/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup StabilizationModule Stabilization Module * @brief Stabilization PID loops in an airframe type independent manner * @note This object updates the @ref ActuatorDesired "Actuator Desired" based on the * PID loops on the @ref AttitudeDesired "Attitude Desired" and @ref AttitudeState "Attitude State" * @{ * * @file AutoTune/autotune.c * @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2016. * dRonin, http://dRonin.org/, Copyright (C) 2015-2016 * Tau Labs, http://taulabs.org, Copyright (C) 2013-2014 * The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief Automatic PID tuning module. * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "openpilot.h" #include "pios.h" //#include "physical_constants.h" #include "flightstatus.h" //#include "modulesettings.h" #include "manualcontrolcommand.h" #include "manualcontrolsettings.h" //#include "gyros.h" #include "gyrosensor.h" #include "actuatordesired.h" #include "stabilizationdesired.h" #include "stabilizationsettings.h" #include "systemident.h" #include //#include "pios_thread.h" #include "systemsettings.h" #include "taskinfo.h" #include "stabilization.h" #include "hwsettings.h" #include "stabilizationsettingsbank1.h" #include "stabilizationsettingsbank2.h" #include "stabilizationsettingsbank3.h" //#include "circqueue.h" //#include "misc_math.h" #define PIOS_malloc pios_malloc #if defined(PIOS_EXCLUDE_ADVANCED_FEATURES) #define powapprox fastpow #define expapprox fastexp #else #define powapprox powf #define expapprox expf #endif /* defined(PIOS_EXCLUDE_ADVANCED_FEATURES) */ /** ****************************************************************************** * @file circqueue.h * @author dRonin, http://dRonin.org/, Copyright (C) 2015 * @brief Public header for 1 reader, 1 writer circular queue *****************************************************************************/ typedef struct circ_queue *circ_queue_t; circ_queue_t circ_queue_new(uint16_t elem_size, uint16_t num_elem); void *circ_queue_cur_write_pos(circ_queue_t q); int circ_queue_advance_write(circ_queue_t q); void *circ_queue_read_pos(circ_queue_t q); void circ_queue_read_completed(circ_queue_t q); /** ****************************************************************************** * @file circqueue.c * @author dRonin, http://dRonin.org/, Copyright (C) 2015 * @brief Implements a 1 reader, 1 writer nonblocking circular queue *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ //#include struct circ_queue { uint16_t elem_size; /**< Element size in octets */ uint16_t num_elem; /**< Number of elements in circqueue (capacity+1) */ volatile uint16_t write_head; /**< Element position writer is at */ volatile uint16_t read_tail; /**< Element position reader is at */ /* head == tail: empty. * head == tail-1: full. */ /* This is declared as a uint32_t for alignment reasons. */ uint32_t contents[]; /**< Contents of the circular queue */ }; /** Allocate a new circular queue. * @param[in] elem_size The size of each element, as obtained from sizeof(). * @param[in] num_elem The number of elements in the queue. The capacity is * one less than this (it may not be completely filled). * @returns The handle to the circular queue. */ circ_queue_t circ_queue_new(uint16_t elem_size, uint16_t num_elem) { PIOS_Assert(elem_size > 0); PIOS_Assert(num_elem > 2); uint32_t size = elem_size * num_elem; /* PIOS_malloc_no_dma may not be safe for some later uses.. hmmm */ struct circ_queue *ret = PIOS_malloc(sizeof(*ret) + size); memset(ret, 0, sizeof(*ret) + size); ret->elem_size = elem_size; ret->num_elem = num_elem; return ret; } /** Get a pointer to the current queue write position. * This position is unavailable to any present readers and may be filled in * with the desired data without respect to any synchronization. * * @param[in] q Handle to circular queue. * @returns The position for new data to be written to (of size elem_size). */ void *circ_queue_cur_write_pos(circ_queue_t q) { void *contents = q->contents; return contents + q->write_head * q->elem_size; } static inline uint16_t next_pos(uint16_t num_pos, uint16_t current_pos) { PIOS_Assert(current_pos < num_pos); current_pos++; /* Also save on uint16_t wrap */ if (current_pos >= num_pos) { current_pos = 0; } return current_pos; } /** Makes the current block of data available to readers and advances write pos. * This may fail if the queue contain num_elems -1 elements, in which case the * advance may be retried in the future. In this case, data already written to * write_pos is preserved and the advance may be retried (or overwritten with * new data). * * @param[in] q Handle to circular queue. * @returns 0 if the write succeeded, nonzero on error. */ int circ_queue_advance_write(circ_queue_t q) { uint16_t new_write_head = next_pos(q->num_elem, q->write_head); /* the head is not allowed to advance to meet the tail */ if (new_write_head == q->read_tail) { return -1; /* Full */ /* Caller can either let the data go away, or try again to * advance later */ } q->write_head = new_write_head; return 0; } /** Returns a block of data to the reader. * The block is "claimed" until released with circ_queue_read_completed. * No new data is available until that call is made (instead the same * block-in-progress will be returned). * * @param[in] q Handle to circular queue. * @returns pointer to the data, or NULL if the queue is empty. */ void *circ_queue_read_pos(circ_queue_t q) { uint16_t read_tail = q->read_tail; void *contents = q->contents; if (q->write_head == read_tail) { /* There is nothing new to read. */ return NULL; } return contents + q->read_tail * q->elem_size; } /** Releases a block of read data obtained by circ_queue_read_pos. * Behavior is undefined if circ_queue_read_pos did not previously return * a block of data. * * @param[in] q Handle to the circular queue. */ void circ_queue_read_completed(circ_queue_t q) { /* Avoid multiple accesses to a volatile */ uint16_t read_tail = q->read_tail; /* If this is being called, the queue had better not be empty-- * we're supposed to finish consuming this element after a prior call * to circ_queue_read_pos. */ PIOS_Assert(read_tail != q->write_head); q->read_tail = next_pos(q->num_elem, read_tail); } // Private constants #undef STACK_SIZE_BYTES // Nano locks up it seems in UAVObjSav() with 1340 // why did it lock up? 1540 now works (after a long initial delay) with 360 bytes left #define STACK_SIZE_BYTES 1340 //#define TASK_PRIORITY PIOS_THREAD_PRIO_NORMAL #define TASK_PRIORITY (tskIDLE_PRIORITY + 1) #define AF_NUMX 13 #define AF_NUMP 43 // Private types enum AUTOTUNE_STATE { AT_INIT, AT_START, AT_RUN, AT_FINISHED, AT_WAITING }; struct at_queued_data { float y[3]; /* Gyro measurements */ float u[3]; /* Actuator desired */ float throttle; /* Throttle desired */ uint32_t raw_time; /* From PIOS_DELAY_GetRaw() */ }; // Private variables //static struct pios_thread *taskHandle; static xTaskHandle taskHandle; static bool module_enabled; static circ_queue_t at_queue; static volatile uint32_t at_points_spilled; static uint32_t throttle_accumulator; static uint8_t rollMax, pitchMax; static StabilizationBankMaximumRateData maximumRate; static SystemSettingsAirframeTypeOptions airframe_type; static float gX[AF_NUMX] = {0}; static float gP[AF_NUMP] = {0}; SystemIdentData systemIdentData; // Private functions static void AutotuneTask(void *parameters); static void af_predict(float X[AF_NUMX], float P[AF_NUMP], const float u_in[3], const float gyro[3], const float dT_s, const float t_in); static void af_init(float X[AF_NUMX], float P[AF_NUMP]); #ifndef AT_QUEUE_NUMELEM #define AT_QUEUE_NUMELEM 18 #endif /** * Initialise the module, called on startup * \returns 0 on success or -1 if initialisation failed */ int32_t AutotuneInitialize(void) { // Create a queue, connect to manual control command and flightstatus #ifdef MODULE_AutoTune_BUILTIN module_enabled = true; #else HwSettingsOptionalModulesData optionalModules; HwSettingsOptionalModulesGet(&optionalModules); if (optionalModules.AutoTune == HWSETTINGS_OPTIONALMODULES_ENABLED) { module_enabled = true; } else { module_enabled = false; } #endif if (module_enabled) { SystemIdentInitialize(); at_queue = circ_queue_new(sizeof(struct at_queued_data), AT_QUEUE_NUMELEM); if (!at_queue) { module_enabled = false; } } return 