/** ****************************************************************************** * @addtogroup PIOS PIOS Core hardware abstraction layer * @{ * @addtogroup PIOS_RFM22B Radio Functions * @brief PIOS interface for for the RFM22B radio * @{ * * @file pios_rfm22b.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief Implements a driver the the RFM22B driver * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ // ***************************************************************** // RFM22B hardware layer // // This module uses the RFM22B's internal packet handling hardware to // encapsulate our own packet data. // // The RFM22B internal hardware packet handler configuration is as follows .. // // 4-byte (32-bit) preamble .. alternating 0's & 1's // 4-byte (32-bit) sync // 1-byte packet length (number of data bytes to follow) // 0 to 255 user data bytes // // Our own packet data will also contain it's own header and 32-bit CRC // as a single 16-bit CRC is not sufficient for wireless comms. // // ***************************************************************** /* Project Includes */ #include "pios.h" #if defined(PIOS_INCLUDE_RFM22B) #include #include #include /* Local Defines */ #define STACK_SIZE_BYTES 200 #define TASK_PRIORITY (tskIDLE_PRIORITY + 2) #define ISR_TIMEOUT 5 // ms #define EVENT_QUEUE_SIZE 5 #define PACKET_QUEUE_SIZE 3 // RTC timer is running at 625Hz (1.6ms or 5 ticks == 8ms). // A 256 byte message at 56kbps should take less than 40ms // Note: This timeout should be rate dependent. #define PIOS_RFM22B_SUPERVISOR_TIMEOUT 100 // ms // this is too adjust the RF module so that it is on frequency #define OSC_LOAD_CAP 0x7F // cap = 12.5pf .. default #define OSC_LOAD_CAP_1 0x7D // board 1 #define OSC_LOAD_CAP_2 0x7B // board 2 #define OSC_LOAD_CAP_3 0x7E // board 3 #define OSC_LOAD_CAP_4 0x7F // board 4 // ************************************ #define TX_PREAMBLE_NIBBLES 12 // 7 to 511 (number of nibbles) #define RX_PREAMBLE_NIBBLES 6 // 5 to 31 (number of nibbles) // the size of the rf modules internal FIFO buffers #define FIFO_SIZE 64 #define TX_FIFO_HI_WATERMARK 62 // 0-63 #define TX_FIFO_LO_WATERMARK 32 // 0-63 #define RX_FIFO_HI_WATERMARK 32 // 0-63 #define PREAMBLE_BYTE 0x55 // preamble byte (preceeds SYNC_BYTE's) #define SYNC_BYTE_1 0x2D // RF sync bytes (32-bit in all) #define SYNC_BYTE_2 0xD4 // #define SYNC_BYTE_3 0x4B // #define SYNC_BYTE_4 0x59 // // ************************************ // the default RF datarate //#define RFM22_DEFAULT_RF_DATARATE 500 // 500 bits per sec //#define RFM22_DEFAULT_RF_DATARATE 1000 // 1k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 2000 // 2k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 4000 // 4k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 8000 // 8k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 9600 // 9.6k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 16000 // 16k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 19200 // 19k2 bits per sec //#define RFM22_DEFAULT_RF_DATARATE 24000 // 24k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 32000 // 32k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 64000 // 64k bits per sec #define RFM22_DEFAULT_RF_DATARATE 128000 // 128k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 192000 // 192k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 256000 // 256k bits per sec .. NOT YET WORKING // ************************************ #define RFM22_DEFAULT_SS_RF_DATARATE 125 // 128bps #ifndef RX_LED_ON #define RX_LED_ON #define RX_LED_OFF #define TX_LED_ON #define TX_LED_OFF #define LINK_LED_ON #define LINK_LED_OFF #define USB_LED_ON #define USB_LED_OFF #endif // ************************************ // Normal data streaming // GFSK modulation // no manchester encoding // data whitening // FIFO mode // 5-nibble rx preamble length detection // 10-nibble tx preamble length // AFC enabled /* Local type definitions */ enum pios_rfm22b_dev_magic { PIOS_RFM22B_DEV_MAGIC = 0x68e971b6, }; enum pios_rfm22b_state { RFM22B_STATE_UNINITIALIZED, RFM22B_STATE_INITIALIZING, RFM22B_STATE_RX_MODE, RFM22B_STATE_WAIT_PREAMBLE, RFM22B_STATE_WAIT_SYNC, RFM22B_STATE_RX_DATA, RFM22B_STATE_TX_START, RFM22B_STATE_TX_DATA, RFM22B_STATE_TIMEOUT, RFM22B_STATE_ERROR, RFM22B_STATE_FATAL_ERROR, RFM22B_STATE_NUM_STATES // Must be last }; enum pios_rfm22b_event { RFM22B_EVENT_INITIALIZE, RFM22B_EVENT_INITIALIZED, RFM22B_EVENT_INT_RECEIVED, RFM22B_EVENT_RX_MODE, RFM22B_EVENT_PREAMBLE_DETECTED, RFM22B_EVENT_SYNC_DETECTED, RFM22B_EVENT_RX_COMPLETE, RFM22B_EVENT_SEND_PACKET, RFM22B_EVENT_TX_START, RFM22B_EVENT_TX_STARTED, RFM22B_EVENT_TX_COMPLETE, RFM22B_EVENT_TIMEOUT, RFM22B_EVENT_ERROR, RFM22B_EVENT_FATAL_ERROR, RFM22B_EVENT_NUM_EVENTS // Must be last }; struct pios_rfm22b_dev { enum pios_rfm22b_dev_magic magic; struct pios_rfm22b_cfg cfg; uint32_t spi_id; uint32_t slave_num; uint32_t deviceID; // The task handle xTaskHandle taskHandle; // ISR pending xSemaphoreHandle isrPending; // Receive packet complete xSemaphoreHandle rxsem; // The COM callback functions. pios_com_callback rx_in_cb; uint32_t rx_in_context; pios_com_callback tx_out_cb; uint32_t tx_out_context; // the transmit power to use for data transmissions uint8_t tx_power; // The state machine state and the current event enum pios_rfm22b_state state; // The event queue handle xQueueHandle eventQueue; // device status register