the packet at the end of the TX window.
return p;
}
@ -268,8 +250,8 @@ uint8_t PHReceivePacket(PHInstHandle h, PHPacketHandle p)
PHLSendAck(data, p);
// Pass on the data.
if(data->cfg.data_handler)
data->cfg.data_handler(data->cfg.dev, p->data, p->header.data_size);
if(data->data_handler)
data->data_handler(p->data, p->header.data_size);
}
break;
@ -307,15 +289,18 @@ uint8_t PHReceivePacket(PHInstHandle h, PHPacketHandle p)
break;
default:
case PACKET_TYPE_DATA:
if (!rx_error)
// Pass on the data to the receiver handler.
if(data->cfg.data_handler)
data->cfg.data_handler(data->cfg.dev, p->data, p->header.data_size);
if(data->data_handler)
data->data_handler(p->data, p->header.data_size);
break;
default:
break;
}
return 1;
@ -331,14 +316,17 @@ uint8_t PHReceivePacket(PHInstHandle h, PHPacketHandle p)
static uint8_t PHLTransmitPacket(PHPacketDataHandle data, PHPacketHandle p)
{
if(!data->output_stream)
return 0;
// Set the sequence ID to the current ID.
p->header.tx_seq = data->tx_seq_id++;
// Add the error correcting code.
encode_data((unsigned char*)p, PHPacketSize(p), (unsigned char*)p);
// Transmit the packet using the output stream.
if(!data->cfg.output_stream(data->cfg.dev, p))
if(data->output_stream(p) == -1)
return 0;
return 1;
@ -362,10 +350,8 @@ static uint8_t PHLSendAck(PHPacketDataHandle data, PHPacketHandle p)
ack.rx_seq = p->header.tx_seq;
ack.data_size = 0;
// Set the packet.
PHLTransmitPacket(data, (PHPacketHandle)&ack);
return 1;
// Send the packet.
return PHLTransmitPacket(data, (PHPacketHandle)&ack);
}
/**
@ -387,7 +373,5 @@ static uint8_t PHLSendNAck(PHPacketDataHandle data, PHPacketHandle p)
ack.data_size = 0;
// Set the packet.
PHLTransmitPacket(data, (PHPacketHandle)&ack);
return 1;
return PHLTransmitPacket(data, (PHPacketHandle)&ack);
}

View File

@ -30,28 +30,34 @@
// ****************
#include "openpilot.h"
#include "hwsettings.h"
#include "radiocombridge.h"
#include <openpilot.h>
#include <hwsettings.h>
#include <radiocombridge.h>
#include <packet_handler.h>
#include <stdbool.h>
#include "ecc.h"
extern char *debug_msg;
// ****************
// Private functions
static void radio2ComBridgeTask(void *parameters);
static void com2RadioBridgeTask(void *parameters);
static int32_t transmitData(uint8_t * data, int32_t length);
static int32_t transmitPacket(PHPacketHandle packet);
static void receiveData(uint8_t *buf, uint8_t len);
static void updateSettings();
// ****************
// Private constants
//#define STACK_SIZE_BYTES 280
#define STACK_SIZE_BYTES 350
#define STACK_SIZE_BYTES 300
#define TASK_PRIORITY (tskIDLE_PRIORITY + 1)
#define BRIDGE_BUF_LEN 10
#define BRIDGE_BUF_LEN 128
// ****************
// Private types
@ -76,6 +82,13 @@ typedef struct {
uint32_t com_tx_errors;
uint32_t radio_tx_errors;
// The packet handler.
PHInstHandle packet_handler;
portTickType send_timeout;
uint16_t min_packet_size;
PHPacket packet;
} RadioComBridgeData;
// ****************
@ -92,8 +105,8 @@ static int32_t RadioComBridgeStart(void)
{
if(data) {
// Start the tasks
xTaskCreate(radio2ComBridgeTask, (signed char *)"Radio2ComBridge", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &(data->radio2ComBridgeTaskHandle));
xTaskCreate(com2RadioBridgeTask, (signed char *)"Com2RadioBridge", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &(data->com2RadioBridgeTaskHandle));
xTaskCreate(radio2ComBridgeTask, (signed char *)"Radio2ComBridge", STACK_SIZE_BYTES/2, NULL, TASK_PRIORITY, &(data->radio2ComBridgeTaskHandle));
xTaskCreate(com2RadioBridgeTask, (signed char *)"Com2RadioBridge", STACK_SIZE_BYTES/2, NULL, TASK_PRIORITY, &(data->com2RadioBridgeTaskHandle));
return 0;
}
@ -122,7 +135,7 @@ static int32_t RadioComBridgeInitialize(void)
PIOS_Assert(data->radio2com_buf);
data->com2radio_buf = pvPortMalloc(BRIDGE_BUF_LEN);
PIOS_Assert(data->com2radio_buf);
// Initialise UAVTalk
data->uavTalkCon = UAVTalkInitialize(&transmitData);
@ -130,6 +143,22 @@ static int32_t RadioComBridgeInitialize(void)
data->com_tx_errors = 0;
data->radio_tx_errors = 0;
// Initialize the packet handler
PacketHandlerConfig phcfg = {
.txWinSize = PIOS_PH_TX_WIN_SIZE,
.maxConnections = PIOS_PH_MAX_CONNECTIONS,
.id = 0x36249acb,
};
data->packet_handler = PHInitialize(&phcfg);
// Register the callbacks with the packet handler
PHRegisterOutputStream(data->packet_handler, transmitPacket);
PHRegisterDataHandler(data->packet_handler, receiveData);
// Initialize the packet send timeout
data->send_timeout = 25; // ms
data->min_packet_size = 50;
updateSettings();
return 0;
@ -148,11 +177,7 @@ static void radio2ComBridgeTask(void *parameters)
// Receive data from the radio port
rx_bytes = PIOS_COM_ReceiveBuffer(data->radio_port, data->radio2com_buf, BRIDGE_BUF_LEN, 500);
if (rx_bytes > 0) {
/* Send the received data to the com port */
if (PIOS_COM_SendBuffer(data->com_port, data->radio2com_buf, rx_bytes) != rx_bytes) {
/* Error on transmit */
data->com_tx_errors++;
}
PHReceivePacket(data->packet_handler, (PHPacketHandle)data->radio2com_buf);
}
}
}
@ -162,22 +187,69 @@ static void radio2ComBridgeTask(void *parameters)
*/
static void com2RadioBridgeTask(void * parameters)
{
uint32_t rx_bytes = 0;
portTickType packet_start_time = 0;
uint32_t timeout = 500;
/* Handle usart/usb -> radio direction */
while (1) {
uint32_t rx_bytes;
// Receive data from the com port
rx_bytes = PIOS_COM_ReceiveBuffer(data->com_port, data->com2radio_buf, BRIDGE_BUF_LEN, 500);
//debug_msg = "COM receive";
uint32_t cur_rx_bytes = PIOS_COM_ReceiveBuffer(data->com_port, data->com2radio_buf +
rx_bytes, BRIDGE_BUF_LEN - rx_bytes, timeout);
//debug_msg = "COM receive done";
rx_bytes += cur_rx_bytes;
// Do we have an data to send?
if (rx_bytes > 0) {
/* Send the received data to the radio port */
if (PIOS_COM_SendBuffer(data->radio_port, data->com2radio_buf, rx_bytes) != rx_bytes) {
/* Error on transmit */
data->radio_tx_errors++;
// Check how long since last update
portTickType cur_sys_time = xTaskGetTickCount();
// Is this the start of a packet?
if(packet_start_time == 0)
packet_start_time = cur_sys_time;
// Just send the packet on wraparound
bool send_packet = (cur_sys_time < packet_start_time);
if (!send_packet)
{
portTickType dT = (cur_sys_time - packet_start_time) / portTICK_RATE_MS;
if (dT > data->send_timeout)
send_packet = true;
else
timeout = data->send_timeout - dT;
}
// Also send the packet if the size is over the minimum.
send_packet |= (rx_bytes > data->min_packet_size);
// Should we send this packet?
if (send_packet)
{
// Get a TX packet from the packet handler
PHPacketHandle p = PHGetTXPacket(data->packet_handler);
// Initialize the packet.
//p->header.type = PACKET_TYPE_ACKED_DATA;
p->header.type = PACKET_TYPE_DATA;
p->header.data_size = rx_bytes;
// Copy the data into the packet.
memcpy(p->data, data->com2radio_buf, rx_bytes);
// Transmit the packet
PHTransmitPacket(data->packet_handler, p);
// Reset the timeout
timeout = 500;
rx_bytes = 0;
packet_start_time = 0;
}
// Pass the data through UAVTalk
//for (uint8_t i = 0; i < rx_bytes; i++)
//for (uint8_t i = 0; i < cur_rx_bytes; i++)
//UAVTalkProcessInputStream(data->uavTalkCon, data->com2radio_buf[i]);
}
}
@ -196,6 +268,35 @@ static int32_t transmitData(uint8_t *buf, int32_t length)
return PIOS_COM_SendBuffer(data->com_port, buf, length);
}
/**
* Transmit a packet to the radio port.
* \param[in] buf Data buffer to send
* \param[in] length Length of buffer
* \return -1 on failure
* \return number of bytes transmitted on success
*/
static int32_t transmitPacket(PHPacketHandle p)
{
static uint32_t cntr = 0;
DEBUG_PRINTF(2, "Sending: %d %d\n\r", p->header.data_size, cntr++);
int32_t ret = PIOS_COM_SendBuffer(data->radio_port, (uint8_t*)p, PH_PACKET_SIZE(p));
return ret;
}
/**
* Receive a packet
* \param[in] buf The received data buffer
* \param[in] length Length of buffer
*/
static void receiveData(uint8_t *buf, uint8_t len)
{
DEBUG_PRINTF(2, "Received: %d\n\r", len);
/* Send the received data to the com port */
if (PIOS_COM_SendBuffer(data->com_port, buf, len) != len)
/* Error on transmit */
data->com_tx_errors++;
}
static void updateSettings()
{
if (data->com_port) {

View File

@ -166,9 +166,10 @@ extern uint32_t pios_com_rfm22b_id;
*/
#define PIOS_COM_DEBUG PIOS_COM_FLEXI
#define PIOS_COM_BRIDGE_COM PIOS_COM_TELEM_SERIAL
//#define PIOS_COM_BRIDGE_COM PIOS_COM_FLEXI
#define PIOS_COM_BRIDGE_RADIO PIOS_COM_RFM22B_RF
#define DEBUG_LEVEL 1
#define DEBUG_LEVEL 2
#if DEBUG_LEVEL > 0
#define DEBUG_PRINTF(level, ...) if(level <= DEBUG_LEVEL) { PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_DEBUG, __VA_ARGS__); }
#else
@ -229,26 +230,28 @@ extern uint32_t pios_com_rfm22b_id;
// RFM22
//-------------------------
//#define RFM22_EXT_INT_USE
#define RFM22_EXT_INT_USE
#define RFM22_PIOS_SPI PIOS_SPI_PORT // SPIx
#if defined(RFM22_EXT_INT_USE)
#define RFM22_EXT_INT_PORT_SOURCE GPIO_PortSourceGPIOA
#define RFM22_EXT_INT_PIN_SOURCE GPIO_PinSource2
#define RFM22_EXT_INT_LINE EXTI_Line2
#define RFM22_EXT_INT_IRQn EXTI2_IRQn
#define RFM22_EXT_INT_FUNC EXTI2_IRQHandler
#define RFM22_EXT_INT_PRIORITY 1
#define PIOS_RFM22_EXTI_GPIO_PORT GPIOA
#define PIOS_RFM22_EXTI_GPIO_PIN GPIO_Pin_2
#define PIOS_RFM22_EXTI_PORT_SOURCE GPIO_PortSourceGPIOA
#define PIOS_RFM22_EXTI_PIN_SOURCE GPIO_PinSource2
#define PIOS_RFM22_EXTI_CLK RCC_APB2Periph_GPIOA
#define PIOS_RFM22_EXTI_LINE EXTI_Line2
#define PIOS_RFM22_EXTI_IRQn EXTI2_IRQn
#define PIOS_RFM22_EXTI_PRIO PIOS_IRQ_PRIO_LOW
#endif
//-------------------------
// Packet Handler
//-------------------------
#define PH_MAX_PACKET 255
#define PIOS_PH_MAX_PACKET 255
#define PIOS_PH_TX_WIN_SIZE 3
#define PIOS_PH_MAX_CONNECTIONS 1
//-------------------------
// Reed-Solomon ECC

View File

@ -79,7 +79,10 @@
#define TX_PREAMBLE_NIBBLES 12 // 7 to 511 (number of nibbles)
#define RX_PREAMBLE_NIBBLES 6 // 5 to 31 (number of nibbles)
#define FIFO_SIZE 64 // the size of the rf modules internal FIFO buffers
// the size of the rf modules internal transmit buffers.
