/** ****************************************************************************** * * @file pios_adc.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2009. * @brief Analog to Digital converstion routines * @see The GNU Public License (GPL) Version 3 * @defgroup PIOS_ADC ADC Functions * @{ * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Project Includes */ #include "pios.h" /* Local Variables */ /* following two arrays are word aligned, so that DMA can transfer two hwords at once */ static uint16_t adc_conversion_values[NUM_ADC_PINS] __attribute__((aligned(4))); static uint16_t adc_conversion_values_sum[NUM_ADC_PINS] __attribute__((aligned(4))); static uint16_t adc_pin_values[NUM_ADC_PINS]; /** * Initialise the ADC Peripheral */ void ADCInit(void) { int32_t i; /* Clear arrays and variables */ for(i=0; i < NUM_ADC_PINS; ++i) { adc_conversion_values[i] = 0; adc_conversion_values_sum[i] = 0; } for(i=0; i < NUM_ADC_PINS; ++i) { adc_pin_values[i] = 0; } /* Setup analog pins */ GPIO_InitTypeDef GPIO_InitStructure; GPIO_StructInit(&GPIO_InitStructure); GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; GPIO_InitStructure.GPIO_Pin = ADC_Z_PIN | ADC_A_PIN | ADC_B_PIN; GPIO_Init(GPIOC, &GPIO_InitStructure); /* Enable ADC1/2 clock */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_ADC2 | RCC_APB2Periph_GPIOC, ENABLE); /* Map channels to conversion slots depending on the channel selection mask */ /* Distribute this over the three ADCs, so that channels can be converted in parallel */ /* Sample time: */ /* With an ADCCLK = 14 MHz and a sampling time of 293.5 cycles: */ /* Tconv = 239.5 + 12.5 = 252 cycles = 18µs */ /* To be pedantic, we take A and B simulataneously, and Z and Temp simulataneously */ ADC_RegularChannelConfig(ADC1, ADC_A_CHANNEL, 1, ADC_SampleTime_239Cycles5); ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 2, ADC_SampleTime_239Cycles5); ADC_RegularChannelConfig(ADC2, ADC_B_CHANNEL, 1, ADC_SampleTime_239Cycles5); ADC_RegularChannelConfig(ADC2, ADC_Z_CHANNEL, 2, ADC_SampleTime_239Cycles5); /* Configure ADCs */ ADC_InitTypeDef ADC_InitStructure; ADC_StructInit(&ADC_InitStructure); ADC_InitStructure.ADC_Mode = ADC_Mode_RegSimult; ADC_InitStructure.ADC_ScanConvMode = ENABLE; ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = 2; ADC_Init(ADC1, &ADC_InitStructure); ADC_Init(ADC2, &ADC_InitStructure); /* Enable ADC2 external trigger conversion (to synch with ADC1) */ ADC_ExternalTrigConvCmd(ADC2, ENABLE); /* Enable ADC1->DMA request */ ADC_DMACmd(ADC1, ENABLE); /* ADC1 calibration */ ADC_Cmd(ADC1, ENABLE); ADC_ResetCalibration(ADC1); while(ADC_GetResetCalibrationStatus(ADC1)); ADC_StartCalibration(ADC1); while(ADC_GetCalibrationStatus(ADC1)); /* ADC2 calibration */ ADC_Cmd(ADC2, ENABLE); ADC_ResetCalibration(ADC2); while(ADC_GetResetCalibrationStatus(ADC2)); ADC_StartCalibration(ADC2); while(ADC_GetCalibrationStatus(ADC2)); // enable DMA1 clock RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // configure DMA1 channel 1 to fetch data from ADC result register DMA_InitTypeDef DMA_InitStructure; DMA_StructInit(&DMA_InitStructure); DMA_DeInit(DMA1_Channel1); DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR; DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&adc_conversion_values; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; DMA_InitStructure.DMA_BufferSize = 2; /* number of conversions depends on number of used channels */ DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_Init(DMA1_Channel1, &DMA_InitStructure); DMA_Cmd(DMA1_Channel1, ENABLE); /* trigger interrupt when all conversion values have been fetched */ DMA_ITConfig(DMA1_Channel1, DMA_IT_TC, ENABLE); /* Configure and enable DMA interrupt */ NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = ADC_IRQ_PRIO; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); /* Finally start initial conversion */ ADC_SoftwareStartConvCmd(ADC1, ENABLE); } /** * Returns value of an ADC Pin * \param[in] pin number * \return ADC pin value - resolution depends on the selected oversampling rate Set in Settings.ini * \return -1 if pin doesn't exist */ int32_t ADCPinGet(uint32_t pin) { /* Check if pin exists */ if(pin >= NUM_ADC_PINS) { return -1; } /* Return last conversion result */ return adc_pin_values[pin]; } /** * Checks for pin changes, and calls given callback function with following parameters on pin changes: * \code * void ADCNotifyChanged(uint32_t pin, uint16_t value) * \endcode * \param[in] _callback pointer to callback function * \return < 0 on errors */ int32_t ADCHandler(void *_callback) { /* No callback function? */ if(_callback == NULL) { return -1; } int pin; void (*callback)(int32_t pin, uint32_t value) = _callback; /* Check for changed ADC conversion values */ for(pin = 0; pin < NUM_ADC_PINS; pin++) { IRQDisable(); uint32_t pin_value = adc_pin_values[pin]; IRQEnable(); /* Call application hook */ /* Note that due to dual conversion approach, we have to convert the pin number */ /* If an uneven number of channels selected */ callback(pin, pin_value); } /* Start next scan */ ADC_SoftwareStartConvCmd(ADC1, ENABLE); /* No error */ return 0; } /** * DMA channel interrupt is triggered when all ADC channels have been converted * \note shouldn't be called directly from application */ void DMA1_Channel1_IRQHandler(void) { int32_t i; uint16_t *src_ptr, *dst_ptr; /* Clear the pending flag(s) */ DMA_ClearFlag(DMA1_FLAG_TC1 | DMA1_FLAG_TE1 | DMA1_FLAG_HT1 | DMA1_FLAG_GL1); /* Copy conversion values to adc_pin_values */ src_ptr = (uint16_t *)adc_conversion_values; dst_ptr = (uint16_t *)&adc_pin_values[NUM_ADC_PINS]; for(i=0; i < NUM_ADC_PINS; ++i) { /* Takeover new value */ *dst_ptr = *src_ptr; /* Switch to next results */ ++dst_ptr; ++src_ptr; } /* Request next conversion */ ADC_SoftwareStartConvCmd(ADC1, ENABLE); }