uint8_t device_status; // interrupt status register 1 uint8_t int_status1; // interrupt status register 2 uint8_t int_status2; // ezmac status register uint8_t ezmac_status; // Stats uint16_t resets; uint32_t errors; uint32_t irqs_processed; // the current RSSI (register value) uint8_t rssi; // RSSI in dBm int8_t rssi_dBm; // The packet queue handle xQueueHandle packetQueue; // The current tx packet PHPacketHandle tx_packet; // the tx data read index uint16_t tx_data_rd; // the tx data write index uint16_t tx_data_wr; // The current rx packet PHPacketHandle rx_packet; // The previous rx packet PHPacketHandle rx_packet_prev; // The next rx packet PHPacketHandle rx_packet_next; // the receive buffer write index uint16_t rx_buffer_wr; // the receive buffer write index uint16_t rx_packet_len; // The frequency hopping step size float frequency_step_size; // current frequency hop channel uint8_t frequency_hop_channel; // the frequency hop step size uint8_t frequency_hop_step_size_reg; // afc correction reading (in Hz) int32_t afc_correction_Hz; int8_t rx_packet_start_afc_Hz; // The maximum time (ms) that it should take to transmit / receive a packet. uint32_t max_packet_time; portTickType packet_start_time; }; struct pios_rfm22b_transition { enum pios_rfm22b_event (*entry_fn) (struct pios_rfm22b_dev *rfm22b_dev); enum pios_rfm22b_state next_state[RFM22B_EVENT_NUM_EVENTS]; }; // Must ensure these prefilled arrays match the define sizes static const uint8_t FULL_PREAMBLE[FIFO_SIZE] = {PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE}; // 64 bytes static const uint8_t HEADER[(TX_PREAMBLE_NIBBLES + 1)/2 + 2] = {PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE, SYNC_BYTE_1, SYNC_BYTE_2}; static const uint8_t OUT_FF[64] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF}; /* Local function forwared declarations */ static void PIOS_RFM22B_Task(void *parameters); static void PIOS_RFM22B_InjectEvent(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_event event, bool inISR); static bool rfm22_readStatus(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_setRxMode(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_detectPreamble(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_detectSync(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_rxData(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_txStart(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_txData(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_process_state_transition(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_event event); static enum pios_rfm22b_event rfm22_timeout(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_error(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_fatal_error(struct pios_rfm22b_dev *rfm22b_dev); // SPI read/write functions static void rfm22_assertCs(); static void rfm22_deassertCs(); static void rfm22_claimBus(); static void rfm22_releaseBus(); static void rfm22_write(uint8_t addr, uint8_t data); static uint8_t rfm22_read(uint8_t addr); static uint8_t rfm22_read_noclaim(uint8_t addr); /* Provide a COM driver */ static void PIOS_RFM22B_ChangeBaud(uint32_t rfm22b_id, uint32_t baud); static void PIOS_RFM22B_RegisterRxCallback(uint32_t rfm22b_id, pios_com_callback rx_in_cb, uint32_t context); static void PIOS_RFM22B_RegisterTxCallback(uint32_t rfm22b_id, pios_com_callback tx_out_cb, uint32_t context); static void PIOS_RFM22B_TxStart(uint32_t rfm22b_id, uint16_t tx_bytes_avail); static void PIOS_RFM22B_RxStart(uint32_t rfm22b_id, uint16_t rx_bytes_avail); /* Local variables */ const struct pios_com_driver pios_rfm22b_com_driver = { .set_baud = PIOS_RFM22B_ChangeBaud, .tx_start = PIOS_RFM22B_TxStart, .rx_start = PIOS_RFM22B_RxStart, .bind_tx_cb = PIOS_RFM22B_RegisterTxCallback, .bind_rx_cb = PIOS_RFM22B_RegisterRxCallback, }; /* Te state transition table */ const static struct pios_rfm22b_transition rfm22b_transitions[RFM22B_STATE_NUM_STATES] = { [RFM22B_STATE_UNINITIALIZED] = { .entry_fn = 0, .next_state = { [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, }, }, [RFM22B_STATE_INITIALIZING] = { .entry_fn = rfm22_init, .next_state = { [RFM22B_EVENT_INITIALIZED] = RFM22B_STATE_TX_START, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_RX_MODE] = { .entry_fn = rfm22_setRxMode, .next_state = { [RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_WAIT_PREAMBLE, [RFM22B_EVENT_SEND_PACKET] = RFM22B_STATE_TX_START, [RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_WAIT_PREAMBLE] = { .entry_fn = rfm22_detectPreamble, .next_state = { [RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_WAIT_PREAMBLE, [RFM22B_EVENT_PREAMBLE_DETECTED] = RFM22B_STATE_WAIT_SYNC, [RFM22B_EVENT_SEND_PACKET] = RFM22B_STATE_TX_START, [RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_WAIT_SYNC] = { .entry_fn = rfm22_detectSync, .next_state = { [RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_WAIT_SYNC, [RFM22B_EVENT_SYNC_DETECTED] = RFM22B_STATE_RX_DATA, [RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_RX_DATA] = { .entry_fn = rfm22_rxData, .next_state = { [RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_RX_DATA, [RFM22B_EVENT_RX_COMPLETE] = RFM22B_STATE_TX_START, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_TX_START] = { .entry_fn = rfm22_txStart, .next_state = { [RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_TX_DATA, [RFM22B_EVENT_RX_MODE] = RFM22B_STATE_RX_MODE, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_TX_DATA] = { .entry_fn = rfm22_txData, .next_state = { [RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_TX_DATA, [RFM22B_EVENT_TX_COMPLETE] = RFM22B_STATE_TX_START, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_TIMEOUT] = { .entry_fn = rfm22_timeout, .next_state = { [RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_ERROR] = { .entry_fn = rfm22_error, .next_state = { [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_FATAL_ERROR] = { .entry_fn = rfm22_fatal_error, .next_state = { [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, }; // xtal 10 ppm, 434MHz #define LOOKUP_SIZE 14 static const uint32_t data_rate[] = { 500, 1000, 2000, 4000, 8000, 9600, 16000, 19200, 24000, 32000, 64000, 128000, 192000, 256000}; static const uint8_t modulation_index[] = { 16, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; static const uint32_t freq_deviation[] = { 4000, 4000, 4000, 4000, 4000, 4800, 8000, 9600, 12000, 16000, 32000, 64000, 96000, 128000}; static const uint32_t rx_bandwidth[] = { 17500, 17500, 17500, 17500, 17500, 19400, 32200, 38600, 51200, 64100, 137900, 269300, 420200, 518800}; static const int8_t est_rx_sens_dBm[] = { -118, -118, -117, -116, -115, -115, -112, -112, -110, -109, -106, -103, -101, -100}; // estimated receiver sensitivity for BER = 1E-3 static const uint8_t reg_1C[] = { 0x37, 0x37, 0x37, 0x37, 0x3A, 0x3B, 0x26, 0x28, 0x2E, 0x16, 0x07, 0x83, 0x8A, 0x8C}; // rfm22_if_filter_bandwidth static const uint8_t reg_1D[] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44}; // rfm22_afc_loop_gearshift_override static const uint8_t reg_1E[] = { 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x02}; // rfm22_afc_timing_control static const uint8_t reg_1F[] = { 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03}; // rfm22_clk_recovery_gearshift_override static const uint8_t reg_20[] = { 0xE8, 0xF4, 0xFA, 0x70, 0x3F, 0x34, 0x3F, 0x34, 0x2A, 0x3F, 0x3F, 0x5E, 0x3F, 0x2F}; // rfm22_clk_recovery_oversampling_ratio static const uint8_t reg_21[] = { 0x60, 0x20, 0x00, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x02, 0x02, 0x01, 0x02, 0x02}; // rfm22_clk_recovery_offset2 static const uint8_t reg_22[] = { 0x20, 0x41, 0x83, 0x06, 0x0C, 0x75, 0x0C, 0x75, 0x12, 0x0C, 0x0C, 0x5D, 0x0C, 0xBB}; // rfm22_clk_recovery_offset1 static const uint8_t reg_23[] = { 0xC5, 0x89, 0x12, 0x25, 0x4A, 0x25, 0x4A, 0x25, 0x6F, 0x4A, 0x4A, 0x86, 0x4A, 0x0D}; // rfm22_clk_recovery_offset0 static const uint8_t reg_24[] = { 0x00, 0x00, 0x00, 0x02, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x05, 0x07, 0x07}; // rfm22_clk_recovery_timing_loop_gain1 static const uint8_t reg_25[] = { 0x0A, 0x23, 0x85, 0x0E, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x74, 0xFF, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0 static const uint8_t reg_2A[] = { 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0D, 0x0D, 0x0E, 0x12, 0x17, 0x31, 0x50, 0x50, 0x50}; // rfm22_afc_limiter .. AFC_pull_in_range = �AFCLimiter[7:0] x (hbsel+1) x 625 Hz static const uint8_t reg_6E[] = { 0x04, 0x08, 0x10, 0x20, 0x41, 0x4E, 0x83, 0x9D, 0xC4, 0x08, 0x10, 0x20, 0x31, 0x41}; // rfm22_tx_data_rate1 static const uint8_t reg_6F[] = { 0x19, 0x31, 0x62, 0xC5, 0x89, 0xA5, 0x12, 0x49, 0x9C, 0x31, 0x62, 0xC5, 0x27, 0x89}; // rfm22_tx_data_rate0 static const uint8_t reg_70[] = { 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D}; // rfm22_modulation_mode_control1 static const uint8_t reg_71[] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23}; // rfm22_modulation_mode_control2 static const uint8_t reg_72[] = { 0x06, 0x06, 0x06, 0x06, 0x06, 0x08, 0x0D, 0x0F, 0x13, 0x1A, 0x33, 0x66, 0x9A, 0xCD}; // rfm22_frequency_deviation // ************************************ // Scan Spectrum settings // GFSK modulation // no manchester encoding // data whitening // FIFO mode // 5-nibble rx preamble length detection // 10-nibble tx preamble length #define SS_LOOKUP_SIZE 2 // xtal 1 ppm, 434MHz static const uint32_t ss_rx_bandwidth[] = { 2600, 10600}; static const uint8_t ss_reg_1C[] = { 0x51, 0x32}; // rfm22_if_filter_bandwidth static const uint8_t ss_reg_1D[] = { 0x00, 0x00}; // rfm22_afc_loop_gearshift_override static const uint8_t ss_reg_20[] = { 0xE8, 0x38}; // rfm22_clk_recovery_oversampling_ratio static const uint8_t ss_reg_21[] = { 0x60, 0x02}; // rfm22_clk_recovery_offset2 static const uint8_t ss_reg_22[] = { 0x20, 0x4D}; // rfm22_clk_recovery_offset1 static const uint8_t ss_reg_23[] = { 0xC5, 0xD3}; // rfm22_clk_recovery_offset0 static const uint8_t ss_reg_24[] = { 0x00, 0x07}; // rfm22_clk_recovery_timing_loop_gain1 static const uint8_t ss_reg_25[] = { 0x0F, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0 static const uint8_t ss_reg_2A[] = { 0xFF, 0xFF}; // rfm22_afc_limiter .. AFC_pull_in_range = �AFCLimiter[7:0] x (hbsel+1) x 625 Hz static const uint8_t ss_reg_70[] = { 0x24, 0x2D}; // rfm22_modulation_mode_control1 static const uint8_t ss_reg_71[] = { 0x2B, 0x23}; // rfm22_modulation_mode_control2 static bool PIOS_RFM22B_validate(struct pios_rfm22b_dev * rfm22b_dev) { return (rfm22b_dev != NULL && rfm22b_dev->magic == PIOS_RFM22B_DEV_MAGIC); } #if defined(PIOS_INCLUDE_FREERTOS) static struct pios_rfm22b_dev * PIOS_RFM22B_alloc(void) { struct pios_rfm22b_dev * rfm22b_dev; rfm22b_dev = (struct