/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup ManualControlModule Manual Control Module * @brief Provide manual control or allow it alter flight mode. * @{ * * Reads in the ManualControlCommand FlightMode setting from receiver then either * pass the settings straght to ActuatorDesired object (manual mode) or to * AttitudeDesired object (stabilized mode) * * @file manualcontrol.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief ManualControl module. Handles safety R/C link and flight mode. * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include "accessorydesired.h" #include "actuatordesired.h" #include "altitudeholddesired.h" #include "flighttelemetrystats.h" #include "flightstatus.h" #include "sanitycheck.h" #include "manualcontrol.h" #include "manualcontrolsettings.h" #include "manualcontrolcommand.h" #include "positionstate.h" #include "pathdesired.h" #include "stabilizationsettings.h" #include "stabilizationdesired.h" #include "receiveractivity.h" #include "systemsettings.h" #include #include #if defined(PIOS_INCLUDE_USB_RCTX) #include "pios_usb_rctx.h" #endif /* PIOS_INCLUDE_USB_RCTX */ // Private constants #if defined(PIOS_MANUAL_STACK_SIZE) #define STACK_SIZE_BYTES PIOS_MANUAL_STACK_SIZE #else #define STACK_SIZE_BYTES 1152 #endif #define TASK_PRIORITY (tskIDLE_PRIORITY + 4) #define UPDATE_PERIOD_MS 20 #define THROTTLE_FAILSAFE -0.1f #define ARMED_THRESHOLD 0.50f // safe band to allow a bit of calibration error or trim offset (in microseconds) #define CONNECTION_OFFSET 250 // Private types typedef enum { ARM_STATE_DISARMED, ARM_STATE_ARMING_MANUAL, ARM_STATE_ARMED, ARM_STATE_DISARMING_MANUAL, ARM_STATE_DISARMING_TIMEOUT } ArmState_t; // Private variables static xTaskHandle taskHandle; static ArmState_t armState; static portTickType lastSysTime; #ifdef USE_INPUT_LPF static portTickType lastSysTimeLPF; static float inputFiltered[MANUALCONTROLSETTINGS_RESPONSETIME_NUMELEM]; #endif // Private functions static void updateActuatorDesired(ManualControlCommandData *cmd); static void updateStabilizationDesired(ManualControlCommandData *cmd, ManualControlSettingsData *settings); static void updateLandDesired(ManualControlCommandData *cmd, bool changed); static void altitudeHoldDesired(ManualControlCommandData *cmd, bool changed); static void updatePathDesired(ManualControlCommandData *cmd, bool changed, bool home); static void processFlightMode(ManualControlSettingsData *settings, float flightMode); static void processArm(ManualControlCommandData *cmd, ManualControlSettingsData *settings, int8_t armSwitch); static void setArmedIfChanged(uint8_t val); static void configurationUpdatedCb(UAVObjEvent *ev); static void manualControlTask(void *parameters); static float scaleChannel(int16_t value, int16_t max, int16_t min, int16_t neutral); static uint32_t timeDifferenceMs(portTickType start_time, portTickType end_time); static bool okToArm(void); static bool validInputRange(int16_t min, int16_t max, uint16_t value); static void applyDeadband(float *value, float deadband); #ifdef USE_INPUT_LPF static void applyLPF(float *value, ManualControlSettingsResponseTimeElem channel, ManualControlSettingsData *settings, float dT); #endif #define RCVR_ACTIVITY_MONITOR_CHANNELS_PER_GROUP 12 #define RCVR_ACTIVITY_MONITOR_MIN_RANGE 10 struct rcvr_activity_fsm { ManualControlSettingsChannelGroupsOptions group; uint16_t prev[RCVR_ACTIVITY_MONITOR_CHANNELS_PER_GROUP]; uint8_t sample_count; }; static struct rcvr_activity_fsm activity_fsm; static void resetRcvrActivity(struct rcvr_activity_fsm *fsm); static bool updateRcvrActivity(struct rcvr_activity_fsm *fsm); #define assumptions (assumptions1 && assumptions3 && assumptions5 && assumptions_flightmode && assumptions_channelcount) /** * Module starting */ int32_t ManualControlStart() { // Start main task xTaskCreate(manualControlTask, (signed char *)"ManualControl", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &taskHandle); PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_MANUALCONTROL, taskHandle); #ifdef PIOS_INCLUDE_WDG PIOS_WDG_RegisterFlag(PIOS_WDG_MANUAL); #endif return 0; } /** * Module initialization */ int32_t ManualControlInitialize() { /* Check the assumptions about uavobject enum's are correct */ if (!assumptions) { return -1; } AccessoryDesiredInitialize(); ManualControlCommandInitialize(); FlightStatusInitialize(); StabilizationDesiredInitialize(); ReceiverActivityInitialize(); ManualControlSettingsInitialize(); return 0; } MODULE_INITCALL(ManualControlInitialize, ManualControlStart); /** * Module task */ static void manualControlTask(__attribute__((unused)) void *parameters) { ManualControlSettingsData settings; ManualControlCommandData cmd; FlightStatusData flightStatus; float flightMode = 0; uint8_t disconnected_count = 0; uint8_t connected_count = 0; // For now manual instantiate extra instances of Accessory Desired. In future should be done dynamically // this includes not even registering it if not used AccessoryDesiredCreateInstance(); AccessoryDesiredCreateInstance(); // Run this initially to make sure the configuration is checked configuration_check(); // Whenever the configuration changes, make sure it is safe to fly SystemSettingsConnectCallback(configurationUpdatedCb); ManualControlSettingsConnectCallback(configurationUpdatedCb); // Whenever