/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup Attitude Copter Control Attitude Estimation * @brief Acquires sensor data and computes attitude estimate * Specifically updates the the @ref AttitudeActual "AttitudeActual" and @ref AttitudeRaw "AttitudeRaw" settings objects * @{ * * @file attitude.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief Module to handle all comms to the AHRS on a periodic basis. * * @see The GNU Public License (GPL) Version 3 * ******************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /** * Input objects: None, takes sensor data via pios * Output objects: @ref AttitudeRaw @ref AttitudeActual * * This module computes an attitude estimate from the sensor data * * The module executes in its own thread. * * UAVObjects are automatically generated by the UAVObjectGenerator from * the object definition XML file. * * Modules have no API, all communication to other modules is done through UAVObjects. * However modules may use the API exposed by shared libraries. * See the OpenPilot wiki for more details. * http://www.openpilot.org/OpenPilot_Application_Architecture * */ #include "pios.h" #include "attitude.h" #include "attituderaw.h" #include "attitudeactual.h" #include "attitudesettings.h" #include "flightstatus.h" #include "CoordinateConversions.h" #include "pios_flash_w25x.h" // Private constants #define STACK_SIZE_BYTES 540 #define TASK_PRIORITY (tskIDLE_PRIORITY+3) #define UPDATE_RATE 2.0f #define GYRO_NEUTRAL 1665 #define PI_MOD(x) (fmod(x + M_PI, M_PI * 2) - M_PI) // Private types // Private variables static xTaskHandle taskHandle; // Private functions static void AttitudeTask(void *parameters); static float gyro_correct_int[3] = {0,0,0}; static xQueueHandle gyro_queue; static void updateSensors(AttitudeRawData *); static void updateAttitude(AttitudeRawData *); static void settingsUpdatedCb(UAVObjEvent * objEv); static float accelKi = 0; static float accelKp = 0; static float yawBiasRate = 0; static float gyroGain = 0.42; static int16_t accelbias[3]; static float q[4] = {1,0,0,0}; static float R[3][3]; static int8_t rotate = 0; static bool zero_during_arming = false; static bool bias_correct_gyro = true; /** * Initialise the module, called on startup * \returns 0 on success or -1 if initialisation failed */ int32_t AttitudeStart(void) { // Start main task xTaskCreate(AttitudeTask, (signed char *)"Attitude", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &taskHandle); TaskMonitorAdd(TASKINFO_RUNNING_ATTITUDE, taskHandle); PIOS_WDG_RegisterFlag(PIOS_WDG_ATTITUDE); return 0; } /** * Initialise the module, called on startup * \returns 0 on success or -1 if initialisation failed */ int32_t AttitudeInitialize(void) { // Initialize quaternion AttitudeActualData attitude; AttitudeActualGet(&attitude); attitude.q1 = 1; attitude.q2 = 0; attitude.q3 = 0; attitude.q4 = 0; AttitudeActualSet(&attitude); // Cannot trust the values to init right above if BL runs gyro_correct_int[0] = 0; gyro_correct_int[1] = 0; gyro_correct_int[2] = 0; q[0] = 1; q[1] = 0; q[2] = 0; q[3] = 0; for(uint8_t i = 0; i < 3; i++) for(uint8_t j = 0; j < 3; j++) R[i][j] = 0; // Create queue for passing gyro data, allow 2 back samples in case gyro_queue = xQueueCreate(1, sizeof(float) * 4); if(gyro_queue == NULL) return -1; PIOS_ADC_SetQueue(gyro_queue); AttitudeSettingsConnectCallback(&settingsUpdatedCb); return 0; } MODULE_INITCALL(AttitudeInitialize, 0, AttitudeStart, 0, MODULE_EXEC_NOORDER_FLAG) /** * Module thread, should not return. */ static void AttitudeTask(void *parameters) { uint8_t init = 0; AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE); PIOS_ADC_Config((PIOS_ADC_RATE / 1000.0f) * UPDATE_RATE); // Keep flash CS pin high while talking accel PIOS_FLASH_DISABLE; PIOS_ADXL345_Init(); // Force settings update to make sure rotation loaded