#define TX_BUFFER_SIZE 256
// the size of the rf modules internal FIFO buffers
#define FIFO_SIZE 64
#define TX_FIFO_HI_WATERMARK 62 // 0-63
#define TX_FIFO_LO_WATERMARK 32 // 0-63
@ -137,8 +140,6 @@
// 10-nibble tx preamble length
// AFC enabled
#define LOOKUP_SIZE 14
/* Local type definitions */
enum pios_rfm22b_dev_magic {
PIOS_RFM22B_DEV_MAGIC = 0x68e971b6,
@ -148,8 +149,6 @@ struct pios_rfm22b_dev {
enum pios_rfm22b_dev_magic magic;
const struct pios_rfm22b_cfg *cfg;
xTaskHandle taskHandle;
uint32_t countdownTimer;
pios_com_callback rx_in_cb;
@ -157,18 +156,32 @@ struct pios_rfm22b_dev {
pios_com_callback tx_out_cb;
uint32_t tx_out_context;
PHInstHandle packet_handler;
PHPacketHandle cur_tx_packet;
};
uint32_t random32 = 0x459ab8d8;
/* Local function forwared declarations */
static uint8_t PIOS_RFM22B_send_packet(void *rfm22b, PHPacketHandle packet);
static void PIOS_RFM22B_receive_data(void *rfm22b, uint8_t *data, uint8_t len);
static void PIOS_RFM22B_Task(void *parameters);
void rfm22_processInt(void);
void PIOS_RFM22_EXT_Int(void);
void rfm22_setTxMode(uint8_t mode);
// SPI read/write functions
void rfm22_startBurstWrite(uint8_t addr);
inline void rfm22_burstWrite(uint8_t data)
{
PIOS_SPI_TransferByte(RFM22_PIOS_SPI, data);
}
void rfm22_endBurstWrite(void);
void rfm22_write(uint8_t addr, uint8_t data);
void rfm22_startBurstRead(uint8_t addr);
inline uint8_t rfm22_burstRead(void)
{
return PIOS_SPI_TransferByte(RFM22_PIOS_SPI, 0xff);
}
void rfm22_endBurstRead(void);
uint8_t rfm22_read(uint8_t addr);
uint8_t rfm22_txStart();
/* Provide a COM driver */
static void PIOS_RFM22B_ChangeBaud(uint32_t rfm22b_id, uint32_t baud);
@ -186,35 +199,65 @@ const struct pios_com_driver pios_rfm22b_com_driver = {
.bind_rx_cb = PIOS_RFM22B_RegisterRxCallback,
};
// External interrupt configuration
static const struct pios_exti_cfg pios_exti_rfm22b_cfg __exti_config = {
.vector = PIOS_RFM22_EXT_Int,
.line = PIOS_RFM22_EXTI_LINE,
.pin = {
.gpio = PIOS_RFM22_EXTI_GPIO_PORT,
.init = {
.GPIO_Pin = PIOS_RFM22_EXTI_GPIO_PIN,
.GPIO_Mode = GPIO_Mode_IN_FLOATING,
},
},
.irq = {
.init = {
.NVIC_IRQChannel = PIOS_RFM22_EXTI_IRQn,
.NVIC_IRQChannelPreemptionPriority = PIOS_RFM22_EXTI_PRIO,
.NVIC_IRQChannelSubPriority = 0,
.NVIC_IRQChannelCmd = ENABLE,
},
},
.exti = {
.init = {
.EXTI_Line = PIOS_RFM22_EXTI_LINE,
.EXTI_Mode = EXTI_Mode_Interrupt,
.EXTI_Trigger = EXTI_Trigger_Falling,
.EXTI_LineCmd = ENABLE,
},
},
};
// xtal 10 ppm, 434MHz
const uint32_t data_rate[LOOKUP_SIZE] = { 500, 1000, 2000, 4000, 8000, 9600, 16000, 19200, 24000, 32000, 64000, 128000, 192000, 256000};
const uint8_t modulation_index[LOOKUP_SIZE] = { 16, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
const uint32_t freq_deviation[LOOKUP_SIZE] = { 4000, 4000, 4000, 4000, 4000, 4800, 8000, 9600, 12000, 16000, 32000, 64000, 96000, 128000};
const uint32_t rx_bandwidth[LOOKUP_SIZE] = { 17500, 17500, 17500, 17500, 17500, 19400, 32200, 38600, 51200, 64100, 137900, 269300, 420200, 518800};
const int8_t est_rx_sens_dBm[LOOKUP_SIZE] = { -118, -118, -117, -116, -115, -115, -112, -112, -110, -109, -106, -103, -101, -100}; // estimated receiver sensitivity for BER = 1E-3
#define LOOKUP_SIZE 14
const uint32_t data_rate[] = { 500, 1000, 2000, 4000, 8000, 9600, 16000, 19200, 24000, 32000, 64000, 128000, 192000, 256000};
const uint8_t modulation_index[] = { 16, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
const uint32_t freq_deviation[] = { 4000, 4000, 4000, 4000, 4000, 4800, 8000, 9600, 12000, 16000, 32000, 64000, 96000, 128000};
const uint32_t rx_bandwidth[] = { 17500, 17500, 17500, 17500, 17500, 19400, 32200, 38600, 51200, 64100, 137900, 269300, 420200, 518800};
const int8_t est_rx_sens_dBm[] = { -118, -118, -117, -116, -115, -115, -112, -112, -110, -109, -106, -103, -101, -100}; // estimated receiver sensitivity for BER = 1E-3
const uint8_t reg_1C[LOOKUP_SIZE] = { 0x37, 0x37, 0x37, 0x37, 0x3A, 0x3B, 0x26, 0x28, 0x2E, 0x16, 0x07, 0x83, 0x8A, 0x8C}; // rfm22_if_filter_bandwidth
const uint8_t reg_1C[] = { 0x37, 0x37, 0x37, 0x37, 0x3A, 0x3B, 0x26, 0x28, 0x2E, 0x16, 0x07, 0x83, 0x8A, 0x8C}; // rfm22_if_filter_bandwidth
const uint8_t reg_1D[LOOKUP_SIZE] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44}; // rfm22_afc_loop_gearshift_override
const uint8_t reg_1E[LOOKUP_SIZE] = { 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x02}; // rfm22_afc_timing_control
const uint8_t reg_1D[] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44}; // rfm22_afc_loop_gearshift_override
const uint8_t reg_1E[] = { 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x02}; // rfm22_afc_timing_control
const uint8_t reg_1F[LOOKUP_SIZE] = { 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03}; // rfm22_clk_recovery_gearshift_override
const uint8_t reg_20[LOOKUP_SIZE] = { 0xE8, 0xF4, 0xFA, 0x70, 0x3F, 0x34, 0x3F, 0x34, 0x2A, 0x3F, 0x3F, 0x5E, 0x3F, 0x2F}; // rfm22_clk_recovery_oversampling_ratio
const uint8_t reg_21[LOOKUP_SIZE] = { 0x60, 0x20, 0x00, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x02, 0x02, 0x01, 0x02, 0x02}; // rfm22_clk_recovery_offset2
const uint8_t reg_22[LOOKUP_SIZE] = { 0x20, 0x41, 0x83, 0x06, 0x0C, 0x75, 0x0C, 0x75, 0x12, 0x0C, 0x0C, 0x5D, 0x0C, 0xBB}; // rfm22_clk_recovery_offset1
const uint8_t reg_23[LOOKUP_SIZE] = { 0xC5, 0x89, 0x12, 0x25, 0x4A, 0x25, 0x4A, 0x25, 0x6F, 0x4A, 0x4A, 0x86, 0x4A, 0x0D}; // rfm22_clk_recovery_offset0
const uint8_t reg_24[LOOKUP_SIZE] = { 0x00, 0x00, 0x00, 0x02, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x05, 0x07, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
const uint8_t reg_25[LOOKUP_SIZE] = { 0x0A, 0x23, 0x85, 0x0E, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x74, 0xFF, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
const uint8_t reg_1F[] = { 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03}; // rfm22_clk_recovery_gearshift_override
const uint8_t reg_20[] = { 0xE8, 0xF4, 0xFA, 0x70, 0x3F, 0x34, 0x3F, 0x34, 0x2A, 0x3F, 0x3F, 0x5E, 0x3F, 0x2F}; // rfm22_clk_recovery_oversampling_ratio
const uint8_t reg_21[] = { 0x60, 0x20, 0x00, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x02, 0x02, 0x01, 0x02, 0x02}; // rfm22_clk_recovery_offset2
const uint8_t reg_22[] = { 0x20, 0x41, 0x83, 0x06, 0x0C, 0x75, 0x0C, 0x75, 0x12, 0x0C, 0x0C, 0x5D, 0x0C, 0xBB}; // rfm22_clk_recovery_offset1
const uint8_t reg_23[] = { 0xC5, 0x89, 0x12, 0x25, 0x4A, 0x25, 0x4A, 0x25, 0x6F, 0x4A, 0x4A, 0x86, 0x4A, 0x0D}; // rfm22_clk_recovery_offset0
const uint8_t reg_24[] = { 0x00, 0x00, 0x00, 0x02, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x05, 0x07, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
const uint8_t reg_25[] = { 0x0A, 0x23, 0x85, 0x0E, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x74, 0xFF, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
const uint8_t reg_2A[LOOKUP_SIZE] = { 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0D, 0x0D, 0x0E, 0x12, 0x17, 0x31, 0x50, 0x50, 0x50}; // rfm22_afc_limiter .. AFC_pull_in_range = ±AFCLimiter[7:0] x (hbsel+1) x 625 Hz
const uint8_t reg_2A[] = { 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0D, 0x0D, 0x0E, 0x12, 0x17, 0x31, 0x50, 0x50, 0x50}; // rfm22_afc_limiter .. AFC_pull_in_range = ±AFCLimiter[7:0] x (hbsel+1) x 625 Hz
const uint8_t reg_6E[LOOKUP_SIZE] = { 0x04, 0x08, 0x10, 0x20, 0x41, 0x4E, 0x83, 0x9D, 0xC4, 0x08, 0x10, 0x20, 0x31, 0x41}; // rfm22_tx_data_rate1
const uint8_t reg_6F[LOOKUP_SIZE] = { 0x19, 0x31, 0x62, 0xC5, 0x89, 0xA5, 0x12, 0x49, 0x9C, 0x31, 0x62, 0xC5, 0x27, 0x89}; // rfm22_tx_data_rate0
const uint8_t reg_6E[] = { 0x04, 0x08, 0x10, 0x20, 0x41, 0x4E, 0x83, 0x9D, 0xC4, 0x08, 0x10, 0x20, 0x31, 0x41}; // rfm22_tx_data_rate1
const uint8_t reg_6F[] = { 0x19, 0x31, 0x62, 0xC5, 0x89, 0xA5, 0x12, 0x49, 0x9C, 0x31, 0x62, 0xC5, 0x27, 0x89}; // rfm22_tx_data_rate0
const uint8_t reg_70[LOOKUP_SIZE] = { 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D}; // rfm22_modulation_mode_control1
const uint8_t reg_71[LOOKUP_SIZE] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23}; // rfm22_modulation_mode_control2
const uint8_t reg_70[] = { 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D}; // rfm22_modulation_mode_control1
const uint8_t reg_71[] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23}; // rfm22_modulation_mode_control2
const uint8_t reg_72[LOOKUP_SIZE] = { 0x06, 0x06, 0x06, 0x06, 0x06, 0x08, 0x0D, 0x0F, 0x13, 0x1A, 0x33, 0x66, 0x9A, 0xCD}; // rfm22_frequency_deviation
