/** ****************************************************************************** * @addtogroup PIOS PIOS Core hardware abstraction layer * @{ * @addtogroup PIOS_RFM22B Radio Functions * @brief PIOS interface for for the RFM22B radio * @{ * * @file pios_rfm22b.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief Implements a driver the the RFM22B driver * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ // ***************************************************************** // RFM22B hardware layer // // This module uses the RFM22B's internal packet handling hardware to // encapsulate our own packet data. // // The RFM22B internal hardware packet handler configuration is as follows .. // // 4-byte (32-bit) preamble .. alternating 0's & 1's // 4-byte (32-bit) sync // 1-byte packet length (number of data bytes to follow) // 0 to 255 user data bytes // // Our own packet data will also contain it's own header and 32-bit CRC // as a single 16-bit CRC is not sufficient for wireless comms. // // ***************************************************************** /* Project Includes */ #include "pios.h" #if defined(PIOS_INCLUDE_RFM22B) #include #include #include /* Local Defines */ #define STACK_SIZE_BYTES 200 // RTC timer is running at 625Hz (1.6ms or 5 ticks == 8ms). // A 256 byte message at 56kbps should take less than 40ms // Note: This timeout should be rate dependent. #define PIOS_RFM22B_SUPERVISOR_TIMEOUT 65 // ~100ms // this is too adjust the RF module so that it is on frequency #define OSC_LOAD_CAP 0x7F // cap = 12.5pf .. default #define OSC_LOAD_CAP_1 0x7D // board 1 #define OSC_LOAD_CAP_2 0x7B // board 2 #define OSC_LOAD_CAP_3 0x7E // board 3 #define OSC_LOAD_CAP_4 0x7F // board 4 // ************************************ #define TX_TEST_MODE_TIMELIMIT_MS 30000 // TX test modes time limit (in ms) #define TX_PREAMBLE_NIBBLES 12 // 7 to 511 (number of nibbles) #define RX_PREAMBLE_NIBBLES 6 // 5 to 31 (number of nibbles) // the size of the rf modules internal transmit buffers. #define TX_BUFFER_SIZE 256 // the size of the rf modules internal FIFO buffers #define FIFO_SIZE 64 #define TX_FIFO_HI_WATERMARK 62 // 0-63 #define TX_FIFO_LO_WATERMARK 32 // 0-63 #define RX_FIFO_HI_WATERMARK 32 // 0-63 #define PREAMBLE_BYTE 0x55 // preamble byte (preceeds SYNC_BYTE's) #define SYNC_BYTE_1 0x2D // RF sync bytes (32-bit in all) #define SYNC_BYTE_2 0xD4 // #define SYNC_BYTE_3 0x4B // #define SYNC_BYTE_4 0x59 // // ************************************ // the default TX power level #define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_0 // +1dBm ... 1.25mW //#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_1 // +2dBm ... 1.6mW //#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_2 // +5dBm ... 3.16mW //#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_3 // +8dBm ... 6.3mW //#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_4 // +11dBm .. 12.6mW //#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_5 // +14dBm .. 25mW //#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_6 // +17dBm .. 50mW //#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_7 // +20dBm .. 100mW // ************************************ // the default RF datarate //#define RFM22_DEFAULT_RF_DATARATE 500 // 500 bits per sec //#define RFM22_DEFAULT_RF_DATARATE 1000 // 1k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 2000 // 2k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 4000 // 4k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 8000 // 8k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 9600 // 9.6k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 16000 // 16k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 19200 // 19k2 bits per sec //#define RFM22_DEFAULT_RF_DATARATE 24000 // 24k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 32000 // 32k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 64000 // 64k bits per sec #define RFM22_DEFAULT_RF_DATARATE 128000 // 128k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 192000 // 192k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 256000 // 256k bits per sec .. NOT YET WORKING // ************************************ #define RFM22_DEFAULT_SS_RF_DATARATE 125 // 128bps #ifndef RX_LED_ON #define RX_LED_ON #define RX_LED_OFF #define TX_LED_ON #define TX_LED_OFF #define LINK_LED_ON #define LINK_LED_OFF #define USB_LED_ON #define USB_LED_OFF #endif // ************************************ // Normal data streaming // GFSK modulation // no manchester encoding // data whitening // FIFO mode // 5-nibble rx preamble length detection // 10-nibble tx preamble length // AFC enabled /* Local type definitions */ enum pios_rfm22b_dev_magic { PIOS_RFM22B_DEV_MAGIC = 0x68e971b6, }; struct pios_rfm22b_dev { enum pios_rfm22b_dev_magic magic; struct pios_rfm22b_cfg cfg; uint32_t spi_id; uint32_t slave_num; uint32_t deviceID; // ISR pending xSemaphoreHandle isrPending; // The COM callback functions. pios_com_callback rx_in_cb; uint32_t rx_in_context; pios_com_callback tx_out_cb; uint32_t tx_out_context; // The supervisor countdown timer. uint16_t supv_timer; uint16_t resets; }; uint32_t random32 = 0x459ab8d8; // Must ensure these prefilled arrays match the define sizes static const uint8_t FULL_PREAMBLE[FIFO_SIZE] = {PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE}; // 64 bytes static const uint8_t HEADER[(TX_PREAMBLE_NIBBLES + 1)/2 + 2] = {PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE, SYNC_BYTE_1, SYNC_BYTE_2}; static const uint8_t OUT_FF[64] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF}; /* Local function forwared declarations */ static void PIOS_RFM22B_Supervisor(uint32_t ppm_id); static void rfm22_processInt(void); static void rfm22_setTxMode(uint8_t mode); // SPI read/write functions static void rfm22_write(uint8_t addr, uint8_t data); static uint8_t rfm22_read(uint8_t addr); uint8_t rfm22_txStart(); /* Provide a COM driver */ static void PIOS_RFM22B_ChangeBaud(uint32_t rfm22b_id, uint32_t baud); static void PIOS_RFM22B_RegisterRxCallback(uint32_t rfm22b_id, pios_com_callback rx_in_cb, uint32_t context); static void PIOS_RFM22B_RegisterTxCallback(uint32_t rfm22b_id, pios_com_callback tx_out_cb, uint32_t context); static void PIOS_RFM22B_TxStart(uint32_t rfm22b_id, uint16_t tx_bytes_avail); static void PIOS_RFM22B_RxStart(uint32_t rfm22b_id, uint16_t rx_bytes_avail); /* Local variables */ const struct pios_com_driver pios_rfm22b_com_driver = { .set_baud = PIOS_RFM22B_ChangeBaud, .tx_start = PIOS_RFM22B_TxStart, .rx_start = PIOS_RFM22B_RxStart, .bind_tx_cb = PIOS_RFM22B_RegisterTxCallback, .bind_rx_cb = PIOS_RFM22B_RegisterRxCallback, }; // xtal 10 ppm, 434MHz #define LOOKUP_SIZE 14 const uint32_t data_rate[] = { 500, 1000, 2000, 4000, 8000, 9600, 16000, 19200, 24000, 32000, 64000, 128000, 192000, 256000}; const uint8_t modulation_index[] = { 16, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; const uint32_t freq_deviation[] = { 4000, 4000, 4000, 4000, 4000, 4800, 8000, 9600, 12000, 16000, 32000, 64000, 96000, 128000}; const uint32_t rx_bandwidth[] = { 17500, 17500, 17500, 17500, 17500, 19400, 32200, 38600, 51200, 64100, 137900, 269300, 420200, 518800}; const int8_t est_rx_sens_dBm[] = { -118, -118, -117, -116, -115, -115, -112, -112, -110, -109, -106, -103, -101, -100}; // estimated receiver sensitivity for BER = 1E-3 const uint8_t reg_1C[] = { 0x37, 0x37, 0x37, 0x37, 0x3A, 0x3B, 0x26, 0x28, 0x2E, 0x16, 0x07, 0x83, 0x8A, 0x8C}; // rfm22_if_filter_bandwidth const uint8_t reg_1D[] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44}; // rfm22_afc_loop_gearshift_override const uint8_t reg_1E[] = { 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x02}; // rfm22_afc_timing_control