/** ****************************************************************************** * * @file twostep.cpp * @author Jonathan Brandmeyer * Copyright (C) 2010. * @addtogroup GCSPlugins GCS Plugins * @{ * @addtogroup Config plugin * @{ * @brief Implements low-level calibration algorithms *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; Version 3 of the License, and no other * version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #undef PRINTF_DEBUGGING #include #include #if defined(__APPLE__) || defined(_WIN32) // Qt bug work around #ifndef isnan extern "C" int isnan(double); #endif #ifndef isinf extern "C" int isinf(double); #endif #endif /* * Alas, this implementation is a fairly direct copy of the contents of the * following papers. You don't have a chance at understanding it without * reading these first. Any bugs should be presumed to be JB's fault rather * than Alonso and Shuster until proven otherwise. * * Reference [1]: "A New Algorithm for Attitude-independent magnetometer * calibration", Robert Alonso and Malcolmn D. Shuster, Flight Mechanics/ * Estimation Theory Symposium, NASA Goddard, 1994, pp 513-527 * * Reference [2]: Roberto Alonso and Malcolm D. Shuster, "Complete Linear * Attitude-Independent Magnetometer Calibration", Journal of the Astronautical * Sciences, Vol 50, No 4, 2002, pp 477-490 * */ namespace { Vector3f center(const Vector3f samples[], size_t n_samples) { Vector3f summation(Vector3f::Zero()); for (size_t i = 0; i < n_samples; ++i) { summation += samples[i]; } return summation / float(n_samples); } void inv_fisher_information_matrix(Matrix3f & fisherInv, Matrix3f & fisher, const Vector3f samples[], size_t n_samples, const float noise) { MatrixXf column_samples(3, n_samples); for (size_t i = 0; i < n_samples; ++i) { column_samples.col(i) = samples[i]; } fisher = 4 / noise * column_samples * column_samples.transpose(); // Compute the inverse by taking advantage of the results symmetricness fisher.ldlt().solve(Matrix3f::Identity(), &fisherInv); } // Eq 14 of the original reference. Computes the gradiant of the cost function // with respect to the bias offset. // @param samples: The vector of measurement samples // @param mags: The vector of sample delta magnitudes // @param b: The estimate of the bias // @param mu: The trace of the noise matrix (3*noise) // @return the negative gradiant of the cost function with respect to the // current value of the estimate, b Vector3f neg_dJdb(const Vector3f samples[], const float mags[], size_t n_samples, const Vector3f & b, float mu, float noise) { Vector3f summation(Vector3f::Zero()); float b_norm2 = b.squaredNorm(); for (size_t i = 0; i < n_samples; ++i) { summation += (mags[i] - 2 * samples[i].dot(b) + b_norm2 - mu) * 2 * (samples[i] - b); } return (1.0 / noise) * summation; } } // !namespace (anon) Vector3f twostep_bias_only(const Vector3f samples[], size_t n_samples, const Vector3f & referenceField, const float noise) { // \tilde{H} Vector3f* centeredSamples = new Vector3f[n_samples]; // z_k float sampleDeltaMag[n_samples]; // eq 7 and 8 applied to samples Vector3f avg = center(samples, n_samples); float refSquaredNorm = referenceField.squaredNorm(); float sampleDeltaMagCenter = 0; for (size_t i = 0; i < n_samples; ++i) { // eq 9 applied to samples centeredSamples[i] = samples[i] - avg; // eqn 2a sampleDeltaMag[i] = samples[i].squaredNorm() - refSquaredNorm; sampleDeltaMagCenter += sampleDeltaMag[i]; } sampleDeltaMagCenter /= n_samples; Matrix3f P_bb; Matrix3f P_bb_inv; // Due to eq 12b inv_fisher_information_matrix(P_bb, P_bb_inv, centeredSamples, n_samples, noise); // Compute centered magnitudes float sampleDeltaMagCentered[n_samples]; for (size_t i = 0; i < n_samples; ++i) { sampleDeltaMagCentered[i] = sampleDeltaMag[i] - sampleDeltaMagCenter; } // From