pios_rfm22b_dev *)pvPortMalloc(sizeof(*rfm22b_dev)); rfm22b_dev->spi_id = 0; if (!rfm22b_dev) return(NULL); rfm22b_dev->magic = PIOS_RFM22B_DEV_MAGIC; return(rfm22b_dev); } #else static struct pios_rfm22b_dev pios_rfm22b_devs[PIOS_RFM22B_MAX_DEVS]; static uint8_t pios_rfm22b_num_devs; static struct pios_rfm22b_dev * PIOS_RFM22B_alloc(void) { struct pios_rfm22b_dev * rfm22b_dev; if (pios_rfm22b_num_devs >= PIOS_RFM22B_MAX_DEVS) return NULL; rfm22b_dev = &pios_rfm22b_devs[pios_rfm22b_num_devs++]; rfm22b_dev->magic = PIOS_RFM22B_DEV_MAGIC; return (rfm22b_dev); } #endif static struct pios_rfm22b_dev * g_rfm22b_dev = NULL; /** * Initialise an RFM22B device */ int32_t PIOS_RFM22B_Init(uint32_t *rfm22b_id, uint32_t spi_id, uint32_t slave_num, const struct pios_rfm22b_cfg *cfg) { PIOS_DEBUG_Assert(rfm22b_id); PIOS_DEBUG_Assert(cfg); // Allocate the device structure. struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *) PIOS_RFM22B_alloc(); if (!rfm22b_dev) return(-1); // Store the SPI handle rfm22b_dev->slave_num = slave_num; rfm22b_dev->spi_id = spi_id; // Set the state to initializing. rfm22b_dev->state = RFM22B_STATE_UNINITIALIZED; // Create the event queue rfm22b_dev->eventQueue = xQueueCreate(EVENT_QUEUE_SIZE, sizeof(enum pios_rfm22b_event)); // Initialize the register values. rfm22b_dev->device_status = 0; rfm22b_dev->int_status1 = 0; rfm22b_dev->int_status2 = 0; rfm22b_dev->ezmac_status = 0; // Initialize the stats. rfm22b_dev->resets = 0; rfm22b_dev->errors = 0; rfm22b_dev->irqs_processed = 0; rfm22b_dev->rssi = 0; rfm22b_dev->rssi_dBm = -127; // Bind the configuration to the device instance rfm22b_dev->cfg = *cfg; // Initialize the packets. rfm22b_dev->rx_packet = NULL; rfm22b_dev->rx_packet_next = NULL; rfm22b_dev->rx_packet_prev = NULL; rfm22b_dev->rx_packet_len = 0; rfm22b_dev->tx_packet = NULL; *rfm22b_id = (uint32_t)rfm22b_dev; g_rfm22b_dev = rfm22b_dev; // Calculate the (approximate) maximum amount of time that it should take to transmit / receive a packet. rfm22b_dev->max_packet_time = (uint16_t)((float)(PIOS_PH_MAX_PACKET * 8 * 1000) / (float)(rfm22b_dev->cfg.maxRFBandwidth) + 0.5); rfm22b_dev->packet_start_time = 0; // Create a semaphore to know if an ISR needs responding to vSemaphoreCreateBinary( rfm22b_dev->isrPending ); // Create a semaphore to know when an rx packet is available vSemaphoreCreateBinary( rfm22b_dev->rxsem ); // Create the packet queue. rfm22b_dev->packetQueue = xQueueCreate(PACKET_QUEUE_SIZE, sizeof(PHPacketHandle)); // Initialize the max tx power level. PIOS_RFM22B_SetTxPower(*rfm22b_id, cfg->maxTxPower); // Create our (hopefully) unique 32 bit id from the processor serial number. uint8_t crcs[] = { 0, 0, 0, 0 }; { char serial_no_str[33]; PIOS_SYS_SerialNumberGet(serial_no_str); // Create a 32 bit value using 4 8 bit CRC values. for (uint8_t i = 0; serial_no_str[i] != 0; ++i) crcs[i % 4] = PIOS_CRC_updateByte(crcs[i % 4], serial_no_str[i]); } rfm22b_dev->deviceID = crcs[0] | crcs[1] << 8 | crcs[2] << 16 | crcs[3] << 24; DEBUG_PRINTF(2, "RF device ID: %x\n\r", rfm22b_dev->deviceID); // Initialize the external interrupt. PIOS_EXTI_Init(cfg->exti_cfg); // Register the watchdog timer for the radio driver task #ifdef PIOS_WDG_RFM22B PIOS_WDG_RegisterFlag(PIOS_WDG_RFM22B); #endif /* PIOS_WDG_RFM22B */ // Start the driver task. This task controls the radio state machine and removed all of the IO from the IRQ handler. xTaskCreate(PIOS_RFM22B_Task, (signed char *)"PIOS_RFM22B_Task", STACK_SIZE_BYTES, (void*)rfm22b_dev, TASK_PRIORITY, &(rfm22b_dev->taskHandle)); // Initialize the radio device. PIOS_RFM22B_InjectEvent(rfm22b_dev, RFM22B_EVENT_INITIALIZE, false); return(0); } /** * The RFM22B external interrupt routine. */ bool PIOS_RFM22_EXT_Int(void) { if (!PIOS_RFM22B_validate(g_rfm22b_dev)) return false; // Inject an interrupt event into the state machine. PIOS_RFM22B_InjectEvent(g_rfm22b_dev, RFM22B_EVENT_INT_RECEIVED, true); return false; } /** * Inject an event into the RFM22B state machine. * \param[in] rfm22b_dev The device structure * \param[in] event The event to inject * \param[in] inISR Is this being called from an interrrup service routine? */ static void PIOS_RFM22B_InjectEvent(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_event event, bool inISR) { // Store the event. if (xQueueSend(rfm22b_dev->eventQueue, &event, portMAX_DELAY) != pdTRUE) return; // Signal the semaphore to wake up the handler thread. if (inISR) { portBASE_TYPE pxHigherPriorityTaskWoken; if (xSemaphoreGiveFromISR(rfm22b_dev->isrPending, &pxHigherPriorityTaskWoken) != pdTRUE) { // Something went fairly seriously wrong rfm22b_dev->errors++; } portEND_SWITCHING_ISR(pxHigherPriorityTaskWoken); } else { if (xSemaphoreGive(rfm22b_dev->isrPending) != pdTRUE) { // Something went fairly seriously wrong rfm22b_dev->errors++; } } } /** * Returns the unique device ID for th RFM22B device. * \param[in] rfm22b_id The RFM22B device index. * \return The unique device ID */ uint32_t PIOS_RFM22B_DeviceID(uint32_t rfm22b_id) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if(PIOS_RFM22B_validate(rfm22b_dev)) return rfm22b_dev->deviceID; else return 0; } void PIOS_RFM22B_SetTxPower(uint32_t rfm22b_id, uint8_t tx_pwr) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if(!PIOS_RFM22B_validate(rfm22b_dev)) return; switch (tx_pwr) { case 0: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_0; break; // +1dBm ... 