the configuration changes, make sure it is safe to fly // Make sure unarmed on power up ManualControlCommandGet(&cmd); FlightStatusGet(&flightStatus); flightStatus.Armed = FLIGHTSTATUS_ARMED_DISARMED; armState = ARM_STATE_DISARMED; /* Initialize the RcvrActivty FSM */ portTickType lastActivityTime = xTaskGetTickCount(); resetRcvrActivity(&activity_fsm); // Main task loop lastSysTime = xTaskGetTickCount(); float scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_NUMELEM] = { 0 }; while (1) { // Wait until next update vTaskDelayUntil(&lastSysTime, UPDATE_PERIOD_MS / portTICK_RATE_MS); #ifdef PIOS_INCLUDE_WDG PIOS_WDG_UpdateFlag(PIOS_WDG_MANUAL); #endif // Read settings ManualControlSettingsGet(&settings); /* Update channel activity monitor */ if (flightStatus.Armed == ARM_STATE_DISARMED) { if (updateRcvrActivity(&activity_fsm)) { /* Reset the aging timer because activity was detected */ lastActivityTime = lastSysTime; } } if (timeDifferenceMs(lastActivityTime, lastSysTime) > 5000) { resetRcvrActivity(&activity_fsm); lastActivityTime = lastSysTime; } if (ManualControlCommandReadOnly()) { FlightTelemetryStatsData flightTelemStats; FlightTelemetryStatsGet(&flightTelemStats); if (flightTelemStats.Status != FLIGHTTELEMETRYSTATS_STATUS_CONNECTED) { /* trying to fly via GCS and lost connection. fall back to transmitter */ UAVObjMetadata metadata; ManualControlCommandGetMetadata(&metadata); UAVObjSetAccess(&metadata, ACCESS_READWRITE); ManualControlCommandSetMetadata(&metadata); } } if (!ManualControlCommandReadOnly()) { bool valid_input_detected = true; // Read channel values in us for (uint8_t n = 0; n < MANUALCONTROLSETTINGS_CHANNELGROUPS_NUMELEM && n < MANUALCONTROLCOMMAND_CHANNEL_NUMELEM; ++n) { extern uint32_t pios_rcvr_group_map[]; if (cast_struct_to_array(settings.ChannelGroups, settings.ChannelGroups.Roll)[n] >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { cmd.Channel[n] = PIOS_RCVR_INVALID; } else { cmd.Channel[n] = PIOS_RCVR_Read(pios_rcvr_group_map[ cast_struct_to_array(settings.ChannelGroups, settings.ChannelGroups.Pitch)[n]], cast_struct_to_array(settings.ChannelNumber, settings.ChannelNumber.Pitch)[n]); } // If a channel has timed out this is not valid data and we shouldn't update anything // until we decide to go to failsafe if (cmd.Channel[n] == (uint16_t)PIOS_RCVR_TIMEOUT) { valid_input_detected = false; } else { scaledChannel[n] = scaleChannel(cmd.Channel[n], cast_struct_to_array(settings.ChannelMax, settings.ChannelMax.Pitch)[n], cast_struct_to_array(settings.ChannelMin, settings.ChannelMin.Pitch)[n], cast_struct_to_array(settings.ChannelNeutral, settings.ChannelNeutral.Pitch)[n]); } } // Check settings, if error raise alarm if (settings.ChannelGroups.Roll >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE || settings.ChannelGroups.Pitch >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE || settings.ChannelGroups.Yaw >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE || settings.ChannelGroups.Throttle >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE || // Check all channel mappings are valid cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL] == (uint16_t)PIOS_RCVR_INVALID || cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH] == (uint16_t)PIOS_RCVR_INVALID || cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW] == (uint16_t)PIOS_RCVR_INVALID || cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE] == (uint16_t)PIOS_RCVR_INVALID || // Check the driver exists cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL] == (uint16_t)PIOS_RCVR_NODRIVER || cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH] == (uint16_t)PIOS_RCVR_NODRIVER || cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW] == (uint16_t)PIOS_RCVR_NODRIVER || cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE] == (uint16_t)PIOS_RCVR_NODRIVER || // Check the FlightModeNumber is valid settings.FlightModeNumber < 1 || settings.FlightModeNumber > MANUALCONTROLSETTINGS_FLIGHTMODEPOSITION_NUMELEM || // Similar checks for FlightMode channel but only if more than one flight mode has been set. Otherwise don't care ((settings.FlightModeNumber > 1) && (settings.ChannelGroups.FlightMode >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE || cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_FLIGHTMODE] == (uint16_t)PIOS_RCVR_INVALID || cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_FLIGHTMODE] == (uint16_t)PIOS_RCVR_NODRIVER))) { AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_CRITICAL); cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_FALSE; ManualControlCommandSet(&cmd); // Need to do this here since we don't process armed status. Since this shouldn't happen in flight (changed config) // immediately disarm setArmedIfChanged(FLIGHTSTATUS_ARMED_DISARMED); continue; } // decide if we have valid manual input or not valid_input_detected &= validInputRange(settings.ChannelMin.Throttle, settings.ChannelMax.Throttle, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE]) && validInputRange(settings.ChannelMin.Roll, settings.ChannelMax.Roll, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL]) && validInputRange(settings.ChannelMin.Yaw, settings.ChannelMax.Yaw, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW]) && validInputRange(settings.ChannelMin.Pitch, settings.ChannelMax.Pitch, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH]); // Implement