eq 12a Vector3f estimate(Vector3f::Zero()); for (size_t i = 0; i < n_samples; ++i) { estimate += sampleDeltaMagCentered[i] * centeredSamples[i]; } estimate = P_bb * ((2 / noise) * estimate); // Newton-Raphson gradient descent to the optimal solution // eq 14a and 14b float mu = -3 * noise; for (int i = 0; i < 6; ++i) { Vector3f neg_gradiant = neg_dJdb(samples, sampleDeltaMag, n_samples, estimate, mu, noise); Matrix3f scale = P_bb_inv + 4 / noise * (avg - estimate) * (avg - estimate).transpose(); Vector3f neg_increment; scale.ldlt().solve(neg_gradiant, &neg_increment); // Note that the negative has been done twice estimate += neg_increment; } delete[] centeredSamples; return estimate; } namespace { // Private utility functions for the version of TWOSTEP that computes bias and // scale factor vectors alone. /** Compute the gradiant of the norm of b with respect to the estimate vector. */ Matrix dnormb_dtheta(const Matrix & theta) { return (Matrix() << 2 * theta.coeff(0) / (1 + theta.coeff(3)), 2 * theta.coeff(1) / (1 + theta.coeff(4)), 2 * theta.coeff(2) / (1 + theta.coeff(5)), -pow(theta.coeff(0), 2) / pow(1 + theta.coeff(3), 2), -pow(theta.coeff(1), 2) / pow(1 + theta.coeff(4), 2), -pow(theta.coeff(2), 2) / pow(1 + theta.coeff(5), 2)).finished(); } /** * Compute the gradiant of the cost function with respect to the optimal * estimate. */ Matrix dJdb(const Matrix & centerL, double centerMag, const Matrix & theta, const Matrix & dbdtheta, double mu, double noise) { // \frac{\delta}{\delta \theta'} |b(\theta')|^2 Matrix vectorPart = dbdtheta - centerL; // By equation 35 double normbthetaSquared = 0; for (unsigned i = 0; i < 3; ++i) { normbthetaSquared += theta.coeff(i) * theta.coeff(i) / (1 + theta.coeff(3 + i)); } double scalarPart = (centerMag - centerL.dot(theta) + normbthetaSquared - mu) / noise; return scalarPart * vectorPart; } /** Reconstruct the scale factor and bias offset vectors from the transformed * estimate vector. */ Matrix theta_to_sane(const Matrix & theta) { return (Matrix() << theta.coeff(0) / sqrt(1 + theta.coeff(3)), theta.coeff(1) / sqrt(1 + theta.coeff(4)), theta.coeff(2) / sqrt(1 + theta.coeff(5)), -1 + sqrt(1 + theta.coeff(3)), -1 + sqrt(1 + theta.coeff(4)), -1 + sqrt(1 + theta.coeff(5))).finished(); } } // !namespace (anon) /** * Compute the scale factor and bias associated with a vector observer * according to the equation: * B_k = (I_{3x3} + D)^{-1} \times (O^T A_k H_k + b + \epsilon_k) * where k is the sample index, * B_k is the kth measurement * I_{3x3} is a 3x3 identity matrix * D is a 3x3 diagonal matrix of scale factors * O is the orthogonal alignment matrix * A_k is the attitude at the kth sample * b is the bias in the global reference frame * \epsilon_k is the noise at the kth sample * This implementation makes the assumption that \epsilon is a constant white, * gaussian noise source that is common to all k. The misalignment matrix O * is not computed, and the off-diagonal elements of D, corresponding to the * misalignment scale factors are not either. * * @param bias[out] The computed bias, in the global frame * @param scale[out] The computed scale factor, in the sensor frame * @param samples[in] An array of measurement samples. * @param n_samples The number of samples in the array. * @param referenceField The magnetic field vector at this location. * @param noise The one-sigma squared standard deviation of the observed noise * in the sensor. */ void twostep_bias_scale(Vector3f & bias, Vector3f & scale, const Vector3f samples[], const size_t n_samples, const Vector3f & referenceField, const float noise) { // Initial estimate for gradiant descent starts at eq 37a of ref 2. // Define L_k by eq 30 and 28 for k = 1 .. n_samples Matrix fullSamples(n_samples, 