/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup AirspeedModule Airspeed Module * @brief Use GPS data to estimate airspeed * @{ * * @file gps_airspeed.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief Airspeed module, handles temperature and pressure readings from BMP085 * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "openpilot.h" #include "gps_airspeed.h" #include "gpsvelocity.h" #include "attitudeactual.h" #include "CoordinateConversions.h" // Private constants #define GPS_AIRSPEED_BIAS_KP 0.1f //Needs to be settable in a UAVO #define GPS_AIRSPEED_BIAS_KI 0.1f //Needs to be settable in a UAVO #define SAMPLING_DELAY_MS_GPS 100 //Needs to be settable in a UAVO #define GPS_AIRSPEED_TIME_CONSTANT_MS 500.0f //Needs to be settable in a UAVO #define F_PI 3.141526535897932f #define DEG2RAD (F_PI/180.0f) // Private types struct GPSGlobals { float RbeCol1_old[3]; float gpsVelOld_N; float gpsVelOld_E; float gpsVelOld_D; }; // Private variables static struct GPSGlobals *gps; // Private functions /* * Initialize function loads first data sets, and allocates memory for structure. */ void gps_airspeedInitialize() { //This method saves memory in case we don't use the GPS module. gps=(struct GPSGlobals *)pvPortMalloc(sizeof(struct GPSGlobals)); //GPS airspeed calculation variables GPSVelocityData gpsVelData; GPSVelocityGet(&gpsVelData); gps->gpsVelOld_N=gpsVelData.North; gps->gpsVelOld_E=gpsVelData.East; gps->gpsVelOld_D=gpsVelData.Down; AttitudeActualData attData; AttitudeActualGet(&attData); float Rbe[3][3]; float q[4] ={attData.q1, attData.q2, attData.q3, attData.q4}; //Calculate rotation matrix Quaternion2R(q, Rbe); gps->RbeCol1_old[0]=Rbe[0][0]; gps->RbeCol1_old[1]=Rbe[0][1]; gps->RbeCol1_old[2]=Rbe[0][2]; } /* * Calculate airspeed as a function of GPS groundspeed and vehicle attitude. * From "IMU Wind Estimation (Theory)", by William Premerlani. * The idea is that V_gps=V_air+V_wind. If we assume wind constant, => * V_gps_2-V_gps_1 = (V_air_2+V_wind_2) -(V_air_1+V_wind_1) = V_air_2 - V_air_1. * If we assume airspeed constant, => V_gps_2-V_gps_1 = |V|*(f_2 - f1), * where "f" is the fuselage vector in earth coordinates. * We then solve for |V| = |V_gps_2-V_gps_1|/ |f_2 - f1|. */ void gps_airspeedGet(float *v_air_GPS) { float Rbe[3][3]; { //Scoping to save memory. We really just need Rbe. AttitudeActualData attData; AttitudeActualGet(&attData); float q[4] ={attData.q1, attData.q2, attData.q3, attData.q4}; //Calculate rotation matrix Quaternion2R(q, Rbe); } //Calculate the cos(angle) between the two fuselage basis vectors float cosDiff=(Rbe[0][0]*gps->RbeCol1_old[0]) + (Rbe[0][1]*gps->RbeCol1_old[1]) + (Rbe[0][2]*gps->RbeCol1_old[2]); //If there's more than a 5 degree difference between two fuselage measurements, then we have sufficient delta to continue. if (fabs(cosDiff) < cos(5.0f*DEG2RAD)) { GPSVelocityData gpsVelData; GPSVelocityGet(&gpsVelData); //Calculate the norm^2 of the difference between the two GPS vectors float normDiffGPS2 = powf(gpsVelData.North-gps->gpsVelOld_N,2.0f) + powf(gpsVelData.East-gps->gpsVelOld_E,2.0f) + powf(gpsVelData.Down-gps->gpsVelOld_D,2.0f); //Calculate the norm^2 of the difference between the two fuselage vectors float normDiffAttitude2=powf(Rbe[0][0]-gps->RbeCol1_old[0],2.0f) + powf(Rbe[0][1]-gps->RbeCol1_old[1],2.0f) + powf(Rbe[0][2]-gps->RbeCol1_old[2],2.0f); //Airspeed magnitude is the ratio between the two difference norms *v_air_GPS = sqrtf(normDiffGPS2/normDiffAttitude2); //Save old variables for next pass gps->gpsVelOld_N=gpsVelData.North; gps->gpsVelOld_E=gpsVelData.East; gps->gpsVelOld_D=gpsVelData.Down; gps->RbeCol1_old[0]=Rbe[0][0]; gps->RbeCol1_old[1]=Rbe[0][1]; gps->RbeCol1_old[2]=Rbe[0][2]; } else { } } /** * @} * @} */