const uint8_t reg_1F[] = { 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03}; // rfm22_clk_recovery_gearshift_override const uint8_t reg_20[] = { 0xE8, 0xF4, 0xFA, 0x70, 0x3F, 0x34, 0x3F, 0x34, 0x2A, 0x3F, 0x3F, 0x5E, 0x3F, 0x2F}; // rfm22_clk_recovery_oversampling_ratio const uint8_t reg_21[] = { 0x60, 0x20, 0x00, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x02, 0x02, 0x01, 0x02, 0x02}; // rfm22_clk_recovery_offset2 const uint8_t reg_22[] = { 0x20, 0x41, 0x83, 0x06, 0x0C, 0x75, 0x0C, 0x75, 0x12, 0x0C, 0x0C, 0x5D, 0x0C, 0xBB}; // rfm22_clk_recovery_offset1 const uint8_t reg_23[] = { 0xC5, 0x89, 0x12, 0x25, 0x4A, 0x25, 0x4A, 0x25, 0x6F, 0x4A, 0x4A, 0x86, 0x4A, 0x0D}; // rfm22_clk_recovery_offset0 const uint8_t reg_24[] = { 0x00, 0x00, 0x00, 0x02, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x05, 0x07, 0x07}; // rfm22_clk_recovery_timing_loop_gain1 const uint8_t reg_25[] = { 0x0A, 0x23, 0x85, 0x0E, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x74, 0xFF, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0 const uint8_t reg_2A[] = { 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0D, 0x0D, 0x0E, 0x12, 0x17, 0x31, 0x50, 0x50, 0x50}; // rfm22_afc_limiter .. AFC_pull_in_range = ±AFCLimiter[7:0] x (hbsel+1) x 625 Hz const uint8_t reg_6E[] = { 0x04, 0x08, 0x10, 0x20, 0x41, 0x4E, 0x83, 0x9D, 0xC4, 0x08, 0x10, 0x20, 0x31, 0x41}; // rfm22_tx_data_rate1 const uint8_t reg_6F[] = { 0x19, 0x31, 0x62, 0xC5, 0x89, 0xA5, 0x12, 0x49, 0x9C, 0x31, 0x62, 0xC5, 0x27, 0x89}; // rfm22_tx_data_rate0 const uint8_t reg_70[] = { 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D}; // rfm22_modulation_mode_control1 const uint8_t reg_71[] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23}; // rfm22_modulation_mode_control2 const uint8_t reg_72[] = { 0x06, 0x06, 0x06, 0x06, 0x06, 0x08, 0x0D, 0x0F, 0x13, 0x1A, 0x33, 0x66, 0x9A, 0xCD}; // rfm22_frequency_deviation // ************************************ // Scan Spectrum settings // GFSK modulation // no manchester encoding // data whitening // FIFO mode // 5-nibble rx preamble length detection // 10-nibble tx preamble length #define SS_LOOKUP_SIZE 2 // xtal 1 ppm, 434MHz const uint32_t ss_rx_bandwidth[] = { 2600, 10600}; const uint8_t ss_reg_1C[] = { 0x51, 0x32}; // rfm22_if_filter_bandwidth const uint8_t ss_reg_1D[] = { 0x00, 0x00}; // rfm22_afc_loop_gearshift_override const uint8_t ss_reg_20[] = { 0xE8, 0x38}; // rfm22_clk_recovery_oversampling_ratio const uint8_t ss_reg_21[] = { 0x60, 0x02}; // rfm22_clk_recovery_offset2 const uint8_t ss_reg_22[] = { 0x20, 0x4D}; // rfm22_clk_recovery_offset1 const uint8_t ss_reg_23[] = { 0xC5, 0xD3}; // rfm22_clk_recovery_offset0 const uint8_t ss_reg_24[] = { 0x00, 0x07}; // rfm22_clk_recovery_timing_loop_gain1 const uint8_t ss_reg_25[] = { 0x0F, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0 const uint8_t ss_reg_2A[] = { 0xFF, 0xFF}; // rfm22_afc_limiter .. AFC_pull_in_range = ±AFCLimiter[7:0] x (hbsel+1) x 625 Hz const uint8_t ss_reg_70[] = { 0x24, 0x2D}; // rfm22_modulation_mode_control1 const uint8_t ss_reg_71[] = { 0x2B, 0x23}; // rfm22_modulation_mode_control2 // ************************************ volatile bool initialized = false; #if defined(RFM22_EXT_INT_USE) volatile bool exec_using_spi; // set this if you want to access the SPI bus outside of the interrupt #endif uint8_t device_type; // the RF chips device ID number uint8_t device_version; // the RF chips revision number volatile uint8_t rf_mode; // holds our current RF mode uint32_t lower_carrier_frequency_limit_Hz; // the minimum RF frequency we can use uint32_t upper_carrier_frequency_limit_Hz; // the maximum RF frequency we can use uint32_t carrier_frequency_hz; // the current RF frequency we are on uint32_t carrier_datarate_bps; // the RF data rate we are using uint32_t rf_bandwidth_used; // the RF bandwidth currently used uint32_t ss_rf_bandwidth_used; // the RF bandwidth currently used uint8_t hbsel; // holds the hbsel (1 or 2) float frequency_step_size; // holds the minimum frequency step size uint8_t frequency_hop_channel; // current frequency hop channel uint8_t frequency_hop_step_size_reg; // uint8_t adc_config; // holds the adc config reg value volatile uint8_t device_status; // device status register volatile uint8_t int_status1; // interrupt status register 1 volatile uint8_t int_status2; // interrupt status register 2 volatile uint8_t ezmac_status; // ezmac status register volatile int16_t afc_correction; // afc correction reading volatile int32_t afc_correction_Hz; // afc correction reading (in Hz) volatile int16_t temperature_reg; // the temperature sensor reading volatile uint8_t osc_load_cap; // xtal frequency calibration value volatile uint8_t rssi; // the current RSSI (register value) volatile int8_t rssi_dBm; // dBm value // the transmit power to use for data transmissions uint8_t tx_power; // the tx power register read back volatile uint8_t tx_pwr; // The transmit buffer. Holds data that is being transmitted. uint8_t tx_buffer[TX_BUFFER_SIZE] __attribute__ ((aligned(4))); // The transmit buffer. Hosts data that is wating to be transmitted. uint8_t tx_pre_buffer[TX_BUFFER_SIZE] __attribute__ ((aligned(4))); // The tx pre-buffer write index. uint16_t tx_pre_buffer_size; // the tx data read index volatile uint16_t tx_data_rd; // the tx data write index volatile uint16_t tx_data_wr; // the current receive buffer in use (double buffer) volatile uint8_t rx_buffer_current; // the receive buffer .. received packet data is saved here volatile uint8_t rx_buffer[258] __attribute__ ((aligned(4))); // the receive buffer write index volatile uint16_t rx_buffer_wr; // the received packet volatile int8_t rx_packet_start_rssi_dBm; // volatile int8_t rx_packet_start_afc_Hz; // volatile int8_t rx_packet_rssi_dBm; // the received packet signal strength volatile int8_t rx_packet_afc_Hz; // the receive packet frequency offset int lookup_index; int ss_lookup_index; volatile bool power_on_reset; // set if the RF module has reset itself volatile uint16_t rfm22_int_timer; // used to detect if the RF module stops responding. thus act accordingly if it does stop responding. volatile uint16_t rfm22_int_time_outs; // counter volatile uint16_t prev_rfm22_int_time_outs; // uint16_t timeout_ms = 20000; // uint16_t timeout_sync_ms = 3; // uint16_t timeout_data_ms = 20; // struct pios_rfm22b_dev * rfm22b_dev_g; static bool PIOS_RFM22B_validate(struct pios_rfm22b_dev * rfm22b_dev) { return (rfm22b_dev != NULL && rfm22b_dev->magic == PIOS_RFM22B_DEV_MAGIC); } #if defined(PIOS_INCLUDE_FREERTOS) static struct pios_rfm22b_dev * PIOS_RFM22B_alloc(void) { struct pios_rfm22b_dev * rfm22b_dev; rfm22b_dev = (struct pios_rfm22b_dev *)pvPortMalloc(sizeof(*rfm22b_dev)); rfm22b_dev->spi_id = 0; if (!rfm22b_dev) return(NULL); rfm22b_dev_g = rfm22b_dev; rfm22b_dev->magic = PIOS_RFM22B_DEV_MAGIC; return(rfm22b_dev); } #else static struct pios_rfm22b_dev pios_rfm22b_devs[PIOS_RFM22B_MAX_DEVS]; static uint8_t pios_rfm22b_num_devs; static struct pios_rfm22b_dev * PIOS_RFM22B_alloc(void) { struct pios_rfm22b_dev * rfm22b_dev; if (pios_rfm22b_num_devs >= PIOS_RFM22B_MAX_DEVS) return NULL; rfm22b_dev = &pios_rfm22b_devs[pios_rfm22b_num_devs++]; rfm22b_dev->magic = PIOS_RFM22B_DEV_MAGIC; return (rfm22b_dev); } #endif static struct pios_rfm22b_dev * g_rfm22b_dev = NULL; /** * Initialise an RFM22B device */ int32_t PIOS_RFM22B_Init(uint32_t *rfm22b_id, uint32_t spi_id, uint32_t slave_num, const struct pios_rfm22b_cfg *cfg) { PIOS_DEBUG_Assert(rfm22b_id); PIOS_DEBUG_Assert(cfg); // Allocate the device structure. struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *) PIOS_RFM22B_alloc(); if (!rfm22b_dev) return(-1); // Store the SPI handle rfm22b_dev->slave_num = slave_num; rfm22b_dev->spi_id = spi_id; // Bind the configuration to the device instance rfm22b_dev->cfg = *cfg; *rfm22b_id = (uint32_t)rfm22b_dev; g_rfm22b_dev = rfm22b_dev; // Create a semaphore to know if an ISR needs responding to vSemaphoreCreateBinary( rfm22b_dev->isrPending ); // Initialize the TX pre-buffer pointer. tx_pre_buffer_size = 0; // Create our (hopefully) unique 32 bit id from the processor serial number. uint8_t crcs[] = { 0, 0, 0, 0 }; { char serial_no_str[33]; PIOS_SYS_SerialNumberGet(serial_no_str); // Create a 32 bit value using 4 8 bit CRC values. for (uint8_t i = 0; serial_no_str[i] != 0; ++i) crcs[i % 4] = PIOS_CRC_updateByte(crcs[i % 4], serial_no_str[i]); } rfm22b_dev->deviceID = crcs[0] | crcs[1] << 8 | crcs[2] << 16 | crcs[3] << 24; DEBUG_PRINTF(2, "RF device ID: %x\n\r", rfm22b_dev->deviceID); // Initialize the supervisor timer. rfm22b_dev->supv_timer = PIOS_RFM22B_SUPERVISOR_TIMEOUT; rfm22b_dev->resets = 0; // Initialize the external interrupt. PIOS_EXTI_Init(cfg->exti_cfg); // Initialize the radio device. int initval = rfm22_init_normal(rfm22b_dev->deviceID, cfg->minFrequencyHz, cfg->maxFrequencyHz, 50000); if (initval < 0) { // RF module error .. flash the LED's #if defined(PIOS_COM_DEBUG) DEBUG_PRINTF(2, "RF ERROR res: %d\n\r\n\r", initval); #endif for(unsigned int j = 0; j < 16; j++) { USB_LED_ON; LINK_LED_ON; RX_LED_OFF; TX_LED_OFF; PIOS_DELAY_WaitmS(200); USB_LED_OFF; LINK_LED_OFF; RX_LED_ON; TX_LED_ON; PIOS_DELAY_WaitmS(200); } PIOS_DELAY_WaitmS(1000); return initval; } rfm22_setFreqCalibration(cfg->RFXtalCap); rfm22_setNominalCarrierFrequency(cfg->frequencyHz); rfm22_setDatarate(cfg->maxRFBandwidth, true); rfm22_setTxPower(cfg->maxTxPower); DEBUG_PRINTF(2, "\n\r"); DEBUG_PRINTF(2, "RF device ID: %x\n\r", rfm22b_dev->deviceID); DEBUG_PRINTF(2, "RF datarate: %dbps\n\r", rfm22_getDatarate()); DEBUG_PRINTF(2, "RF frequency: %dHz\n\r", rfm22_getNominalCarrierFrequency()); DEBUG_PRINTF(2, "RF TX power: %d\n\r", rfm22_getTxPower()); // Setup a real-time clock callback to kickstart the radio if a transfer lock sup. if (!PIOS_RTC_RegisterTickCallback(PIOS_RFM22B_Supervisor, *rfm22b_id)) { PIOS_DEBUG_Assert(0); } return(0); } uint32_t PIOS_RFM22B_DeviceID(uint32_t rfm22b_id) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; return rfm22b_dev->deviceID; } int8_t PIOS_RFM22B_RSSI(uint32_t rfm22b_id) { return rfm22_receivedRSSI(); } int16_t PIOS_RFM22B_Resets(uint32_t rfm22b_id) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; return rfm22b_dev->resets; } static void PIOS_RFM22B_RxStart(uint32_t rfm22b_id, uint16_t rx_bytes_avail) { struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; bool valid = PIOS_RFM22B_validate(rfm22b_dev); PIOS_Assert(valid); } static void PIOS_RFM22B_TxStart(uint32_t rfm22b_id, uint16_t tx_bytes_avail) { struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; bool valid = PIOS_RFM22B_validate(rfm22b_dev); PIOS_Assert(valid); // Get some data to send bool need_yield = false; if(tx_pre_buffer_size == 0) tx_pre_buffer_size = (rfm22b_dev->tx_out_cb)(rfm22b_dev->tx_out_context, tx_pre_buffer, TX_BUFFER_SIZE, NULL, &need_yield); if(tx_pre_buffer_size > 0) { // already have data to be sent if (tx_data_wr > 0) return; // we are currently transmitting or scanning the spectrum if (rf_mode == TX_DATA_MODE || rf_mode == TX_STREAM_MODE || rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE || rf_mode == RX_SCAN_SPECTRUM) return; // is the channel clear to transmit on? if (!rfm22_channelIsClear()) return; // Start the transmit rfm22_txStart(); } } /** * Changes the baud rate of the RFM22B peripheral without re-initialising. * \param[in] rfm22b_id RFM22B name (GPS, TELEM, AUX) * \param[in] baud Requested baud rate */ static void PIOS_RFM22B_ChangeBaud(uint32_t rfm22b_id, uint32_t baud) { struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; bool valid = PIOS_RFM22B_validate(rfm22b_dev); PIOS_Assert(valid); } static void PIOS_RFM22B_RegisterRxCallback(uint32_t rfm22b_id, pios_com_callback rx_in_cb, uint32_t context) { struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; bool valid = PIOS_RFM22B_validate(rfm22b_dev); PIOS_Assert(valid); /* * Order is important in these assignments since ISR uses _cb * field to determine if it's ok to dereference _cb and _context */ rfm22b_dev->rx_in_context = context; rfm22b_dev->rx_in_cb = rx_in_cb; } static void PIOS_RFM22B_RegisterTxCallback(uint32_t rfm22b_id, pios_com_callback tx_out_cb, uint32_t context) { struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; bool valid = PIOS_RFM22B_validate(rfm22b_dev); PIOS_Assert(valid); /* * Order is important in these assignments since ISR uses _cb * field to determine if it's ok to dereference _cb and _context */ rfm22b_dev->tx_out_context = context; rfm22b_dev->tx_out_cb = tx_out_cb; } static void PIOS_RFM22B_Supervisor(uint32_t rfm22b_id) { /* Recover our device context */ struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (!PIOS_RFM22B_validate(rfm22b_dev)) { /* Invalid device specified */ return; } /* If we're waiting for a receive, we just need to make sure that there are no packets waiting to be transmitted. */ if(rf_mode == RX_WAIT_PREAMBLE_MODE) { /* Start a packet transfer if one is available. */ PIOS_RFM22B_TxStart(rfm22b_id, 0); return; } /* The radio must be locked up if the timer reaches 0 */ if(--(rfm22b_dev->supv_timer) != 0) return; ++(rfm22b_dev->resets); TX_LED_OFF; TX_LED_OFF; /* Clear the TX buffer in case we locked up in a transmit */ tx_data_wr = 0; rfm22_init_normal(rfm22b_dev->deviceID, rfm22b_dev->cfg.minFrequencyHz, rfm22b_dev->cfg.maxFrequencyHz, 50000); /* Start a packet transfer if one is available. */ rf_mode = RX_WAIT_PREAMBLE_MODE; PIOS_RFM22B_TxStart(rfm22b_id, 0); if(rf_mode == RX_WAIT_PREAMBLE_MODE) { /* Switch to RX mode */ rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); } } // ************************************ // SPI read/write //! Assert the CS line static void rfm22_assertCs() { PIOS_DELAY_WaituS(1); if(PIOS_RFM22B_validate(g_rfm22b_dev) && g_rfm22b_dev->spi_id != 0) PIOS_SPI_RC_PinSet(g_rfm22b_dev->spi_id, g_rfm22b_dev->slave_num, 0); } //! Deassert the CS line static void rfm22_deassertCs() { if(PIOS_RFM22B_validate(g_rfm22b_dev) && g_rfm22b_dev->spi_id != 0) PIOS_SPI_RC_PinSet(g_rfm22b_dev->spi_id, g_rfm22b_dev->slave_num, 1); } //! Claim the SPI bus semaphore static void rfm22_claimBus() { if(PIOS_RFM22B_validate(g_rfm22b_dev) && g_rfm22b_dev->spi_id != 0) PIOS_SPI_ClaimBus(g_rfm22b_dev->spi_id); } //! Release the SPI bus semaphore static void rfm22_releaseBus() { if(PIOS_RFM22B_validate(g_rfm22b_dev) && g_rfm22b_dev->spi_id != 0) PIOS_SPI_ReleaseBus(g_rfm22b_dev->spi_id); } /** * Claim the semaphore and write a byte to a register * @param[in] addr The address to write to * @param[in] data The datat to write to that address */ static void rfm22_write(uint8_t addr, uint8_t data) { if(PIOS_RFM22B_validate(g_rfm22b_dev)) { rfm22_claimBus(); rfm22_assertCs(); uint8_t buf[2] = {addr | 0x80, data}; PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, buf, NULL, sizeof(buf), NULL); rfm22_deassertCs(); rfm22_releaseBus(); } } /** * Write a byte to a register without claiming the bus. Also * toggle the NSS line * @param[in] addr The address of the RFM22b register to write * @param[in] data The data to write to that register */ static void rfm22_write_noclaim(uint8_t addr, uint8_t data) { uint8_t buf[2] = {addr | 0x80, data}; if(PIOS_RFM22B_validate(g_rfm22b_dev)) { rfm22_assertCs(); PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, buf, NULL, sizeof(buf), NULL); rfm22_deassertCs(); } } /** * Read