0; } /** * Initialise the module, called on startup * \returns 0 on success or -1 if initialisation failed */ int32_t AutotuneStart(void) { // Start main task if it is enabled if (module_enabled) { //taskHandle = PIOS_Thread_Create(AutotuneTask, "Autotune", STACK_SIZE_BYTES, NULL, TASK_PRIORITY); //TaskMonitorAdd(TASKINFO_RUNNING_AUTOTUNE, taskHandle); //PIOS_WDG_RegisterFlag(PIOS_WDG_AUTOTUNE); xTaskCreate(AutotuneTask, "AutoTune", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &taskHandle); PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_AUTOTUNE, taskHandle); } return 0; } MODULE_INITCALL(AutotuneInitialize, AutotuneStart); #if 0 static void at_new_gyro_data(UAVObjEvent * ev, void *ctx, void *obj, int len) { (void) ev; (void) ctx; #else static void at_new_gyro_data(UAVObjEvent * ev) { #endif #if 0 typedef struct { UAVObjHandle obj; uint16_t instId; UAVObjEventType event; bool lowPriority; /* if true prevents raising warnings */ } UAVObjEvent; #endif static bool last_sample_unpushed = 0; GyroSensorData gyro; ActuatorDesiredData actuators; if (!ev || !ev->obj || ev->instId!=0 || ev->event!=EV_UPDATED) { return; } // object can and possibly will at times change asynchronously so must copy data here, with locking // and do it as soon as possible GyroSensorGet(&gyro); ActuatorDesiredGet(&actuators); // GyroSensorData *g = ev->obj; // PIOS_Assert(len == sizeof(*g)); if (last_sample_unpushed) { /* Last time we were unable to advance the write pointer. * Try again, last chance! */ if (circ_queue_advance_write(at_queue)) { at_points_spilled++; } } struct at_queued_data *q_item = circ_queue_cur_write_pos(at_queue); q_item->raw_time = PIOS_DELAY_GetRaw(); q_item->y[0] = gyro.x; q_item->y[1] = gyro.y; q_item->y[2] = gyro.z; q_item->u[0] = actuators.Roll; q_item->u[1] = actuators.Pitch; q_item->u[2] = actuators.Yaw; q_item->throttle = actuators.Thrust; if (circ_queue_advance_write(at_queue) != 0) { last_sample_unpushed = true; } else { last_sample_unpushed = false; } } static void UpdateSystemIdent(const float *X, const float *noise, float dT_s, uint32_t predicts, uint32_t spills, float hover_throttle) { memset(&systemIdentData, 0, sizeof(systemIdentData)); systemIdentData.Beta.Roll = X[6]; systemIdentData.Beta.Pitch = X[7]; systemIdentData.Beta.Yaw = X[8]; systemIdentData.Bias.Roll = X[10]; systemIdentData.Bias.Pitch = X[11]; systemIdentData.Bias.Yaw = X[12]; systemIdentData.Tau = X[9]; if (noise) { systemIdentData.Noise.Roll = noise[0]; systemIdentData.Noise.Pitch = noise[1]; systemIdentData.Noise.Yaw = noise[2]; } systemIdentData.Period = dT_s * 1000.0f; systemIdentData.NumAfPredicts = predicts; systemIdentData.NumSpilledPts = spills; systemIdentData.HoverThrottle = hover_throttle; SystemIdentSet(&systemIdentData); } static void UpdateStabilizationDesired(bool doingIdent) { StabilizationDesiredData stabDesired; StabilizationDesiredGet(&stabDesired); ManualControlCommandData manual_control_command; ManualControlCommandGet(&manual_control_command); stabDesired.Roll = manual_control_command.Roll * rollMax; stabDesired.Pitch = manual_control_command.Pitch * pitchMax; stabDesired.Yaw = manual_control_command.Yaw * maximumRate.Yaw; if (doingIdent) { stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_SYSTEMIDENT; stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_SYSTEMIDENT; stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_SYSTEMIDENT; } else { stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE; stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE; stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE; } stabDesired.Thrust = (airframe_type == SYSTEMSETTINGS_AIRFRAMETYPE_HELICP) ? manual_control_command.Collective : manual_control_command.Throttle; // is this a race // control feels very sluggish too StabilizationDesiredSet(&stabDesired); } #if 0 void ComputeStabilization() { StabilizationSettingsBank1Data stabSettingsBank; switch (systemIdentData.DestinationPidBank) { case 1: StabilizationSettingsBank1Get((void *)&stabSettingsBank); break; case 2: StabilizationSettingsBank2Get((void *)&stabSettingsBank); break; case 3: StabilizationSettingsBank3Get((void *)&stabSettingsBank); break; } // These three parameters define the desired response properties // - rate scale in the fraction of the natural speed of the system // to strive for. // - damp is the amount of damping in the system. higher values // make oscillations less likely // - ghf is the amount of high frequency gain and limits the influence // of noise const double ghf = systemIdentData.RateNoise / 1000.0f; const double damp = systemIdentData.RateDamp / 100.0f; double tau = exp(systemIdentData.Tau); double beta_roll = systemIdentData.Beta.Roll; double beta_pitch = systemIdentData.Beta.Pitch; double wn = 1.0f/tau; double tau_d = 0.0f; for (int i = 0; i < 30; i++) { double tau_d_roll = (2.0f*damp*tau*wn - 1.0f)/(4.0f*tau*damp*damp*wn*wn - 2.0f*damp*wn - tau*wn*wn + exp(beta_roll)*ghf); double tau_d_pitch = (2.0f*damp*tau*wn - 1.0f)/(4.0f*tau*damp*damp*wn*wn - 2.0f*damp*wn - tau*wn*wn + exp(beta_pitch)*ghf); // Select the slowest filter property tau_d = (tau_d_roll > tau_d_pitch) ? tau_d_roll : tau_d_pitch; wn = (tau + tau_d) / (tau*tau_d) / (2.0f * damp + 2.0f); } // Set the real pole position. The first pole is quite slow, which // prevents the integral being too snappy and driving too much // overshoot. const double a = ((tau+tau_d) / tau / tau_d - 2.0f * damp * wn) / 20.0f; const double b = ((tau+tau_d) / tau / tau_d - 2.0f * damp * wn - a); // Calculate the gain for the outer loop by approximating the // inner loop as a single order lpf. Set the outer loop to be // critically damped; const double zeta_o = 1.3; const double kp_o = 1.0f / 4.0f / (zeta_o * zeta_o) / (1.0f/wn); // For now just run over roll and pitch int axes = ((systemIdentData.CalculateYaw) : 3 : 2); for (int i = 0; i < axes; i++) { double beta = exp(SystemIdentBetaToArray(systemIdentData.Beta)[i]); double ki = a * b * wn * wn * tau * tau_d / beta; double kp = tau * tau_d * ((a+b)*wn*wn + 2.0f*a*b*damp*wn) / beta - ki*tau_d; double kd = (tau * tau_d * (a*b + wn*wn + (a+b)*2.0f*damp*wn) - 1.0f) / beta - kp * tau_d; switch(i) { case 0: // Roll stabSettingsBank.RollRatePID.Kp = kp; stabSettingsBank.RollRatePID.Ki = ki; stabSettingsBank.RollRatePID.Kd = kd; stabSettingsBank.RollPI.Kp = kp_o; stabSettingsBank.RollPI.Ki = 0; break; case 1: // Pitch stabSettingsBank.PitchRatePID.Kp = kp; stabSettingsBank.PitchRatePID.Ki = ki; stabSettingsBank.PitchRatePID.Kd = kd; stabSettingsBank.PitchPI.Kp = kp_o; stabSettingsBank.PitchPI.Ki = 0; break; case 2: // optional Yaw stabSettingsBank.YawRatePID.Kp = kp; stabSettingsBank.YawRatePID.Ki = ki; stabSettingsBank.YawRatePID.Kd = kd; stabSettingsBank.YawPI.Kp = kp_o; stabSettingsBank.YawPI.Ki = 0; break; } } //stabSettingsBank.DerivativeCutoff = 1.0f / (2.0f*M_PI*tau_d); } #else void ComputeStabilizationAndSetPids() { StabilizationSettingsBank1Data stabSettingsBank; switch (systemIdentData.DestinationPidBank) { case 1: StabilizationSettingsBank1Get((void *)&stabSettingsBank); break; case 2: StabilizationSettingsBank2Get((void *)&stabSettingsBank); break; case 3: StabilizationSettingsBank3Get((void *)&stabSettingsBank); break; } // These three parameters define the desired response properties // - rate scale in the fraction of the natural speed of the system // to strive for. // - damp is the amount of damping in the system. higher values // make oscillations less likely // - ghf is the amount of high frequency gain and limits the influence // of noise const double ghf = systemIdentData.RateNoise / 1000.0d; const double damp = systemIdentData.RateDamp / 100.0d; double tau = exp(systemIdentData.Tau); double beta_roll = systemIdentData.Beta.Roll; double beta_pitch = systemIdentData.Beta.Pitch; double wn = 1.0d/tau; double tau_d = 0.0d; for (int i = 0; i < 30; i++) { double tau_d_roll = (2.0d*damp*tau*wn - 1.0d)/(4.0d*tau*damp*damp*wn*wn - 2.0d*damp*wn - tau*wn*wn + exp(beta_roll)*ghf); double tau_d_pitch = (2.0d*damp*tau*wn - 1.0d)/(4.0d*tau*damp*damp*wn*wn - 2.0d*damp*wn - tau*wn*wn + exp(beta_pitch)*ghf); // Select the slowest filter property tau_d = (tau_d_roll > tau_d_pitch) ? tau_d_roll : tau_d_pitch; wn = (tau + tau_d) / (tau*tau_d) / (2.0d * damp + 2.0d); } // Set the real pole position. The first pole is quite slow, which // prevents the integral being too snappy and driving too much // overshoot. const double a = ((tau+tau_d) / tau / tau_d - 2.0d * damp * wn) / 20.0d; const double b = ((tau+tau_d) / tau / tau_d - 2.0d * damp * wn - a); // Calculate the gain for the outer loop by approximating the // inner loop as a single order lpf. Set the outer loop to be // critically damped; const double zeta_o = 1.3d; const double kp_o = 1.0d / 4.0d / (zeta_o * zeta_o) / (1.0d/wn); // For now just run over roll and pitch int axes = ((systemIdentData.CalculateYaw) ? 