const uint8_t reg_72[] = { 0x06, 0x06, 0x06, 0x06, 0x06, 0x08, 0x0D, 0x0F, 0x13, 0x1A, 0x33, 0x66, 0x9A, 0xCD}; // rfm22_frequency_deviation
// ************************************
// Scan Spectrum settings
@ -224,27 +267,25 @@ const uint8_t reg_72[LOOKUP_SIZE] = { 0x06, 0x06, 0x06, 0x06,
// FIFO mode
// 5-nibble rx preamble length detection
// 10-nibble tx preamble length
// AFC disabled
#define SS_LOOKUP_SIZE 2
// xtal 1 ppm, 434MHz
const uint32_t ss_rx_bandwidth[SS_LOOKUP_SIZE] = { 2600, 10600};
const uint32_t ss_rx_bandwidth[] = { 2600, 10600};
const uint8_t ss_reg_1C[SS_LOOKUP_SIZE] = { 0x51, 0x32}; // rfm22_if_filter_bandwidth
const uint8_t ss_reg_1D[SS_LOOKUP_SIZE] = { 0x00, 0x00}; // rfm22_afc_loop_gearshift_override
const uint8_t ss_reg_1C[] = { 0x51, 0x32}; // rfm22_if_filter_bandwidth
const uint8_t ss_reg_1D[] = { 0x00, 0x00}; // rfm22_afc_loop_gearshift_override
const uint8_t ss_reg_20[SS_LOOKUP_SIZE] = { 0xE8, 0x38}; // rfm22_clk_recovery_oversampling_ratio
const uint8_t ss_reg_21[SS_LOOKUP_SIZE] = { 0x60, 0x02}; // rfm22_clk_recovery_offset2
const uint8_t ss_reg_22[SS_LOOKUP_SIZE] = { 0x20, 0x4D}; // rfm22_clk_recovery_offset1
const uint8_t ss_reg_23[SS_LOOKUP_SIZE] = { 0xC5, 0xD3}; // rfm22_clk_recovery_offset0
const uint8_t ss_reg_24[SS_LOOKUP_SIZE] = { 0x00, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
const uint8_t ss_reg_25[SS_LOOKUP_SIZE] = { 0x0F, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
const uint8_t ss_reg_20[] = { 0xE8, 0x38}; // rfm22_clk_recovery_oversampling_ratio
const uint8_t ss_reg_21[] = { 0x60, 0x02}; // rfm22_clk_recovery_offset2
const uint8_t ss_reg_22[] = { 0x20, 0x4D}; // rfm22_clk_recovery_offset1
const uint8_t ss_reg_23[] = { 0xC5, 0xD3}; // rfm22_clk_recovery_offset0
const uint8_t ss_reg_24[] = { 0x00, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
const uint8_t ss_reg_25[] = { 0x0F, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
const uint8_t ss_reg_2A[SS_LOOKUP_SIZE] = { 0xFF, 0xFF}; // rfm22_afc_limiter .. AFC_pull_in_range = ±AFCLimiter[7:0] x (hbsel+1) x 625 Hz
const uint8_t ss_reg_2A[] = { 0xFF, 0xFF}; // rfm22_afc_limiter .. AFC_pull_in_range = ±AFCLimiter[7:0] x (hbsel+1) x 625 Hz
const uint8_t ss_reg_70[SS_LOOKUP_SIZE] = { 0x24, 0x2D}; // rfm22_modulation_mode_control1
const uint8_t ss_reg_71[SS_LOOKUP_SIZE] = { 0x2B, 0x23}; // rfm22_modulation_mode_control2
const uint8_t ss_reg_70[] = { 0x24, 0x2D}; // rfm22_modulation_mode_control1
const uint8_t ss_reg_71[] = { 0x2B, 0x23}; // rfm22_modulation_mode_control2
// ************************************
@ -252,7 +293,6 @@ volatile bool initialized = false;
#if defined(RFM22_EXT_INT_USE)
volatile bool exec_using_spi; // set this if you want to access the SPI bus outside of the interrupt
volatile bool inside_ext_int; // this is set whenever we are inside the interrupt
#endif
uint8_t device_type; // the RF chips device ID number
@ -294,7 +334,9 @@ volatile uint8_t prev_int_status1; // " "
volatile uint8_t prev_int_status2; // " "
volatile uint8_t prev_ezmac_status; // " "
bool debug_outputted;
const char *debug_msg = NULL;
const char *error_msg = NULL;
static uint32_t debug_val = 0;
#endif
volatile uint8_t osc_load_cap; // xtal frequency calibration value
@ -302,29 +344,36 @@ volatile uint8_t osc_load_cap; // xtal frequency calibration value
volatile uint8_t rssi; // the current RSSI (register value)
volatile int16_t rssi_dBm; // dBm value
uint8_t tx_power; // the transmit power to use for data transmissions
volatile uint8_t tx_pwr; // the tx power register read back
// the transmit power to use for data transmissions
uint8_t tx_power;
// the tx power register read back
volatile uint8_t tx_pwr;
volatile uint8_t rx_buffer_current; // the current receive buffer in use (double buffer)
volatile uint8_t rx_buffer[256] __attribute__ ((aligned(4))); // the receive buffer .. received packet data is saved here
volatile uint16_t rx_buffer_wr; // the receive buffer write index
// The transmit buffer. Holds data that is being transmitted.
uint8_t tx_buffer[TX_BUFFER_SIZE] __attribute__ ((aligned(4)));
// The transmit buffer. Hosts data that is wating to be transmitted.
uint8_t tx_pre_buffer[TX_BUFFER_SIZE] __attribute__ ((aligned(4)));
// The tx pre-buffer write index.
uint16_t tx_pre_buffer_size;
// the tx data read index
volatile uint16_t tx_data_rd;
// the tx data write index
volatile uint16_t tx_data_wr;
volatile uint8_t rx_packet_buf[256] __attribute__ ((aligned(4))); // the received packet
// the current receive buffer in use (double buffer)
volatile uint8_t rx_buffer_current;
// the receive buffer .. received packet data is saved here
volatile uint8_t rx_buffer[256] __attribute__ ((aligned(4)));
// the receive buffer write index
volatile uint16_t rx_buffer_wr;
// the received packet
volatile uint16_t rx_packet_wr; // the receive packet write index
volatile int16_t rx_packet_start_rssi_dBm; //
volatile int32_t rx_packet_start_afc_Hz; //
volatile int16_t rx_packet_rssi_dBm; // the received packet signal strength
volatile int32_t rx_packet_afc_Hz; // the receive packet frequency offset
volatile uint8_t *tx_data_addr; // the address of the data we send in the transmitted packets
volatile uint16_t tx_data_rd; // the tx data read index
volatile uint16_t tx_data_wr; // the tx data write index
//volatile uint8_t tx_fifo[FIFO_SIZE]; //
volatile uint8_t rx_fifo[FIFO_SIZE]; //
volatile uint8_t rx_fifo_wr; //
int lookup_index;
int ss_lookup_index;
@ -334,14 +383,11 @@ volatile uint16_t rfm22_int_timer; // used to detect if the RF module stops
volatile uint16_t rfm22_int_time_outs; // counter
volatile uint16_t prev_rfm22_int_time_outs; //
uint32_t clear_channel_count = (TX_PREAMBLE_NIBBLES + 4) * 2; // minimum clear channel time before allowing transmit
uint16_t timeout_ms = 20000; //
uint16_t timeout_sync_ms = 3; //
uint16_t timeout_data_ms = 20; //
t_rfm22_TxDataByteCallback tx_data_byte_callback_function = NULL;
t_rfm22_RxDataCallback rx_data_callback_function = NULL;
struct pios_rfm22b_dev * rfm22b_dev_g;
static bool PIOS_RFM22B_validate(struct pios_rfm22b_dev * rfm22b_dev)
@ -356,6 +402,7 @@ static struct pios_rfm22b_dev * PIOS_RFM22B_alloc(void)
rfm22b_dev = (struct pios_rfm22b_dev *)pvPortMalloc(sizeof(*rfm22b_dev));
if (!rfm22b_dev) return(NULL);
rfm22b_dev_g = rfm22b_dev;
rfm22b_dev->magic = PIOS_RFM22B_DEV_MAGIC;
return(rfm22b_dev);
@ -394,25 +441,14 @@ int32_t PIOS_RFM22B_Init(uint32_t *rfm22b_id, const struct pios_rfm22b_cfg *cfg)
// Bind the configuration to the device instance
rfm22b_dev->cfg = cfg;
// Configure the packet handler.
PacketHandlerConfig phcfg = {
.txWinSize = cfg->txWinSize,
.maxConnections = cfg->maxConnections,
.id = cfg->id,
.dev = (void*) rfm22b_dev,
.output_stream = PIOS_RFM22B_send_packet,
.set_baud = 0,
.data_handler = PIOS_RFM22B_receive_data,
.receiver_handler = 0,
};
rfm22b_dev->packet_handler = PHInitialize(&phcfg);
rfm22b_dev->cur_tx_packet = 0;
*rfm22b_id = (uint32_t)rfm22b_dev;
tx_pre_buffer_size = 0;
// Initialize the radio device.
PIOS_COM_SendString(PIOS_COM_DEBUG, "Init Radio\n\r");
DEBUG_PRINTF(2, "Init Radio\n\r");
int initval = rfm22_init_normal(cfg->minFrequencyHz, cfg->maxFrequencyHz, 50000);
if (initval < 0)
@ -459,9 +495,6 @@ int32_t PIOS_RFM22B_Init(uint32_t *rfm22b_id, const struct pios_rfm22b_cfg *cfg)
DEBUG_PRINTF(2, "RF frequency: %dHz\n\r", rfm22_getNominalCarrierFrequency());
DEBUG_PRINTF(2, "RF TX power: %d\n\r", rfm22_getTxPower());
// Start the data handeling task.
xTaskCreate(PIOS_RFM22B_Task, (signed char *)"RFM22BTask", STACK_SIZE_BYTES, (void*)rfm22b_dev, tskIDLE_PRIORITY + 2, &(rfm22b_dev->taskHandle));
return(0);
}
@ -480,6 +513,31 @@ static void PIOS_RFM22B_TxStart(uint32_t rfm22b_id, uint16_t tx_bytes_avail)
bool valid = PIOS_RFM22B_validate(rfm22b_dev);
PIOS_Assert(valid);
// Get some data to send
bool need_yield = false;
if(tx_pre_buffer_size== 0)
tx_pre_buffer_size = (rfm22b_dev->tx_out_cb)(rfm22b_dev->tx_out_context, tx_pre_buffer,
TX_BUFFER_SIZE, NULL, &need_yield);
if(tx_pre_buffer_size > 0)
{
// already have data to be sent
if (tx_data_wr > 0)
return;
// we are currently transmitting or scanning the spectrum
if (rf_mode == TX_DATA_MODE || rf_mode == TX_STREAM_MODE || rf_mode == TX_CARRIER_MODE ||
rf_mode == TX_PN_MODE || rf_mode == RX_SCAN_SPECTRUM)
return;
// is the channel clear to transmit on?