a byte from an RFM22b register * @param[in] addr The address to read from * @return Returns the result of the register read */ static uint8_t rfm22_read(uint8_t addr) { uint8_t in[2]; uint8_t out[2] = {addr & 0x7f, 0xFF}; if(PIOS_RFM22B_validate(g_rfm22b_dev)) { rfm22_claimBus(); rfm22_assertCs(); PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, out, in, sizeof(out), NULL); rfm22_deassertCs(); rfm22_releaseBus(); } return in[1]; } /** * Read a byte from an RFM22b register without claiming the bus * @param[in] addr The address to read from * @return Returns the result of the register read */ static uint8_t rfm22_read_noclaim(uint8_t addr) { uint8_t out[2] = {addr & 0x7F, 0xFF}; uint8_t in[2]; if (PIOS_RFM22B_validate(rfm22b_dev_g)) { rfm22_assertCs(); PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, out, in, sizeof(out), NULL); rfm22_deassertCs(); } return in[1]; } // ************************************ // external interrupt uint32_t rfm32_errors; uint32_t rfm32_irqs_processed; void PIOS_RFM22_EXT_Int(void) { bool valid = PIOS_RFM22B_validate(g_rfm22b_dev); PIOS_Assert(valid); portBASE_TYPE pxHigherPriorityTaskWoken; if (!exec_using_spi) { if (xSemaphoreGiveFromISR(g_rfm22b_dev->isrPending, &pxHigherPriorityTaskWoken) != pdTRUE) { // Something went fairly seriously wrong rfm32_errors++; } portEND_SWITCHING_ISR(pxHigherPriorityTaskWoken); } } void PIOS_RFM22_processPendingISR(uint32_t wait_ms) { bool valid = PIOS_RFM22B_validate(g_rfm22b_dev); PIOS_Assert(valid); if ( xSemaphoreTake(g_rfm22b_dev->isrPending, wait_ms / portTICK_RATE_MS) == pdTRUE ) { rfm32_irqs_processed++; rfm22_processInt(); } } // ************************************ // set/get the current tx power setting void rfm22_setTxPower(uint8_t tx_pwr) { switch (tx_pwr) { case 0: tx_power = RFM22_tx_pwr_txpow_0; break; // +1dBm ... 1.25mW case 1: tx_power = RFM22_tx_pwr_txpow_1; break; // +2dBm ... 1.6mW case 2: tx_power = RFM22_tx_pwr_txpow_2; break; // +5dBm ... 3.16mW case 3: tx_power = RFM22_tx_pwr_txpow_3; break; // +8dBm ... 6.3mW case 4: tx_power = RFM22_tx_pwr_txpow_4; break; // +11dBm .. 12.6mW case 5: tx_power = RFM22_tx_pwr_txpow_5; break; // +14dBm .. 25mW case 6: tx_power = RFM22_tx_pwr_txpow_6; break; // +17dBm .. 50mW case 7: tx_power = RFM22_tx_pwr_txpow_7; break; // +20dBm .. 100mW default: break; } } uint8_t rfm22_getTxPower(void) { return tx_power; } // ************************************ uint32_t rfm22_minFrequency(void) { return lower_carrier_frequency_limit_Hz; } uint32_t rfm22_maxFrequency(void) { return upper_carrier_frequency_limit_Hz; } void rfm22_setNominalCarrierFrequency(uint32_t frequency_hz) { exec_using_spi = true; // ******* if (frequency_hz < lower_carrier_frequency_limit_Hz) frequency_hz = lower_carrier_frequency_limit_Hz; else if (frequency_hz > upper_carrier_frequency_limit_Hz) frequency_hz = upper_carrier_frequency_limit_Hz; if (frequency_hz < 480000000) hbsel = 1; else hbsel = 2; uint8_t fb = (uint8_t)(frequency_hz / (10000000 * hbsel)); uint32_t fc = (uint32_t)(frequency_hz - (10000000 * hbsel * fb)); fc = (fc * 64u) / (10000ul * hbsel); fb -= 24; // carrier_frequency_hz = frequency_hz; carrier_frequency_hz = ((uint32_t)fb + 24 + ((float)fc / 64000)) * 10000000 * hbsel; if (hbsel > 1) fb |= RFM22_fbs_hbsel; fb |= RFM22_fbs_sbse; // is this the RX LO polarity? frequency_step_size = 156.25f * hbsel; rfm22_write(RFM22_frequency_hopping_channel_select, frequency_hop_channel); // frequency hopping channel (0-255) rfm22_write(RFM22_frequency_offset1, 0); // no frequency offset rfm22_write(RFM22_frequency_offset2, 0); // no frequency offset rfm22_write(RFM22_frequency_band_select, fb); // set the carrier frequency rfm22_write(RFM22_nominal_carrier_frequency1, fc >> 8); // " " rfm22_write(RFM22_nominal_carrier_frequency0, fc & 0xff); // " " // ******* #if defined(RFM22_DEBUG) //DEBUG_PRINTF(2, "rf setFreq: %u\n\r", carrier_frequency_hz); // DEBUG_PRINTF(2, "rf setFreq frequency_step_size: %0.2f\n\r", frequency_step_size); #endif exec_using_spi = false; } uint32_t rfm22_getNominalCarrierFrequency(void) { return carrier_frequency_hz; } float rfm22_getFrequencyStepSize(void) { return frequency_step_size; } void rfm22_setFreqHopChannel(uint8_t channel) { // set the frequency hopping channel frequency_hop_channel = channel; rfm22_write(RFM22_frequency_hopping_channel_select, frequency_hop_channel); } uint8_t rfm22_freqHopChannel(void) { // return the current frequency hopping channel return frequency_hop_channel; } uint32_t rfm22_freqHopSize(void) { // return the frequency hopping step size return ((uint32_t)frequency_hop_step_size_reg * 10000); } // ************************************ // radio datarate about 19200 Baud // radio frequency deviation 45kHz // radio receiver bandwidth 67kHz. // // Carson's rule: // The signal bandwidth is about 2(Delta-f + fm) .. // // Delta-f = frequency deviation // fm = maximum frequency of the signal // // This gives 2(45 + 9.6) = 109.2kHz. void rfm22_setDatarate(uint32_t datarate_bps, bool data_whitening) { exec_using_spi = true; lookup_index = 0; while (lookup_index < (LOOKUP_SIZE - 1) && data_rate[lookup_index] < datarate_bps) lookup_index++; carrier_datarate_bps = datarate_bps = data_rate[lookup_index]; rf_bandwidth_used = rx_bandwidth[lookup_index]; // rfm22_if_filter_bandwidth rfm22_write(0x1C, reg_1C[lookup_index]); // rfm22_afc_loop_gearshift_override rfm22_write(0x1D, reg_1D[lookup_index]); // RFM22_afc_timing_control rfm22_write(0x1E, reg_1E[lookup_index]); // RFM22_clk_recovery_gearshift_override rfm22_write(0x1F, reg_1F[lookup_index]); // rfm22_clk_recovery_oversampling_ratio rfm22_write(0x20, reg_20[lookup_index]); // rfm22_clk_recovery_offset2 rfm22_write(0x21, reg_21[lookup_index]); // rfm22_clk_recovery_offset1 rfm22_write(0x22, reg_22[lookup_index]); // rfm22_clk_recovery_offset0 rfm22_write(0x23, reg_23[lookup_index]); // rfm22_clk_recovery_timing_loop_gain1 rfm22_write(0x24, reg_24[lookup_index]); // rfm22_clk_recovery_timing_loop_gain0 rfm22_write(0x25, reg_25[lookup_index]); // rfm22_afc_limiter rfm22_write(0x2A, reg_2A[lookup_index]); if (carrier_datarate_bps < 100000) // rfm22_chargepump_current_trimming_override rfm22_write(0x58, 0x80); else // rfm22_chargepump_current_trimming_override rfm22_write(0x58, 0xC0); // rfm22_tx_data_rate1 rfm22_write(0x6E, reg_6E[lookup_index]); // rfm22_tx_data_rate0 rfm22_write(0x6F, reg_6F[lookup_index]); // Enable data whitening // uint8_t txdtrtscale_bit = rfm22_read(RFM22_modulation_mode_control1) & RFM22_mmc1_txdtrtscale; // rfm22_write(RFM22_modulation_mode_control1, txdtrtscale_bit | RFM22_mmc1_enwhite); if (!data_whitening) // rfm22_modulation_mode_control1 rfm22_write(0x70, reg_70[lookup_index] & ~RFM22_mmc1_enwhite); else // rfm22_modulation_mode_control1 rfm22_write(0x70, reg_70[lookup_index] | RFM22_mmc1_enwhite); // rfm22_modulation_mode_control2 rfm22_write(0x71, reg_71[lookup_index]); // rfm22_frequency_deviation rfm22_write(0x72, reg_72[lookup_index]); rfm22_write(RFM22_ook_counter_value1, 0x00); rfm22_write(RFM22_ook_counter_value2, 0x00); // ******************************** // calculate the TX register values /* uint16_t fd = frequency_deviation / 625; uint8_t mmc1 = RFM22_mmc1_enphpwdn | RFM22_mmc1_manppol; uint16_t txdr; if (datarate_bps < 30000) { txdr = (datarate_bps * 20972) / 10000; mmc1 |= RFM22_mmc1_txdtrtscale; } else txdr = (datarate_bps * 6553) / 100000; uint8_t mmc2 = RFM22_mmc2_dtmod_fifo | RFM22_mmc2_modtyp_gfsk; // FIFO mode, GFSK // uint8_t mmc2 = RFM22_mmc2_dtmod_pn9 | RFM22_mmc2_modtyp_gfsk; // PN9 mode, GFSK .. TX TEST