/** ****************************************************************************** * @addtogroup OpenPilot Math Utilities * @{ * @addtogroup Sine and cosine methods that use a cached lookup table * @{ * * @file pid.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief Methods to work with PID structure * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "openpilot.h" #include "pid.h" #include #include // ! Store the shared time constant for the derivative cutoff. static float deriv_tau = 7.9577e-3f; // ! Store the setpoint weight to apply for the derivative term static float deriv_gamma = 1.0f; /** * Update the PID computation * @param[in] pid The PID struture which stores temporary information * @param[in] err The error term * @param[in] dT The time step * @returns Output the computed controller value */ float pid_apply(struct pid *pid, const float err, float dT) { // Scale up accumulator by 1000 while computing to avoid losing precision pid->iAccumulator += err * (pid->i * dT * 1000.0f); pid->iAccumulator = boundf(pid->iAccumulator, pid->iLim * -1000.0f, pid->iLim * 1000.0f); // Calculate DT1 term float diff = (err - pid->lastErr); float dterm = 0; pid->lastErr = err; if (pid->d > 0.0f && dT > 0.0f) { dterm = pid->lastDer + dT / (dT + deriv_tau) * ((diff * pid->d / dT) - pid->lastDer); pid->lastDer = dterm; // ^ set constant to 1/(2*pi*f_cutoff) } // 7.9577e-3 means 20 Hz f_cutoff return (err * pid->p) + pid->iAccumulator / 1000.0f + dterm; } /** * Update the PID computation with setpoint weighting on the derivative * @param[in] pid The PID struture which stores temporary information * @param[in] factor A dynamic factor to scale pid's by, to compensate nonlinearities * @param[in] setpoint The setpoint to use * @param[in] measured The measured value of output * @param[in] dT The time step * @returns Output the computed controller value * * This version of apply uses setpoint weighting for the derivative component so the gain * on the gyro derivative can be different than the gain on the setpoint derivative */ float pid_apply_setpoint(struct pid *pid, const pid_scaler *scaler, const float setpoint, const float measured, float dT) { float err = setpoint - measured; // Scale up accumulator by 1000 while computing to avoid losing precision pid->iAccumulator += err * (scaler->i * pid->i * dT * 1000.0f); pid->iAccumulator = boundf(pid->iAccumulator, pid->iLim * -1000.0f, pid->iLim * 1000.0f); // Calculate DT1 term, float dterm = 0; float diff = ((deriv_gamma * setpoint - measured) - pid->lastErr); pid->lastErr = (deriv_gamma * setpoint - measured); if (pid->d > 0.0f && dT > 0.0f) { // low pass filter derivative term. below formula is the same as // dterm = (1-alpha)*pid->lastDer + alpha * (...)/dT // with alpha = dT/(deriv_tau+dT) dterm = pid->lastDer + dT / (dT + deriv_tau) * ((scaler->d * diff * pid->d / dT) - pid->lastDer); pid->lastDer = dterm; } return (err * scaler->p * pid->p) + pid->iAccumulator / 1000.0f + dterm; } /** * Reset a bit * @param[in] pid The pid to reset */ void pid_zero(struct pid *pid) { if (!pid) { return; } pid->iAccumulator = 0; pid->lastErr = 0; pid->lastDer = 0; } /** * @brief Configure the common terms that alter ther derivative * @param[in] cutoff The cutoff frequency (in Hz) * @param[in] gamma The gamma term for setpoint shaping (unsused now) */ void pid_configure_derivative(float cutoff, float g) { deriv_tau = 1.0f / (2 * M_PI_F * cutoff); deriv_gamma = g; } /** * Configure the settings for a pid structure * @param[out] pid The PID structure to configure * @param[in] p The proportional term * @param[in] i The integral term * @param[in] d The derivative term */ void pid_configure(struct pid *pid, float p, float i, float d, float iLim) { if (!pid) { return; } pid->p = p; pid->i = i; pid->d = d; pid->iLim = iLim; } /** * Configure the settings for a pid2 structure * @param[out] pid The PID2 structure to configure * @param[in] kp proportional gain * @param[in] ki integral gain. Time constant Ti = kp/ki * @param[in] kd derivative gain. Time constant Td = kd/kp * @param[in] Tf filtering time = (kd/k)/N, N is in the range of 2 to 20 * @param[in] kt tracking gain for anti-windup. Tt = √TiTd and Tt = (Ti + Td)/2 * @param[in] dt delta time increment * @param[in] beta setpoint weight on setpoint in P component. beta=1 error feedback. beta=0 smoothes out response to changes in setpoint * @param[in] u0 initial output for r=y at activation to achieve bumpless transfer * @param[in] va constant for compute of actuator output for check against limits for antiwindup * @param[in] vb multiplier for compute of actuator output for check against limits for anti-windup */ void pid2_configure(struct pid2 *pid, float kp, float ki, float kd, float Tf, float kt, float dT, float beta, float u0, float va, float vb) { pid->reconfigure = true; pid->u0 = u0; pid->va = va; pid->vb = vb; pid->kp = kp; pid->beta = beta; // setpoint weight on proportional term pid->bi = ki * dT; pid->br = kt * dT / vb; pid->ad = Tf / (Tf + dT); pid->bd = kd / (Tf + dT); } /** * Achieve a bumpless transfer and trigger initialisation of I term * @param[out] pid The PID structure to configure * @param[in] u0 initial output for r=y at activation to achieve bumpless transfer */ void pid2_transfer(struct pid2 *pid, float u0) { pid->reconfigure = true; pid->u0 = u0; } /** * pid controller with setpoint weighting, anti-windup, with a low-pass filtered derivative on the process variable * See "Feedback Systems" for an explanation * @param[out] pid The PID structure to configure * @param[in] r setpoint * @param[in] y process variable * @param[in] ulow lower limit on actuator * @param[in] uhigh upper limit on actuator */ float pid2_apply( struct pid2 *pid, const float r, const float y, const float ulow, const float uhigh) { // on reconfigure ensure bumpless transfer // http://www.controlguru.com/2008/021008.html if (pid->reconfigure) { pid->reconfigure = false; // initialise derivative terms pid->yold = y; pid->D = 0.0f; // t=0, u=u0, y=y0, v=u pid->I = (pid->u0 - pid->va) / pid->vb - pid->kp * (pid->beta * r - y); } // compute proportional part pid->P = pid->kp * (pid->beta * r - y); // update derivative part pid->D = pid->ad * pid->D - pid->bd * (y - pid->yold); // compute temporary output float v = pid->va + pid->vb * (pid->P + pid->I + pid->D); // simulate actuator saturation float u = boundf(v, ulow, uhigh); // update integral pid->I = pid->I + pid->bi * (r - y) + pid->br * (u - v); // update old process output pid->yold = y; return u; }