hysteresis loop on connection status if (valid_input_detected && (++connected_count > 10)) { cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_TRUE; connected_count = 0; disconnected_count = 0; } else if (!valid_input_detected && (++disconnected_count > 10)) { cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_FALSE; connected_count = 0; disconnected_count = 0; } int8_t armSwitch = 0; if (cmd.Connected == MANUALCONTROLCOMMAND_CONNECTED_FALSE) { cmd.Throttle = -1; // Shut down engine with no control cmd.Roll = 0; cmd.Yaw = 0; cmd.Pitch = 0; cmd.Collective = 0; if (settings.FailsafeBehavior != MANUALCONTROLSETTINGS_FAILSAFEBEHAVIOR_NONE) { FlightStatusGet(&flightStatus); flightStatus.FlightMode = settings.FlightModePosition[settings.FailsafeBehavior - 1]; FlightStatusSet(&flightStatus); } AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING); AccessoryDesiredData accessory; // Set Accessory 0 if (settings.ChannelGroups.Accessory0 != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { accessory.AccessoryVal = 0; if (AccessoryDesiredInstSet(0, &accessory) != 0) { AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING); } } // Set Accessory 1 if (settings.ChannelGroups.Accessory1 != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { accessory.AccessoryVal = 0; if (AccessoryDesiredInstSet(1, &accessory) != 0) { AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING); } } // Set Accessory 2 if (settings.ChannelGroups.Accessory2 != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { accessory.AccessoryVal = 0; if (AccessoryDesiredInstSet(2, &accessory) != 0) { AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING); } } } else if (valid_input_detected) { AlarmsClear(SYSTEMALARMS_ALARM_MANUALCONTROL); // Scale channels to -1 -> +1 range cmd.Roll = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL]; cmd.Pitch = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH]; cmd.Yaw = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW]; cmd.Throttle = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE]; flightMode = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_FLIGHTMODE]; // Apply deadband for Roll/Pitch/Yaw stick inputs if (settings.Deadband > 0.0f) { applyDeadband(&cmd.Roll, settings.Deadband); applyDeadband(&cmd.Pitch, settings.Deadband); applyDeadband(&cmd.Yaw, settings.Deadband); } #ifdef USE_INPUT_LPF // Apply Low Pass Filter to input channels, time delta between calls in ms portTickType thisSysTime = xTaskGetTickCount(); float dT = (thisSysTime > lastSysTimeLPF) ? (float)((thisSysTime - lastSysTimeLPF) * portTICK_RATE_MS) : (float)UPDATE_PERIOD_MS; lastSysTimeLPF = thisSysTime; applyLPF(&cmd.Roll, MANUALCONTROLSETTINGS_RESPONSETIME_ROLL, &settings, dT); applyLPF(&cmd.Pitch, MANUALCONTROLSETTINGS_RESPONSETIME_PITCH, &settings, dT); applyLPF(&cmd.Yaw, MANUALCONTROLSETTINGS_RESPONSETIME_YAW, &settings, dT); #endif // USE_INPUT_LPF if (cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE] != (uint16_t)PIOS_RCVR_INVALID && cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE] != (uint16_t)PIOS_RCVR_NODRIVER && cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE] != (uint16_t)PIOS_RCVR_TIMEOUT) { cmd.Collective = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE]; } AccessoryDesiredData accessory; // Set Accessory 0 if (settings.ChannelGroups.Accessory0 != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { accessory.AccessoryVal = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY0]; #ifdef USE_INPUT_LPF applyLPF(&accessory.AccessoryVal, MANUALCONTROLSETTINGS_RESPONSETIME_ACCESSORY0, &settings, dT); #endif if (settings.Arming == MANUALCONTROLSETTINGS_ARMING_ACCESSORY0) { if (accessory.AccessoryVal > ARMED_THRESHOLD) { armSwitch = 1; } else if (accessory.AccessoryVal < -ARMED_THRESHOLD) { armSwitch = -1; } } if (AccessoryDesiredInstSet(0, &accessory) != 0) { AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING); } } // Set Accessory 1 if (settings.ChannelGroups.Accessory1 != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { accessory.AccessoryVal = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY1]; #ifdef USE_INPUT_LPF applyLPF(&accessory.AccessoryVal, MANUALCONTROLSETTINGS_RESPONSETIME_ACCESSORY1, &settings, dT); #endif if (settings.Arming == MANUALCONTROLSETTINGS_ARMING_ACCESSORY1) { if (accessory.AccessoryVal > ARMED_THRESHOLD) { armSwitch = 1; } else if (accessory.AccessoryVal < -ARMED_THRESHOLD) { armSwitch = -1; } } if (AccessoryDesiredInstSet(1, &accessory) != 0) { AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING); } } // Set Accessory 2 if (settings.ChannelGroups.Accessory2 != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { accessory.AccessoryVal = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY2]; #ifdef USE_INPUT_LPF applyLPF(&accessory.AccessoryVal, MANUALCONTROLSETTINGS_RESPONSETIME_ACCESSORY2, &settings, dT); #endif if (settings.Arming == MANUALCONTROLSETTINGS_ARMING_ACCESSORY2) { if (accessory.AccessoryVal > ARMED_THRESHOLD) { armSwitch = 1; } else if (accessory.AccessoryVal < -ARMED_THRESHOLD) { armSwitch = -1; } } if (AccessoryDesiredInstSet(2, &accessory) != 0) { AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING); } } processFlightMode(&settings, flightMode); } // Process arming outside conditional so system will disarm when disconnected processArm(&cmd, &settings, armSwitch); // Update cmd object ManualControlCommandSet(&cmd); #if defined(PIOS_INCLUDE_USB_RCTX) if (pios_usb_rctx_id) { PIOS_USB_RCTX_Update(pios_usb_rctx_id, cmd.Channel, cast_struct_to_array(settings.ChannelMin, settings.ChannelMin.Roll), cast_struct_to_array(settings.ChannelMax, settings.ChannelMax.Roll), NELEMENTS(cmd.Channel)); } #endif /* PIOS_INCLUDE_USB_RCTX */ } else { ManualControlCommandGet(&cmd); /* Under GCS control */ } FlightStatusGet(&flightStatus); // Depending on the mode update the Stabilization or Actuator objects static uint8_t lastFlightMode = FLIGHTSTATUS_FLIGHTMODE_MANUAL; switch (PARSE_FLIGHT_MODE(flightStatus.FlightMode)) { case FLIGHTMODE_UNDEFINED: // This reflects a bug in the code architecture! AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_CRITICAL); break; case FLIGHTMODE_MANUAL: updateActuatorDesired(&cmd); break; case FLIGHTMODE_STABILIZED: updateStabilizationDesired(&cmd, &settings); break; case FLIGHTMODE_TUNING: // Tuning takes settings directly from manualcontrolcommand. No need to // call anything else. This just avoids errors. break; case FLIGHTMODE_GUIDANCE: switch (flightStatus.FlightMode) { case FLIGHTSTATUS_FLIGHTMODE_ALTITUDEHOLD: case FLIGHTSTATUS_FLIGHTMODE_ALTITUDEVARIO: altitudeHoldDesired(&cmd, lastFlightMode != flightStatus.FlightMode); break; case FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD: case FLIGHTSTATUS_FLIGHTMODE_POI: updatePathDesired(&cmd, lastFlightMode != flightStatus.FlightMode, false); break; case FLIGHTSTATUS_FLIGHTMODE_RETURNTOBASE: updatePathDesired(&cmd, lastFlightMode != flightStatus.FlightMode, true); break; case FLIGHTSTATUS_FLIGHTMODE_PATHPLANNER: // No need to call anything. This just avoids errors. break; case FLIGHTSTATUS_FLIGHTMODE_LAND: updateLandDesired(&cmd, lastFlightMode != flightStatus.FlightMode); break; default: AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_CRITICAL); } break; } lastFlightMode = flightStatus.FlightMode; } } static void resetRcvrActivity(struct rcvr_activity_fsm *fsm) { ReceiverActivityData data; bool updated = false; /* Clear all channel activity flags */ ReceiverActivityGet(&data); if (data.ActiveGroup != RECEIVERACTIVITY_ACTIVEGROUP_NONE && data.ActiveChannel != 255) { data.ActiveGroup = RECEIVERACTIVITY_ACTIVEGROUP_NONE; data.ActiveChannel = 255; updated = true; } if (updated) { ReceiverActivitySet(&data); } /* Reset the FSM state */ fsm->group = 0; fsm->sample_count = 0; } static void updateRcvrActivitySample(uint32_t rcvr_id, uint16_t samples[], uint8_t max_channels) { for (uint8_t channel = 1; channel <= max_channels; channel++) { // Subtract 1 because channels are 1 indexed samples[channel - 1] = PIOS_RCVR_Read(rcvr_id, channel); } } static bool updateRcvrActivityCompare(uint32_t rcvr_id, struct rcvr_activity_fsm *fsm) { bool activity_updated = false; /* Compare the current value to the previous sampled value */ for (uint8_t channel = 1; channel <= RCVR_ACTIVITY_MONITOR_CHANNELS_PER_GROUP; channel++) { uint16_t delta; uint16_t prev = fsm->prev[channel - 1]; // Subtract 1 because channels are 1 indexed uint16_t curr = PIOS_RCVR_Read(rcvr_id, channel); if (curr > prev) { delta = curr - prev; } else { delta = prev - curr; } if (delta > RCVR_ACTIVITY_MONITOR_MIN_RANGE) { /* Mark this channel as active */ ReceiverActivityActiveGroupOptions group; /* Don't assume manualcontrolsettings and receiveractivity are in the same order. */ switch (fsm->group) { case MANUALCONTROLSETTINGS_CHANNELGROUPS_PWM: group = RECEIVERACTIVITY_ACTIVEGROUP_PWM; break; case MANUALCONTROLSETTINGS_CHANNELGROUPS_PPM: group = RECEIVERACTIVITY_ACTIVEGROUP_PPM; break; case MANUALCONTROLSETTINGS_CHANNELGROUPS_DSMMAINPORT: group = RECEIVERACTIVITY_ACTIVEGROUP_DSMMAINPORT; break; case MANUALCONTROLSETTINGS_CHANNELGROUPS_DSMFLEXIPORT: group = RECEIVERACTIVITY_ACTIVEGROUP_DSMFLEXIPORT; break; case MANUALCONTROLSETTINGS_CHANNELGROUPS_SBUS: group = RECEIVERACTIVITY_ACTIVEGROUP_SBUS; break; case MANUALCONTROLSETTINGS_CHANNELGROUPS_GCS: group = RECEIVERACTIVITY_ACTIVEGROUP_GCS; break; case MANUALCONTROLSETTINGS_CHANNELGROUPS_OPLINK: group = RECEIVERACTIVITY_ACTIVEGROUP_OPLINK; break; default: PIOS_Assert(0); break; } ReceiverActivityActiveGroupSet((uint8_t *)&group); ReceiverActivityActiveChannelSet(&channel); activity_updated = true; } } return activity_updated; } static bool updateRcvrActivity(struct rcvr_activity_fsm *fsm) { bool activity_updated = false; if (fsm->group >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { /* We're out of range, reset things */ resetRcvrActivity(fsm); } extern uint32_t pios_rcvr_group_map[]; if (!pios_rcvr_group_map[fsm->group]) { /* Unbound group, skip it */ goto group_completed; } if (fsm->sample_count == 0) { /* Take a sample of each channel in this group */ updateRcvrActivitySample(pios_rcvr_group_map[fsm->group], fsm->prev, NELEMENTS(fsm->prev)); fsm->sample_count++; return false; } /* Compare with previous sample */ activity_updated = updateRcvrActivityCompare(pios_rcvr_group_map[fsm->group], fsm); group_completed: /* Reset