3 : 2); for (int i = 0; i < axes; i++) { double beta = exp(SystemIdentBetaToArray(systemIdentData.Beta)[i]); double ki = a * b * wn * wn * tau * tau_d / beta; double kp = tau * tau_d * ((a+b)*wn*wn + 2.0d*a*b*damp*wn) / beta - ki*tau_d; double kd = (tau * tau_d * (a*b + wn*wn + (a+b)*2.0d*damp*wn) - 1.0d) / beta - kp * tau_d; switch(i) { case 0: // Roll stabSettingsBank.RollRatePID.Kp = kp; stabSettingsBank.RollRatePID.Ki = ki; stabSettingsBank.RollRatePID.Kd = kd; stabSettingsBank.RollPI.Kp = kp_o; stabSettingsBank.RollPI.Ki = 0; break; case 1: // Pitch stabSettingsBank.PitchRatePID.Kp = kp; stabSettingsBank.PitchRatePID.Ki = ki; stabSettingsBank.PitchRatePID.Kd = kd; stabSettingsBank.PitchPI.Kp = kp_o; stabSettingsBank.PitchPI.Ki = 0; break; case 2: // optional Yaw stabSettingsBank.YawRatePID.Kp = kp; stabSettingsBank.YawRatePID.Ki = ki; stabSettingsBank.YawRatePID.Kd = kd; stabSettingsBank.YawPI.Kp = kp_o; stabSettingsBank.YawPI.Ki = 0; break; } } //stabSettingsBank.DerivativeCutoff = 1.0d / (2.0d*M_PI*tau_d); switch (systemIdentData.DestinationPidBank) { case 1: StabilizationSettingsBank1Set((void *)&stabSettingsBank); break; case 2: StabilizationSettingsBank2Set((void *)&stabSettingsBank); break; case 3: StabilizationSettingsBank3Set((void *)&stabSettingsBank); break; } } #endif #define MAX_PTS_PER_CYCLE 4 /** * Module thread, should not return. */ static void AutotuneTask(__attribute__((unused)) void *parameters) { enum AUTOTUNE_STATE state = AT_INIT; uint32_t last_update_time = xTaskGetTickCount(); float noise[3] = {0}; af_init(gX,gP); uint32_t last_time = 0.0f; const uint32_t YIELD_MS = 2; GyroSensorConnectCallback(at_new_gyro_data); bool save_needed = false; while(1) { //PIOS_WDG_UpdateFlag(PIOS_WDG_AUTOTUNE); uint32_t diff_time; const uint32_t PREPARE_TIME = 2000; const uint32_t MEASURE_TIME = 60000; static uint32_t update_counter = 0; bool doing_ident = false; bool can_sleep = true; FlightStatusData flightStatus; FlightStatusGet(&flightStatus); //this seems to lock up on Nano if (save_needed) { if (flightStatus.Armed == FLIGHTSTATUS_ARMED_DISARMED) { // Save the settings locally. UAVObjSave(SystemIdentHandle(), 0); state = AT_INIT; save_needed = false; } } // can't restart till after you save that's OK I guess // but you should be able to stop in mid tune and restart from beginning // maybe reset state in that fn that gets called on mode change // Only allow this module to run when autotuning if (flightStatus.FlightMode != FLIGHTSTATUS_FLIGHTMODE_AUTOTUNE) { state = AT_INIT; vTaskDelay(50 / portTICK_RATE_MS); continue; } switch(state) { case AT_INIT: // moved from UpdateStabilizationDesired() StabilizationBankRollMaxGet(&rollMax); StabilizationBankPitchMaxGet(&pitchMax); StabilizationBankMaximumRateGet(&maximumRate); SystemSettingsAirframeTypeGet(&airframe_type); // Reset save status; only save if this tune // completes. save_needed = false; last_update_time = xTaskGetTickCount(); // Only start when armed and flying if (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) { // remove this one and let the other one init it // should wait on the other one if that is the case af_init(gX, gP); UpdateSystemIdent(gX, NULL, 0.0f, 0, 0, 0.0f); state = AT_START; } break; case AT_START: diff_time = xTaskGetTickCount() - last_update_time; // Spend the first block of time in normal rate mode to get stabilized if (diff_time > PREPARE_TIME) { last_time = PIOS_DELAY_GetRaw(); /* Drain the queue of all current data */ while (circ_queue_read_pos(at_queue)) { circ_queue_read_completed(at_queue); } /* And reset the point spill counter */ update_counter = 0; at_points_spilled = 0; throttle_accumulator = 0; state = AT_RUN; last_update_time = xTaskGetTickCount(); } break; case AT_RUN: diff_time = xTaskGetTickCount() - last_update_time; doing_ident = true; can_sleep = false; for (int i=0; iraw_time) * 1.0e-6f; /* This is for the first point, but * also if we have extended drops */ if (dT_s > 0.010f) { dT_s = 0.010f; } last_time = pt->raw_time; af_predict(gX, gP, pt->u, pt->y, dT_s, pt->throttle); for (int j=0; j<3; ++j) { const float NOISE_ALPHA = 0.9997f; // 10 second time constant at 300 Hz noise[j] = NOISE_ALPHA * noise[j] + (1-NOISE_ALPHA) * (pt->y[j] - gX[j]) * (pt->y[j] - gX[j]); } //This will work up to 8kHz with an 89% throttle position before overflow throttle_accumulator += 10000 * pt->throttle; // Update uavo every 256 cycles to avoid // telemetry spam if (!((update_counter++) & 0xff)) { float hover_throttle = ((float)(throttle_accumulator/update_counter))/10000.0f; UpdateSystemIdent(gX, noise, dT_s, update_counter, at_points_spilled, hover_throttle); } /* Free the buffer containing an AT point */ circ_queue_read_completed(at_queue); } if (diff_time > MEASURE_TIME) { // Move on to next state state = AT_FINISHED; last_update_time = xTaskGetTickCount(); } break; case AT_FINISHED: ; // Wait until disarmed and landed before saving the settings float hover_throttle = ((float)(throttle_accumulator/update_counter))/10000.0f; UpdateSystemIdent(gX, noise, 0, update_counter, at_points_spilled, hover_throttle); save_needed = true; state = AT_WAITING; break; case AT_WAITING: default: // Set an alarm or some shit like that break; } // Update based on manual controls UpdateStabilizationDesired(doing_ident); if (can_sleep) { vTaskDelay(YIELD_MS / portTICK_RATE_MS); } } } /** * Prediction step for EKF on control inputs to quad that * learns the system properties * @param X the current state estimate which is updated in place * @param P the current covariance matrix, updated in place * @param[in] the current control inputs (roll, pitch, yaw) * @param[in] the gyro measurements */ __attribute__((always_inline)) static inline void af_predict(float X[AF_NUMX], float P[AF_NUMP], const float u_in[3], const float gyro[3], const float dT_s, const float t_in) { const float Ts = dT_s; const float Tsq = Ts * Ts; const float Tsq3 = Tsq * Ts; const float Tsq4 = Tsq * Tsq; // for convenience and clarity code below uses the named versions of // the state variables float w1 = X[0]; // roll rate estimate float w2 = X[1]; // pitch rate estimate float w3 = X[2]; // yaw rate estimate float u1 = X[3]; // scaled roll torque float u2 = X[4]; // scaled pitch torque float u3 = X[5]; // scaled yaw torque const float e_b1 = expapprox(X[6]); // roll torque scale const float b1 = X[6]; const float e_b2 = expapprox(X[7]); // pitch torque scale const float b2 = X[7]; const float e_b3 = expapprox(X[8]); // yaw torque scale const float b3 = X[8]; const float e_tau = expapprox(X[9]); // time response of the motors const float tau = X[9]; const float bias1 = X[10]; // bias in the roll torque const float bias2 = X[11]; // bias in the pitch torque const float bias3 = X[12]; // bias in the yaw torque // inputs to the system (roll, pitch, yaw) const float u1_in = 4*t_in*u_in[0]; const float u2_in = 4*t_in*u_in[1]; const float u3_in = 4*t_in*u_in[2]; // measurements from gyro const float gyro_x = gyro[0]; const float gyro_y = gyro[1]; const float gyro_z = gyro[2]; // update named variables because we want to use predicted // values below w1 = X[0] = w1 - Ts*bias1*e_b1 + Ts*u1*e_b1; w2 = X[1] = w2 - Ts*bias2*e_b2 + Ts*u2*e_b2; w3 = X[2] = w3 - Ts*bias3*e_b3 + Ts*u3*e_b3; u1 = X[3] = (Ts*u1_in)/(Ts + e_tau) + (u1*e_tau)/(Ts + e_tau); u2 = X[4] = (Ts*u2_in)/(Ts + e_tau) + (u2*e_tau)/(Ts + e_tau); u3 = X[5] = (Ts*u3_in)/(Ts + e_tau) + (u3*e_tau)/(Ts + e_tau); // X[6] to X[12] unchanged /**** filter parameters ****/ const float q_w = 1e-3f; const float q_ud = 1e-3f; const float q_B = 1e-6f; const float q_tau = 1e-6f; const float q_bias = 1e-19f; const float s_a = 150.0f; // expected gyro measurment noise const float Q[AF_NUMX] = {q_w, q_w, q_w, q_ud, q_ud, q_ud, q_B, q_B, q_B, q_tau, q_bias, q_bias, q_bias}; float