/** ****************************************************************************** * @addtogroup OpenPilot Math Utilities * @{ * @addtogroup Reuseable math functions * @{ * * @file mathmisc.h * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief Reuseable math functions * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef MATHMISC_H #define MATHMISC_H #include #include // returns min(boundary1,boundary2) if valmax(boundary1,boundary2) // returns val if min(boundary1,boundary2)<=val<=max(boundary1,boundary2) static inline float boundf(float val, float boundary1, float boundary2) { if (boundary1 > boundary2) { if (!(val >= boundary2)) { return boundary2; } else if (!(val <= boundary1)) { return boundary1; } } else { if (!(val >= boundary1)) { return boundary1; } else if (!(val <= boundary2)) { return boundary2; } } return val; } static inline float squaref(float x) { return x * x; } static inline float vector_lengthf(float *vector, const uint8_t dim) { float length = 0.0f; for (int t = 0; t < dim; t++) { length += squaref(vector[t]); } return sqrtf(length); } static inline void vector_normalizef(float *vector, const uint8_t dim) { float length = vector_lengthf(vector, dim); if (length <= 0.0f || isnan(length)) { return; } for (int t = 0; t < dim; t++) { vector[t] /= length; } } typedef struct pointf { float x; float y; } pointf; // Returns the y value, given x, on the line passing through the points p0 and p1. static inline float y_on_line(float x, const pointf *p0, const pointf *p1) { // Setup line y = m * x + b. const float dY1 = p1->y - p0->y; const float dX1 = p1->x - p0->x; const float m = dY1 / dX1; // == dY0 / dX0 == (p0.y - b) / (p0.x - 0.0f) ==> const float b = p0->y - m * p0->x; // Get the y value on the line. return m * x + b; } // Returns the y value, given x, on the curve defined by the points array. // The fist and last line of the curve extends beyond the first resp. last points. static inline float y_on_curve(float x, const pointf points[], int num_points) { // Find the two points x is within. // If x is smaller than the first point's x value, use the first line of the curve. // If x is larger than the last point's x value, user the last line of the curve. int end_point = num_points - 1; for (int i = 1; i < num_points; i++) { if (x < points[i].x) { end_point = i; break; } } // Find the y value on the selected line. return y_on_line(x, &points[end_point - 1], &points[end_point]); } static inline float invsqrtf(float number) { float y; y = 1.0f / sqrtf(number); return y; } /** * Ultrafast pow() aproximation needed for expo * Based on Algorithm by Martin Ankerl */ static inline float fastPow(float a, float b) { union { double d; int32_t x[2]; } u = { (double)a }; u.x[1] = (int32_t)(b * (u.x[1] - 1072632447) + 1072632447); u.x[0] = 0; return (float)u.d; } #endif /* MATHMISC_H */