1.25mW case 1: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_1; break; // +2dBm ... 1.6mW case 2: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_2; break; // +5dBm ... 3.16mW case 3: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_3; break; // +8dBm ... 6.3mW case 4: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_4; break; // +11dBm .. 12.6mW case 5: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_5; break; // +14dBm .. 25mW case 6: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_6; break; // +17dBm .. 50mW case 7: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_7; break; // +20dBm .. 100mW default: break; } } int16_t PIOS_RFM22B_Resets(uint32_t rfm22b_id) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; return rfm22b_dev->resets; } static void PIOS_RFM22B_RxStart(uint32_t rfm22b_id, uint16_t rx_bytes_avail) { struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; bool valid = PIOS_RFM22B_validate(rfm22b_dev); PIOS_Assert(valid); } /** * Insert a packet on the packet queue for sending. * Note: If this finction succedds, the packet will be released by the driver, so no release is necessary. * If this function doesn't success, the caller is still responsible for the packet. * \param[in] rfm22b_id The rfm22b device. * \param[in] p The packet handle. * \param[in] max_delay The maximum time to delay waiting to queue the packet. * \return true on success, false on failue to queue the packet. */ bool PIOS_RFM22B_Send_Packet(uint32_t rfm22b_id, PHPacketHandle p, uint32_t max_delay) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if(!PIOS_RFM22B_validate(rfm22b_dev)) return false; // Store the packet handle in the packet queue if (xQueueSend(rfm22b_dev->packetQueue, &p, max_delay) != pdTRUE) return false; // Inject a send packet event PIOS_RFM22B_InjectEvent(g_rfm22b_dev, RFM22B_EVENT_SEND_PACKET, false); // Success return true; } /** * Receive a packet from the radio. * \param[in] rfm22b_id The rfm22b device. * \param[in] p A pointer to the packet handle. * \param[in] max_delay The maximum time to delay waiting for a packet. * \return The number of bytes received. */ uint32_t PIOS_RFM22B_Receive_Packet(uint32_t rfm22b_id, PHPacketHandle *p, uint32_t max_delay) { struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (!PIOS_RFM22B_validate(rfm22b_dev)) return 0; // Allocate the next Rx packet if (rfm22b_dev->rx_packet_next == NULL) rfm22b_dev->rx_packet_next = PHGetRXPacket(pios_packet_handler); // Block on the semephore until the a packet has been received. if (xSemaphoreTake(rfm22b_dev->rxsem, max_delay / portTICK_RATE_MS) != pdTRUE) return 0; // Return the Rx packet if it's available. uint32_t rx_len = 0; if (rfm22b_dev->rx_packet_prev) { *p = rfm22b_dev->rx_packet_prev; rfm22b_dev->rx_packet_prev = NULL; rx_len = rfm22b_dev->rx_packet_len; } return rx_len; } /** * The task that controls the radio state machine. */ static void PIOS_RFM22B_Task(void *parameters) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)parameters; if (!PIOS_RFM22B_validate(rfm22b_dev)) return; static portTickType lastEventTime; while(1) { #ifdef PIOS_WDG_RFM22B // Update the watchdog timer PIOS_WDG_UpdateFlag(PIOS_WDG_RFM22B); #endif /* PIOS_WDG_RFM22B */ // Wait for a signal indicating an external interrupt or a pending send/receive request. if ( xSemaphoreTake(g_rfm22b_dev->isrPending, ISR_TIMEOUT / portTICK_RATE_MS) == pdTRUE ) { rfm22b_dev->irqs_processed++; lastEventTime = xTaskGetTickCount(); // Process events through the state machine. enum pios_rfm22b_event event; while (xQueueReceive(rfm22b_dev->eventQueue, &event, 0) == pdTRUE) { if ((event == RFM22B_EVENT_INT_RECEIVED) && ((rfm22b_dev->state == RFM22B_STATE_UNINITIALIZED) || (rfm22b_dev->state == RFM22B_STATE_INITIALIZING))) continue; // Process all state transitions. while(event != RFM22B_EVENT_NUM_EVENTS) event = rfm22_process_state_transition(rfm22b_dev, event); } } else { // Has it been too long since the last event? portTickType timeSinceEvent = xTaskGetTickCount() - lastEventTime; if ((timeSinceEvent / portTICK_RATE_MS) > PIOS_RFM22B_SUPERVISOR_TIMEOUT) { // Transsition through an error event. enum pios_rfm22b_event event = RFM22B_EVENT_ERROR; while(event != RFM22B_EVENT_NUM_EVENTS) event = rfm22_process_state_transition(rfm22b_dev, event); // Clear the event queue. while (xQueueReceive(rfm22b_dev->eventQueue, &event, 0) == pdTRUE) ; lastEventTime = xTaskGetTickCount(); } else { rfm22b_dev->resets = rfm22b_dev->state; enum pios_rfm22b_event event = RFM22B_EVENT_TIMEOUT; while(event != RFM22B_EVENT_NUM_EVENTS) event = rfm22_process_state_transition(rfm22b_dev, event); } } // Have we locked up sending / receiving a packet? if (rfm22b_dev->packet_start_time > 0) { portTickType cur_time = xTaskGetTickCount(); // Did the clock wrap around? if (cur_time < rfm22b_dev->packet_start_time) rfm22b_dev->packet_start_time = (cur_time > 0) ? cur_time : 1; // Have we been sending this packet too long? if ((cur_time - rfm22b_dev->packet_start_time) > (rfm22b_dev->max_packet_time * 5)) { enum pios_rfm22b_event event = RFM22B_EVENT_TIMEOUT; while(event != RFM22B_EVENT_NUM_EVENTS) event = rfm22_process_state_transition(rfm22b_dev, event); } } } } static void PIOS_RFM22B_TxStart(uint32_t rfm22b_id, uint16_t tx_bytes_avail) { struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; bool valid = PIOS_RFM22B_validate(rfm22b_dev); PIOS_Assert(valid); #ifdef NEVER // Get some data to send bool need_yield = false; if(tx_pre_buffer_size == 0) tx_pre_buffer_size = (rfm22b_dev->tx_out_cb)(rfm22b_dev->tx_out_context, tx_pre_buffer, TX_BUFFER_SIZE, NULL, &need_yield); // Inject a send packet event PIOS_RFM22B_InjectEvent(g_rfm22b_dev, RFM22B_EVENT_TX_START, false); #endif } /** * Changes the baud rate of the RFM22B peripheral without re-initialising. * \param[in] rfm22b_id RFM22B name (GPS, TELEM, AUX) * \param[in] baud Requested baud rate */ static void PIOS_RFM22B_ChangeBaud(uint32_t rfm22b_id, uint32_t baud) { struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; bool valid = PIOS_RFM22B_validate(rfm22b_dev); PIOS_Assert(valid); } static void PIOS_RFM22B_RegisterRxCallback(uint32_t rfm22b_id, pios_com_callback rx_in_cb, uint32_t context) { struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; bool valid = PIOS_RFM22B_validate(rfm22b_dev); PIOS_Assert(valid); /* * Order is important in these assignments since ISR uses _cb * field to determine if it's ok to dereference _cb and _context */ rfm22b_dev->rx_in_context = context; rfm22b_dev->rx_in_cb = rx_in_cb; } static void PIOS_RFM22B_RegisterTxCallback(uint32_t rfm22b_id, pios_com_callback tx_out_cb, uint32_t context) { struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; bool valid = PIOS_RFM22B_validate(rfm22b_dev); PIOS_Assert(valid); /* * Order is important in these assignments since ISR uses _cb * field to determine if it's ok to dereference _cb and _context */ rfm22b_dev->tx_out_context = context; rfm22b_dev->tx_out_cb = tx_out_cb; } // ************************************ // SPI read/write //! Assert the CS line static void rfm22_assertCs() { PIOS_DELAY_WaituS(1); if(PIOS_RFM22B_validate(g_rfm22b_dev) && g_rfm22b_dev->spi_id != 0) PIOS_SPI_RC_PinSet(g_rfm22b_dev->spi_id, g_rfm22b_dev->slave_num, 0); } //! Deassert the CS line static void rfm22_deassertCs() { if(PIOS_RFM22B_validate(g_rfm22b_dev) && g_rfm22b_dev->spi_id != 0) PIOS_SPI_RC_PinSet(g_rfm22b_dev->spi_id, g_rfm22b_dev->slave_num, 1); } //! Claim the SPI bus semaphore static void rfm22_claimBus() { if(PIOS_RFM22B_validate(g_rfm22b_dev) && g_rfm22b_dev->spi_id != 0) PIOS_SPI_ClaimBus(g_rfm22b_dev->spi_id); } //! Release the SPI bus semaphore static void rfm22_releaseBus() { if(PIOS_RFM22B_validate(g_rfm22b_dev) && g_rfm22b_dev->spi_id != 0) PIOS_SPI_ReleaseBus(g_rfm22b_dev->spi_id); } /** * Claim the semaphore and write a byte to a register * @param[in] addr The address to write to * @param[in] data The datat to write to that address */ static void rfm22_write(uint8_t addr, uint8_t data) { if(PIOS_RFM22B_validate(g_rfm22b_dev)) { rfm22_claimBus(); rfm22_assertCs(); uint8_t buf[2] = {addr | 0x80, data}; PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, buf, NULL, sizeof(buf), NULL); rfm22_deassertCs(); rfm22_releaseBus(); } } /** * Write a byte to a register without claiming the bus. Also * toggle the NSS line * @param[in] addr The address of the RFM22b register to write * @param[in] data The data to write to that register static void rfm22_write_noclaim(uint8_t addr, uint8_t data) { uint8_t buf[2] = {addr | 0x80, data}; if(PIOS_RFM22B_validate(g_rfm22b_dev)) { rfm22_assertCs(); PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, buf, NULL, sizeof(buf), NULL); rfm22_deassertCs(); } } */ /** * Read a byte from an RFM22b register * @param[in] addr The address to read from * @return Returns the result of the register read */ static uint8_t rfm22_read(uint8_t addr) { uint8_t in[2]; uint8_t out[2] = {addr & 0x7f, 0xFF}; if(PIOS_RFM22B_validate(g_rfm22b_dev)) { rfm22_claimBus(); rfm22_assertCs(); PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, out, in, sizeof(out), NULL); rfm22_deassertCs(); rfm22_releaseBus(); } return in[1]; } /** * Read a byte from an RFM22b register without claiming the bus * @param[in] addr The address to read from * @return Returns the result of the register read */ static uint8_t rfm22_read_noclaim(uint8_t addr) { uint8_t out[2] = {addr & 0x7F, 0xFF}; uint8_t in[2]; if (PIOS_RFM22B_validate(g_rfm22b_dev)) { rfm22_assertCs(); PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, out, in, sizeof(out), NULL); rfm22_deassertCs(); } return in[1]; } // ************************************ static enum pios_rfm22b_event rfm22_process_state_transition(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_event event) { // No event if (event == RFM22B_EVENT_NUM_EVENTS) return RFM22B_EVENT_NUM_EVENTS; // Don't transition if there is no transition defined enum pios_rfm22b_state next_state = rfm22b_transitions[rfm22b_dev->state].next_state[event]; if (!next_state) return RFM22B_EVENT_NUM_EVENTS; /* * Move to the next state * * This is done prior to calling the new state's entry function to * guarantee that the entry function never depends on the previous * state. This way, it cannot ever know what the previous state was. */ enum pios_rfm22b_state prev_state = rfm22b_dev->state; if (prev_state) ; rfm22b_dev->state = next_state; /* Call the entry function (if any) for the next state. */ if (rfm22b_transitions[rfm22b_dev->state].entry_fn) return rfm22b_transitions[rfm22b_dev->state].entry_fn(rfm22b_dev); return RFM22B_EVENT_NUM_EVENTS; } // ************************************ static void rfm22_setNominalCarrierFrequency(struct pios_rfm22b_dev *rfm22b_dev, uint32_t frequency_hz) { uint32_t min_frequency_hz = rfm22b_dev->cfg.minFrequencyHz; uint32_t max_frequency_hz = rfm22b_dev->cfg.maxFrequencyHz; if (frequency_hz < min_frequency_hz) frequency_hz = min_frequency_hz; else if (frequency_hz > max_frequency_hz) frequency_hz = max_frequency_hz; // holds the hbsel (1 or 2) uint8_t hbsel; if (frequency_hz < 480000000) hbsel = 1; else hbsel = 2; uint8_t fb = (uint8_t)(frequency_hz / (10000000 * hbsel)); uint32_t fc = (uint32_t)(frequency_hz - (10000000 * hbsel * fb)); fc = (fc * 64u) / (10000ul * hbsel); fb -= 24; if (hbsel > 1) fb |= RFM22_fbs_hbsel; fb |= RFM22_fbs_sbse; // is this the RX LO polarity? // frequency hopping channel (0-255) rfm22b_dev->frequency_step_size = 156.25f * hbsel; // frequency hopping channel (0-255) rfm22_write(RFM22_frequency_hopping_channel_select, rfm22b_dev->frequency_hop_channel); // no frequency offset rfm22_write(RFM22_frequency_offset1, 0); // no frequency offset rfm22_write(RFM22_frequency_offset2, 0); // set the carrier frequency rfm22_write(RFM22_frequency_band_select, fb); rfm22_write(RFM22_nominal_carrier_frequency1, fc >> 8); rfm22_write(RFM22_nominal_carrier_frequency0, fc & 0xff); } void rfm22_setFreqHopChannel(uint8_t channel) { // set the frequency hopping channel g_rfm22b_dev->frequency_hop_channel = channel; rfm22_write(RFM22_frequency_hopping_channel_select, channel); } uint32_t rfm22_freqHopSize(void) { // return the frequency hopping step size return ((uint32_t)g_rfm22b_dev->frequency_hop_step_size_reg * 10000); } // ************************************ // radio datarate about 19200 Baud // radio frequency deviation 45kHz // radio receiver bandwidth 67kHz. // // Carson's rule: // The signal bandwidth is about 2(Delta-f + fm) .. // // Delta-f = frequency deviation // fm = maximum frequency of the signal // // This gives 2(45 + 9.6) = 109.2kHz. void rfm22_setDatarate(uint32_t datarate_bps, bool data_whitening) { // Find the closest data rate that is >= the value passed in int lookup_index = 0; while (lookup_index < (LOOKUP_SIZE - 1) && data_rate[lookup_index] < datarate_bps) lookup_index++; lookup_index = 10; datarate_bps = data_rate[lookup_index]; // rfm22_if_filter_bandwidth rfm22_write(0x1C, reg_1C[lookup_index]); // rfm22_afc_loop_gearshift_override rfm22_write(0x1D, reg_1D[lookup_index]); // RFM22_afc_timing_control rfm22_write(0x1E, reg_1E[lookup_index]); // RFM22_clk_recovery_gearshift_override rfm22_write(0x1F, reg_1F[lookup_index]); // rfm22_clk_recovery_oversampling_ratio rfm22_write(0x20, reg_20[lookup_index]); // rfm22_clk_recovery_offset2 rfm22_write(0x21, reg_21[lookup_index]); // rfm22_clk_recovery_offset1 rfm22_write(0x22, reg_22[lookup_index]); // rfm22_clk_recovery_offset0 rfm22_write(0x23, reg_23[lookup_index]); // rfm22_clk_recovery_timing_loop_gain1 rfm22_write(0x24, reg_24[lookup_index]); // rfm22_clk_recovery_timing_loop_gain0 rfm22_write(0x25, reg_25[lookup_index]); // rfm22_afc_limiter rfm22_write(0x2A, reg_2A[lookup_index]); /* This breaks all bit rates < 100000! if (datarate_bps < 100000) // rfm22_chargepump_current_trimming_override rfm22_write(0x58, 0x80); else // rfm22_chargepump_current_trimming_override rfm22_write(0x58, 0xC0); */ // rfm22_tx_data_rate1 rfm22_write(0x6E, reg_6E[lookup_index]); // rfm22_tx_data_rate0 rfm22_write(0x6F, reg_6F[lookup_index]); // Enable data whitening // uint8_t txdtrtscale_bit = rfm22_read(RFM22_modulation_mode_control1) & RFM22_mmc1_txdtrtscale; // rfm22_write(RFM22_modulation_mode_control1, txdtrtscale_bit | RFM22_mmc1_enwhite); if (!data_whitening) // rfm22_modulation_mode_control1 rfm22_write(0x70, reg_70[lookup_index] & ~RFM22_mmc1_enwhite); else // rfm22_modulation_mode_control1 rfm22_write(0x70, reg_70[lookup_index] | RFM22_mmc1_enwhite); // rfm22_modulation_mode_control2 rfm22_write(0x71, reg_71[lookup_index]); // rfm22_frequency_deviation rfm22_write(0x72, reg_72[lookup_index]); rfm22_write(RFM22_ook_counter_value1, 0x00); rfm22_write(RFM22_ook_counter_value2, 0x00); } // ************************************ static enum pios_rfm22b_event rfm22_setRxMode(struct pios_rfm22b_dev *rfm22b_dev) { rfm22b_dev->packet_start_time = 0; // disable interrupts rfm22_write(RFM22_interrupt_enable1, 0x00); rfm22_write(RFM22_interrupt_enable2, 0x00); // Switch to TUNE mode rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon); RX_LED_OFF; TX_LED_OFF; // empty the rx buffer rfm22b_dev->rx_buffer_wr = 0; // Clear the TX buffer. rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0; // clear FIFOs rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx); rfm22_write(RFM22_op_and_func_ctrl2, 0x00); // enable RX interrupts rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_encrcerror | RFM22_ie1_enpkvalid | RFM22_ie1_enrxffafull | RFM22_ie1_enfferr); rfm22_write(RFM22_interrupt_enable2, RFM22_ie2_enpreainval | RFM22_ie2_enpreaval | RFM22_ie2_enswdet); // enable the receiver rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_rxon); // No event generated return RFM22B_EVENT_NUM_EVENTS; } // ************************************ static enum pios_rfm22b_event rfm22_txStart(struct pios_rfm22b_dev *rfm22b_dev) { // See if there's a packet on the packet queue. PHPacketHandle p; if (xQueueReceive(rfm22b_dev->packetQueue, &p, 0) != pdTRUE) { // Clear the TX buffer. rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0; return