6); // \hbar{L} by eq 33, simplified by obesrving that the Matrix centerSample = Matrix::Zero(); // Define the sample differences z_k by eq 23 a) double sampleDeltaMag[n_samples]; // The center value \hbar{z} double sampleDeltaMagCenter = 0; double refSquaredNorm = referenceField.squaredNorm(); for (size_t i = 0; i < n_samples; ++i) { fullSamples.row(i) << 2 * samples[i].transpose().cast(), -(samples[i][0] * samples[i][0]), -(samples[i][1] * samples[i][1]), -(samples[i][2] * samples[i][2]); centerSample += fullSamples.row(i); sampleDeltaMag[i] = samples[i].squaredNorm() - refSquaredNorm; sampleDeltaMagCenter += sampleDeltaMag[i]; } sampleDeltaMagCenter /= n_samples; centerSample /= n_samples; // True for all k. // double mu = -3*noise; // The center value of mu, \bar{mu} // double centerMu = mu; // The center value of mu, \tilde{mu} // double centeredMu = 0; // Define \tilde{L}_k for k = 0 .. n_samples Matrix centeredSamples(n_samples, 6); // Define \tilde{z}_k for k = 0 .. n_samples double centeredMags[n_samples]; // Compute the term under the summation of eq 37a Matrix estimateSummation = Matrix::Zero(); for (size_t i = 0; i < n_samples; ++i) { centeredSamples.row(i) = fullSamples.row(i) - centerSample; centeredMags[i] = sampleDeltaMag[i] - sampleDeltaMagCenter; estimateSummation += centeredMags[i] * centeredSamples.row(i).transpose(); } estimateSummation /= noise; // note: paper supplies 1/noise // By eq 37 b). Note, paper supplies 1/noise here Matrix P_theta_theta_inv = (1.0f / noise) * centeredSamples.transpose() * centeredSamples; #ifdef PRINTF_DEBUGGING SelfAdjointEigenSolver > eig(P_theta_theta_inv); std::cout << "P_theta_theta_inverse: \n" << P_theta_theta_inv << "\n\n"; std::cout << "P_\\tt^-1 eigenvalues: " << eig.eigenvalues().transpose() << "\n"; std::cout << "P_\\tt^-1 eigenvectors:\n" << eig.eigenvectors() << "\n"; #endif // The Fisher information matrix has a small eigenvalue, with a // corresponding eigenvector of about [1e-2 1e-2 1e-2 0.55, 0.55, // 0.55]. This means that there is relatively little information // about the common gain on the scale factor, which has a // corresponding effect on the bias, too. The fixup is performed by // the first iteration of the second stage of TWOSTEP, as documented in // [1]. Matrix estimate; // By eq 37 a), \tilde{Fisher}^-1 P_theta_theta_inv.ldlt().solve(estimateSummation, &estimate); #ifdef PRINTF_DEBUGGING Matrix P_theta_theta; P_theta_theta_inv.ldlt().solve(Matrix::Identity(), &P_theta_theta); SelfAdjointEigenSolver > eig2(P_theta_theta); std::cout << "eigenvalues: " << eig2.eigenvalues().transpose() << "\n"; std::cout << "eigenvectors: \n" << eig2.eigenvectors() << "\n"; std::cout << "estimate summation: \n" << estimateSummation.normalized() << "\n"; #endif // estimate i+1 = estimate_i - Fisher^{-1}(at estimate_i)*gradiant(theta) // Fisher^{-1} = \tilde{Fisher}^-1 + \hbar{Fisher}^{-1} size_t count = 3; while (count-- > 0) { // eq 40 Matrix db_dtheta = dnormb_dtheta(estimate); Matrix dJ_dtheta = dJdb(centerSample, sampleDeltaMagCenter, estimate, db_dtheta, -3 * noise, noise / n_samples); // Eq 39 (with double-negation on term inside parens) db_dtheta = centerSample - db_dtheta; Matrix scale = P_theta_theta_inv + (double(n_samples) / noise) * db_dtheta.transpose() * db_dtheta; // eq 14b, mutatis mutandis (grumble, grumble) Matrix increment; scale.ldlt().solve(dJ_dtheta, &increment); estimate -= increment; } // Transform the estimated parameters from [c | e] back into [b | d]. for (size_t i = 0; i < 3; ++i) { scale.coeffRef(i) = -1 + sqrt(1 + estimate.coeff(3 + i)); bias.coeffRef(i) = estimate.coeff(i) / sqrt(1 + estimate.coeff(3 + i)); } } namespace { // Private functions specific to the scale factor and orthogonal calibration // version of TWOSTEP /** * Reconstruct the symmetric E matrix from the last 6 elements of the estimate * vector */ Matrix3d E_theta(const Matrix & theta) { // By equation 49b return (Matrix3d() << theta.coeff(3), theta.coeff(6), theta.coeff(7), theta.coeff(6), theta.coeff(4), theta.coeff(8), theta.coeff(7), theta.coeff(8), theta.coeff(5)).finished(); } /** * Compute the gradient of the squared norm of b with respect to theta. Note * that b itself is just a function of theta. Therefore, this function * computes \frac{\delta,\delta\theta'}\left|b(\theta')\right| * From eq 55 of [2]. */ Matrix dnormb_dtheta(const Matrix & theta) { // Re-form the matrix E from the vector of theta' Matrix3d E = E_theta(theta); // Compute (I + E)^-1 * c Vector3d IE_inv_c; E.ldlt().solve(theta.end<3>(), &IE_inv_c); return (Matrix() << 2 * IE_inv_c, -IE_inv_c.coeff(0) * IE_inv_c.coeff(0), -IE_inv_c.coeff(1) * IE_inv_c.coeff(1), -IE_inv_c.coeff(2) * IE_inv_c.coeff(2), -2 * IE_inv_c.coeff(0) * IE_inv_c.coeff(1), -2 * IE_inv_c.coeff(0) * IE_inv_c.coeff(2), -2 * IE_inv_c.coeff(1) * IE_inv_c.coeff(2)).finished(); } // The gradient of the cost function with respect to theta, at a particular // value of theta. // @param centerL: The center of the samples theta' // @param centerMag: The center of the magnitude data // @param theta: The estimate of the bias and scale factor // @return the gradient of the cost function with respect to the // current value of the estimate, theta' Matrix dJ_dtheta(const Matrix & centerL, double centerMag, const Matrix & theta, const Matrix & dbdtheta, double mu, double noise) { // \frac{\delta}{\delta \theta'} |b(\theta')|^2 Matrix vectorPart = dbdtheta - centerL; // |b(\theta')|^2 Matrix3d E = E_theta(theta); Vector3d rhs; (Matrix3d::Identity() + E).ldlt().solve(theta.start<3>(), &rhs); double normbthetaSquared = theta.start<3>().dot(rhs); double scalarPart = (centerMag - centerL.dot(theta) + normbthetaSquared - mu) / noise; return scalarPart * vectorPart; } } // !namespace (anonymous) /** * Compute the scale factor and bias associated with a vector observer * according to the equation: * B_k = (I_{3x3} + D)^{-1} \times (O^T A_k H_k + b + \epsilon_k) * where k is the sample index, * B_k is the kth measurement * I_{3x3} is a 3x3 identity matrix * D is a 3x3 symmetric matrix of scale factors * O is the orthogonal alignment matrix * A_k is the attitude at the kth sample * b is the bias in the global reference frame * \epsilon_k is the noise at the kth sample * * After computing the scale factor and bias matrices, the optimal estimate is * given by * \tilde{B}_k = (I_{3x3} + D)B_k - b * * This implementation makes the assumption that \epsilon is a constant white, * gaussian noise source that is common to all k. The misalignment matrix O * is not computed. * * @param bias[out] The computed bias, in the global frame * @param scale[out] The computed scale factor matrix, in the sensor frame. * @param samples[in] An array of measurement samples. * @param n_samples The number of samples in the array. * @param referenceField The magnetic field vector at this location. * @param noise The one-sigma squared standard deviation of the observed noise * in the sensor. */ void twostep_bias_scale(Vector3f & bias, Matrix3f & scale, const Vector3f samples[], const size_t n_samples, const Vector3f & referenceField, const float noise) { // Define L_k by eq 51 for k = 1 .. n_samples Matrix fullSamples(n_samples, 9); // \hbar{L} by eq 52, simplified by observing that the common noise term // makes this a simple average. Matrix centerSample = Matrix::Zero(); // Define the sample differences z_k by eq 23 a) double sampleDeltaMag[n_samples]; // The center value \hbar{z} double sampleDeltaMagCenter = 0; // The squared norm of the reference vector double