D[AF_NUMP]; for (uint32_t i = 0; i < AF_NUMP; i++) D[i] = P[i]; const float e_tau2 = e_tau * e_tau; const float e_tau3 = e_tau * e_tau2; const float e_tau4 = e_tau2 * e_tau2; const float Ts_e_tau2 = (Ts + e_tau) * (Ts + e_tau); const float Ts_e_tau4 = Ts_e_tau2 * Ts_e_tau2; // covariance propagation - D is stored copy of covariance P[0] = D[0] + Q[0] + 2*Ts*e_b1*(D[3] - D[28] - D[9]*bias1 + D[9]*u1) + Tsq*(e_b1*e_b1)*(D[4] - 2*D[29] + D[32] - 2*D[10]*bias1 + 2*D[30]*bias1 + 2*D[10]*u1 - 2*D[30]*u1 + D[11]*(bias1*bias1) + D[11]*(u1*u1) - 2*D[11]*bias1*u1); P[1] = D[1] + Q[1] + 2*Ts*e_b2*(D[5] - D[33] - D[12]*bias2 + D[12]*u2) + Tsq*(e_b2*e_b2)*(D[6] - 2*D[34] + D[37] - 2*D[13]*bias2 + 2*D[35]*bias2 + 2*D[13]*u2 - 2*D[35]*u2 + D[14]*(bias2*bias2) + D[14]*(u2*u2) - 2*D[14]*bias2*u2); P[2] = D[2] + Q[2] + 2*Ts*e_b3*(D[7] - D[38] - D[15]*bias3 + D[15]*u3) + Tsq*(e_b3*e_b3)*(D[8] - 2*D[39] + D[42] - 2*D[16]*bias3 + 2*D[40]*bias3 + 2*D[16]*u3 - 2*D[40]*u3 + D[17]*(bias3*bias3) + D[17]*(u3*u3) - 2*D[17]*bias3*u3); P[3] = (D[3]*(e_tau2 + Ts*e_tau) + Ts*e_b1*e_tau2*(D[4] - D[29]) + Tsq*e_b1*e_tau*(D[4] - D[29]) + D[18]*Ts*e_tau*(u1 - u1_in) + D[10]*e_b1*(u1*(Ts*e_tau2 + Tsq*e_tau) - bias1*(Ts*e_tau2 + Tsq*e_tau)) + D[21]*Tsq*e_b1*e_tau*(u1 - u1_in) + D[31]*Tsq*e_b1*e_tau*(u1_in - u1) + D[24]*Tsq*e_b1*e_tau*(u1*(u1 - bias1) + u1_in*(bias1 - u1)))/Ts_e_tau2; P[4] = (Q[3]*Tsq4 + e_tau4*(D[4] + Q[3]) + 2*Ts*e_tau3*(D[4] + 2*Q[3]) + 4*Q[3]*Tsq3*e_tau + Tsq*e_tau2*(D[4] + 6*Q[3] + u1*(D[27]*u1 + 2*D[21]) + u1_in*(D[27]*u1_in - 2*D[21])) + 2*D[21]*Ts*e_tau3*(u1 - u1_in) - 2*D[27]*Tsq*u1*u1_in*e_tau2)/Ts_e_tau4; P[5] = (D[5]*(e_tau2 + Ts*e_tau) + Ts*e_b2*e_tau2*(D[6] - D[34]) + Tsq*e_b2*e_tau*(D[6] - D[34]) + D[19]*Ts*e_tau*(u2 - u2_in) + D[13]*e_b2*(u2*(Ts*e_tau2 + Tsq*e_tau) - bias2*(Ts*e_tau2 + Tsq*e_tau)) + D[22]*Tsq*e_b2*e_tau*(u2 - u2_in) + D[36]*Tsq*e_b2*e_tau*(u2_in - u2) + D[25]*Tsq*e_b2*e_tau*(u2*(u2 - bias2) + u2_in*(bias2 - u2)))/Ts_e_tau2; P[6] = (Q[4]*Tsq4 + e_tau4*(D[6] + Q[4]) + 2*Ts*e_tau3*(D[6] + 2*Q[4]) + 4*Q[4]*Tsq3*e_tau + Tsq*e_tau2*(D[6] + 6*Q[4] + u2*(D[27]*u2 + 2*D[22]) + u2_in*(D[27]*u2_in - 2*D[22])) + 2*D[22]*Ts*e_tau3*(u2 - u2_in) - 2*D[27]*Tsq*u2*u2_in*e_tau2)/Ts_e_tau4; P[7] = (D[7]*(e_tau2 + Ts*e_tau) + Ts*e_b3*e_tau2*(D[8] - D[39]) + Tsq*e_b3*e_tau*(D[8] - D[39]) + D[20]*Ts*e_tau*(u3 - u3_in) + D[16]*e_b3*(u3*(Ts*e_tau2 + Tsq*e_tau) - bias3*(Ts*e_tau2 + Tsq*e_tau)) + D[23]*Tsq*e_b3*e_tau*(u3 - u3_in) + D[41]*Tsq*e_b3*e_tau*(u3_in - u3) + D[26]*Tsq*e_b3*e_tau*(u3*(u3 - bias3) + u3_in*(bias3 - u3)))/Ts_e_tau2; P[8] = (Q[5]*Tsq4 + e_tau4*(D[8] + Q[5]) + 2*Ts*e_tau3*(D[8] + 2*Q[5]) + 4*Q[5]*Tsq3*e_tau + Tsq*e_tau2*(D[8] + 6*Q[5] + u3*(D[27]*u3 + 2*D[23]) + u3_in*(D[27]*u3_in - 2*D[23])) + 2*D[23]*Ts*e_tau3*(u3 - u3_in) - 2*D[27]*Tsq*u3*u3_in*e_tau2)/Ts_e_tau4; P[9] = D[9] - Ts*e_b1*(D[30] - D[10] + D[11]*(bias1 - u1)); P[10] = (D[10]*(Ts + e_tau) + D[24]*Ts*(u1 - u1_in))*(e_tau/Ts_e_tau2); P[11] = D[11] + Q[6]; P[12] = D[12] - Ts*e_b2*(D[35] - D[13] + D[14]*(bias2 - u2)); P[13] = (D[13]*(Ts + e_tau) + D[25]*Ts*(u2 - u2_in))*(e_tau/Ts_e_tau2); P[14] = D[14] + Q[7]; P[15] = D[15] - Ts*e_b3*(D[40] - D[16] + D[17]*(bias3 - u3)); P[16] = (D[16]*(Ts + e_tau) + D[26]*Ts*(u3 - u3_in))*(e_tau/Ts_e_tau2); P[17] = D[17] + Q[8]; P[18] = D[18] - Ts*e_b1*(D[31] - D[21] + D[24]*(bias1 - u1)); P[19] = D[19] - Ts*e_b2*(D[36] - D[22] + D[25]*(bias2 - u2)); P[20] = D[20] - Ts*e_b3*(D[41] - D[23] + D[26]*(bias3 - u3)); P[21] = (D[21]*(Ts + e_tau) + D[27]*Ts*(u1 - u1_in))*(e_tau/Ts_e_tau2); P[22] = (D[22]*(Ts + e_tau) + D[27]*Ts*(u2 - u2_in))*(e_tau/Ts_e_tau2); P[23] = (D[23]*(Ts + e_tau) + D[27]*Ts*(u3 - u3_in))*(e_tau/Ts_e_tau2); P[24] = D[24]; P[25] = D[25]; P[26] = D[26]; P[27] = D[27] + Q[9]; P[28] = D[28] - Ts*e_b1*(D[32] - D[29] + D[30]*(bias1 - u1)); P[29] = (D[29]*(Ts + e_tau) + D[31]*Ts*(u1 - u1_in))*(e_tau/Ts_e_tau2); P[30] = D[30]; P[31] = D[31]; P[32] = D[32] + Q[10]; P[33] = D[33] - Ts*e_b2*(D[37] - D[34] + D[35]*(bias2 - u2)); P[34] = (D[34]*(Ts + e_tau) + D[36]*Ts*(u2 - u2_in))*(e_tau/Ts_e_tau2); P[35] = D[35]; P[36] = D[36]; P[37] = D[37] + Q[11]; P[38] = D[38] - Ts*e_b3*(D[42] - D[39] + D[40]*(bias3 - u3)); P[39] = (D[39]*(Ts + e_tau) + D[41]*Ts*(u3 - u3_in))*(e_tau/Ts_e_tau2); P[40] = D[40]; P[41] = D[41]; P[42] = D[42] + Q[12]; /********* this is the update part of the equation ***********/ float S[3] = {P[0] + s_a, P[1] + s_a, P[2] + s_a}; X[0] = w1 + P[0]*((gyro_x - w1)/S[0]); X[1] = w2 + P[1]*((gyro_y - w2)/S[1]); X[2] = w3 + P[2]*((gyro_z - w3)/S[2]); X[3] = u1 + P[3]*((gyro_x - w1)/S[0]); X[4] = u2 + P[5]*((gyro_y - w2)/S[1]); X[5] = u3 + P[7]*((gyro_z - w3)/S[2]); X[6] = b1 + P[9]*((gyro_x - w1)/S[0]); X[7] = b2 + P[12]*((gyro_y - w2)/S[1]); X[8] = b3 + P[15]*((gyro_z - w3)/S[2]); X[9] = tau + P[18]*((gyro_x - w1)/S[0]) + P[19]*((gyro_y - w2)/S[1]) + P[20]*((gyro_z - w3)/S[2]); X[10] = bias1 + P[28]*((gyro_x - w1)/S[0]); X[11] = bias2 + P[33]*((gyro_y - w2)/S[1]); X[12] = bias3 + P[38]*((gyro_z - w3)/S[2]); // update the duplicate cache for (uint32_t i = 0; i < AF_NUMP; i++) D[i] = P[i]; // This is an approximation that removes some cross axis uncertainty but // substantially reduces the number of calculations P[0] = -D[0]*(D[0]/S[0] - 1); P[1] = -D[1]*(D[1]/S[1] - 1); P[2] = -D[2]*(D[2]/S[2] - 1); P[3] = -D[3]*(D[0]/S[0] - 1); P[4] = D[4] - D[3]*D[3]/S[0]; P[5] = -D[5]*(D[1]/S[1] - 1); P[6] = D[6] - D[5]*D[5]/S[1]; P[7] = -D[7]*(D[2]/S[2] - 1); P[8] = D[8] - D[7]*D[7]/S[2]; P[9] = -D[9]*(D[0]/S[0] - 1); P[10] = D[10] - D[3]*(D[9]/S[0]); P[11] = D[11] - D[9]*(D[9]/S[0]); P[12] = -D[12]*(D[1]/S[1] - 1); P[13] = D[13] - D[5]*(D[12]/S[1]); P[14] = D[14] - D[12]*(D[12]/S[1]); P[15] = -D[15]*(D[2]/S[2] - 1); P[16] = D[16] - D[7]*(D[15]/S[2]); P[17] = D[17] - D[15]*(D[15]/S[2]); P[18] = -D[18]*(D[0]/S[0] - 1); P[19] = -D[19]*(D[1]/S[1] - 1); P[20] = -D[20]*(D[2]/S[2] - 1); P[21] = D[21] - D[3]*(D[18]/S[0]); P[22] = D[22] - D[5]*(D[19]/S[1]); P[23] = D[23] - D[7]*(D[20]/S[2]); P[24] = D[24] - D[9]*(D[18]/S[0]); P[25] = D[25] - D[12]*(D[19]/S[1]); P[26] = D[26] - D[15]*(D[20]/S[2]); P[27] = D[27] - D[18]*(D[18]/S[0]) - D[19]*(D[19]/S[1]) - D[20]*(D[20]/S[2]); P[28] = -D[28]*(D[0]/S[0] - 1); P[29] = D[29] - D[3]*(D[28]/S[0]); P[30] = D[30] - D[9]*(D[28]/S[0]); P[31] = D[31] - D[18]*(D[28]/S[0]); P[32] = D[32] - D[28]*(D[28]/S[0]); P[33] = -D[33]*(D[1]/S[1] - 1); P[34] = D[34] - D[5]*(D[33]/S[1]); P[35] = D[35] - D[12]*(D[33]/S[1]); P[36] = D[36] - D[19]*(D[33]/S[1]); P[37] = D[37] - D[33]*(D[33]/S[1]); P[38] = -D[38]*(D[2]/S[2] - 1); P[39] = D[39] - D[7]*(D[38]/S[2]); P[40] = D[40] - D[15]*(D[38]/S[2]); P[41] = D[41] - D[20]*(D[38]/S[2]); P[42] = D[42] - D[38]*(D[38]/S[2]); // apply limits to some of the state variables if (X[9] > -1.5f) X[9] = -1.5f; else if (X[9] < -5.5f) /* 4ms */ X[9] = -5.5f; if (X[10] > 0.5f) X[10] = 0.5f; else if (X[10] < -0.5f) X[10] = -0.5f; if (X[11] > 0.5f) X[11] = 0.5f; else if (X[11] < -0.5f) X[11] = -0.5f; if (X[12] > 0.5f) X[12] = 0.5f; else if (X[12] < -0.5f) X[12] = -0.5f; } /** * Initialize the state variable and covariance matrix * for the system identification EKF */ static void af_init(float X[AF_NUMX], float P[AF_NUMP]) { static const float q_init[AF_NUMX] = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.05f, 0.05f, 0.005f, 0.05f, 0.05f, 0.05f, 0.05f }; // X[0] = X[1] = X[2] = 0.0f; // assume no rotation // X[3] = X[4] = X[5] = 0.0f; // and no net torque // X[6] = X[7] = 10.0f; // medium amount of strength // X[8] = 7.0f; // yaw // X[9] = -4.0f; // and 50 (18?) ms time scale // X[10] = X[11] = X[12] = 0.0f; // zero bias // get these 10.0 10.0 7.0 -4.0 from default values of SystemIdent (.Beta and .Tau) // so that if they are changed there (mainly for future code changes), they will be changed here too memset(X, 0, AF_NUMX*sizeof(X[0])); SystemIdentSetDefaults(SystemIdentHandle(), 0); SystemIdentBetaArrayGet(&X[6]); SystemIdentTauGet(&X[9]); // P initialization // Could zero this like: *P = *((float [AF_NUMP]){}); memset(P, 0, AF_NUMP*sizeof(P[0])); P[0] = q_init[0]; P[1] = q_init[1]; P[2] = q_init[2]; P[4] = q_init[3]; P[6] = q_init[4]; P[8] = q_init[5]; P[11] = q_init[6]; P[14] = q_init[7]; P[17] = q_init[8]; P[27] = q_init[9]; P[32] = q_init[10]; P[37] = q_init[11]; P[42] = q_init[12]; } /** * @} * @} */