MODE if (fd & 0x100) mmc2 |= RFM22_mmc2_fd; rfm22_write(RFM22_frequency_deviation, fd); // set the TX peak frequency deviation rfm22_write(RFM22_modulation_mode_control1, mmc1); rfm22_write(RFM22_modulation_mode_control2, mmc2); rfm22_write(RFM22_tx_data_rate1, txdr >> 8); // set the TX data rate rfm22_write(RFM22_tx_data_rate0, txdr); // " " */ // ******************************** // determine a clear channel time // initialise the stopwatch with a suitable resolution for the datarate //STOPWATCH_init(4000000ul / carrier_datarate_bps); // set resolution to the time for 1 nibble (4-bits) at rf datarate // ******************************** // determine suitable time-out periods // milliseconds timeout_sync_ms = (8000ul * 16) / carrier_datarate_bps; if (timeout_sync_ms < 3) // because out timer resolution is only 1ms timeout_sync_ms = 3; // milliseconds timeout_data_ms = (8000ul * 100) / carrier_datarate_bps; if (timeout_data_ms < 3) // because out timer resolution is only 1ms timeout_data_ms = 3; // ******************************** #if defined(RFM22_DEBUG) /* DEBUG_PRINTF(2, "rf datarate_bps: %d\n\r", datarate_bps); DEBUG_PRINTF(2, "rf frequency_deviation: %d\n\r", frequency_deviation); uint32_t frequency_deviation = freq_deviation[lookup_index]; // Hz uint32_t modulation_bandwidth = datarate_bps + (2 * frequency_deviation); DEBUG_PRINTF(2, "rf modulation_bandwidth: %u\n\r", modulation_bandwidth); DEBUG_PRINTF(2, "rf_rx_bandwidth[%u]: %u\n\r", lookup_index, rx_bandwidth[lookup_index]); DEBUG_PRINTF(2, "rf est rx sensitivity[%u]: %ddBm\n\r", lookup_index, est_rx_sens_dBm[lookup_index]); */ #endif // ******* exec_using_spi = false; } uint32_t rfm22_getDatarate(void) { return carrier_datarate_bps; } // ************************************ void rfm22_setSSBandwidth(uint32_t bandwidth_index) { exec_using_spi = true; ss_lookup_index = bandwidth_index; ss_rf_bandwidth_used = ss_rx_bandwidth[lookup_index]; // ******************************** rfm22_write(0x1C, ss_reg_1C[ss_lookup_index]); // rfm22_if_filter_bandwidth rfm22_write(0x1D, ss_reg_1D[ss_lookup_index]); // rfm22_afc_loop_gearshift_override rfm22_write(0x20, ss_reg_20[ss_lookup_index]); // rfm22_clk_recovery_oversampling_ratio rfm22_write(0x21, ss_reg_21[ss_lookup_index]); // rfm22_clk_recovery_offset2 rfm22_write(0x22, ss_reg_22[ss_lookup_index]); // rfm22_clk_recovery_offset1 rfm22_write(0x23, ss_reg_23[ss_lookup_index]); // rfm22_clk_recovery_offset0 rfm22_write(0x24, ss_reg_24[ss_lookup_index]); // rfm22_clk_recovery_timing_loop_gain1 rfm22_write(0x25, ss_reg_25[ss_lookup_index]); // rfm22_clk_recovery_timing_loop_gain0 rfm22_write(0x2A, ss_reg_2A[ss_lookup_index]); // rfm22_afc_limiter rfm22_write(0x58, 0x80); // rfm22_chargepump_current_trimming_override rfm22_write(0x70, ss_reg_70[ss_lookup_index]); // rfm22_modulation_mode_control1 rfm22_write(0x71, ss_reg_71[ss_lookup_index]); // rfm22_modulation_mode_control2 rfm22_write(RFM22_ook_counter_value1, 0x00); rfm22_write(RFM22_ook_counter_value2, 0x00); // ******************************** #if defined(RFM22_DEBUG) DEBUG_PRINTF(2, "ss_rf_rx_bandwidth[%u]: %u\n\r", ss_lookup_index, ss_rx_bandwidth[ss_lookup_index]); #endif // ******* exec_using_spi = false; } // ************************************ void rfm22_setRxMode(uint8_t mode, bool multi_packet_mode) { exec_using_spi = true; // disable interrupts rfm22_write(RFM22_interrupt_enable1, 0x00); rfm22_write(RFM22_interrupt_enable2, 0x00); // Switch to TUNE mode rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon); RX_LED_OFF; TX_LED_OFF; if (rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE) { // FIFO mode, GFSK modulation uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd; rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo | RFM22_mmc2_modtyp_gfsk); } // empty the rx buffer rx_buffer_wr = 0; // reset the timer rfm22_int_timer = 0; rf_mode = mode; // Clear the TX buffer. tx_data_rd = tx_data_wr = 0; // clear FIFOs if (!multi_packet_mode) { rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx); rfm22_write(RFM22_op_and_func_ctrl2, 0x00); } else { rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_rxmpk | RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx); rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_rxmpk); } // enable RX interrupts rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_encrcerror | RFM22_ie1_enpkvalid | RFM22_ie1_enrxffafull | RFM22_ie1_enfferr); rfm22_write(RFM22_interrupt_enable2, RFM22_ie2_enpreainval | RFM22_ie2_enpreaval | RFM22_ie2_enswdet); // enable the receiver rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_rxon); exec_using_spi = false; } // ************************************ uint8_t rfm22_txStart() { if((tx_pre_buffer_size == 0) || (exec_using_spi == true)) { // Clear the TX buffer. tx_data_rd = tx_data_wr = 0; return 0; } exec_using_spi = true; // Initialize the supervisor timer. rfm22b_dev_g->supv_timer = PIOS_RFM22B_SUPERVISOR_TIMEOUT; // disable interrupts rfm22_write(RFM22_interrupt_enable1, 0x00); rfm22_write(RFM22_interrupt_enable2, 0x00); // TUNE mode rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon); // Queue the data up for sending memcpy(tx_buffer, tx_pre_buffer, tx_pre_buffer_size); tx_data_rd = 0; tx_data_wr = tx_pre_buffer_size; tx_pre_buffer_size = 0; RX_LED_OFF; // Set the destination address in the transmit header. // The destination address is the first 4 bytes of the message. rfm22_write(RFM22_transmit_header0, tx_buffer[0]); rfm22_write(RFM22_transmit_header1, tx_buffer[1]); rfm22_write(RFM22_transmit_header2, tx_buffer[2]); rfm22_write(RFM22_transmit_header3, tx_buffer[3]); // FIFO mode, GFSK modulation uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd; rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo | RFM22_mmc2_modtyp_gfsk); // set the tx power rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_1 | RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | tx_power); // clear FIFOs rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx); rfm22_write(RFM22_op_and_func_ctrl2, 0x00); // ******************* // add some data to the chips TX FIFO before enabling the transmitter // set the total number of data bytes we are going to transmit rfm22_write(RFM22_transmit_packet_length, tx_data_wr); // add some data rfm22_claimBus(); rfm22_assertCs(); PIOS_SPI_TransferByte(g_rfm22b_dev->spi_id, RFM22_fifo_access | 0x80); int bytes_to_write = (tx_data_wr - tx_data_rd); bytes_to_write = (bytes_to_write > FIFO_SIZE) ? FIFO_SIZE: bytes_to_write; PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, &tx_buffer[tx_data_rd], NULL, bytes_to_write, NULL); tx_data_rd += bytes_to_write; rfm22_deassertCs(); rfm22_releaseBus(); // ******************* // reset the timer rfm22_int_timer = 0; rf_mode = TX_DATA_MODE; // enable TX interrupts rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_enpksent | RFM22_ie1_entxffaem); // enable the transmitter rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_txon); TX_LED_ON; exec_using_spi = false; return 1; } static void rfm22_setTxMode(uint8_t mode) { if (mode != TX_DATA_MODE && mode != TX_STREAM_MODE && mode != TX_CARRIER_MODE && mode != TX_PN_MODE) return; // invalid mode rfm22_claimBus(); rfm22_assertCs(); // Disaable interrupts (IE1, IE2 = 0) uint8_t out_buf[3] = {RFM22_interrupt_enable1 | 0x80, 0x00, 0x00}; PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, out_buf, NULL, sizeof(out_buf), NULL); rfm22_deassertCs(); // TUNE mode rfm22_write_noclaim(RFM22_op_and_func_ctrl1,RFM22_opfc1_pllon); RX_LED_OFF; // Set the tx power rfm22_write_noclaim(RFM22_tx_power,RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_1 | RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | tx_power); uint8_t fd_bit = rfm22_read_noclaim(RFM22_modulation_mode_control2) & RFM22_mmc2_fd; if (mode == TX_CARRIER_MODE) // blank carrier mode - for testing rfm22_write_noclaim(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_pn9 | RFM22_mmc2_modtyp_none); // FIFO mode, Blank carrier else if (mode == TX_PN_MODE) // psuedo random data carrier mode - for testing rfm22_write_noclaim(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_pn9 | RFM22_mmc2_modtyp_gfsk); // FIFO mode, PN9 carrier else // data transmission // FIFO mode, GFSK modulation rfm22_write_noclaim(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo | RFM22_mmc2_modtyp_gfsk); // clear FIFOs rfm22_write_noclaim(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx); rfm22_write_noclaim(RFM22_op_and_func_ctrl2, 0x00); // add some data to the chips TX FIFO before enabling the transmitter { uint16_t rd = 0; uint16_t wr = tx_data_wr; if (mode == TX_DATA_MODE) // set the total number of data bytes we are going to transmit rfm22_write_noclaim(RFM22_transmit_packet_length, wr); uint16_t i = 0; rfm22_assertCs(); PIOS_SPI_TransferByte(g_rfm22b_dev->spi_id, 0x80 | RFM22_fifo_access); // Initiate burst write if (mode == TX_STREAM_MODE) { if (rd >= wr) i += PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, FULL_PREAMBLE, NULL, sizeof(FULL_PREAMBLE), NULL); else // add the RF heaader i += PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, HEADER, NULL, sizeof(HEADER), NULL); } // Send data if there is any and there is space in the buffer available // Bytes available to send minus how many we have sent int32_t bytes_to_send = wr - rd; bytes_to_send = ((bytes_to_send + i)> FIFO_SIZE) ? (FIFO_SIZE - i) : bytes_to_send; if (bytes_to_send > 0) rd += PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, &tx_buffer[rd], NULL, bytes_to_send, NULL); rfm22_deassertCs(); tx_data_rd = rd; } // reset the timer rfm22_int_timer = 0; rf_mode = mode; // enable TX interrupts // rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_enpksent | RFM22_ie1_entxffaem | RFM22_ie1_enfferr); rfm22_write_noclaim(RFM22_interrupt_enable1, RFM22_ie1_enpksent | RFM22_ie1_entxffaem); // read interrupt status - clear interrupts rfm22_read_noclaim(RFM22_interrupt_status1); rfm22_read_noclaim(RFM22_interrupt_status2); // enable the transmitter // rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton | RFM22_opfc1_txon); rfm22_write_noclaim(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_txon); rfm22_releaseBus(); TX_LED_ON; } // ************************************ // external interrupt line triggered (or polled) from the rf chip void rfm22_processRxInt(void) { register uint8_t int_stat1 = int_status1; register uint8_t int_stat2 = int_status2; // FIFO under/over flow error. Restart RX mode. if (device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl)) { rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); return; } // Valid preamble detected if (int_stat2 & RFM22_is2_ipreaval && (rf_mode == RX_WAIT_PREAMBLE_MODE)) { rf_mode = RX_WAIT_SYNC_MODE; RX_LED_ON; } // Sync word detected if (int_stat2 & RFM22_is2_iswdet && ((rf_mode == RX_WAIT_PREAMBLE_MODE || rf_mode == RX_WAIT_SYNC_MODE))) { rf_mode = RX_DATA_MODE; RX_LED_ON; // read the 10-bit signed afc correction value // bits 9 to 2 afc_correction = (uint16_t)rfm22_read(RFM22_afc_correction_read) << 8; // bits 1 & 0 afc_correction |= (uint16_t)rfm22_read(RFM22_ook_counter_value1) & 0x00c0; afc_correction >>= 6; // convert the afc value to Hz afc_correction_Hz = (int32_t)(frequency_step_size * afc_correction + 0.5f); // remember the rssi for this packet rx_packet_start_rssi_dBm = rssi_dBm; // remember the afc value for this packet rx_packet_start_afc_Hz = afc_correction_Hz; } // RX FIFO almost full, it needs emptying if (int_stat1 & RFM22_is1_irxffafull) { if (rf_mode == RX_DATA_MODE) { // read data from the rf chips FIFO buffer // read the total length of the packet data uint16_t len = rfm22_read(RFM22_received_packet_length); // The received packet is going to be larger than the specified length if ((rx_buffer_wr + RX_FIFO_HI_WATERMARK) > len) { rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); return; } // Another packet length error. if (((rx_buffer_wr + RX_FIFO_HI_WATERMARK) >= len) && !(int_stat1 & RFM22_is1_ipkvalid)) { rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); return; } // Fetch the data from the RX FIFO rfm22_claimBus(); rfm22_assertCs(); PIOS_SPI_TransferByte(rfm22b_dev_g->spi_id,RFM22_fifo_access & 0x7F); rx_buffer_wr += (PIOS_SPI_TransferBlock(rfm22b_dev_g->spi_id,OUT_FF, (uint8_t *) &rx_buffer[rx_buffer_wr],RX_FIFO_HI_WATERMARK,NULL) == 0) ? RX_FIFO_HI_WATERMARK : 0; rfm22_deassertCs(); rfm22_releaseBus(); } else { // Clear the RX FIFO rfm22_claimBus(); rfm22_assertCs(); PIOS_SPI_TransferByte(rfm22b_dev_g->spi_id,RFM22_fifo_access & 0x7F); PIOS_SPI_TransferBlock(rfm22b_dev_g->spi_id,OUT_FF,NULL,RX_FIFO_HI_WATERMARK,NULL); rfm22_deassertCs(); rfm22_releaseBus(); } } // CRC error .. discard the received data if (int_stat1 & RFM22_is1_icrerror) { rfm22_int_timer = 0; // reset the timer rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); return; } // Valid packet received if (int_stat1 & RFM22_is1_ipkvalid) { // read the total length of the packet data uint32_t len = rfm22_read(RFM22_received_packet_length); // their must still be data in the RX FIFO we need to get if (rx_buffer_wr < len) { int32_t bytes_to_read = len - rx_buffer_wr; // Fetch the data from the RX FIFO rfm22_claimBus(); rfm22_assertCs(); PIOS_SPI_TransferByte(rfm22b_dev_g->spi_id,RFM22_fifo_access & 0x7F); rx_buffer_wr += (PIOS_SPI_TransferBlock(rfm22b_dev_g->spi_id,OUT_FF, (uint8_t *) &rx_buffer[rx_buffer_wr],bytes_to_read,NULL) == 0) ? bytes_to_read : 0; rfm22_deassertCs(); rfm22_releaseBus(); } if (rx_buffer_wr != len) { // we have a packet length error .. discard the packet rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); return; } // we have a valid received packet if (rx_buffer_wr > 0) { // remember the rssi for this packet rx_packet_rssi_dBm = rx_packet_start_rssi_dBm; // remember the afc offset for this packet rx_packet_afc_Hz = rx_packet_start_afc_Hz; // Add the rssi and afc to the end of the packet. rx_buffer[rx_buffer_wr++] = rx_packet_start_rssi_dBm; rx_buffer[rx_buffer_wr++] = rx_packet_start_afc_Hz; // Pass this packet on bool need_yield = false; if (rfm22b_dev_g->rx_in_cb) (rfm22b_dev_g->rx_in_cb)(rfm22b_dev_g->rx_in_context, (uint8_t*)rx_buffer, rx_buffer_wr, NULL, &need_yield); rx_buffer_wr = 0; } // Send a packet if it's available. if(!rfm22_txStart()) { // Switch to RX mode rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); } } } void rfm22_processTxInt(void) { register uint8_t int_stat1 = int_status1; // reset the timer rfm22_int_timer = 0; // FIFO under/over flow error. Back to RX mode. if (device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl)) { rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); return; } // Transmit timeout. Abort the transmit. if (rfm22_int_timer >= timeout_data_ms) { rfm22_int_time_outs++; rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); return; } // the rf module is not in tx mode if ((device_status & RFM22_ds_cps_mask) != RFM22_ds_cps_tx) { if (rfm22_int_timer >= 100) { rfm22_int_time_outs++; rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // back to rx mode return; } } // TX FIFO almost empty, it needs filling up if (int_stat1 & RFM22_is1_ixtffaem) { // top-up the rf chips TX FIFO buffer uint16_t max_bytes = FIFO_SIZE - TX_FIFO_LO_WATERMARK - 