settingsUpdatedCb(AttitudeSettingsHandle()); // Main task loop while (1) { FlightStatusData flightStatus; FlightStatusGet(&flightStatus); if((xTaskGetTickCount() < 7000) && (xTaskGetTickCount() > 1000)) { // For first 7 seconds use accels to get gyro bias accelKp = 1; accelKi = 0.9; yawBiasRate = 0.23; init = 0; } else if (zero_during_arming && (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMING)) { accelKp = 1; accelKi = 0.9; yawBiasRate = 0.23; init = 0; } else if (init == 0) { // Reload settings (all the rates) AttitudeSettingsAccelKiGet(&accelKi); AttitudeSettingsAccelKpGet(&accelKp); AttitudeSettingsYawBiasRateGet(&yawBiasRate); init = 1; } PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE); AttitudeRawData attitudeRaw; AttitudeRawGet(&attitudeRaw); updateSensors(&attitudeRaw); updateAttitude(&attitudeRaw); AttitudeRawSet(&attitudeRaw); } } static void updateSensors(AttitudeRawData * attitudeRaw) { struct pios_adxl345_data accel_data; float gyro[4]; // Only wait the time for two nominal updates before setting an alarm if(xQueueReceive(gyro_queue, (void * const) gyro, UPDATE_RATE * 2) == errQUEUE_EMPTY) { AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR); return; } // First sample is temperature attitudeRaw->gyros[ATTITUDERAW_GYROS_X] = -(gyro[1] - GYRO_NEUTRAL) * gyroGain; attitudeRaw->gyros[ATTITUDERAW_GYROS_Y] = (gyro[2] - GYRO_NEUTRAL) * gyroGain; attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] = -(gyro[3] - GYRO_NEUTRAL) * gyroGain; int32_t x = 0; int32_t y = 0; int32_t z = 0; uint8_t i = 0; uint8_t samples_remaining; do { i++; samples_remaining = PIOS_ADXL345_Read(&accel_data); x += accel_data.x; y += -accel_data.y; z += -accel_data.z; } while ( (i < 32) && (samples_remaining > 0) ); attitudeRaw->gyrotemp[0] = samples_remaining; attitudeRaw->gyrotemp[1] = i; float accel[3] = {(float) x / i, (float) y / i, (float) z / i}; if(rotate) { // TODO: rotate sensors too so stabilization is well behaved float vec_out[3]; rot_mult(R, accel, vec_out); attitudeRaw->accels[0] = vec_out[0]; attitudeRaw->accels[1] = vec_out[1]; attitudeRaw->accels[2] = vec_out[2]; rot_mult(R, attitudeRaw->gyros, vec_out); attitudeRaw->gyros[0] = vec_out[0]; attitudeRaw->gyros[1] = vec_out[1]; attitudeRaw->gyros[2] = vec_out[2]; } else { attitudeRaw->accels[0] = accel[0]; attitudeRaw->accels[1] = accel[1]; attitudeRaw->accels[2] = accel[2]; } // Scale accels and correct bias attitudeRaw->accels[ATTITUDERAW_ACCELS_X] = (attitudeRaw->accels[ATTITUDERAW_ACCELS_X] - accelbias[0]) * 0.004f * 9.81f; attitudeRaw->accels[ATTITUDERAW_ACCELS_Y] = (attitudeRaw->accels[ATTITUDERAW_ACCELS_Y] - accelbias[1]) * 0.004f * 9.81f; attitudeRaw->accels[ATTITUDERAW_ACCELS_Z] = (attitudeRaw->accels[ATTITUDERAW_ACCELS_Z] - accelbias[2]) * 0.004f * 9.81f; if(bias_correct_gyro) { // Applying integral component here so it can be seen on the gyros and correct bias attitudeRaw->gyros[ATTITUDERAW_GYROS_X] += gyro_correct_int[0]; attitudeRaw->gyros[ATTITUDERAW_GYROS_Y] += gyro_correct_int[1]; attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] += gyro_correct_int[2]; } // Because most crafts wont get enough information from gravity to zero yaw gyro, we try // and make it average zero (weakly) gyro_correct_int[2] += - attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] * yawBiasRate; } static void updateAttitude(AttitudeRawData * attitudeRaw) { float dT; portTickType thisSysTime = xTaskGetTickCount(); static portTickType lastSysTime = 0; dT = (thisSysTime == lastSysTime) ? 