if (!rfm22_channelIsClear())
return;
// Start the transmit
rfm22_txStart();
}
}
/**
@ -526,132 +584,14 @@ static void PIOS_RFM22B_RegisterTxCallback(uint32_t rfm22b_id, pios_com_callback
rfm22b_dev->tx_out_cb = tx_out_cb;
}
static uint8_t PIOS_RFM22B_send_packet(void *rfm22b, PHPacketHandle packet)
void rfm22_setDebug(const char* msg)
{
//struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b;
uint16_t len = PHPacketSizeECC(packet);
DEBUG_PRINTF(2, "Sending: %d %d %x\n\r", len, packet->header.data_size, (int)(packet->data[0]));
return rfm22_sendData(packet, len, 1);
debug_msg = msg;
}
static void PIOS_RFM22B_receive_data(void *rfm22b, uint8_t *data, uint8_t len)
void rfm22_setError(const char* msg)
{
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b;
DEBUG_PRINTF(2, "Data: %d %x\n\r", len, (int)(data[0]));
// Pass the received data the the receive callback.
bool need_yield = false;
if (rfm22b_dev->rx_in_cb)
(rfm22b_dev->rx_in_cb)(rfm22b_dev->rx_in_context, data, len, NULL, &need_yield);
#if defined(PIOS_INCLUDE_FREERTOS)
if (need_yield)
vPortYieldFromISR();
#endif /* PIOS_INCLUDE_FREERTOS */
}
static void PIOS_RFM22B_Task(void *parameters)
{
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)parameters;
bool valid = PIOS_RFM22B_validate(rfm22b_dev);
PIOS_Assert(valid);
// Loop forever
while (1)
{
// Recieve data to transmit if it's available.
// Reserve a TX packet if necessary
PHPacketHandle p = rfm22b_dev->cur_tx_packet;
bool reserve = (p == NULL);
if (reserve)
{
if((p = PHReserveTXPacket(rfm22b_dev->packet_handler)))
p->header.data_size = 0;
}
// Do we have a packet to receive into?
if (p != NULL)
{
// Try to get some data.
bool need_yield = false;
uint16_t bytes_to_send = (rfm22b_dev->tx_out_cb)(rfm22b_dev->tx_out_context, p->data + p->header.data_size, PH_MAX_DATA + RS_ECC_NPARITY - p->header.data_size, NULL, &need_yield);
p->header.data_size += bytes_to_send;
// Did we just reserve this packet?
if (reserve)
{
if(bytes_to_send == 0)
{
// If there's no data available, just unlock our reserve on the packet.
PHReleaseLock(p, 0);
p = NULL;
}
else
{
// Keep the packet and release the lock.
PHReleaseLock(p, 1);
// Set the time so that we will send this data at least by the send timout.
rfm22b_dev->countdownTimer = rfm22b_dev->cfg->sendTimeout;
// Initialize the packet.
p->header.type = PACKET_TYPE_ACKED_DATA;
rfm22b_dev->cur_tx_packet = p;
}
}
}
// Do we have data to send?
if (p != NULL)
{
// Send the packet if the data size is over the minimum threshold
// or if this packet is older than the send timeout.
if((p->header.data_size >= rfm22b_dev->cfg->minPacketSize) || (rfm22b_dev->countdownTimer == 0))
{
// Transmit the packet
PHTransmitPacket(rfm22b_dev->packet_handler, p);
// Clear our link to the old packet.
rfm22b_dev->cur_tx_packet = NULL;
}
else
// Decrement the packet timer if we didn't send the packet.
rfm22b_dev->countdownTimer--;
}
rfm22_process();
// See if a packet was received.
uint16_t packet_size = rfm22_receivedLength();
if (packet_size != 0)
{
// copy the received packet into our own buffer
// Get the receive packet buffer.
PHPacketHandle p = PHGetRXPacket(rfm22b_dev->packet_handler);
memmove(p, rfm22_receivedPointer(), packet_size);
DEBUG_PRINTF(2, "Received: %d %d\n\r", packet_size, p->header.data_size);
// Process the received packet with the packet handler.
PHReceivePacket(rfm22b_dev->packet_handler, p);
// the received packet has been saved
rfm22_receivedDone();
}
vTaskDelay(1);
}
error_msg = msg;
}
// ************************************
@ -668,11 +608,6 @@ void rfm22_startBurstWrite(uint8_t addr)
PIOS_SPI_TransferByte(RFM22_PIOS_SPI, 0x80 | addr);
}
inline void rfm22_burstWrite(uint8_t data)
{
PIOS_SPI_TransferByte(RFM22_PIOS_SPI, data);
}
void rfm22_endBurstWrite(void)
{
// chip select line HIGH
@ -705,11 +640,6 @@ void rfm22_startBurstRead(uint8_t addr)
PIOS_SPI_TransferByte(RFM22_PIOS_SPI, addr & 0x7f);
}
inline uint8_t rfm22_burstRead(void)
{
return PIOS_SPI_TransferByte(RFM22_PIOS_SPI, 0xff);
}
void rfm22_endBurstRead(void)
{
// chip select line HIGH
@ -738,69 +668,40 @@ uint8_t rfm22_read(uint8_t addr)
// ************************************
// external interrupt
#if defined(RFM22_EXT_INT_USE)
void RFM22_EXT_INT_FUNC(void)
void PIOS_RFM22_EXT_Int(void)
{
inside_ext_int = TRUE;
if (EXTI_GetITStatus(RFM22_EXT_INT_LINE) != RESET)
{
// Clear the EXTI line pending bit
EXTI_ClearITPendingBit(RFM22_EXT_INT_LINE);
// USB_LED_TOGGLE; // TEST ONLY
if (!exec_using_spi)
{
// while (!GPIO_IN(RF_INT_PIN) && !exec_using_spi)
{
// stay here until the interrupt line returns HIGH
rfm22_processInt();
}
}
}
inside_ext_int = FALSE;
rfm22_setDebug("Ext Int");
if (!exec_using_spi)
rfm22_processInt();
rfm22_setDebug("Ext Done");
}
void rfm22_disableExtInt(void)
{
#if defined(RFM22_EXT_INT_USE)
rfm22_setDebug("Disable Int");
// Configure the external interrupt
GPIO_EXTILineConfig(RFM22_EXT_INT_PORT_SOURCE, RFM22_EXT_INT_PIN_SOURCE);
EXTI_InitTypeDef EXTI_InitStructure;
EXTI_InitStructure.EXTI_Line = RFM22_EXT_INT_LINE;
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;
GPIO_EXTILineConfig(PIOS_RFM22_EXTI_PORT_SOURCE, PIOS_RFM22_EXTI_PIN_SOURCE);
EXTI_InitTypeDef EXTI_InitStructure = pios_exti_rfm22b_cfg.exti.init;
EXTI_InitStructure.EXTI_LineCmd = DISABLE;
EXTI_Init(&EXTI_InitStructure);
EXTI_ClearFlag(RFM22_EXT_INT_LINE);
EXTI_ClearFlag(PIOS_RFM22_EXTI_LINE);
rfm22_setDebug("Disable Int done");
#endif
}
void rfm22_enableExtInt(void)
{
// Configure the external interrupt
GPIO_EXTILineConfig(RFM22_EXT_INT_PORT_SOURCE, RFM22_EXT_INT_PIN_SOURCE);
EXTI_InitTypeDef EXTI_InitStructure;
EXTI_InitStructure.EXTI_Line = RFM22_EXT_INT_LINE;
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;
EXTI_InitStructure.EXTI_LineCmd = ENABLE;
EXTI_Init(&EXTI_InitStructure);
EXTI_ClearFlag(RFM22_EXT_INT_LINE);
// Enable and set the external interrupt
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = RFM22_EXT_INT_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = RFM22_EXT_INT_PRIORITY;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
#if defined(RFM22_EXT_INT_USE)
rfm22_setDebug("Ensable Int");
if (PIOS_EXTI_Init(&pios_exti_rfm22b_cfg))
PIOS_Assert(0);
rfm22_setDebug("Ensable Int done");
#endif
}
#endif
// ************************************
// set/get the current tx power setting
@ -840,9 +741,7 @@ uint32_t rfm22_maxFrequency(void)
void rfm22_setNominalCarrierFrequency(uint32_t frequency_hz)
{
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = TRUE;
#endif
// *******
@ -887,9 +786,7 @@ void rfm22_setNominalCarrierFrequency(uint32_t frequency_hz)
// DEBUG_PRINTF(2, "rf setFreq frequency_step_size: %0.2f\n\r", frequency_step_size);
#endif
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = FALSE;
#endif
}
uint32_t rfm22_getNominalCarrierFrequency(void)
@ -934,10 +831,7 @@ uint32_t rfm22_freqHopSize(void)
void rfm22_setDatarate(uint32_t datarate_bps, bool data_whitening)
{
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = TRUE;
#endif
// *******
lookup_index = 0;
while (lookup_index < (LOOKUP_SIZE - 1) && data_rate[lookup_index] < datarate_bps)
@ -1049,9 +943,7 @@ void rfm22_setDatarate(uint32_t datarate_bps, bool data_whitening)
// *******
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = FALSE;
#endif
}
uint32_t rfm22_getDatarate(void)
@ -1064,10 +956,7 @@ uint32_t rfm22_getDatarate(void)
void rfm22_setSSBandwidth(uint32_t bandwidth_index)
{
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = TRUE;
#endif
// *******
ss_lookup_index = bandwidth_index;
@ -1103,57 +992,41 @@ void rfm22_setSSBandwidth(uint32_t bandwidth_index)
// *******
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = FALSE;
#endif
}
// ************************************
void rfm22_setRxMode(uint8_t mode, bool multi_packet_mode)
{
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = TRUE;
#endif
// disable interrupts
rfm22_write(RFM22_interrupt_enable1, 0x00);
rfm22_write(RFM22_interrupt_enable2, 0x00);
// disable the receiver and transmitter
// rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton); // READY mode
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon); // TUNE mode
// Switch to TUNE mode
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon);
RX_LED_OFF;
TX_LED_OFF;
// rfm22_write(RFM22_rx_fifo_control, RX_FIFO_HI_WATERMARK); // RX FIFO Almost Full Threshold (0 - 63)
if (rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE)
{
// FIFO mode, GFSK modulation
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo | RFM22_mmc2_modtyp_gfsk);
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo |
RFM22_mmc2_modtyp_gfsk);
}
rx_buffer_wr = 0; // empty the rx buffer
rfm22_int_timer = 0; // reset the timer
// empty the rx buffer
rx_buffer_wr = 0;
// reset the timer
rfm22_int_timer = 0;
rf_mode = mode;
if (mode != RX_SCAN_SPECTRUM)
{
//STOPWATCH_reset(); // reset clear channel detect timer
// enable RX interrupts
rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_encrcerror | RFM22_ie1_enpkvalid | RFM22_ie1_enrxffafull | RFM22_ie1_enfferr);
rfm22_write(RFM22_interrupt_enable2, RFM22_ie2_enpreainval | RFM22_ie2_enpreaval | RFM22_ie2_enswdet);
}
// read interrupt status - clear interrupts
rfm22_read(RFM22_interrupt_status1);
rfm22_read(RFM22_interrupt_status2);
// Clear the TX buffer.
tx_data_rd = tx_data_wr = 0;
// clear FIFOs
if (!multi_packet_mode)
@ -1161,21 +1034,22 @@ void rfm22_setRxMode(uint8_t mode, bool multi_packet_mode)
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
rfm22_write(RFM22_op_and_func_ctrl2, 0x00);
} else {
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_rxmpk | RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_rxmpk | RFM22_opfc2_ffclrrx |
RFM22_opfc2_ffclrtx);
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_rxmpk);
}
// enable RX interrupts
rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_encrcerror | RFM22_ie1_enpkvalid |
RFM22_ie1_enrxffafull | RFM22_ie1_enfferr);
rfm22_write(RFM22_interrupt_enable2, RFM22_ie2_enpreainval | RFM22_ie2_enpreaval |
RFM22_ie2_enswdet);
// enable the receiver
// rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton | RFM22_opfc1_rxon);
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_rxon);
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = FALSE;
#endif
#if defined(RFM22_DEBUG)
DEBUG_PRINTF(2, " RX Mode\n\r");
#endif
}
// ************************************
@ -1197,14 +1071,96 @@ uint16_t rfm22_addHeader()
// ************************************
uint8_t rfm22_txStart()
{
if((tx_pre_buffer_size == 0) || (exec_using_spi == TRUE))
{
// Clear the TX buffer.
tx_data_rd = tx_data_wr = 0;
return 0;
}
exec_using_spi = TRUE;
// Disable interrrupts.