the sample counter */ fsm->sample_count = 0; /* Find the next active group, but limit search so we can't loop forever here */ for (uint8_t i = 0; i < MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE; i++) { /* Move to the next group */ fsm->group++; if (fsm->group >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { /* Wrap back to the first group */ fsm->group = 0; } if (pios_rcvr_group_map[fsm->group]) { /* * Found an active group, take a sample here to avoid an * extra 20ms delay in the main thread so we can speed up * this algorithm. */ updateRcvrActivitySample(pios_rcvr_group_map[fsm->group], fsm->prev, NELEMENTS(fsm->prev)); fsm->sample_count++; break; } } return activity_updated; } static void updateActuatorDesired(ManualControlCommandData *cmd) { ActuatorDesiredData actuator; ActuatorDesiredGet(&actuator); actuator.Roll = cmd->Roll; actuator.Pitch = cmd->Pitch; actuator.Yaw = cmd->Yaw; actuator.Throttle = (cmd->Throttle < 0) ? -1 : cmd->Throttle; ActuatorDesiredSet(&actuator); } static void updateStabilizationDesired(ManualControlCommandData *cmd, ManualControlSettingsData *settings) { StabilizationDesiredData stabilization; StabilizationDesiredGet(&stabilization); StabilizationSettingsData stabSettings; StabilizationSettingsGet(&stabSettings); uint8_t *stab_settings; FlightStatusData flightStatus; FlightStatusGet(&flightStatus); switch (flightStatus.FlightMode) { case FLIGHTSTATUS_FLIGHTMODE_STABILIZED1: stab_settings = cast_struct_to_array(settings->Stabilization1Settings, settings->Stabilization1Settings.Roll); break; case FLIGHTSTATUS_FLIGHTMODE_STABILIZED2: stab_settings = cast_struct_to_array(settings->Stabilization2Settings, settings->Stabilization2Settings.Roll); break; case FLIGHTSTATUS_FLIGHTMODE_STABILIZED3: stab_settings = cast_struct_to_array(settings->Stabilization3Settings, settings->Stabilization3Settings.Roll); break; default: // Major error, this should not occur because only enter this block when one of these is true AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_CRITICAL); return; } stabilization.Roll = (stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_NONE) ? cmd->Roll : (stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATE) ? cmd->Roll * stabSettings.ManualRate.Roll : (stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) ? cmd->Roll * stabSettings.ManualRate.Roll : (stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) ? cmd->Roll * stabSettings.RollMax : (stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK) ? cmd->Roll * stabSettings.ManualRate.Roll : (stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR) ? cmd->Roll : (stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATTITUDE) ? cmd->Roll : (stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE) ? cmd->Roll * stabSettings.ManualRate.Roll : (stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE) ? cmd->Roll * stabSettings.RollMax : 0; // this is an invalid mode stabilization.Pitch = (stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_NONE) ? cmd->Pitch : (stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATE) ? cmd->Pitch * stabSettings.ManualRate.Pitch : (stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) ? cmd->Pitch * stabSettings.ManualRate.Pitch : (stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) ? cmd->Pitch * stabSettings.PitchMax : (stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK) ? cmd->Pitch * stabSettings.ManualRate.Pitch : (stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR) ? cmd->Pitch : (stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATTITUDE) ? cmd->Pitch : (stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE) ? cmd->Pitch * stabSettings.ManualRate.Pitch : (stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE) ? cmd->Pitch * stabSettings.PitchMax : 0; // this is an invalid mode // TOOD: Add assumption about order of stabilization desired and manual control stabilization mode fields having same order stabilization.StabilizationMode.Roll = stab_settings[0]; stabilization.StabilizationMode.Pitch = stab_settings[1]; // Other axes (yaw) cannot be Rattitude, so use Rate // Should really do this for Attitude mode as well? if (stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATTITUDE) { stabilization.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE; stabilization.Yaw = cmd->Yaw * stabSettings.ManualRate.Yaw; } else { stabilization.StabilizationMode.Yaw = stab_settings[2]; stabilization.Yaw = (stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_NONE) ? cmd->Yaw : (stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATE) ? cmd->Yaw * stabSettings.ManualRate.Yaw : (stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) ? cmd->Yaw * stabSettings.ManualRate.Yaw : (stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) ? cmd->Yaw * stabSettings.YawMax : (stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK) ? cmd->Yaw * stabSettings.ManualRate.Yaw : (stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR) ? cmd->Yaw : (stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATTITUDE) ? cmd->Yaw : (stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE) ? cmd->Yaw * stabSettings.ManualRate.Yaw : (stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE) ? cmd->Yaw * stabSettings.YawMax : 0; // this is an invalid mode } stabilization.Throttle = (cmd->Throttle < 0) ? -1 : cmd->Throttle; StabilizationDesiredSet(&stabilization); } #if defined(REVOLUTION) // TODO: Need compile flag to exclude this from copter control /** * @brief Update the position desired to current location when * enabled and allow the waypoint to be moved by transmitter */ static void updatePathDesired(__attribute__((unused)) ManualControlCommandData *cmd, bool changed, bool home) { /* static portTickType lastSysTime; portTickType thisSysTime = xTaskGetTickCount(); dT = ((thisSysTime == lastSysTime)? 