0.001 : (portMAX_DELAY & (thisSysTime - lastSysTime)) / portTICK_RATE_MS / 1000.0f; lastSysTime = thisSysTime; // Bad practice to assume structure order, but saves memory float gyro[3]; gyro[0] = attitudeRaw->gyros[0]; gyro[1] = attitudeRaw->gyros[1]; gyro[2] = attitudeRaw->gyros[2]; { float * accels = attitudeRaw->accels; float grot[3]; float accel_err[3]; // Rotate gravity to body frame and cross with accels grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2])); grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1])); grot[2] = -(q[0] * q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]); CrossProduct((const float *) accels, (const float *) grot, accel_err); // Account for accel magnitude float accel_mag = sqrt(accels[0]*accels[0] + accels[1]*accels[1] + accels[2]*accels[2]); accel_err[0] /= accel_mag; accel_err[1] /= accel_mag; accel_err[2] /= accel_mag; // Accumulate integral of error. Scale here so that units are (deg/s) but Ki has units of s gyro_correct_int[0] += accel_err[0] * accelKi; gyro_correct_int[1] += accel_err[1] * accelKi; //gyro_correct_int[2] += accel_err[2] * settings.AccelKI * dT; // Correct rates based on error, integral component dealt with in updateSensors gyro[0] += accel_err[0] * accelKp / dT; gyro[1] += accel_err[1] * accelKp / dT; gyro[2] += accel_err[2] * accelKp / dT; } { // scoping variables to save memory // Work out time derivative from INSAlgo writeup // Also accounts for the fact that gyros are in deg/s float qdot[4]; qdot[0] = (-q[1] * gyro[0] - q[2] * gyro[1] - q[3] * gyro[2]) * dT * M_PI / 180 / 2; qdot[1] = (q[0] * gyro[0] - q[3] * gyro[1] + q[2] * gyro[2]) * dT * M_PI / 180 / 2; qdot[2] = (q[3] * gyro[0] + q[0] * gyro[1] - q[1] * gyro[2]) * dT * M_PI / 180 / 2; qdot[3] = (-q[2] * gyro[0] + q[1] * gyro[1] + q[0] * gyro[2]) * dT * M_PI / 180 / 2; // Take a time step q[0] = q[0] + qdot[0]; q[1] = q[1] + qdot[1]; q[2] = q[2] + qdot[2]; q[3] = q[3] + qdot[3]; } // Renomalize float qmag = sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]); q[0] = q[0] / qmag; q[1] = q[1] / qmag; q[2] = q[2] / qmag; q[3] = q[3] / qmag; // If quaternion has become inappropriately short or is nan reinit. // THIS SHOULD NEVER ACTUALLY HAPPEN if((fabs(qmag) < 1e-3) || (qmag != qmag)) { q[0] = 1; q[1] = 0; q[2] = 0; q[3] = 0; } AttitudeActualData attitudeActual; AttitudeActualGet(&attitudeActual); quat_copy(q, &attitudeActual.q1); // Convert into eueler degrees (makes assumptions about RPY order) Quaternion2RPY(&attitudeActual.q1,&attitudeActual.Roll); AttitudeActualSet(&attitudeActual); } static void settingsUpdatedCb(UAVObjEvent * objEv) { AttitudeSettingsData attitudeSettings; AttitudeSettingsGet(&attitudeSettings); accelKp = attitudeSettings.AccelKp; accelKi = attitudeSettings.AccelKi; yawBiasRate = attitudeSettings.YawBiasRate; gyroGain = attitudeSettings.GyroGain; zero_during_arming = attitudeSettings.ZeroDuringArming == ATTITUDESETTINGS_ZERODURINGARMING_TRUE; bias_correct_gyro = attitudeSettings.BiasCorrectGyro == ATTITUDESETTINGS_BIASCORRECTGYRO_TRUE; accelbias[0] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_X]; accelbias[1] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Y]; accelbias[2] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Z]; gyro_correct_int[0] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_X] / 100.0f; gyro_correct_int[1] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Y] / 100.0f; gyro_correct_int[2] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Z] / 100.0f; // Indicates not to expend cycles on rotation if(attitudeSettings.BoardRotation[0] == 0 && attitudeSettings.BoardRotation[1] == 0 && attitudeSettings.BoardRotation[2] == 0) { rotate = 0; // Shouldn't be used but to be safe float rotationQuat[4] = {1,0,0,0}; Quaternion2R(rotationQuat, R); } else { float rotationQuat[4]; const float rpy[3] = {attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_ROLL], attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_PITCH], attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_YAW]}; RPY2Quaternion(rpy, rotationQuat); Quaternion2R(rotationQuat, R); rotate = 1; } } /** * @} * @} */