1; rfm22_claimBus(); rfm22_assertCs(); PIOS_SPI_TransferByte(g_rfm22b_dev->spi_id, RFM22_fifo_access | 0x80); int bytes_to_write = (tx_data_wr - tx_data_rd); bytes_to_write = (bytes_to_write > max_bytes) ? max_bytes: bytes_to_write; PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, &tx_buffer[tx_data_rd], NULL, bytes_to_write, NULL); tx_data_rd += bytes_to_write; rfm22_deassertCs(); rfm22_releaseBus(); } // Packet has been sent if (int_stat1 & RFM22_is1_ipksent) { // Send another packet if it's available. if(!rfm22_txStart()) { // Switch to RX mode rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); return; } } } static void rfm22_processInt(void) { // we haven't yet been initialized if (!initialized || power_on_reset || !PIOS_RFM22B_validate(rfm22b_dev_g)) return; exec_using_spi = true; // Reset the supervisor timer. rfm22b_dev_g->supv_timer = PIOS_RFM22B_SUPERVISOR_TIMEOUT; // 1. Read the interrupt statuses with burst read rfm22_claimBus(); // Set RC and the semaphore uint8_t write_buf[3] = {RFM22_interrupt_status1 & 0x7f, 0xFF, 0xFF}; uint8_t read_buf[3]; rfm22_assertCs(); PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, write_buf, read_buf, sizeof(write_buf), NULL); rfm22_deassertCs(); int_status1 = read_buf[1]; int_status2 = read_buf[2]; // Device status device_status = rfm22_read_noclaim(RFM22_device_status); // EzMAC status ezmac_status = rfm22_read_noclaim(RFM22_ezmac_status); // Release the bus rfm22_releaseBus(); // Read the RSSI if we're in RX mode if (rf_mode != TX_DATA_MODE && rf_mode != TX_STREAM_MODE && rf_mode != TX_CARRIER_MODE && rf_mode != TX_PN_MODE) { // read rx signal strength .. 45 = -100dBm, 205 = -20dBm rssi = rfm22_read(RFM22_rssi); // convert to dBm rssi_dBm = (int8_t)(rssi >> 1) - 122; } else // read the tx power register tx_pwr = rfm22_read(RFM22_tx_power); // the RF module has gone and done a reset - we need to re-initialize the rf module if (int_status2 & RFM22_is2_ipor) { initialized = false; power_on_reset = true; // Need to do something here! return; } switch (rf_mode) { case RX_SCAN_SPECTRUM: break; case RX_WAIT_PREAMBLE_MODE: case RX_WAIT_SYNC_MODE: case RX_DATA_MODE: rfm22_processRxInt(); break; case TX_DATA_MODE: case TX_STREAM_MODE: rfm22_processTxInt(); break; case TX_CARRIER_MODE: case TX_PN_MODE: // if (rfm22_int_timer >= TX_TEST_MODE_TIMELIMIT_MS) // 'nn'ms limit // { // rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // back to rx mode // tx_data_rd = tx_data_wr = 0; // wipe TX buffer // break; // } break; default: // unknown mode - this should NEVER happen, maybe we should do a complete CPU reset here rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // to rx mode break; } exec_using_spi = false; } // ************************************ int8_t rfm22_getRSSI(void) { exec_using_spi = true; rssi = rfm22_read(RFM22_rssi); // read rx signal strength .. 45 = -100dBm, 205 = -20dBm rssi_dBm = (int8_t)(rssi >> 1) - 122; // convert to dBm exec_using_spi = false; return rssi_dBm; } int8_t rfm22_receivedRSSI(void) { // return the packets signal strength if (!initialized) return -127; else return rx_packet_rssi_dBm; } int32_t rfm22_receivedAFCHz(void) { // return the packets offset frequency if (!initialized) return 0; else return rx_packet_afc_Hz; } // ************************************ // ************************************ void rfm22_setTxStream(void) // TEST ONLY { if (!initialized) return; tx_data_rd = tx_data_wr = 0; rfm22_setTxMode(TX_STREAM_MODE); } // ************************************ void rfm22_setTxNormal(void) { if (!initialized) return; // if (rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE) if (rf_mode != RX_SCAN_SPECTRUM) { rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); tx_data_rd = tx_data_wr = 0; rx_packet_start_rssi_dBm = 0; rx_packet_start_afc_Hz = 0; rx_packet_rssi_dBm = 0; rx_packet_afc_Hz = 0; } } // enable a blank tx carrier (for frequency alignment) void rfm22_setTxCarrierMode(void) { if (!initialized) return; if (rf_mode != TX_CARRIER_MODE && rf_mode != RX_SCAN_SPECTRUM) rfm22_setTxMode(TX_CARRIER_MODE); } // enable a psuedo random data tx carrier (for spectrum inspection) void rfm22_setTxPNMode(void) { if (!initialized) return; if (rf_mode != TX_PN_MODE && rf_mode != RX_SCAN_SPECTRUM) rfm22_setTxMode(TX_PN_MODE); } // ************************************ // return the current mode int8_t rfm22_currentMode(void) { return rf_mode; } // return true if we are transmitting bool rfm22_transmitting(void) { return (rf_mode == TX_DATA_MODE || rf_mode == TX_STREAM_MODE || rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE); } // return true if the channel is clear to transmit on bool rfm22_channelIsClear(void) { if (!initialized) // we haven't yet been initialized return false; if (rf_mode != RX_WAIT_PREAMBLE_MODE && rf_mode != RX_WAIT_SYNC_MODE) // we are receiving something or we are transmitting or we are scanning the spectrum return false; return true; } // return true if the transmiter is ready for use bool rfm22_txReady(void) { if (!initialized) // we haven't yet been initialized return false; return (tx_data_rd == 0 && tx_data_wr == 0 && rf_mode != TX_DATA_MODE && rf_mode != TX_STREAM_MODE && rf_mode != TX_CARRIER_MODE && rf_mode != TX_PN_MODE && rf_mode != RX_SCAN_SPECTRUM); } // ************************************ // set/get the frequency calibration value void rfm22_setFreqCalibration(uint8_t value) { osc_load_cap = value; if (!initialized || power_on_reset) return; // we haven't yet been initialized uint8_t prev_rf_mode = rf_mode; if (rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE) { rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); tx_data_rd = tx_data_wr = 0; } exec_using_spi = true; rfm22_write(RFM22_xtal_osc_load_cap, osc_load_cap); exec_using_spi = false; if (prev_rf_mode == TX_CARRIER_MODE || prev_rf_mode == TX_PN_MODE) rfm22_setTxMode(prev_rf_mode); } uint8_t rfm22_getFreqCalibration(void) { return osc_load_cap; } // ************************************ // can be called from an interrupt if you wish void rfm22_1ms_tick(void) { // call this once every ms if (!initialized) return; // we haven't yet been initialized if (rf_mode != RX_SCAN_SPECTRUM) { if (rfm22_int_timer < 0xffff) rfm22_int_timer++; } } // ************************************ // reset the RF module int rfm22_resetModule(uint8_t mode, uint32_t min_frequency_hz, uint32_t max_frequency_hz) { initialized = false; power_on_reset = false; // **************** exec_using_spi = true; // **************** // software reset the RF chip .. following procedure according to Si4x3x Errata (rev. B) rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_swres); // software reset the radio // wait 26ms PIOS_DELAY_WaitmS(26); for (int i = 50; i > 0; i--) { // wait 1ms PIOS_DELAY_WaitmS(1); // read the status registers int_status1 = rfm22_read(RFM22_interrupt_status1); int_status2 = rfm22_read(RFM22_interrupt_status2); if (int_status2 & RFM22_is2_ichiprdy) break; } // **************** // read status - clears interrupt device_status = rfm22_read(RFM22_device_status); int_status1 = rfm22_read(RFM22_interrupt_status1); int_status2 = rfm22_read(RFM22_interrupt_status2); ezmac_status = rfm22_read(RFM22_ezmac_status); // disable all interrupts rfm22_write(RFM22_interrupt_enable1, 0x00); rfm22_write(RFM22_interrupt_enable2, 0x00); // **************** exec_using_spi = false; // **************** rf_mode = mode; device_status = int_status1 = int_status2 = ezmac_status = 0; rssi = 0; rssi_dBm = -127; rx_buffer_current = 0; rx_buffer_wr = 0; rx_packet_rssi_dBm = -127; rx_packet_afc_Hz = 0; tx_data_rd = tx_data_wr = 0; lookup_index = 0; ss_lookup_index = 0; rf_bandwidth_used = 0; ss_rf_bandwidth_used = 