/** ****************************************************************************** * @addtogroup PIOS PIOS Core hardware abstraction layer * @{ * @addtogroup PIOS_MPU6000 MPU6000 Functions * @brief Deals with the hardware interface to the 3-axis gyro * @{ * * @file pios_mpu000.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2011. * @brief MPU6000 6-axis gyro and accel chip * @see The GNU Public License (GPL) Version 3 * ****************************************************************************** */ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Project Includes */ #include "pios.h" #if defined(PIOS_INCLUDE_MPU6000) /* Global Variables */ uint32_t pios_spi_gyro; /* Local Variables */ #define DEG_TO_RAD (M_PI / 180.0) static void PIOS_MPU6000_Config(struct pios_mpu6000_cfg const * cfg); static int32_t PIOS_MPU6000_SetReg(uint8_t address, uint8_t buffer); static int32_t PIOS_MPU6000_GetReg(uint8_t address); #define PIOS_MPU6000_MAX_DOWNSAMPLE 100 static int16_t pios_mpu6000_buffer[PIOS_MPU6000_MAX_DOWNSAMPLE * sizeof(struct pios_mpu6000_data)]; static t_fifo_buffer pios_mpu6000_fifo; volatile bool mpu6000_configured = false; volatile bool mpu6000_cb_ready = true; static struct pios_mpu6000_cfg const * cfg; /** * @brief Initialize the MPU6050 3-axis gyro sensor. * @return none */ void PIOS_MPU6000_Init(const struct pios_mpu6000_cfg * new_cfg) { cfg = new_cfg; fifoBuf_init(&pios_mpu6000_fifo, (uint8_t *) pios_mpu6000_buffer, sizeof(pios_mpu6000_buffer)); /* Configure EOC pin as input floating */ GPIO_Init(cfg->drdy.gpio, &cfg->drdy.init); /* Configure the End Of Conversion (EOC) interrupt */ SYSCFG_EXTILineConfig(cfg->eoc_exti.port_source, cfg->eoc_exti.pin_source); EXTI_Init(&cfg->eoc_exti.init); /* Enable and set EOC EXTI Interrupt to the lowest priority */ NVIC_Init(&cfg->eoc_irq.init); /* Configure the MPU6050 Sensor */ PIOS_MPU6000_Config(cfg); } /** * @brief Initialize the MPU6050 3-axis gyro sensor * \return none * \param[in] PIOS_MPU6000_ConfigTypeDef struct to be used to configure sensor. * */ static void PIOS_MPU6000_Config(struct pios_mpu6000_cfg const * cfg) { mpu6000_cb_ready = true; // Reset chip and fifo while (PIOS_MPU6000_SetReg(PIOS_MPU6000_USER_CTRL_REG, 0x01 | 0x02 | 0x04) != 0); PIOS_DELAY_WaituS(20); // FIFO storage while (PIOS_MPU6000_SetReg(PIOS_MPU6000_FIFO_EN_REG, cfg->Fifo_store) != 0); // Sample rate divider while (PIOS_MPU6000_SetReg(PIOS_MPU6000_SMPLRT_DIV_REG, cfg->Smpl_rate_div) != 0) ; // Digital low-pass filter and scale while (PIOS_MPU6000_SetReg(PIOS_MPU6000_DLPF_CFG_REG, cfg->filter) != 0) ; // Digital low-pass filter and scale while (PIOS_MPU6000_SetReg(PIOS_MPU6000_GYRO_CFG_REG, cfg->gyro_range) != 0) ; // Interrupt configuration while (PIOS_MPU6000_SetReg(PIOS_MPU6000_USER_CTRL_REG, cfg->User_ctl) != 0) ; // Interrupt configuration while (PIOS_MPU6000_SetReg(PIOS_MPU6000_PWR_MGMT_REG, cfg->Pwr_mgmt_clk) != 0) ; // Interrupt configuration while (PIOS_MPU6000_SetReg(PIOS_MPU6000_INT_CFG_REG, cfg->interrupt_cfg) != 