0.001f : (thisSysTime - lastSysTime) * portTICK_RATE_MS * 0.001f); lastSysTime = thisSysTime; */ if (home && changed) { // Simple Return To Base mode - keep altitude the same, fly to home position PositionStateData positionState; PositionStateGet(&positionState); ManualControlSettingsData settings; ManualControlSettingsGet(&settings); PathDesiredData pathDesired; PathDesiredGet(&pathDesired); pathDesired.Start.North = 0; pathDesired.Start.East = 0; pathDesired.Start.Down = positionState.Down - settings.ReturnToHomeAltitudeOffset; pathDesired.End.North = 0; pathDesired.End.East = 0; pathDesired.End.Down = positionState.Down - settings.ReturnToHomeAltitudeOffset; pathDesired.StartingVelocity = 1; pathDesired.EndingVelocity = 0; pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT; PathDesiredSet(&pathDesired); } else if (changed) { // After not being in this mode for a while init at current height PositionStateData positionState; PositionStateGet(&positionState); PathDesiredData pathDesired; PathDesiredGet(&pathDesired); pathDesired.Start.North = positionState.North; pathDesired.Start.East = positionState.East; pathDesired.Start.Down = positionState.Down; pathDesired.End.North = positionState.North; pathDesired.End.East = positionState.East; pathDesired.End.Down = positionState.Down; pathDesired.StartingVelocity = 1; pathDesired.EndingVelocity = 0; pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT; PathDesiredSet(&pathDesired); /* Disable this section, until such time as proper discussion can be had about how to implement it for all types of crafts. } else { PathDesiredData pathDesired; PathDesiredGet(&pathDesired); pathDesired.End[PATHDESIRED_END_NORTH] += dT * -cmd->Pitch; pathDesired.End[PATHDESIRED_END_EAST] += dT * cmd->Roll; pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT; PathDesiredSet(&pathDesired); */ } } static void updateLandDesired(__attribute__((unused)) ManualControlCommandData *cmd, bool changed) { /* static portTickType lastSysTime; portTickType thisSysTime; float dT; thisSysTime = xTaskGetTickCount(); dT = ((thisSysTime == lastSysTime)? 0.001f : (thisSysTime - lastSysTime) * portTICK_RATE_MS * 0.001f); lastSysTime = thisSysTime; */ PositionStateData positionState; PositionStateGet(&positionState); PathDesiredData pathDesired; PathDesiredGet(&pathDesired); if (changed) { // After not being in this mode for a while init at current height pathDesired.Start.North = positionState.North; pathDesired.Start.East = positionState.East; pathDesired.Start.Down = positionState.Down; pathDesired.End.North = positionState.North; pathDesired.End.East = positionState.East; pathDesired.End.Down = positionState.Down; pathDesired.StartingVelocity = 1; pathDesired.EndingVelocity = 0; pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT; } pathDesired.End.Down = positionState.Down + 5; PathDesiredSet(&pathDesired); } /** * @brief Update the altitude desired to current altitude when * enabled and enable altitude mode for stabilization * @todo: Need compile flag to exclude this from copter control */ static void altitudeHoldDesired(ManualControlCommandData *cmd, bool changed) { const float DEADBAND = 0.25f; const float DEADBAND_HIGH = 1.0f / 2 + DEADBAND / 2; const float DEADBAND_LOW = 1.0f / 2 - DEADBAND / 2; // Stop updating AltitudeHoldDesired triggering a failsafe condition. if (cmd->Throttle < 0) { return; } // this is the max speed in m/s at the extents of throttle uint8_t throttleRate; uint8_t throttleExp; static uint8_t flightMode; static portTickType lastSysTimeAH; static bool zeroed = false; portTickType thisSysTime; float dT; FlightStatusFlightModeGet(&flightMode); AltitudeHoldDesiredData altitudeHoldDesiredData; AltitudeHoldDesiredGet(&altitudeHoldDesiredData); if (flightMode == FLIGHTSTATUS_FLIGHTMODE_ALTITUDEHOLD) { throttleExp = 128; throttleRate = 0; } else { AltitudeHoldSettingsThrottleExpGet(&throttleExp); AltitudeHoldSettingsThrottleRateGet(&throttleRate); } StabilizationSettingsData stabSettings; StabilizationSettingsGet(&stabSettings); thisSysTime = xTaskGetTickCount(); dT = ((thisSysTime == lastSysTimeAH) ? 0.001f : (thisSysTime - lastSysTimeAH) * portTICK_RATE_MS * 0.001f); lastSysTimeAH = thisSysTime; altitudeHoldDesiredData.Roll = cmd->Roll * stabSettings.RollMax; altitudeHoldDesiredData.Pitch = cmd->Pitch * stabSettings.PitchMax; altitudeHoldDesiredData.Yaw = cmd->Yaw * stabSettings.ManualRate.Yaw; float currentDown; PositionStateDownGet(¤tDown); if (changed) { // After not being in this mode for a while init at current height altitudeHoldDesiredData.Altitude = 0; zeroed = false; } else if (cmd->Throttle > DEADBAND_HIGH && zeroed) { // being the two band symmetrical I can divide by DEADBAND_LOW to scale it to a value betweeon 0 and 1 // then apply an "exp" f(x,k) = (k*x*x*x + x*(256−k)) / 256 altitudeHoldDesiredData.Altitude += (throttleExp * powf((cmd->Throttle - DEADBAND_HIGH) / (DEADBAND_LOW), 3) + (256 - throttleExp)) / 256 * throttleRate * dT; } else if (cmd->Throttle < DEADBAND_LOW && zeroed) { altitudeHoldDesiredData.Altitude -= (throttleExp * powf((DEADBAND_LOW - (cmd->Throttle < 0 ? 