/** ****************************************************************************** * * @file MagOrAccelSensorCal.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief 3 axis sensor cal from six measurements taken in a constant field. * Call SixPointInConstFieldCal(FieldMagnitude, X, Y, Z, S, b) * - FieldMagnitude is the constant field, e.g. 9.81 for accels * - X, Y, Z are vectors of six measurements from different orientations * - returns, S[3] and b[3], that are the scale and offsett for the axes * - i.e. Measurementx = S[0]*Sensorx + b[0] * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include "stdint.h" //Function Prototypes int16_t SixPointInConstFieldCal( double ConstMag, double x[6], double y[6], double z[6], double S[3], double b[3]); int16_t LinearEquationsSolving(int16_t nDim, double* pfMatr, double* pfVect, double* pfSolution); int16_t SixPointInConstFieldCal( double ConstMag, double x[6], double y[6], double z[6], double S[3], double b[3] ) { int16_t i; double A[5][5]; double f[5], c[5]; double xp, yp, zp, Sx; // Fill in matrix A - // write six difference-in-magnitude equations of the form // Sx^2(x2^2-x1^2) + 2*Sx*bx*(x2-x1) + Sy^2(y2^2-y1^2) + 2*Sy*by*(y2-y1) + Sz^2(z2^2-z1^2) + 2*Sz*bz*(z2-z1) = 0 // or in other words // 2*Sx*bx*(x2-x1)/Sx^2 + Sy^2(y2^2-y1^2)/Sx^2 + 2*Sy*by*(y2-y1)/Sx^2 + Sz^2(z2^2-z1^2)/Sx^2 + 2*Sz*bz*(z2-z1)/Sx^2 = (x1^2-x2^2) for (i=0;i<5;i++){ A[i][0] = 2.0 * (x[i+1] - x[i]); A[i][1] = y[i+1]*y[i+1] - y[i]*y[i]; A[i][2] = 2.0 * (y[i+1] - y[i]); A[i][3] = z[i+1]*z[i+1] - z[i]*z[i]; A[i][4] = 2.0 * (z[i+1] - z[i]); f[i] = x[i]*x[i] - x[i+1]*x[i+1]; } // solve for c0=bx/Sx, c1=Sy^2/Sx^2; c2=Sy*by/Sx^2, c3=Sz^2/Sx^2, c4=Sz*bz/Sx^2 if ( !LinearEquationsSolving( 5, (double *)A, f, c) ) return 0; // use one magnitude equation and c's to find Sx - doesn't matter which - all give the same answer xp = x[0]; yp = y[0]; zp = z[0]; Sx = sqrt(ConstMag*ConstMag / (xp*xp + 2*c[0]*xp + c[0]*c[0] + c[1]*yp*yp + 2*c[2]*yp + c[2]*c[2]/c[1] + c[3]*zp*zp + 2*c[4]*zp + c[4]*c[4]/c[3])); S[0] = Sx; b[0] = Sx*c[0]; S[1] = sqrt(c[1]*Sx*Sx); b[1] = c[2]*Sx*Sx/S[1]; S[2] = sqrt(c[3]*Sx*Sx); b[2] = c[4]*Sx*Sx/S[2]; return 1; } //***************************************************************** int16_t LinearEquationsSolving(int16_t nDim, double* pfMatr, double* pfVect, double* pfSolution) { double fMaxElem; double fAcc; int16_t i , j, k, m; for(k=0; k<(nDim-1); k++) // base row of matrix { // search of line with max element fMaxElem = fabs( pfMatr[k*nDim + k] ); m = k; for(i=k+1; i=0; k--) { pfSolution[k] = pfVect[k]; for(i=(k+1); i