0) ; // Interrupt configuration while (PIOS_MPU6000_SetReg(PIOS_MPU6000_INT_EN_REG, cfg->interrupt_en) != 0) ; if(PIOS_MPU6000_GetReg(PIOS_MPU6000_INT_EN_REG) != cfg->interrupt_en) return; mpu6000_configured = true; } /** * @brief Claim the SPI bus for the accel communications and select this chip * @return 0 if successful, -1 if unable to claim bus */ int32_t PIOS_MPU6000_ClaimBus() { if(PIOS_SPI_ClaimBus(pios_spi_gyro) != 0) return -1; PIOS_SPI_RC_PinSet(pios_spi_gyro,0,0); return 0; } /** * @brief Release the SPI bus for the accel communications and end the transaction * @return 0 if successful */ int32_t PIOS_MPU6000_ReleaseBus() { PIOS_SPI_RC_PinSet(pios_spi_gyro,0,1); return PIOS_SPI_ReleaseBus(pios_spi_gyro); } /** * @brief Connect to the correct SPI bus */ void PIOS_MPU6000_Attach(uint32_t spi_id) { pios_spi_gyro = spi_id; } /** * @brief Read a register from MPU6000 * @returns The register value or -1 if failure to get bus * @param reg[in] Register address to be read */ static int32_t PIOS_MPU6000_GetReg(uint8_t reg) { uint8_t data; if(PIOS_MPU6000_ClaimBus() != 0) return -1; PIOS_SPI_TransferByte(pios_spi_gyro,(0x80 | reg) ); // request byte data = PIOS_SPI_TransferByte(pios_spi_gyro,0 ); // receive response PIOS_MPU6000_ReleaseBus(); return data; } /** * @brief Writes one byte to the MPU6000 * \param[in] reg Register address * \param[in] data Byte to write * \return 0 if operation was successful * \return -1 if unable to claim SPI bus * \return -2 if unable to claim i2c device */ static int32_t PIOS_MPU6000_SetReg(uint8_t reg, uint8_t data) { if(PIOS_MPU6000_ClaimBus() != 0) return -1; if(PIOS_SPI_TransferByte(pios_spi_gyro, 0x7f & reg) != 0) { PIOS_MPU6000_ReleaseBus(); return -2; } if(PIOS_SPI_TransferByte(pios_spi_gyro, data) != 0) { PIOS_MPU6000_ReleaseBus(); return -3; } PIOS_MPU6000_ReleaseBus(); return 0; } /** * @brief Read current X, Z, Y values (in that order) * \param[out] int16_t array of size 3 to store X, Z, and Y magnetometer readings * \returns The number of samples remaining in the fifo */ int32_t PIOS_MPU6000_ReadGyros(struct pios_mpu6000_data * data) { uint8_t buf[7] = {PIOS_MPU6000_GYRO_X_OUT_MSB | 0x80, 0, 0, 0, 0, 0, 0}; uint8_t rec[7]; if(PIOS_MPU6000_ClaimBus() != 0) return -1; /* if(PIOS_SPI_TransferBlock(pios_spi_gyro, &buf[0], &rec[0], sizeof(buf), NULL) < 0) return -2; */ PIOS_SPI_TransferByte(pios_spi_gyro,(0x80 | PIOS_MPU6000_GYRO_X_OUT_MSB) ); // request byte rec[1] = PIOS_SPI_TransferByte(pios_spi_gyro,0 ); // receive response rec[2] = PIOS_SPI_TransferByte(pios_spi_gyro,0 ); // receive response rec[3] = PIOS_SPI_TransferByte(pios_spi_gyro,0 ); // receive response rec[4] = PIOS_SPI_TransferByte(pios_spi_gyro,0 ); // receive response rec[5] = PIOS_SPI_TransferByte(pios_spi_gyro,0 ); // receive response rec[6] = PIOS_SPI_TransferByte(pios_spi_gyro,0 ); // receive response PIOS_MPU6000_ReleaseBus(); data->gyro_x = rec[1] << 8 | rec[2]; data->gyro_y = rec[3] << 8 | rec[4]; data->gyro_z = rec[5] << 8 | rec[6]; return 