0 : cmd->Throttle)) / DEADBAND_LOW, 3) + (256 - throttleExp)) / 256 * throttleRate * dT; } else if (cmd->Throttle >= DEADBAND_LOW && cmd->Throttle <= DEADBAND_HIGH && (throttleRate != 0)) { // Require the stick to enter the dead band before they can move height // Vario is not "engaged" when throttleRate == 0 zeroed = true; } AltitudeHoldDesiredSet(&altitudeHoldDesiredData); } #else /* if defined(REVOLUTION) */ // TODO: These functions should never be accessible on CC. Any configuration that // could allow them to be called should already throw an error to prevent this happening // in flight static void updatePathDesired(__attribute__((unused)) ManualControlCommandData *cmd, __attribute__((unused)) bool changed, __attribute__((unused)) bool home) { AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_ERROR); } static void updateLandDesired(__attribute__((unused)) ManualControlCommandData *cmd, __attribute__((unused)) bool changed) { AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_ERROR); } static void altitudeHoldDesired(__attribute__((unused)) ManualControlCommandData *cmd, __attribute__((unused)) bool changed) { AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_ERROR); } #endif /* if defined(REVOLUTION) */ /** * Convert channel from servo pulse duration (microseconds) to scaled -1/+1 range. */ static float scaleChannel(int16_t value, int16_t max, int16_t min, int16_t neutral) { float valueScaled; // Scale if ((max > min && value >= neutral) || (min > max && value <= neutral)) { if (max != neutral) { valueScaled = (float)(value - neutral) / (float)(max - neutral); } else { valueScaled = 0; } } else { if (min != neutral) { valueScaled = (float)(value - neutral) / (float)(neutral - min); } else { valueScaled = 0; } } // Bound if (valueScaled > 1.0f) { valueScaled = 1.0f; } else if (valueScaled < -1.0f) { valueScaled = -1.0f; } return valueScaled; } static uint32_t timeDifferenceMs(portTickType start_time, portTickType end_time) { return (end_time - start_time) * portTICK_RATE_MS; } /** * @brief Determine if the aircraft is safe to arm * @returns True if safe to arm, false otherwise */ static bool okToArm(void) { // update checks configuration_check(); // read alarms SystemAlarmsData alarms; SystemAlarmsGet(&alarms); // Check each alarm for (int i = 0; i < SYSTEMALARMS_ALARM_NUMELEM; i++) { if (cast_struct_to_array(alarms.Alarm, alarms.Alarm.Actuator)[i] >= SYSTEMALARMS_ALARM_ERROR) { // found an alarm thats set if (i == SYSTEMALARMS_ALARM_GPS || i == SYSTEMALARMS_ALARM_TELEMETRY) { continue; } return false; } } uint8_t flightMode; FlightStatusFlightModeGet(&flightMode); switch (flightMode) { case FLIGHTSTATUS_FLIGHTMODE_MANUAL: case FLIGHTSTATUS_FLIGHTMODE_STABILIZED1: case FLIGHTSTATUS_FLIGHTMODE_STABILIZED2: case FLIGHTSTATUS_FLIGHTMODE_STABILIZED3: return true; default: return false; } } /** * @brief Determine if the aircraft is forced to disarm by an explicit alarm * @returns True if safe to arm, false otherwise */ static bool forcedDisArm(void) { // read alarms SystemAlarmsData alarms; SystemAlarmsGet(&alarms); if (alarms.Alarm.Guidance == SYSTEMALARMS_ALARM_CRITICAL) { return true; } return false; } /** * @brief Update the flightStatus object only if value changed. Reduces callbacks * @param[in] val The new value */ static void setArmedIfChanged(uint8_t val) { FlightStatusData flightStatus; FlightStatusGet(&flightStatus); if (flightStatus.Armed != val) { flightStatus.Armed = val; FlightStatusSet(&flightStatus); } } /** * @brief Process the inputs and determine whether to arm or not * @param[out] cmd The structure to set the armed in * @param[in] settings Settings indicating the necessary position */ static void processArm(ManualControlCommandData *cmd, ManualControlSettingsData *settings, int8_t armSwitch) { bool lowThrottle = cmd->Throttle <= 0; /** * do NOT check throttle if disarming via switch, must be instant */ switch (settings->Arming) { case MANUALCONTROLSETTINGS_ARMING_ACCESSORY0: case MANUALCONTROLSETTINGS_ARMING_ACCESSORY1: case MANUALCONTROLSETTINGS_ARMING_ACCESSORY2: if (armSwitch < 0) { lowThrottle = true; } break; default: break; } if (forcedDisArm()) { // PathPlanner forces explicit disarming due to error condition (crash, impact, fire, ...) setArmedIfChanged(FLIGHTSTATUS_ARMED_DISARMED); return; } if (settings->Arming == MANUALCONTROLSETTINGS_ARMING_ALWAYSDISARMED) { // In this configuration we always disarm setArmedIfChanged(FLIGHTSTATUS_ARMED_DISARMED); } else { // Not really needed since this function not called when disconnected if (cmd->Connected == MANUALCONTROLCOMMAND_CONNECTED_FALSE) { lowThrottle = true; } // The throttle is not low, in case we where arming or disarming, abort if (!lowThrottle) { switch (armState) { case ARM_STATE_DISARMING_MANUAL: case ARM_STATE_DISARMING_TIMEOUT: armState = ARM_STATE_ARMED; break; case