/** ****************************************************************************** * @addtogroup PIOS PIOS Core hardware abstraction layer * @{ * @addtogroup PIOS_SPI SPI Functions * @brief PIOS interface to read and write from SPI ports * @{ * * @file pios_spi.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * Parts by Thorsten Klose (tk@midibox.org) (tk@midibox.org) * @brief Hardware Abstraction Layer for SPI ports of STM32 * @see The GNU Public License (GPL) Version 3 * @notes * * Note that additional chip select lines can be easily added by using * the remaining free GPIOs of the core module. Shared SPI ports should be * arbitrated with (FreeRTOS based) Mutexes to avoid collisions! * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #if defined(PIOS_INCLUDE_SPI) #include static bool PIOS_SPI_validate(struct pios_spi_dev * com_dev) { /* Should check device magic here */ return(true); } #if defined(PIOS_INCLUDE_FREERTOS) static struct pios_spi_dev * PIOS_SPI_alloc(void) { return (pvPortMalloc(sizeof(struct pios_spi_dev))); } #else static struct pios_spi_dev pios_spi_devs[PIOS_SPI_MAX_DEVS]; static uint8_t pios_spi_num_devs; static struct pios_spi_dev * PIOS_SPI_alloc(void) { if (pios_spi_num_devs >= PIOS_SPI_MAX_DEVS) { return (NULL); } return (&pios_spi_devs[pios_spi_num_devs++]); } #endif /** * Initialises SPI pins * \param[in] mode currently only mode 0 supported * \return < 0 if initialisation failed */ int32_t PIOS_SPI_Init(uint32_t * spi_id, const struct pios_spi_cfg * cfg) { PIOS_Assert(spi_id); PIOS_Assert(cfg); struct pios_spi_dev * spi_dev; spi_dev = (struct pios_spi_dev *) PIOS_SPI_alloc(); if (!spi_dev) goto out_fail; /* Bind the configuration to the device instance */ spi_dev->cfg = cfg; #if defined(PIOS_INCLUDE_FREERTOS) vSemaphoreCreateBinary(spi_dev->busy); xSemaphoreGive(spi_dev->busy); #endif /* Disable callback function */ spi_dev->callback = NULL; /* Set rx/tx dummy bytes to a known value */ spi_dev->rx_dummy_byte = 0xFF; spi_dev->tx_dummy_byte = 0xFF; switch (spi_dev->cfg->init.SPI_NSS) { case SPI_NSS_Soft: if (spi_dev->cfg->init.SPI_Mode == SPI_Mode_Master) { /* We're a master in soft NSS mode, make sure we see NSS high at all times. */ SPI_NSSInternalSoftwareConfig(spi_dev->cfg->regs, SPI_NSSInternalSoft_Set); /* Since we're driving the SSEL pin in software, ensure that the slave is deselected */ GPIO_SetBits(spi_dev->cfg->ssel.gpio, spi_dev->cfg->ssel.init.GPIO_Pin); GPIO_Init(spi_dev->cfg->ssel.gpio, &(spi_dev->cfg->ssel.init)); } else { /* We're a slave in soft NSS mode, make sure we see NSS low at all times. */ SPI_NSSInternalSoftwareConfig(spi_dev->cfg->regs, SPI_NSSInternalSoft_Reset); } break; case SPI_NSS_Hard: /* FIXME: Should this also call SPI_SSOutputCmd()? */ GPIO_Init(spi_dev->cfg->ssel.gpio, &(spi_dev->cfg->ssel.init)); break; default: PIOS_Assert(0); } /* Initialize the GPIO pins */ GPIO_Init(spi_dev->cfg->sclk.gpio, &(spi_dev->cfg->sclk.init)); GPIO_Init(spi_dev->cfg->mosi.gpio, &(spi_dev->cfg->mosi.init)); GPIO_Init(spi_dev->cfg->miso.gpio, &(spi_dev->cfg->miso.init)); /* Enable the associated peripheral clock */ switch ((uint32_t) spi_dev->cfg->regs) { case (uint32_t) SPI1: /* Enable SPI peripheral clock (APB2 == high speed) */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE); break; case (uint32_t) SPI2: /* Enable SPI peripheral clock (APB1 == slow speed) */ RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE); break; case (uint32_t) SPI3: /* Enable SPI peripheral clock (APB1 == slow speed) */ RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI3, ENABLE); break; } /* Enable DMA clock */ RCC_AHBPeriphClockCmd(spi_dev->cfg->dma.ahb_clk, ENABLE); /* Configure DMA for SPI Rx */ DMA_Cmd(spi_dev->cfg->dma.rx.channel, DISABLE); DMA_Init(spi_dev->cfg->dma.rx.channel, &(spi_dev->cfg->dma.rx.init)); /* Configure DMA for SPI Tx */ DMA_Cmd(spi_dev->cfg->dma.tx.channel, DISABLE); DMA_Init(spi_dev->cfg->dma.tx.channel, &(spi_dev->cfg->dma.tx.init)); /* Initialize the SPI block */ SPI_Init(spi_dev->cfg->regs, &(spi_dev->cfg->init)); /* Configure CRC calculation */ if (spi_dev->cfg->use_crc) { SPI_CalculateCRC(spi_dev->cfg->regs, ENABLE); } else { SPI_CalculateCRC(spi_dev->cfg->regs, DISABLE); } /* Enable SPI */ SPI_Cmd(spi_dev->cfg->regs, ENABLE); /* Enable SPI interrupts to DMA */ SPI_I2S_DMACmd(spi_dev->cfg->regs, SPI_I2S_DMAReq_Tx | SPI_I2S_DMAReq_Rx, ENABLE); /* Configure DMA interrupt */ NVIC_Init(&(spi_dev->cfg->dma.irq.init)); *spi_id = (uint32_t)spi_dev; return(0); out_fail: return(-1); } /** * (Re-)initialises SPI peripheral clock rate * * \param[in] spi SPI number (0 or 1) * \param[in] spi_prescaler configures the SPI speed: * * \return 0 if no error * \return -1 if disabled SPI port selected * \return -3 if invalid spi_prescaler selected */ int32_t PIOS_SPI_SetClockSpeed(uint32_t spi_id, SPIPrescalerTypeDef spi_prescaler) { struct pios_spi_dev * spi_dev = (struct pios_spi_dev *)spi_id; bool valid = PIOS_SPI_validate(spi_dev); PIOS_Assert(valid) SPI_InitTypeDef SPI_InitStructure; if (spi_prescaler >= 8) { /* Invalid prescaler selected */ return -3; } /* Start with a copy of the default configuration for the peripheral */ SPI_InitStructure = spi_dev->cfg->init; /* Adjust the prescaler for the peripheral's clock */ SPI_InitStructure.SPI_BaudRatePrescaler = ((uint16_t) spi_prescaler & 7) << 3; /* Write back the new configuration */ SPI_Init(spi_dev->cfg->regs, &SPI_InitStructure); PIOS_SPI_TransferByte(spi_id, 0xFF); return 0; } /** * Claim the SPI bus semaphore. Calling the SPI functions does not require this * \param[in] spi SPI number (0 or 1) * \return 0 if no error * \return -1 if timeout before claiming semaphore */ int32_t PIOS_SPI_ClaimBus(uint32_t spi_id) { #if defined(PIOS_INCLUDE_FREERTOS) struct pios_spi_dev * spi_dev = (struct pios_spi_dev *)spi_id; bool valid = PIOS_SPI_validate(spi_dev); PIOS_Assert(valid) if (xSemaphoreTake(spi_dev->busy, 0xffff) != pdTRUE) return -1; #endif return 0; } /** * Release the SPI bus semaphore. Calling the SPI functions does not require this * \param[in] spi SPI number (0 or 1) * \return 0 if no error */ int32_t PIOS_SPI_ReleaseBus(uint32_t spi_id) { #if defined(PIOS_INCLUDE_FREERTOS) struct pios_spi_dev * spi_dev = (struct pios_spi_dev *)spi_id; bool valid = PIOS_SPI_validate(spi_dev); PIOS_Assert(valid) xSemaphoreGive(spi_dev->busy); #endif return 0; } /** * Controls the RC (Register Clock alias Chip Select) pin of a SPI port * \param[in] spi SPI number (0 or 1) * \param[in] pin_value 0 or 1 * \return 0 if no error */ int32_t PIOS_SPI_RC_PinSet(uint32_t spi_id, uint8_t pin_value) { struct pios_spi_dev * spi_dev = (struct pios_spi_dev *)spi_id; bool valid = PIOS_SPI_validate(spi_dev); PIOS_Assert(valid) if (pin_value) { GPIO_SetBits(spi_dev->cfg->ssel.gpio, spi_dev->cfg->ssel.init.GPIO_Pin); } else { GPIO_ResetBits(spi_dev->cfg->ssel.gpio, spi_dev->cfg->ssel.init.GPIO_Pin); } return 0; } /** * Transfers a byte to SPI output and reads back the return value from SPI input * \param[in] spi SPI number (0 or 1) * \param[in] b