PIOS_IRQ_Disable();
// disable interrupts
rfm22_write(RFM22_interrupt_enable1, 0x00);
rfm22_write(RFM22_interrupt_enable2, 0x00);
// TUNE mode
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon);
// Queue the data up for sending
memcpy(tx_buffer, tx_pre_buffer, tx_pre_buffer_size);
tx_data_rd = 0;
tx_data_wr = tx_pre_buffer_size;
tx_pre_buffer_size = 0;
RX_LED_OFF;
// FIFO mode, GFSK modulation
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo |
RFM22_mmc2_modtyp_gfsk);
// set the tx power
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_1 |
RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | tx_power);
// clear FIFOs
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
rfm22_write(RFM22_op_and_func_ctrl2, 0x00);
// *******************
// add some data to the chips TX FIFO before enabling the transmitter
// set the total number of data bytes we are going to transmit
rfm22_write(RFM22_transmit_packet_length, tx_data_wr);
// add some data
rfm22_startBurstWrite(RFM22_fifo_access);
for (uint16_t i = 0; (tx_data_rd < tx_data_wr) && (i < FIFO_SIZE); ++tx_data_rd, ++i)
rfm22_burstWrite(tx_buffer[tx_data_rd]);
rfm22_endBurstWrite();
// *******************
// reset the timer
rfm22_int_timer = 0;
rf_mode = TX_DATA_MODE;
// enable TX interrupts
// rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_enpksent | RFM22_ie1_entxffaem | RFM22_ie1_enfferr);
rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_enpksent | RFM22_ie1_entxffaem);
// read interrupt status - clear interrupts
//rfm22_read(RFM22_interrupt_status1);
//rfm22_read(RFM22_interrupt_status2);
// enable the transmitter
// rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton | RFM22_opfc1_txon);
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_txon);
// Re-ensable interrrupts.
PIOS_IRQ_Enable();
TX_LED_ON;
exec_using_spi = FALSE;
return 1;
}
void rfm22_setTxMode(uint8_t mode)
{
rfm22_setDebug("setTxMode");
if (mode != TX_DATA_MODE && mode != TX_STREAM_MODE && mode != TX_CARRIER_MODE && mode != TX_PN_MODE)
return; // invalid mode
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = TRUE;
#endif
// *******************
@ -1218,20 +1174,23 @@ void rfm22_setTxMode(uint8_t mode)
RX_LED_OFF;
// set the tx power
// rfm22_write(RFM22_tx_power, RFM22_tx_pwr_lna_sw | tx_power);
// rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | tx_power);
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_1 | RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | tx_power);
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_1 |
RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | tx_power);
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
if (mode == TX_CARRIER_MODE)
// blank carrier mode - for testing
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_pn9 | RFM22_mmc2_modtyp_none); // FIFO mode, Blank carrier
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_pn9 |
RFM22_mmc2_modtyp_none); // FIFO mode, Blank carrier
else if (mode == TX_PN_MODE)
// psuedo random data carrier mode - for testing
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_pn9 | RFM22_mmc2_modtyp_gfsk); // FIFO mode, PN9 carrier
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_pn9 |
RFM22_mmc2_modtyp_gfsk); // FIFO mode, PN9 carrier
else
// data transmission
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo | RFM22_mmc2_modtyp_gfsk); // FIFO mode, GFSK modulation
// FIFO mode, GFSK modulation
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo |
RFM22_mmc2_modtyp_gfsk);
// rfm22_write(0x72, reg_72[lookup_index]); // rfm22_frequency_deviation
@ -1244,17 +1203,14 @@ void rfm22_setTxMode(uint8_t mode)
{
uint16_t rd = 0;
uint16_t wr = tx_data_wr;
if (!tx_data_addr) wr = 0;
if (mode == TX_DATA_MODE)
rfm22_write(RFM22_transmit_packet_length, wr); // set the total number of data bytes we are going to transmit
// set the total number of data bytes we are going to transmit
rfm22_write(RFM22_transmit_packet_length, wr);
uint16_t max_bytes = FIFO_SIZE - 1;
uint16_t i = 0;
rfm22_startBurstWrite(RFM22_fifo_access);
if (mode == TX_STREAM_MODE) {
if (rd >= wr) {
// no data to send - yet .. just send preamble pattern
@ -1268,7 +1224,7 @@ void rfm22_setTxMode(uint8_t mode)
// add some data
for (uint16_t j = wr - rd; j > 0; j--) {
rfm22_burstWrite(tx_data_addr[rd++]);
rfm22_burstWrite(tx_buffer[rd++]);
if (++i >= max_bytes)
break;
}
@ -1280,7 +1236,8 @@ void rfm22_setTxMode(uint8_t mode)
// *******************
rfm22_int_timer = 0; // reset the timer
// reset the timer
rfm22_int_timer = 0;
rf_mode = mode;
@ -1299,34 +1256,10 @@ void rfm22_setTxMode(uint8_t mode)
TX_LED_ON;
// *******************
// create new slightly random clear channel detector count value
uint32_t ccc = (TX_PREAMBLE_NIBBLES + 8) + 4; // minimum clear channel time before allowing transmit
clear_channel_count = ccc + (random32 % (ccc * 2)); // plus a some randomness
// *******************
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = FALSE;
#endif
#if defined(RFM22_DEBUG)
switch (rf_mode)
{
case TX_DATA_MODE:
DEBUG_PRINTF(2, " TX_Data_Mode\n\r");
break;
case TX_STREAM_MODE:
DEBUG_PRINTF(2, " TX_Stream_Mode\n\r");
break;
case TX_CARRIER_MODE:
DEBUG_PRINTF(2, " TX_Carrier_Mode\n\r");
break;
case TX_PN_MODE:
DEBUG_PRINTF(2, " TX_PN_Mode\n\r");
break;
}
#endif
rfm22_setDebug("setTxMode end");
}
// ************************************
@ -1336,129 +1269,119 @@ void rfm22_processRxInt(void)
{
register uint8_t int_stat1 = int_status1;
register uint8_t int_stat2 = int_status2;
rfm22_setDebug("processRxInt");
// FIFO under/over flow error. Restart RX mode.
if (device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl))
{
rfm22_setError("R_UNDER/OVERRUN");
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
// Sync timeout. Restart RX mode.
if (rf_mode == RX_WAIT_SYNC_MODE && rfm22_int_timer >= timeout_sync_ms)
{
rfm22_int_time_outs++;
rfm22_setError("R_SYNC_TIMEOUT");
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
// RX timeout. Restart RX mode.
if (rf_mode == RX_DATA_MODE && rfm22_int_timer >= timeout_data_ms)
{
rfm22_setError("MISSING_INTERRUPTS");
rfm22_int_time_outs++;
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
// The module is not in RX mode. Restart RX mode.
if ((device_status & RFM22_ds_cps_mask) != RFM22_ds_cps_rx)
{
// the rf module is not in rx mode
if (rfm22_int_timer >= 100)
{
rfm22_int_time_outs++;
// reset the receiver
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
}
// Valid preamble detected
if (int_stat2 & RFM22_is2_ipreaval)
{ // Valid preamble detected
{
if (rf_mode == RX_WAIT_PREAMBLE_MODE)
{
rfm22_int_timer = 0; // reset the timer
rf_mode = RX_WAIT_SYNC_MODE;
RX_LED_ON;
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(2, " pream_det");
debug_outputted = true;
#endif
rfm22_setDebug("pream_det");
}
}
/* else
if (int_stat2 & RFM22_is2_ipreainval)
{ // Invalid preamble detected
if (rf_mode == RX_WAIT_SYNC_MODE)
{
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(2, " invalid_preamble");
debug_outputted = true;
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
else
{
}
}
*/
// Sync word detected
if (int_stat2 & RFM22_is2_iswdet)
{ // Sync word detected
//STOPWATCH_reset(); // reset timer
{
if (rf_mode == RX_WAIT_PREAMBLE_MODE || rf_mode == RX_WAIT_SYNC_MODE)
{
rfm22_int_timer = 0; // reset the timer
rf_mode = RX_DATA_MODE;
RX_LED_ON;
rfm22_setDebug("sync_det");
#ifdef NEVER
// read the 10-bit signed afc correction value
afc_correction = (uint16_t)rfm22_read(RFM22_afc_correction_read) << 8; // bits 9 to 2
afc_correction |= (uint16_t)rfm22_read(RFM22_ook_counter_value1) & 0x00c0; // bits 1 & 0
// bits 9 to 2
afc_correction = (uint16_t)rfm22_read(RFM22_afc_correction_read) << 8;
// bits 1 & 0
afc_correction |= (uint16_t)rfm22_read(RFM22_ook_counter_value1) & 0x00c0;
afc_correction >>= 6;
afc_correction_Hz = (int32_t)(frequency_step_size * afc_correction + 0.5f); // convert the afc value to Hz
// convert the afc value to Hz
afc_correction_Hz = (int32_t)(frequency_step_size * afc_correction + 0.5f);
rx_packet_start_rssi_dBm = rssi_dBm; // remember the rssi for this packet
rx_packet_start_afc_Hz = afc_correction_Hz; // remember the afc value for this packet
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(2, " sync_det");
DEBUG_PRINTF(2, " AFC_%d_%dHz", afc_correction, afc_correction_Hz);
debug_outputted = true;
// remember the rssi for this packet
rx_packet_start_rssi_dBm = rssi_dBm;
// remember the afc value for this packet
rx_packet_start_afc_Hz = afc_correction_Hz;
#endif
}
}
// RX FIFO almost full, it needs emptying
if (int_stat1 & RFM22_is1_irxffafull)
{ // RX FIFO almost full, it needs emptying
{
if (rf_mode == RX_DATA_MODE)
{ // read data from the rf chips FIFO buffer
{
// read data from the rf chips FIFO buffer
rfm22_int_timer = 0; // reset the timer
register uint16_t len = rfm22_read(RFM22_received_packet_length); // read the total length of the packet data
register uint16_t wr = rx_buffer_wr;
if ((wr + RX_FIFO_HI_WATERMARK) > len)
{ // some kind of error in the RF module
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(2, " r_size_error1");
debug_outputted = true;
#endif
// read the total length of the packet data
uint16_t len = rfm22_read(RFM22_received_packet_length);
// The received packet is going to be larger than the specified length
if ((rx_buffer_wr + RX_FIFO_HI_WATERMARK) > len)
{
rfm22_setError("r_size_error1");
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
if (((wr + RX_FIFO_HI_WATERMARK) >= len) && !(int_stat1 & RFM22_is1_ipkvalid))
{ // some kind of error in the RF module
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(2, " r_size_error2");
debug_outputted = true;
#endif
// Another packet length error.