refSquaredNorm = referenceField.squaredNorm(); for (size_t i = 0; i < n_samples; ++i) { fullSamples.row(i) << 2 * samples[i].transpose().cast(), -(samples[i][0] * samples[i][0]), -(samples[i][1] * samples[i][1]), -(samples[i][2] * samples[i][2]), -2 * (samples[i][0] * samples[i][1]), -2 * (samples[i][0] * samples[i][2]), -2 * (samples[i][1] * samples[i][2]); centerSample += fullSamples.row(i); sampleDeltaMag[i] = samples[i].squaredNorm() - refSquaredNorm; sampleDeltaMagCenter += sampleDeltaMag[i]; } sampleDeltaMagCenter /= n_samples; centerSample /= n_samples; // Define \tilde{L}_k for k = 0 .. n_samples Matrix centeredSamples(n_samples, 9); // Define \tilde{z}_k for k = 0 .. n_samples double centeredMags[n_samples]; // Compute the term under the summation of eq 57a Matrix estimateSummation = Matrix::Zero(); for (size_t i = 0; i < n_samples; ++i) { centeredSamples.row(i) = fullSamples.row(i) - centerSample; centeredMags[i] = sampleDeltaMag[i] - sampleDeltaMagCenter; estimateSummation += centeredMags[i] * centeredSamples.row(i).transpose(); } estimateSummation /= noise; // By eq 57b Matrix P_theta_theta_inv = (1.0f / noise) * centeredSamples.transpose() * centeredSamples; #ifdef PRINTF_DEBUGGING SelfAdjointEigenSolver > eig(P_theta_theta_inv); std::cout << "P_theta_theta_inverse: \n" << P_theta_theta_inv << "\n\n"; std::cout << "P_\\tt^-1 eigenvalues: " << eig.eigenvalues().transpose() << "\n"; std::cout << "P_\\tt^-1 eigenvectors:\n" << eig.eigenvectors() << "\n"; #endif // The current value of the estimate. Initialized to \tilde{\theta}^* Matrix estimate; // By eq 57a P_theta_theta_inv.ldlt().solve(estimateSummation, &estimate); // estimate i+1 = estimate_i - Fisher^{-1}(at estimate_i)*gradient(theta) // Fisher^{-1} = \tilde{Fisher}^-1 + \hbar{Fisher}^{-1} size_t count = 0; double eta = 10000; while (count++ < 200 && eta > 1e-8) { static bool warned = false; if (hasNaN(estimate)) { std::cout << "WARNING: found NaN at time " << count << "\n"; warned = true; } #if 0 SelfAdjointEigenSolver eig_E(E_theta(estimate)); Vector3d S = eig_E.eigenvalues(); Vector3d W; W << -1 + sqrt(1 + S.coeff(0)), -1 + sqrt(1 + S.coeff(1)), -1 + sqrt(1 + S.coeff(2)); scale = (eig_E.eigenvectors() * W.asDiagonal() * eig_E.eigenvectors().transpose()).cast(); (Matrix3f::Identity() + scale).ldlt().solve( estimate.start<3>().cast(), &bias); std::cout << "\n\nestimated bias: " << bias.transpose() << "\nestimated scale:\n" << scale; #endif Matrix db_dtheta = dnormb_dtheta(estimate); Matrix dJ_dtheta = ::dJ_dtheta(centerSample, sampleDeltaMagCenter, estimate, db_dtheta, -3 * noise, noise / n_samples); // Eq 59, with reused storage on db_dtheta db_dtheta = centerSample - db_dtheta; Matrix scale = P_theta_theta_inv + (double(n_samples) / noise) * db_dtheta.transpose() * db_dtheta; // eq 14b, mutatis mutandis (grumble, grumble) Matrix increment; scale.ldlt().solve(dJ_dtheta, &increment); estimate -= increment; eta = increment.dot(scale * increment); std::cout << "eta: " << eta << "\n"; } std::cout << "terminated at eta = " << eta << " after " << count << " iterations\n"; if (!isnan(eta) && !isinf(eta)) { // Transform the estimated parameters from [c | E] back into [b | D]. // See eq 63-65 SelfAdjointEigenSolver eig_E(E_theta(estimate)); Vector3d S = eig_E.eigenvalues(); Vector3d W; W << -1 + sqrt(1 + S.coeff(0)), -1 + sqrt(1 + S.coeff(1)), -1 + sqrt(1 + S.coeff(2)); scale = (eig_E.eigenvectors() * W.asDiagonal() * eig_E.eigenvectors().transpose()).cast(); (Matrix3f::Identity() + scale).ldlt().solve( estimate.start<3>().cast(), &bias); } else { // return nonsense data. The eigensolver can fall ingo // an infinite loop otherwise. // TODO: Add error code return scale = Matrix3f::Ones() * std::numeric_limits::quiet_NaN(); bias = Vector3f::Zero(); } }