the byte which should be transfered */ int32_t PIOS_SPI_TransferByte(uint32_t spi_id, uint8_t b) { struct pios_spi_dev * spi_dev = (struct pios_spi_dev *)spi_id; bool valid = PIOS_SPI_validate(spi_dev); PIOS_Assert(valid) uint8_t dummy; uint8_t rx_byte; /* * Procedure taken from STM32F10xxx Reference Manual section 23.3.5 */ /* Make sure the RXNE flag is cleared by reading the DR register */ dummy = spi_dev->cfg->regs->DR; /* Start the transfer */ spi_dev->cfg->regs->DR = b; /* Wait until there is a byte to read */ while (!(spi_dev->cfg->regs->SR & SPI_I2S_FLAG_RXNE)) ; /* Read the rx'd byte */ rx_byte = spi_dev->cfg->regs->DR; /* Wait until the TXE goes high */ while (!(spi_dev->cfg->regs->SR & SPI_I2S_FLAG_TXE)) ; /* Wait for SPI transfer to have fully completed */ while (spi_dev->cfg->regs->SR & SPI_I2S_FLAG_BSY) ; /* Return received byte */ return rx_byte; } /** * Transfers a block of bytes via DMA. * \param[in] spi SPI number (0 or 1) * \param[in] send_buffer pointer to buffer which should be sent.
* If NULL, 0xff (all-one) will be sent. * \param[in] receive_buffer pointer to buffer which should get the received values.
* If NULL, received bytes will be discarded. * \param[in] len number of bytes which should be transfered * \param[in] callback pointer to callback function which will be executed * from DMA channel interrupt once the transfer is finished. * If NULL, no callback function will be used, and PIOS_SPI_TransferBlock() will * block until the transfer is finished. * \return >= 0 if no error during transfer * \return -1 if disabled SPI port selected * \return -3 if function has been called during an ongoing DMA transfer */ int32_t PIOS_SPI_TransferBlock(uint32_t spi_id, const uint8_t *send_buffer, uint8_t *receive_buffer, uint16_t len, void *callback) { struct pios_spi_dev * spi_dev = (struct pios_spi_dev *)spi_id; bool valid = PIOS_SPI_validate(spi_dev); PIOS_Assert(valid) DMA_InitTypeDef dma_init; /* Exit if ongoing transfer */ if (DMA_GetCurrDataCounter(spi_dev->cfg->dma.rx.channel)) { return -3; } /* Disable the SPI peripheral */ SPI_Cmd(spi_dev->cfg->regs, DISABLE); /* Disable the DMA channels */ DMA_Cmd(spi_dev->cfg->dma.rx.channel, DISABLE); DMA_Cmd(spi_dev->cfg->dma.tx.channel, DISABLE); /* Set callback function */ spi_dev->callback = callback; /* * Configure Rx channel */ /* Start with the default configuration for this peripheral */ dma_init = spi_dev->cfg->dma.rx.init; if (receive_buffer != NULL) { /* Enable memory addr. increment - bytes written into receive buffer */ dma_init.DMA_MemoryBaseAddr = (uint32_t) receive_buffer; dma_init.DMA_MemoryInc = DMA_MemoryInc_Enable; } else { /* Disable memory addr. increment - bytes written into dummy buffer */ spi_dev->rx_dummy_byte = 0xFF; dma_init.DMA_MemoryBaseAddr = (uint32_t) &spi_dev->rx_dummy_byte; dma_init.DMA_MemoryInc = DMA_MemoryInc_Disable; } if (spi_dev->cfg->use_crc) { /* Make sure the CRC error flag is cleared before we start */ SPI_I2S_ClearFlag(spi_dev->cfg->regs, SPI_FLAG_CRCERR); } dma_init.DMA_BufferSize = len; DMA_Init(spi_dev->cfg->dma.rx.channel, &(dma_init)); /* * Configure Tx channel */ /* Start with the default configuration for this peripheral */ dma_init = spi_dev->cfg->dma.tx.init; if (send_buffer != NULL) { /* Enable memory addr. increment - bytes written into receive buffer */ dma_init.DMA_MemoryBaseAddr = (uint32_t) send_buffer; dma_init.DMA_MemoryInc = DMA_MemoryInc_Enable; } else { /* Disable memory addr. increment - bytes written into dummy buffer */ spi_dev->tx_dummy_byte = 0xFF; dma_init.DMA_MemoryBaseAddr = (uint32_t) &spi_dev->tx_dummy_byte; dma_init.DMA_MemoryInc = DMA_MemoryInc_Disable; } if (spi_dev->cfg->use_crc) { /* The last byte of the payload will be replaced with the CRC8 */ dma_init.DMA_BufferSize = len - 1; } else { dma_init.DMA_BufferSize = len; } DMA_Init(spi_dev->cfg->dma.tx.channel, &(dma_init)); /* Enable DMA interrupt if callback function active */ DMA_ITConfig(spi_dev->cfg->dma.rx.channel, DMA_IT_TC, (callback != NULL) ? ENABLE : DISABLE); /* Flush out the CRC registers */ SPI_CalculateCRC(spi_dev->cfg->regs, DISABLE); (void)SPI_GetCRC(spi_dev->cfg->regs, SPI_CRC_Rx); SPI_I2S_ClearFlag(spi_dev->cfg->regs, SPI_FLAG_CRCERR); /* Make sure to flush out the receive buffer */ (void)SPI_I2S_ReceiveData(spi_dev->cfg->regs); if (spi_dev->cfg->use_crc) { /* Need a 0->1 transition to reset the CRC logic */ SPI_CalculateCRC(spi_dev->cfg->regs, ENABLE); } /* Start DMA transfers */ DMA_Cmd(spi_dev->cfg->dma.rx.channel, ENABLE); DMA_Cmd(spi_dev->cfg->dma.tx.channel, ENABLE); /* Reenable the SPI device */ SPI_Cmd(spi_dev->cfg->regs, ENABLE); if (callback) { /* User has requested a callback, don't wait for the transfer to complete. */ return 0; } /* Wait until all bytes have been transmitted/received */ while (DMA_GetCurrDataCounter(spi_dev->cfg->dma.rx.channel)); /* Wait for the final bytes of the transfer to complete, including CRC byte(s). */ while (!(SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_I2S_FLAG_TXE))); /* Wait for the final bytes of the transfer to complete, including CRC byte(s). */ while (SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_I2S_FLAG_BSY)); /* Check the CRC on the transfer if enabled. */ if (spi_dev->cfg->use_crc) { /* Check the SPI CRC error flag */ if (SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_FLAG_CRCERR)) { return -4; } } /* No error */ return 0; } /** * Check if a transfer is in progress * \param[in] spi SPI number (0 or 1) * \return >= 0 if no transfer is in progress * \return -1 if disabled SPI port selected * \return -2 if unsupported SPI port selected * \return -3 if function has been called during an ongoing DMA transfer */ int32_t PIOS_SPI_Busy(uint32_t spi_id) { struct pios_spi_dev * spi_dev = (struct pios_spi_dev *)spi_id; bool valid = PIOS_SPI_validate(spi_dev); PIOS_Assert(valid) /* DMA buffer has data or SPI transmit register not empty or SPI is busy*/ if (DMA_GetCurrDataCounter(spi_dev->cfg->dma.rx.channel) || !SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_I2S_FLAG_TXE) || SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_I2S_FLAG_BSY)) { return -3; } return(0); } void PIOS_SPI_IRQ_Handler(uint32_t spi_id) { struct pios_spi_dev * spi_dev = (struct pios_spi_dev *)spi_id; bool valid = PIOS_SPI_validate(spi_dev); PIOS_Assert(valid) DMA_ClearFlag(spi_dev->cfg->dma.irq.flags); /* Wait for the final bytes of the transfer to complete, including CRC byte(s). */ while (!(SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_I2S_FLAG_TXE))) ; /* Wait for the final bytes of the transfer to complete, including CRC byte(s). */ while (SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_I2S_FLAG_BSY)) ; if (spi_dev->callback != NULL) { bool crc_ok = TRUE; uint8_t crc_val; if (SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_FLAG_CRCERR)) { crc_ok = FALSE; SPI_I2S_ClearFlag(spi_dev->cfg->regs, SPI_FLAG_CRCERR); } crc_val = SPI_GetCRC(spi_dev->cfg->regs, SPI_CRC_Rx); spi_dev->callback(crc_ok, crc_val); } } #endif /** * @} * @} */