if (((rx_buffer_wr + RX_FIFO_HI_WATERMARK) >= len) && !(int_stat1 & RFM22_is1_ipkvalid))
{
rfm22_setError("r_size_error2");
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
// fetch the rx'ed data from the rf chips RX FIFO
// Fetch the data from the RX FIFO
rfm22_startBurstRead(RFM22_fifo_access);
rx_fifo_wr = 0;
for (register uint8_t i = RX_FIFO_HI_WATERMARK; i > 0; i--)
rx_fifo[rx_fifo_wr++] = rfm22_burstRead(); // read a byte from the rf modules RX FIFO buffer
for (uint8_t i = 0; i < RX_FIFO_HI_WATERMARK; ++i)
rx_buffer[rx_buffer_wr++] = rfm22_burstRead();
rfm22_endBurstRead();
uint16_t i = rx_fifo_wr;
if (wr + i > sizeof(rx_buffer)) i = sizeof(rx_buffer) - wr;
memcpy((void *)(rx_buffer + wr), (void *)rx_fifo, i); // save the new bytes into our rx buffer
wr += i;
rx_buffer_wr = wr;
if (rx_data_callback_function)
{ // pass the new data onto whoever wanted it
if (!rx_data_callback_function((void *)rx_fifo, rx_fifo_wr))
{
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
}
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
// DEBUG_PRINTF(2, " r_data_%u/%u", rx_buffer_wr, len);
// debug_outputted = true;
#endif
}
else
{ // just clear the RX FIFO
@ -1469,21 +1392,13 @@ void rfm22_processRxInt(void)
}
}
// CRC error .. discard the received data
if (int_stat1 & RFM22_is1_icrerror)
{ // CRC error .. discard the received data
if (rf_mode == RX_DATA_MODE)
{
rfm22_int_timer = 0; // reset the timer
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(2, " CRC_ERR");
debug_outputted = true;
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // reset the receiver
return;
}
{
rfm22_int_timer = 0; // reset the timer
rfm22_setError("CRC_ERR");
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
// if (int_stat2 & RFM22_is2_irssi)
@ -1498,235 +1413,159 @@ void rfm22_processRxInt(void)
// { // Header check error
// }
// Valid packet received
if (int_stat1 & RFM22_is1_ipkvalid)
{ // Valid packet received
if (rf_mode == RX_DATA_MODE)
{
rfm22_int_timer = 0; // reset the timer
// disable the receiver
// rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton); // READY mode
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon); // TUNE mode
register uint16_t len = rfm22_read(RFM22_received_packet_length); // read the total length of the packet data
register uint16_t wr = rx_buffer_wr;
if (wr < len)
{ // their must still be data in the RX FIFO we need to get
// fetch the rx'ed data from the rf chips RX FIFO
rfm22_startBurstRead(RFM22_fifo_access);
rx_fifo_wr = 0;
for (register uint8_t i = len - wr; i > 0; i--)
rx_fifo[rx_fifo_wr++] = rfm22_burstRead(); // read a byte from the rf modules RX FIFO buffer
rfm22_endBurstRead();
uint16_t i = rx_fifo_wr;
if (wr + i > sizeof(rx_buffer)) i = sizeof(rx_buffer) - wr;
memcpy((void *)(rx_buffer + wr), (void *)rx_fifo, i); // save the new bytes into our rx buffer
wr += i;
rx_buffer_wr = wr;
if (rx_data_callback_function)
{ // pass the new data onto whoever wanted it
if (!rx_data_callback_function((void *)rx_fifo, rx_fifo_wr))
{
// rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
// return;
}
}
}
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // reset the receiver
if (wr != len)
{ // we have a packet length error .. discard the packet
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(2, " r_pack_len_error_%u_%u", len, wr);
debug_outputted = true;
#endif
return;
}
// we have a valid received packet
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(2, " VALID_R_PACKET_%u", wr);
debug_outputted = true;
#endif
if (rx_packet_wr == 0)
{ // save the received packet for further processing
rx_packet_rssi_dBm = rx_packet_start_rssi_dBm; // remember the rssi for this packet
rx_packet_afc_Hz = rx_packet_start_afc_Hz; // remember the afc offset for this packet
memmove((void *)rx_packet_buf, (void *)rx_buffer, wr); // copy the packet data
rx_packet_wr = wr; // save the length of the data
}
else
{ // the save buffer is still in use .. nothing we can do but to drop the packet
}
// return;
}
else
{
// rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // reset the receiver
// return;
}
}
}
uint8_t rfm22_topUpRFTxFIFO(void)
{
rfm22_int_timer = 0; // reset the timer
uint16_t rd = tx_data_rd;
uint16_t wr = tx_data_wr;
if (rf_mode == TX_DATA_MODE && (!tx_data_addr || rd >= wr))
return 0; // no more data to send
uint16_t max_bytes = FIFO_SIZE - TX_FIFO_LO_WATERMARK - 1;
uint16_t i = 0;
// top-up the rf chips TX FIFO buffer
rfm22_startBurstWrite(RFM22_fifo_access);
// add some data
for (uint16_t j = wr - rd; j > 0; j--)
{
// int16_t b = -1;
// if (tx_data_byte_callback_function)
// b = tx_data_byte_callback_function();
// reset the timer
rfm22_int_timer = 0;
rfm22_burstWrite(tx_data_addr[rd++]);
if (++i >= max_bytes) break;
}
tx_data_rd = rd;
// read the total length of the packet data
register uint16_t len = rfm22_read(RFM22_received_packet_length);
if (rf_mode == TX_STREAM_MODE && rd >= wr)
{ // all data sent .. need to start sending RF header again
tx_data_addr = NULL;
tx_data_rd = tx_data_wr = 0;
while (i < max_bytes)
// their must still be data in the RX FIFO we need to get
if (rx_buffer_wr < len)
{
rfm22_burstWrite(PREAMBLE_BYTE); // preamble byte
i++;
// Fetch the data from the RX FIFO
rfm22_startBurstRead(RFM22_fifo_access);
while (rx_buffer_wr < len)
rx_buffer[rx_buffer_wr++] = rfm22_burstRead();
rfm22_endBurstRead();
}
// todo:
if (rx_buffer_wr != len)
{
// we have a packet length error .. discard the packet
rfm22_setError("r_pack_len_error");
debug_val = len;
return;
}
// add the RF heaader
// i += rfm22_addHeader();
// we have a valid received packet
rfm22_setDebug("VALID_R_PACKET");
if (rx_packet_wr == 0)
{
// remember the rssi for this packet
rx_packet_rssi_dBm = rx_packet_start_rssi_dBm;
// remember the afc offset for this packet
rx_packet_afc_Hz = rx_packet_start_afc_Hz;
// Pass this packet on
bool need_yield = false;
if (rfm22b_dev_g->rx_in_cb)
(rfm22b_dev_g->rx_in_cb)(rfm22b_dev_g->rx_in_context, (uint8_t*)rx_buffer,
rx_buffer_wr, NULL, &need_yield);
rx_buffer_wr = 0;
}
// Send a packet if it's available.
if(!rfm22_txStart())
{
// Switch to RX mode
rfm22_setDebug(" Set RX");
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
}
}
rfm22_endBurstWrite();
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
// DEBUG_PRINTF(2, " added_%d_bytes", i);
// debug_outputted = true;
#endif
return i;
rfm22_setDebug("processRxInt end");
}
void rfm22_processTxInt(void)
{
register uint8_t int_stat1 = int_status1;
// register uint8_t int_stat2 = int_status2;
/*
if (int_stat1 & RFM22_is1_ifferr)
{ // FIFO underflow/overflow error
// reset the timer
rfm22_int_timer = 0;
// FIFO under/over flow error. Back to RX mode.
if (device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl))
{
rfm22_setError("T_UNDER/OVERRUN");
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
tx_data_addr = NULL;
tx_data_rd = tx_data_wr = 0;
return;
}
*/
if (int_stat1 & RFM22_is1_ixtffaem)
{ // TX FIFO almost empty, it needs filling up
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
// DEBUG_PRINTF(2, " T_FIFO_AE");
// debug_outputted = true;
#endif
// uint8_t bytes_added = rfm22_topUpRFTxFIFO();
rfm22_topUpRFTxFIFO();
}
if (int_stat1 & RFM22_is1_ipksent)
{ // Packet has been sent
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(2, " T_Sent");
debug_outputted = true;
#endif
// Transmit timeout. Abort the transmit.
if (rfm22_int_timer >= timeout_data_ms)
{
rfm22_int_time_outs++;
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
if (rf_mode == TX_DATA_MODE)
// the rf module is not in tx mode
if ((device_status & RFM22_ds_cps_mask) != RFM22_ds_cps_tx)
{
if (rfm22_int_timer >= 100)
{
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // back to receive mode
tx_data_addr = NULL;
tx_data_rd = tx_data_wr = 0;
rfm22_int_time_outs++;
rfm22_setError("T_TIMEOUT");
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // back to rx mode
return;
}
else
if (rf_mode == TX_STREAM_MODE)
{
tx_data_addr = NULL;
tx_data_rd = tx_data_wr = 0;
rfm22_setTxMode(TX_STREAM_MODE);
return;
}
}
// if (int_stat1 & RFM22_is1_itxffafull)
// { // TX FIFO almost full, it needs to be transmitted
// }
// TX FIFO almost empty, it needs filling up
if (int_stat1 & RFM22_is1_ixtffaem)
{
// top-up the rf chips TX FIFO buffer
uint16_t max_bytes = FIFO_SIZE - TX_FIFO_LO_WATERMARK - 1;
rfm22_startBurstWrite(RFM22_fifo_access);
for (uint16_t i = 0; (tx_data_rd < tx_data_wr) && (i < max_bytes); ++i, ++tx_data_rd)
rfm22_burstWrite(tx_buffer[tx_data_rd]);
rfm22_endBurstWrite();
}
// Packet has been sent
if (int_stat1 & RFM22_is1_ipksent)
{
rfm22_setDebug(" T_Sent");
// Send another packet if it's available.
