/** ****************************************************************************** * * @file CoordinateConverions.h * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief Header for Coordinate conversions library in CoordinateConversions.c * - all angles in deg * - distances in meters * - altitude above WGS-84 elipsoid * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef COORDINATECONVERSIONS_H_ #define COORDINATECONVERSIONS_H_ #include // ****** convert Lat,Lon,Alt to ECEF ************ void LLA2ECEF(const int32_t LLAi[3], float ECEF[3]); // ****** convert ECEF to Lat,Lon,Alt ********* void ECEF2LLA(const float ECEF[3], int32_t LLA[3]); void RneFromLLA(const int32_t LLAi[3], float Rne[3][3]); // ****** Express LLA in a local NED Base Frame and back ******** void LLA2Base(const int32_t LLAi[3], const float BaseECEF[3], float Rne[3][3], float NED[3]); void Base2LLA(const float NED[3], const float BaseECEF[3], float Rne[3][3], int32_t LLAi[3]); // ****** Express ECEF in a local NED Base Frame and back ******** void ECEF2Base(const float ECEF[3], const float BaseECEF[3], float Rne[3][3], float NED[3]); void Base2ECEF(const float NED[3], const float BaseECEF[3], float Rne[3][3], float ECEF[3]); // ****** find rotation matrix from rotation vector void Rv2Rot(float Rv[3], float R[3][3]); // ****** find roll, pitch, yaw from quaternion ******** void Quaternion2RPY(const float q[4], float rpy[3]); // ****** find quaternion from roll, pitch, yaw ******** void RPY2Quaternion(const float rpy[3], float q[4]); // ** Find Rbe, that rotates a vector from earth fixed to body frame, from quaternion ** void Quaternion2R(float q[4], float Rbe[3][3]); // ** Find first row of Rbe, that rotates a vector from earth fixed to body frame, from quaternion ** // ** This vector corresponds to the fuselage/roll vector xB ** void QuaternionC2xB(const float q0, const float q1, const float q2, const float q3, float x[3]); void Quaternion2xB(const float q[4], float x[3]); // ** Find second row of Rbe, that rotates a vector from earth fixed to body frame, from quaternion ** // ** This vector corresponds to the spanwise/pitch vector yB ** void QuaternionC2yB(const float q0, const float q1, const float q2, const float q3, float y[3]); void Quaternion2yB(const float q[4], float y[3]); // ** Find third row of Rbe, that rotates a vector from earth fixed to body frame, from quaternion ** // ** This vector corresponds to the vertical/yaw vector zB ** void QuaternionC2zB(const float q0, const float q1, const float q2, const float q3, float z[3]); void Quaternion2zB(const float q[4], float z[3]); // ****** convert Rotation Matrix to Quaternion ******** // ****** if R converts from e to b, q is rotation from e to b **** void R2Quaternion(float R[3][3], float q[4]); // ****** Rotation Matrix from Two Vector Directions ******** // ****** given two vector directions (v1 and v2) known in two frames (b and e) find Rbe *** // ****** solution is approximate if can't be exact *** uint8_t RotFrom2Vectors(const float v1b[3], const float v1e[3], const float v2b[3], const float v2e[3], float Rbe[3][3]); // ****** Vector Cross Product ******** void CrossProduct(const float v1[3], const float v2[3], float result[3]); // ****** Vector Magnitude ******** float VectorMagnitude(const float v[3]); void quat_inverse(float q[4]); void quat_copy(const float q[4], float qnew[4]); void quat_mult(const float q1[4], const float q2[4], float qout[4]); void rot_mult(float R[3][3], const float vec[3], float vec_out[3]); /** * matrix_mult_3x3f - perform a multiplication between two 3x3 float matrices * result = a*b * @param a * @param b * @param result */ static inline void matrix_mult_3x3f(float a[3][3], float b[3][3], float result[3][3]) { result[0][0] = a[0][0] * b[0][0] + a[1][0] * b[0][1] + a[2][0] * b[0][2]; result[0][1] = a[0][1] * b[0][0] + a[1][1] * b[0][1] + a[2][1] * b[0][2]; result[0][2] = a[0][2] * b[0][0] + a[1][2] * b[0][1] + a[2][2] * b[0][2]; result[1][0] = a[0][0] * b[1][0] + a[1][0] * b[1][1] + a[2][0] * b[1][2]; result[1][1] = a[0][1] * b[1][0] + a[1][1] * b[1][1] + a[2][1] * b[1][2]; result[1][2] = a[0][2] * b[1][0] + a[1][2] * b[1][1] + a[2][2] * b[1][2]; result[2][0] = a[0][0] * b[2][0] + a[1][0] * b[2][1] + a[2][0] * b[2][2]; result[2][1] = a[0][1] * b[2][0] + a[1][1] * b[2][1] + a[2][1] * b[2][2]; result[2][2] = a[0][2] * b[2][0] + a[1][2] * b[2][1] + a[2][2] * b[2][2]; } static inline void matrix_inline_scale_3f(float a[3][3], float scale) { a[0][0] *= scale; a[0][1] *= scale; a[0][2] *= scale; a[1][0] *= scale; a[1][1] *= scale; a[1][2] *= scale; a[2][0] *= scale; a[2][1] *= scale; a[2][2] *= scale; } static inline void rot_about_axis_x(const float rotation, float R[3][3]) { float s = sinf(rotation); float c = cosf(rotation); R[0][0] = 1; R[0][1] = 0; R[0][2] = 0; R[1][0] = 0; R[1][1] = c; R[1][2] = -s; R[2][0] = 0; R[2][1] = s; R[2][2] = c; } static inline void rot_about_axis_y(const float rotation, float R[3][3]) { float s = sinf(rotation); float c = cosf(rotation); R[0][0] = c; R[0][1] = 0; R[0][2] = s; R[1][0] = 0; R[1][1] = 1; R[1][2] = 0; R[2][0] = -s; R[2][1] = 0; R[2][2] = c; } static inline void rot_about_axis_z(const float rotation, float R[3][3]) { float s = sinf(rotation); float c = cosf(rotation); R[0][0] = c; R[0][1] = -s; R[0][2] = 0; R[1][0] = s; R[1][1] = c; R[1][2] = 0; R[2][0] = 0; R[2][1] = 0; R[2][2] = 1; } #endif // COORDINATECONVERSIONS_H_