0; } /** * @brief Read the identification bytes from the MPU6050 sensor * \return ID read from MPU6050 or -1 if failure */ int32_t PIOS_MPU6000_ReadID() { int32_t mpu6000_id = PIOS_MPU6000_GetReg(PIOS_MPU6000_WHOAMI); if(mpu6000_id < 0) return -1; return mpu6000_id; } /** * \brief Reads the data from the MPU6050 FIFO * \param[out] buffer destination buffer * \param[in] len maximum number of bytes which should be read * \note This returns the data as X, Y, Z the temperature * \return number of bytes transferred if operation was successful * \return -1 if error during I2C transfer */ int32_t PIOS_MPU6000_ReadFifo(struct pios_mpu6000_data * buffer) { if(fifoBuf_getUsed(&pios_mpu6000_fifo) < sizeof(*buffer)) return -1; fifoBuf_getData(&pios_mpu6000_fifo, (uint8_t *) buffer, sizeof(*buffer)); return 0; } float PIOS_MPU6000_GetScale() { switch (cfg->gyro_range) { case PIOS_MPU6000_SCALE_250_DEG: return 1.0f / 131.0f; case PIOS_MPU6000_SCALE_500_DEG: return 1.0f / 65.5f; case PIOS_MPU6000_SCALE_1000_DEG: return 1.0f / 32.8f; case PIOS_MPU6000_SCALE_2000_DEG: return 1.0f / 16.4f; } return 0; } /** * @brief Run self-test operation. * \return 0 if test succeeded * \return non-zero value if test succeeded */ uint8_t PIOS_MPU6000_Test(void) { /* Verify that ID matches (MPU6050 ID is 0x69) */ int32_t mpu6000_id = PIOS_MPU6000_ReadID(); if(mpu6000_id < 0) return -1; if(mpu6000_id != 0x68); return -2; return 0; } /** * @brief IRQ Handler. Read all the data from onboard buffer */ uint32_t mpu6000_irq = 0; uint32_t mpu6000_count; uint32_t mpu6000_fifo_full = 0; void PIOS_MPU6000_IRQHandler(void) { if(!mpu6000_configured) return; struct pios_mpu6000_data data; mpu6000_irq++; if(PIOS_MPU6000_ClaimBus() != 0) return; // Get number of bytes in the fifo uint8_t buf[3] = {PIOS_MPU6000_FIFO_CNT_MSB | 0x80, 0, 0}; uint8_t rec[3]; if(PIOS_SPI_TransferBlock(pios_spi_gyro, &buf[0], &rec[0], sizeof(buf), NULL) < 0) { PIOS_MPU6000_ReleaseBus(); return; } mpu6000_count = rec[1] << 8 | rec[2]; uint32_t count = mpu6000_count > 40 ? 40 : mpu6000_count; while(count--) { if(fifoBuf_getFree(&pios_mpu6000_fifo) < sizeof(data)) { PIOS_MPU6000_ReleaseBus(); mpu6000_fifo_full++; return; } uint8_t buf[1+8] = {PIOS_MPU6000_FIFO_REG | 0x80, 0, 0, 0, 0, 0, 0, 0, 0}; uint8_t rec[1+8]; if(PIOS_SPI_TransferBlock(pios_spi_gyro, &buf[0], &rec[0], sizeof(buf), NULL) < 0) { PIOS_MPU6000_ReleaseBus(); return; } data.temperature = rec[1] << 8 | rec[2]; data.gyro_x = rec[3] << 8 | rec[4]; data.gyro_y = rec[5] << 8 | rec[6]; data.gyro_z = rec[7] << 8 | rec[8]; fifoBuf_putData(&pios_mpu6000_fifo, (uint8_t *) &data, sizeof(data)); } PIOS_MPU6000_ReleaseBus(); mpu6000_irq++; } #if defined(PIOS_INCLUDE_MPU6000) /** * The physical IRQ handler * Soon this will be generic in pios_exti and the BMA180 will register * against it. Right now this is crap! */ void EXTI1_IRQHandler(void) { if (EXTI_GetITStatus(EXTI_Line1) != RESET) { PIOS_MPU6000_IRQHandler(); EXTI_ClearITPendingBit(EXTI_Line1); } } #endif #endif /** * @} * @} */