if(!rfm22_txStart())
{
// Switch to RX mode
rfm22_setDebug(" Set RX");
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
return;
}
}
rfm22_setDebug("ProcessTxInt done");
}
void rfm22_processInt(void)
{
rfm22_setDebug("ProcessInt");
// this is called from the external interrupt handler
#if !defined(RFM22_EXT_INT_USE)
// if (GPIO_IN(RF_INT_PIN))
//return; // the external int line is high (no signalled interrupt)
#endif
if (!initialized || power_on_reset)
return; // we haven't yet been initialized
// we haven't yet been initialized
return;
#if defined(RFM22_DEBUG)
debug_outputted = false;
#endif
exec_using_spi = TRUE;
// ********************************
// read the RF modules current status registers
// read device status register
device_status = rfm22_read(RFM22_device_status);
// read ezmac status register
ezmac_status = rfm22_read(RFM22_ezmac_status);
// read interrupt status registers - clears the interrupt line
int_status1 = rfm22_read(RFM22_interrupt_status1);
int_status2 = rfm22_read(RFM22_interrupt_status2);
if (rf_mode != TX_DATA_MODE && rf_mode != TX_STREAM_MODE && rf_mode != TX_CARRIER_MODE && rf_mode != TX_PN_MODE)
// read device status register
device_status = rfm22_read(RFM22_device_status);
#ifdef NEVER
// read ezmac status register
ezmac_status = rfm22_read(RFM22_ezmac_status);
// Read the RSSI if we're in RX mode
if (rf_mode != TX_DATA_MODE && rf_mode != TX_STREAM_MODE &&
rf_mode != TX_CARRIER_MODE && rf_mode != TX_PN_MODE)
{
rssi = rfm22_read(RFM22_rssi); // read rx signal strength .. 45 = -100dBm, 205 = -20dBm
rssi_dBm = ((int16_t)rssi / 2) - 122; // convert to dBm
// read rx signal strength .. 45 = -100dBm, 205 = -20dBm
rssi = rfm22_read(RFM22_rssi);
// convert to dBm
rssi_dBm = ((int16_t)rssi / 2) - 122;
// calibrate the RSSI value (rf bandwidth appears to affect it)
// if (rf_bandwidth_used > 0)
@ -1734,64 +1573,20 @@ void rfm22_processInt(void)
}
else
{
tx_pwr = rfm22_read(RFM22_tx_power); // read the tx power register
}
if (int_status2 & RFM22_is2_ipor)
{ // the RF module has gone and done a reset - we need to re-initialize the rf module
initialized = FALSE;
power_on_reset = TRUE;
return;
}
// ********************************
// debug stuff
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
if (prev_device_status != device_status || prev_int_status1 != int_status1 || prev_int_status2 != int_status2 || prev_ezmac_status != ezmac_status)
{
DEBUG_PRINTF(2, "%02x %02x %02x %02x %dC", device_status, int_status1, int_status2, ezmac_status, temperature_reg);
if ((device_status & RFM22_ds_cps_mask) == RFM22_ds_cps_rx)
{
DEBUG_PRINTF(2, " %ddBm", rssi_dBm); // rx mode
}
else
if ((device_status & RFM22_ds_cps_mask) == RFM22_ds_cps_tx)
{
DEBUG_PRINTF(2, " %s", (tx_pwr & RFM22_tx_pwr_papeakval) ? "ANT_MISMATCH" : "ant_ok"); // tx mode
}
debug_outputted = true;
prev_device_status = device_status;
prev_int_status1 = int_status1;
prev_int_status2 = int_status2;
prev_ezmac_status = ezmac_status;
// read the tx power register
tx_pwr = rfm22_read(RFM22_tx_power);
}
#endif
// ********************************
// read the ADC - temperature sensor .. this can only be used in IDLE mode
/*
if (!(rfm22_read(RFM22_adc_config) & RFM22_ac_adcstartbusy))
{ // the ADC has completed it's conversion
// read the ADC sample
temperature_reg = (int16_t)rfm22_read(RFM22_adc_value) * 0.5f - 64;
// start a new ADC conversion
rfm22_write(RFM22_adc_config, adc_config | RFM22_ac_adcstartbusy);
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(2, ", %dC", temperature_reg);
debug_outputted = true;
#endif
}
*/
// ********************************
register uint16_t timer_ms = rfm22_int_timer;
// the RF module has gone and done a reset - we need to re-initialize the rf module
if (int_status2 & RFM22_is2_ipor)
{
initialized = FALSE;
power_on_reset = TRUE;
rfm22_setError("Reset");
// Need to do something here!
return;
}
switch (rf_mode)
{
@ -1802,115 +1597,19 @@ void rfm22_processInt(void)
case RX_WAIT_SYNC_MODE:
case RX_DATA_MODE:
if (device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl))
{ // FIFO under/over flow error
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(2, " R_UNDER/OVERRUN");
debug_outputted = true;
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // reset the receiver
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
if (rf_mode == RX_WAIT_SYNC_MODE && timer_ms >= timeout_sync_ms)
{
rfm22_int_time_outs++;
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(2, " R_SYNC_TIMEOUT");
debug_outputted = true;
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // reset the receiver
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
if (rf_mode == RX_DATA_MODE && timer_ms >= timeout_data_ms)
{ // missing interrupts
rfm22_int_time_outs++;
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // reset the receiver
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
if ((device_status & RFM22_ds_cps_mask) != RFM22_ds_cps_rx)
{ // the rf module is not in rx mode
if (timer_ms >= 100)
{
rfm22_int_time_outs++;
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(2, " R_TIMEOUT");
debug_outputted = true;
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // reset the receiver
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
}
rfm22_processRxInt(); // process the interrupt
rfm22_processRxInt();
break;
case TX_DATA_MODE:
if (device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl))
{ // FIFO under/over flow error
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(2, " T_UNDER/OVERRUN");
debug_outputted = true;
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // back to rx mode
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
if (timer_ms >= timeout_data_ms)
{
rfm22_int_time_outs++;
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // back to rx mode
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
if ((device_status & RFM22_ds_cps_mask) != RFM22_ds_cps_tx)
{ // the rf module is not in tx mode
if (timer_ms >= 100)
{
rfm22_int_time_outs++;
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
DEBUG_PRINTF(2, " T_TIMEOUT");
debug_outputted = true;
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // back to rx mode
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
}
rfm22_processTxInt(); // process the interrupt
break;
case TX_STREAM_MODE:
// todo:
rfm22_processTxInt(); // process the interrupt
rfm22_processTxInt();
break;
case TX_CARRIER_MODE:
case TX_PN_MODE:
// if (timer_ms >= TX_TEST_MODE_TIMELIMIT_MS) // 'nn'ms limit
// if (rfm22_int_timer >= TX_TEST_MODE_TIMELIMIT_MS) // 'nn'ms limit
// {
// rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // back to rx mode
// tx_data_rd = tx_data_wr = 0; // wipe TX buffer
@ -1921,66 +1620,24 @@ void rfm22_processInt(void)
default: // unknown mode - this should NEVER happen, maybe we should do a complete CPU reset here
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // to rx mode
tx_data_rd = tx_data_wr = 0; // wipe TX buffer
break;
}
// ********************************
exec_using_spi = FALSE;
#if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE)
if (debug_outputted)
{
switch (rf_mode)
{
case RX_SCAN_SPECTRUM:
DEBUG_PRINTF(2, " R_SCAN_SPECTRUM\n\r");
break;
case RX_WAIT_PREAMBLE_MODE:
DEBUG_PRINTF(2, " R_WAIT_PREAMBLE\n\r");
break;
case RX_WAIT_SYNC_MODE:
DEBUG_PRINTF(2, " R_WAIT_SYNC\n\r");
break;
case RX_DATA_MODE:
DEBUG_PRINTF(2, " R_DATA\n\r");
break;
case TX_DATA_MODE:
DEBUG_PRINTF(2, " T_DATA\n\r");
break;
case TX_STREAM_MODE:
DEBUG_PRINTF(2, " T_STREAM\n\r");
break;
case TX_CARRIER_MODE:
DEBUG_PRINTF(2, " T_CARRIER\n\r");
break;
case TX_PN_MODE:
DEBUG_PRINTF(2, " T_PN\n\r");
break;
default:
DEBUG_PRINTF(2, " UNKNOWN_MODE\n\r");
break;
}
}
#endif
// ********************************
rfm22_setDebug("ProcessInt done");
}
// ************************************
int16_t rfm22_getRSSI(void)
{
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = TRUE;
#endif
rssi = rfm22_read(RFM22_rssi); // read rx signal strength .. 45 = -100dBm, 205 = -20dBm
rssi_dBm = ((int16_t)rssi / 2) - 122; // convert to dBm
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = FALSE;
#endif
return rssi_dBm;
}
@ -2000,57 +1657,8 @@ int32_t rfm22_receivedAFCHz(void)
return rx_packet_afc_Hz;
}
uint16_t rfm22_receivedLength(void)
{ // return the size of the data received
if (!initialized)
return 0;
else
return rx_packet_wr;
}
uint8_t * rfm22_receivedPointer(void)
{ // return the address of the data
return (uint8_t *)&rx_packet_buf;
}
void rfm22_receivedDone(void)
{ // empty the rx packet buffer
rx_packet_wr = 0;
}
// ************************************
int32_t rfm22_sendData(void *data, uint16_t length, bool send_immediately)
{
if (!initialized)
return -1; // we are not yet initialized
if (length == 0)
return -2; // no data to send
if (!data || length > 255)
return -3; // no data or too much data to send
if (tx_data_wr > 0)
return -4; // already have data to be sent
if (rf_mode == TX_DATA_MODE || rf_mode == TX_STREAM_MODE || rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE || rf_mode == RX_SCAN_SPECTRUM)
return -5; // we are currently transmitting or scanning the spectrum
tx_data_addr = data;
tx_data_rd = 0;
tx_data_wr = length;
#if defined(RFM22_DEBUG)
DEBUG_PRINTF(2, "rf sendData(0x%08x %u)\n\r", (uint32_t)tx_data_addr, tx_data_wr);
#endif
if (send_immediately || rfm22_channelIsClear()) // is the channel clear to transmit on?
rfm22_setTxMode(TX_DATA_MODE); // transmit NOW
return tx_data_wr;
}
// ************************************
void rfm22_setTxStream(void) // TEST ONLY
@ -2122,10 +1730,12 @@ bool rfm22_transmitting(void)
bool rfm22_channelIsClear(void)
{
if (!initialized)
return FALSE; // we haven't yet been initialized
// we haven't yet been initialized
return FALSE;
if (rf_mode != RX_WAIT_PREAMBLE_MODE && rf_mode != RX_WAIT_SYNC_MODE)
return FALSE; // we are receiving something or we are transmitting or we are scanning the spectrum
// we are receiving something or we are transmitting or we are scanning the spectrum
return FALSE;
return TRUE;
}
@ -2134,9 +1744,12 @@ bool rfm22_channelIsClear(void)
bool rfm22_txReady(void)
{
if (!initialized)
return FALSE; // we haven't yet been initialized
// we haven't yet been initialized
return FALSE;
return (tx_data_rd == 0 && tx_data_wr == 0 && rf_mode != TX_DATA_MODE && rf_mode != TX_STREAM_MODE && rf_mode != TX_CARRIER_MODE && rf_mode != TX_PN_MODE && rf_mode != RX_SCAN_SPECTRUM);
return (tx_data_rd == 0 && tx_data_wr == 0 && rf_mode != TX_DATA_MODE &&
rf_mode != TX_STREAM_MODE && rf_mode != TX_CARRIER_MODE && rf_mode != TX_PN_MODE &&
rf_mode != RX_SCAN_SPECTRUM);
}
// ************************************
@ -2157,15 +1770,11 @@ void rfm22_setFreqCalibration(uint8_t value)
tx_data_rd = tx_data_wr = 0;