ARM_STATE_ARMING_MANUAL: armState = ARM_STATE_DISARMED; break; default: // Nothing needs to be done in the other states break; } return; } // The rest of these cases throttle is low if (settings->Arming == MANUALCONTROLSETTINGS_ARMING_ALWAYSARMED) { // In this configuration, we go into armed state as soon as the throttle is low, never disarm setArmedIfChanged(FLIGHTSTATUS_ARMED_ARMED); return; } // When the configuration is not "Always armed" and no "Always disarmed", // the state will not be changed when the throttle is not low static portTickType armedDisarmStart; float armingInputLevel = 0; // Calc channel see assumptions7 switch (settings->Arming) { case MANUALCONTROLSETTINGS_ARMING_ROLLLEFT: armingInputLevel = 1.0f * cmd->Roll; break; case MANUALCONTROLSETTINGS_ARMING_ROLLRIGHT: armingInputLevel = -1.0f * cmd->Roll; break; case MANUALCONTROLSETTINGS_ARMING_PITCHFORWARD: armingInputLevel = 1.0f * cmd->Pitch; break; case MANUALCONTROLSETTINGS_ARMING_PITCHAFT: armingInputLevel = -1.0f * cmd->Pitch; break; case MANUALCONTROLSETTINGS_ARMING_YAWLEFT: armingInputLevel = 1.0f * cmd->Yaw; break; case MANUALCONTROLSETTINGS_ARMING_YAWRIGHT: armingInputLevel = -1.0f * cmd->Yaw; break; case MANUALCONTROLSETTINGS_ARMING_ACCESSORY0: case MANUALCONTROLSETTINGS_ARMING_ACCESSORY1: case MANUALCONTROLSETTINGS_ARMING_ACCESSORY2: armingInputLevel = -1.0f * (float)armSwitch; break; } bool manualArm = false; bool manualDisarm = false; if (armingInputLevel <= -ARMED_THRESHOLD) { manualArm = true; } else if (armingInputLevel >= +ARMED_THRESHOLD) { manualDisarm = true; } switch (armState) { case ARM_STATE_DISARMED: setArmedIfChanged(FLIGHTSTATUS_ARMED_DISARMED); // only allow arming if it's OK too if (manualArm && okToArm()) { armedDisarmStart = lastSysTime; armState = ARM_STATE_ARMING_MANUAL; } break; case ARM_STATE_ARMING_MANUAL: setArmedIfChanged(FLIGHTSTATUS_ARMED_ARMING); if (manualArm && (timeDifferenceMs(armedDisarmStart, lastSysTime) > settings->ArmingSequenceTime)) { armState = ARM_STATE_ARMED; } else if (!manualArm) { armState = ARM_STATE_DISARMED; } break; case ARM_STATE_ARMED: // When we get here, the throttle is low, // we go immediately to disarming due to timeout, also when the disarming mechanism is not enabled armedDisarmStart = lastSysTime; armState = ARM_STATE_DISARMING_TIMEOUT; setArmedIfChanged(FLIGHTSTATUS_ARMED_ARMED); break; case ARM_STATE_DISARMING_TIMEOUT: // We get here when armed while throttle low, even when the arming timeout is not enabled if ((settings->ArmedTimeout != 0) && (timeDifferenceMs(armedDisarmStart, lastSysTime) > settings->ArmedTimeout)) { armState = ARM_STATE_DISARMED; } // Switch to disarming due to manual control when needed if (manualDisarm) { armedDisarmStart = lastSysTime; armState = ARM_STATE_DISARMING_MANUAL; } break; case ARM_STATE_DISARMING_MANUAL: if (manualDisarm && (timeDifferenceMs(armedDisarmStart, lastSysTime) > settings->DisarmingSequenceTime)) { armState = ARM_STATE_DISARMED; } else if (!manualDisarm) { armState = ARM_STATE_ARMED; } break; } // End Switch } } /** * @brief Determine which of N positions the flight mode switch is in and set flight mode accordingly * @param[out] cmd Pointer to the command structure to set the flight mode in * @param[in] settings The settings which indicate which position is which mode * @param[in] flightMode the value of the switch position */ static void processFlightMode(ManualControlSettingsData *settings, float flightMode) { FlightStatusData flightStatus; FlightStatusGet(&flightStatus); // Convert flightMode value into the switch position in the range [0..N-1] uint8_t pos = ((int16_t)(flightMode * 256.0f) + 256) * settings->FlightModeNumber >> 9; if (pos >= settings->FlightModeNumber) { pos = settings->FlightModeNumber - 1; } uint8_t newMode = settings->FlightModePosition[pos]; if (flightStatus.FlightMode != newMode) { flightStatus.FlightMode = newMode; FlightStatusSet(&flightStatus); } } /** * @brief Determine if the manual input value is within acceptable limits * @returns return TRUE if so, otherwise return FALSE */ bool validInputRange(int16_t min, int16_t max, uint16_t value) { if (min > max) { int16_t tmp = min; min = max; max = tmp; } return value >= min - CONNECTION_OFFSET && value <= max + CONNECTION_OFFSET; } /** * @brief Apply deadband to Roll/Pitch/Yaw channels */ static void applyDeadband(float *value, float deadband) { if (fabsf(*value) < deadband) { *value = 0.0f; } else if (*value > 0.0f) { *value -= deadband; } else { *value += deadband; } } #ifdef USE_INPUT_LPF /** * @brief Apply Low Pass Filter to Throttle/Roll/Pitch/Yaw or Accessory channel */ static void applyLPF(float *value, ManualControlSettingsResponseTimeElem channel, ManualControlSettingsData *settings, float dT) { if (cast_struct_to_array(settings->ResponseTime, settings->ResponseTime.Roll)[channel]) { float rt = (float)cast_struct_to_array(settings->ResponseTime, settings->ResponseTime.Roll)[channel]; inputFiltered[channel] = ((rt * inputFiltered[channel]) + (dT * (*value))) / (rt + dT); *value = inputFiltered[channel]; } } #endif // USE_INPUT_LPF /** * Called whenever a critical configuration component changes */ static void configurationUpdatedCb(__attribute__((unused)) UAVObjEvent *ev) { configuration_check(); } /** * @} * @} */