0; rfm22_int_timer = 0; rfm22_int_time_outs = 0; prev_rfm22_int_time_outs = 0; hbsel = 0; frequency_step_size = 0.0f; frequency_hop_channel = 0; afc_correction = 0; afc_correction_Hz = 0; temperature_reg = 0; // set the TX power tx_power = RFM22_DEFAULT_RF_POWER; tx_pwr = 0; // **************** // read the RF chip ID bytes device_type = rfm22_read(RFM22_DEVICE_TYPE) & RFM22_DT_MASK; // read the device type device_version = rfm22_read(RFM22_DEVICE_VERSION) & RFM22_DV_MASK; // read the device version #if defined(RFM22_DEBUG) DEBUG_PRINTF(2, "rf device type: %d\n\r", device_type); DEBUG_PRINTF(2, "rf device version: %d\n\r", device_version); #endif if (device_type != 0x08) { #if defined(RFM22_DEBUG) DEBUG_PRINTF(2, "rf device type: INCORRECT - should be 0x08\n\r"); #endif return -1; // incorrect RF module type } // if (device_version != RFM22_DEVICE_VERSION_V2) // V2 // return -2; // incorrect RF module version // if (device_version != RFM22_DEVICE_VERSION_A0) // A0 // return -2; // incorrect RF module version if (device_version != RFM22_DEVICE_VERSION_B1) // B1 { #if defined(RFM22_DEBUG) DEBUG_PRINTF(2, "rf device version: INCORRECT\n\r"); #endif return -2; // incorrect RF module version } // **************** // set the minimum and maximum carrier frequency allowed if (min_frequency_hz < RFM22_MIN_CARRIER_FREQUENCY_HZ) min_frequency_hz = RFM22_MIN_CARRIER_FREQUENCY_HZ; else if (min_frequency_hz > RFM22_MAX_CARRIER_FREQUENCY_HZ) min_frequency_hz = RFM22_MAX_CARRIER_FREQUENCY_HZ; if (max_frequency_hz < RFM22_MIN_CARRIER_FREQUENCY_HZ) max_frequency_hz = RFM22_MIN_CARRIER_FREQUENCY_HZ; else if (max_frequency_hz > RFM22_MAX_CARRIER_FREQUENCY_HZ) max_frequency_hz = RFM22_MAX_CARRIER_FREQUENCY_HZ; if (min_frequency_hz > max_frequency_hz) { // swap them over uint32_t tmp = min_frequency_hz; min_frequency_hz = max_frequency_hz; max_frequency_hz = tmp; } lower_carrier_frequency_limit_Hz = min_frequency_hz; upper_carrier_frequency_limit_Hz = max_frequency_hz; // **************** // calibrate our RF module to be exactly on frequency .. different for every module osc_load_cap = OSC_LOAD_CAP; // default rfm22_write(RFM22_xtal_osc_load_cap, osc_load_cap); // **************** // disable Low Duty Cycle Mode rfm22_write(RFM22_op_and_func_ctrl2, 0x00); rfm22_write(RFM22_cpu_output_clk, RFM22_coc_1MHz); // 1MHz clock output rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton); // READY mode // rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon); // TUNE mode // choose the 3 GPIO pin functions rfm22_write(RFM22_io_port_config, RFM22_io_port_default); // GPIO port use default value if (rfm22b_dev_g->cfg.gpio_direction == GPIO0_TX_GPIO1_RX) { rfm22_write(RFM22_gpio0_config, RFM22_gpio0_config_drv3 | RFM22_gpio0_config_txstate); // GPIO0 = TX State (to control RF Switch) rfm22_write(RFM22_gpio1_config, RFM22_gpio1_config_drv3 | RFM22_gpio1_config_rxstate); // GPIO1 = RX State (to control RF Switch) } else { rfm22_write(RFM22_gpio0_config, RFM22_gpio0_config_drv3 | RFM22_gpio0_config_rxstate); // GPIO0 = TX State (to control RF Switch) rfm22_write(RFM22_gpio1_config, RFM22_gpio1_config_drv3 | RFM22_gpio1_config_txstate); // GPIO1 = RX State (to control RF Switch) } rfm22_write(RFM22_gpio2_config, RFM22_gpio2_config_drv3 | RFM22_gpio2_config_cca); // GPIO2 = Clear Channel Assessment // **************** return 0; // OK } // ************************************ // Initialise this hardware layer module and the rf module int rfm22_init_normal(uint32_t id, uint32_t min_frequency_hz, uint32_t max_frequency_hz, uint32_t freq_hop_step_size) { int res = rfm22_resetModule(RX_WAIT_PREAMBLE_MODE, min_frequency_hz, max_frequency_hz); if (res < 0) return res; // initialize the frequency hopping step size freq_hop_step_size /= 10000; // in 10kHz increments if (freq_hop_step_size > 255) freq_hop_step_size = 255; frequency_hop_step_size_reg = freq_hop_step_size; // set the RF datarate rfm22_setDatarate(RFM22_DEFAULT_RF_DATARATE, true); // FIFO mode, GFSK modulation uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd; rfm22_write(RFM22_modulation_mode_control2, RFM22_mmc2_trclk_clk_none | RFM22_mmc2_dtmod_fifo | fd_bit | RFM22_mmc2_modtyp_gfsk); // setup to read the internal temperature sensor // ADC used to sample the temperature sensor adc_config = RFM22_ac_adcsel_temp_sensor | RFM22_ac_adcref_bg; rfm22_write(RFM22_adc_config, adc_config); // adc offset rfm22_write(RFM22_adc_sensor_amp_offset, 0); // temp sensor calibration .. –40C to +64C 0.5C resolution rfm22_write(RFM22_temp_sensor_calib, RFM22_tsc_tsrange0 | RFM22_tsc_entsoffs); // temp sensor offset rfm22_write(RFM22_temp_value_offset, 0); // start an ADC conversion rfm22_write(RFM22_adc_config, adc_config | RFM22_ac_adcstartbusy); // set the RSSI threshold interrupt to about -90dBm rfm22_write(RFM22_rssi_threshold_clear_chan_indicator, (-90 + 122) * 2); // enable the internal Tx & Rx packet handlers (without CRC) rfm22_write(RFM22_data_access_control, RFM22_dac_enpacrx | RFM22_dac_enpactx); // x-nibbles tx preamble rfm22_write(RFM22_preamble_length, TX_PREAMBLE_NIBBLES); // x-nibbles rx preamble detection rfm22_write(RFM22_preamble_detection_ctrl1, RX_PREAMBLE_NIBBLES << 3); #ifdef PIOS_RFM22_NO_HEADER // header control - we are not using the header rfm22_write(RFM22_header_control1, RFM22_header_cntl1_bcen_none | RFM22_header_cntl1_hdch_none); // no header bytes, synchronization word length 3, 2, 1 & 0 used, packet length included in header. rfm22_write(RFM22_header_control2, RFM22_header_cntl2_hdlen_none | RFM22_header_cntl2_synclen_3210 | ((TX_PREAMBLE_NIBBLES >> 8) & 0x01)); #else // header control - using a 4 by header with broadcast of 0xffffffff rfm22_write(RFM22_header_control1, RFM22_header_cntl1_bcen_0 | RFM22_header_cntl1_bcen_1 | RFM22_header_cntl1_bcen_2 | RFM22_header_cntl1_bcen_3 | RFM22_header_cntl1_hdch_0 | RFM22_header_cntl1_hdch_1 | RFM22_header_cntl1_hdch_2 | RFM22_header_cntl1_hdch_3); // Check all bit of all bytes of the header rfm22_write(RFM22_header_enable0, 0xff); rfm22_write(RFM22_header_enable1, 0xff); rfm22_write(RFM22_header_enable2, 0xff); rfm22_write(RFM22_header_enable3, 0xff); // Set the ID to be checked rfm22_write(RFM22_check_header0, id & 0xff); rfm22_write(RFM22_check_header1, (id >> 8) & 0xff); rfm22_write(RFM22_check_header2, (id >> 16) & 0xff); rfm22_write(RFM22_check_header3, (id >> 24) & 0xff); // 4 header bytes, synchronization word length 3, 2, 1 & 0 used, packet length included in header. rfm22_write(RFM22_header_control2, RFM22_header_cntl2_hdlen_3210 | RFM22_header_cntl2_synclen_3210 | ((TX_PREAMBLE_NIBBLES >> 8) & 0x01)); #endif // sync word rfm22_write(RFM22_sync_word3, SYNC_BYTE_1); rfm22_write(RFM22_sync_word2, SYNC_BYTE_2); rfm22_write(RFM22_sync_word1, SYNC_BYTE_3); rfm22_write(RFM22_sync_word0, SYNC_BYTE_4); rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_agcen); // set frequency hopping channel step size (multiples of 10kHz) rfm22_write(RFM22_frequency_hopping_step_size, frequency_hop_step_size_reg); // set our nominal carrier frequency rfm22_setNominalCarrierFrequency((min_frequency_hz + max_frequency_hz) / 2); // set the tx power rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | tx_power); // TX FIFO Almost Full Threshold (0 - 63) rfm22_write(RFM22_tx_fifo_control1, TX_FIFO_HI_WATERMARK); // TX FIFO Almost Empty Threshold (0 - 63) rfm22_write(RFM22_tx_fifo_control2, TX_FIFO_LO_WATERMARK); // RX FIFO Almost Full Threshold (0 - 63) rfm22_write(RFM22_rx_fifo_control, RX_FIFO_HI_WATERMARK); rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); initialized = true; return 0; // ok } // ************************************ #endif /** * @} * @} */