}
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = TRUE;
#endif
rfm22_write(RFM22_xtal_osc_load_cap, osc_load_cap);
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = FALSE;
#endif
if (prev_rf_mode == TX_CARRIER_MODE || prev_rf_mode == TX_PN_MODE)
rfm22_setTxMode(prev_rf_mode);
@ -2202,7 +1811,7 @@ void rfm22_process(void)
{
static int cntr = 0;
if (cntr >= 500) {
if (cntr >= 5000) {
DEBUG_PRINTF(2, "Process\n\r");
cntr = 0;
} else
@ -2334,18 +1943,6 @@ void rfm22_process(void)
#endif
}
// ************************************
void rfm22_TxDataByte_SetCallback(t_rfm22_TxDataByteCallback new_function)
{
tx_data_byte_callback_function = new_function;
}
void rfm22_RxData_SetCallback(t_rfm22_RxDataCallback new_function)
{
rx_data_callback_function = new_function;
}
// ************************************
// reset the RF module
@ -2361,9 +1958,7 @@ int rfm22_resetModule(uint8_t mode, uint32_t min_frequency_hz, uint32_t max_freq
// ****************
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = TRUE;
#endif
// ****************
// setup the SPI port
@ -2410,16 +2005,10 @@ int rfm22_resetModule(uint8_t mode, uint32_t min_frequency_hz, uint32_t max_freq
// ****************
#if defined(RFM22_EXT_INT_USE)
exec_using_spi = FALSE;
#endif
// ****************
#if defined(RFM22_EXT_INT_USE)
inside_ext_int = FALSE;
#endif
rf_mode = mode;
device_status = int_status1 = int_status2 = ezmac_status = 0;
@ -2427,16 +2016,12 @@ int rfm22_resetModule(uint8_t mode, uint32_t min_frequency_hz, uint32_t max_freq
rssi = 0;
rssi_dBm = -200;
tx_data_byte_callback_function = NULL;
rx_data_callback_function = NULL;
rx_buffer_current = 0;
rx_buffer_wr = 0;
rx_packet_wr = 0;
rx_packet_rssi_dBm = -200;
rx_packet_afc_Hz = 0;
tx_data_addr = NULL;
tx_data_rd = tx_data_wr = 0;
lookup_index = 0;
@ -2584,11 +2169,14 @@ int rfm22_init_scan_spectrum(uint32_t min_frequency_hz, uint32_t max_frequency_h
rfm22_write(RFM22_header_enable1, 0xff);
rfm22_write(RFM22_header_enable0, 0xff);
// rfm22_write(RFM22_frequency_hopping_step_size, 0); // set frequency hopping channel step size (multiples of 10kHz)
// set frequency hopping channel step size (multiples of 10kHz)
// rfm22_write(RFM22_frequency_hopping_step_size, 0);
rfm22_setNominalCarrierFrequency(min_frequency_hz); // set our nominal carrier frequency
// set our nominal carrier frequency
rfm22_setNominalCarrierFrequency(min_frequency_hz);
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_lna_sw | 0); // set minimum tx power
// set minimum tx power
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_lna_sw | 0);
rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_sgi | RFM22_agc_ovr1_agcen);
@ -2596,10 +2184,8 @@ int rfm22_init_scan_spectrum(uint32_t min_frequency_hz, uint32_t max_frequency_h
// rfm22_write(RFM22_vco_calibration_override, 0x40);
// rfm22_write(RFM22_chargepump_current_trimming_override, 0x80);
#if defined(RFM22_EXT_INT_USE)
// Enable RF module external interrupt
rfm22_enableExtInt();
#endif
rfm22_setRxMode(RX_SCAN_SPECTRUM, true);
@ -2660,10 +2246,8 @@ int rfm22_init_tx_stream(uint32_t min_frequency_hz, uint32_t max_frequency_hz)
rfm22_write(RFM22_tx_fifo_control1, TX_FIFO_HI_WATERMARK); // TX FIFO Almost Full Threshold (0 - 63)
rfm22_write(RFM22_tx_fifo_control2, TX_FIFO_LO_WATERMARK); // TX FIFO Almost Empty Threshold (0 - 63)
#if defined(RFM22_EXT_INT_USE)
// Enable RF module external interrupt
rfm22_enableExtInt();
#endif
initialized = true;
@ -2722,12 +2306,11 @@ int rfm22_init_rx_stream(uint32_t min_frequency_hz, uint32_t max_frequency_hz)
// rfm22_write(RFM22_vco_calibration_override, 0x40);
// rfm22_write(RFM22_chargepump_current_trimming_override, 0x80);
rfm22_write(RFM22_rx_fifo_control, RX_FIFO_HI_WATERMARK); // RX FIFO Almost Full Threshold (0 - 63)
// RX FIFO Almost Full Threshold (0 - 63)
rfm22_write(RFM22_rx_fifo_control, RX_FIFO_HI_WATERMARK);
#if defined(RFM22_EXT_INT_USE)
// Enable RF module external interrupt
rfm22_enableExtInt();
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
@ -2745,15 +2328,11 @@ int rfm22_init_normal(uint32_t min_frequency_hz, uint32_t max_frequency_hz, uint
if (res < 0)
return res;
// ****************
// initialize the frequency hopping step size
freq_hop_step_size /= 10000; // in 10kHz increments
if (freq_hop_step_size > 255) freq_hop_step_size = 255;
frequency_hop_step_size_reg = freq_hop_step_size;
// ****************
// set the RF datarate
rfm22_setDatarate(RFM22_DEFAULT_RF_DATARATE, TRUE);
@ -2762,77 +2341,76 @@ int rfm22_init_normal(uint32_t min_frequency_hz, uint32_t max_frequency_hz, uint
rfm22_write(RFM22_modulation_mode_control2, RFM22_mmc2_trclk_clk_none | RFM22_mmc2_dtmod_fifo | fd_bit | RFM22_mmc2_modtyp_gfsk);
// setup to read the internal temperature sensor
adc_config = RFM22_ac_adcsel_temp_sensor | RFM22_ac_adcref_bg; // ADC used to sample the temperature sensor
rfm22_write(RFM22_adc_config, adc_config); //
rfm22_write(RFM22_adc_sensor_amp_offset, 0); // adc offset
rfm22_write(RFM22_temp_sensor_calib, RFM22_tsc_tsrange0 | RFM22_tsc_entsoffs); // temp sensor calibration .. 40C to +64C 0.5C resolution
rfm22_write(RFM22_temp_value_offset, 0); // temp sensor offset
rfm22_write(RFM22_adc_config, adc_config | RFM22_ac_adcstartbusy); // start an ADC conversion
rfm22_write(RFM22_rssi_threshold_clear_chan_indicator, (-90 + 122) * 2); // set the RSSI threshold interrupt to about -90dBm
// ADC used to sample the temperature sensor
adc_config = RFM22_ac_adcsel_temp_sensor | RFM22_ac_adcref_bg;
rfm22_write(RFM22_adc_config, adc_config);
// adc offset
rfm22_write(RFM22_adc_sensor_amp_offset, 0);
// temp sensor calibration .. 40C to +64C 0.5C resolution
rfm22_write(RFM22_temp_sensor_calib, RFM22_tsc_tsrange0 | RFM22_tsc_entsoffs);
// temp sensor offset
rfm22_write(RFM22_temp_value_offset, 0);
// start an ADC conversion
rfm22_write(RFM22_adc_config, adc_config | RFM22_ac_adcstartbusy);
// set the RSSI threshold interrupt to about -90dBm
rfm22_write(RFM22_rssi_threshold_clear_chan_indicator, (-90 + 122) * 2);
// enable the internal Tx & Rx packet handlers (with CRC)
// rfm22_write(RFM22_data_access_control, RFM22_dac_enpacrx | RFM22_dac_enpactx | RFM22_dac_encrc | RFM22_dac_crc_crc16);
// enable the internal Tx & Rx packet handlers (without CRC)
rfm22_write(RFM22_data_access_control, RFM22_dac_enpacrx | RFM22_dac_enpactx);
rfm22_write(RFM22_preamble_length, TX_PREAMBLE_NIBBLES); // x-nibbles tx preamble
rfm22_write(RFM22_preamble_detection_ctrl1, RX_PREAMBLE_NIBBLES << 3); // x-nibbles rx preamble detection
// x-nibbles tx preamble
rfm22_write(RFM22_preamble_length, TX_PREAMBLE_NIBBLES);
// x-nibbles rx preamble detection
rfm22_write(RFM22_preamble_detection_ctrl1, RX_PREAMBLE_NIBBLES << 3);
rfm22_write(RFM22_header_control1, RFM22_header_cntl1_bcen_none | RFM22_header_cntl1_hdch_none); // header control - we are not using the header
rfm22_write(RFM22_header_control2, RFM22_header_cntl2_hdlen_none | RFM22_header_cntl2_synclen_3210 | ((TX_PREAMBLE_NIBBLES >> 8) & 0x01)); // no header bytes, synchronization word length 3, 2, 1 & 0 used, packet length included in header.
// header control - we are not using the header
rfm22_write(RFM22_header_control1, RFM22_header_cntl1_bcen_none | RFM22_header_cntl1_hdch_none);
rfm22_write(RFM22_sync_word3, SYNC_BYTE_1); // sync word
rfm22_write(RFM22_sync_word2, SYNC_BYTE_2); //
rfm22_write(RFM22_sync_word1, SYNC_BYTE_3); //
rfm22_write(RFM22_sync_word0, SYNC_BYTE_4); //
/*
rfm22_write(RFM22_transmit_header3, 'p'); // set tx header
rfm22_write(RFM22_transmit_header2, 'i'); //
rfm22_write(RFM22_transmit_header1, 'p'); //
rfm22_write(RFM22_transmit_header0, ' '); //
// no header bytes, synchronization word length 3, 2, 1 & 0 used, packet length included in header.
rfm22_write(RFM22_header_control2, RFM22_header_cntl2_hdlen_none |
RFM22_header_cntl2_synclen_3210 | ((TX_PREAMBLE_NIBBLES >> 8) & 0x01));
rfm22_write(RFM22_check_header3, 'p'); // set expected rx header
rfm22_write(RFM22_check_header2, 'i'); //
rfm22_write(RFM22_check_header1, 'p'); //
rfm22_write(RFM22_check_header0, ' '); //
// sync word
rfm22_write(RFM22_sync_word3, SYNC_BYTE_1);
rfm22_write(RFM22_sync_word2, SYNC_BYTE_2);
rfm22_write(RFM22_sync_word1, SYNC_BYTE_3);
rfm22_write(RFM22_sync_word0, SYNC_BYTE_4);
// all the bits to be checked
rfm22_write(RFM22_header_enable3, 0xff);
rfm22_write(RFM22_header_enable2, 0xff);
rfm22_write(RFM22_header_enable1, 0xff);
rfm22_write(RFM22_header_enable0, 0xff);
*/ // no bits to be checked
// no bits to be checked
rfm22_write(RFM22_header_enable3, 0x00);
rfm22_write(RFM22_header_enable2, 0x00);
rfm22_write(RFM22_header_enable1, 0x00);
rfm22_write(RFM22_header_enable0, 0x00);
// rfm22_write(RFM22_modem_test, 0x01);
rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_agcen);
// rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_sgi | RFM22_agc_ovr1_agcen);
rfm22_write(RFM22_frequency_hopping_step_size, frequency_hop_step_size_reg); // set frequency hopping channel step size (multiples of 10kHz)
// set frequency hopping channel step size (multiples of 10kHz)
rfm22_write(RFM22_frequency_hopping_step_size, frequency_hop_step_size_reg);
rfm22_setNominalCarrierFrequency((min_frequency_hz + max_frequency_hz) / 2); // set our nominal carrier frequency
// set our nominal carrier frequency
rfm22_setNominalCarrierFrequency((min_frequency_hz + max_frequency_hz) / 2);
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | tx_power); // set the tx power
// rfm22_write(RFM22_tx_power, RFM22_tx_pwr_lna_sw | tx_power); // set the tx power
// set the tx power
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_0 |
RFM22_tx_pwr_lna_sw | tx_power);
// rfm22_write(RFM22_vco_current_trimming, 0x7f);
// rfm22_write(RFM22_vco_calibration_override, 0x40);
// rfm22_write(RFM22_chargepump_current_trimming_override, 0x80);
// TX FIFO Almost Full Threshold (0 - 63)
rfm22_write(RFM22_tx_fifo_control1, TX_FIFO_HI_WATERMARK);
rfm22_write(RFM22_tx_fifo_control1, TX_FIFO_HI_WATERMARK); // TX FIFO Almost Full Threshold (0 - 63)
rfm22_write(RFM22_tx_fifo_control2, TX_FIFO_LO_WATERMARK); // TX FIFO Almost Empty Threshold (0 - 63)
// TX FIFO Almost Empty Threshold (0 - 63)
rfm22_write(RFM22_tx_fifo_control2, TX_FIFO_LO_WATERMARK);
rfm22_write(RFM22_rx_fifo_control, RX_FIFO_HI_WATERMARK); // RX FIFO Almost Full Threshold (0 - 63)
// RX FIFO Almost Full Threshold (0 - 63)
rfm22_write(RFM22_rx_fifo_control, RX_FIFO_HI_WATERMARK);
#if defined(RFM22_EXT_INT_USE)
// Enable RF module external interrupt
rfm22_enableExtInt();
#endif
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);

View File

@ -490,4 +490,5 @@ const struct pios_rfm22b_cfg pios_rfm22b_cfg = {
.maxConnections = 1,
.id = 0x36249acb
};
#endif /* PIOS_INCLUDE_RFM22B */