RFM22B_EVENT_RX_MODE; } rfm22b_dev->tx_packet = p; rfm22b_dev->packet_start_time = xTaskGetTickCount(); if (rfm22b_dev->packet_start_time == 0) rfm22b_dev->packet_start_time = 1; // disable interrupts rfm22_write(RFM22_interrupt_enable1, 0x00); rfm22_write(RFM22_interrupt_enable2, 0x00); // TUNE mode rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon); // Queue the data up for sending rfm22b_dev->tx_data_wr = PH_PACKET_SIZE(rfm22b_dev->tx_packet); RX_LED_OFF; // Set the destination address in the transmit header. // The destination address is the first 4 bytes of the message. uint8_t *tx_buffer = (uint8_t*)(rfm22b_dev->tx_packet); rfm22_write(RFM22_transmit_header0, tx_buffer[0]); rfm22_write(RFM22_transmit_header1, tx_buffer[1]); rfm22_write(RFM22_transmit_header2, tx_buffer[2]); rfm22_write(RFM22_transmit_header3, tx_buffer[3]); // FIFO mode, GFSK modulation uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd; rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo | RFM22_mmc2_modtyp_gfsk); // set the tx power rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_1 | RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | g_rfm22b_dev->tx_power); // clear FIFOs rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx); rfm22_write(RFM22_op_and_func_ctrl2, 0x00); // ******************* // add some data to the chips TX FIFO before enabling the transmitter // set the total number of data bytes we are going to transmit rfm22_write(RFM22_transmit_packet_length, rfm22b_dev->tx_data_wr); // add some data rfm22_claimBus(); rfm22_assertCs(); PIOS_SPI_TransferByte(g_rfm22b_dev->spi_id, RFM22_fifo_access | 0x80); int bytes_to_write = (rfm22b_dev->tx_data_wr - rfm22b_dev->tx_data_rd); bytes_to_write = (bytes_to_write > FIFO_SIZE) ? FIFO_SIZE: bytes_to_write; PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, &tx_buffer[rfm22b_dev->tx_data_rd], NULL, bytes_to_write, NULL); rfm22b_dev->tx_data_rd += bytes_to_write; rfm22_deassertCs(); rfm22_releaseBus(); // enable TX interrupts rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_enpksent | RFM22_ie1_entxffaem); // enable the transmitter rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_txon); TX_LED_ON; return RFM22B_EVENT_TX_STARTED; } // ************************************ /** * Read the RFM22B interrupt and device status registers * \param[in] rfm22b_dev The device structure */ static bool rfm22_readStatus(struct pios_rfm22b_dev *rfm22b_dev) { // 1. Read the interrupt statuses with burst read rfm22_claimBus(); // Set RC and the semaphore uint8_t write_buf[3] = {RFM22_interrupt_status1 & 0x7f, 0xFF, 0xFF}; uint8_t read_buf[3]; rfm22_assertCs(); PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, write_buf, read_buf, sizeof(write_buf), NULL); rfm22_deassertCs(); rfm22b_dev->int_status1 = read_buf[1]; rfm22b_dev->int_status2 = read_buf[2]; // Device status rfm22b_dev->device_status = rfm22_read_noclaim(RFM22_device_status); // EzMAC status rfm22b_dev->ezmac_status = rfm22_read_noclaim(RFM22_ezmac_status); // Release the bus rfm22_releaseBus(); // the RF module has gone and done a reset - we need to re-initialize the rf module if (rfm22b_dev->int_status2 & RFM22_is2_ipor) return false; return true; } static enum pios_rfm22b_event rfm22_detectPreamble(struct pios_rfm22b_dev *rfm22b_dev) { // Read the device status registers if (!rfm22_readStatus(rfm22b_dev)) return RFM22B_EVENT_ERROR; // Valid preamble detected if (rfm22b_dev->int_status2 & RFM22_is2_ipreaval) { rfm22b_dev->packet_start_time = xTaskGetTickCount(); if (rfm22b_dev->packet_start_time == 0) rfm22b_dev->packet_start_time = 1; RX_LED_ON; return RFM22B_EVENT_PREAMBLE_DETECTED; } return RFM22B_EVENT_NUM_EVENTS; } static enum pios_rfm22b_event rfm22_detectSync(struct pios_rfm22b_dev *rfm22b_dev) { // Read the device status registers if (!rfm22_readStatus(rfm22b_dev)) return RFM22B_EVENT_ERROR; // Sync word detected if (rfm22b_dev->int_status2 & RFM22_is2_iswdet) { RX_LED_ON; // read the 10-bit signed afc correction value // bits 9 to 2 uint16_t afc_correction = (uint16_t)rfm22_read(RFM22_afc_correction_read) << 8; // bits 1 & 0 afc_correction |= (uint16_t)rfm22_read(RFM22_ook_counter_value1) & 0x00c0; afc_correction >>= 6; // convert the afc value to Hz rfm22b_dev->afc_correction_Hz = (int32_t)(rfm22b_dev->frequency_step_size * afc_correction + 0.5f); // read rx signal strength .. 45 = -100dBm, 205 = -20dBm rfm22b_dev->rssi = rfm22_read(RFM22_rssi); // convert to dBm rfm22b_dev->rssi_dBm = (int8_t)(rfm22b_dev->rssi >> 1) - 122; // remember the afc value for this packet rfm22b_dev->rx_packet_start_afc_Hz = rfm22b_dev->afc_correction_Hz; return RFM22B_EVENT_SYNC_DETECTED; } else if (rfm22b_dev->int_status2 & !RFM22_is2_ipreaval) { // Waiting for sync timed out. return RFM22B_EVENT_TX_START; } return RFM22B_EVENT_NUM_EVENTS; } static enum pios_rfm22b_event rfm22_rxData(struct pios_rfm22b_dev *rfm22b_dev) { // Swap in the next packet buffer if required. if (rfm22b_dev->rx_packet == NULL) { if (rfm22b_dev->rx_packet_next != NULL) rfm22b_dev->rx_packet = rfm22b_dev->rx_packet_next; else return RFM22B_EVENT_ERROR; } uint8_t *rx_buffer = (uint8_t*)(rfm22b_dev->rx_packet); // Read the device status registers if (!rfm22_readStatus(rfm22b_dev)) return RFM22B_EVENT_ERROR; // FIFO under/over flow error. Restart RX mode. if (rfm22b_dev->device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl)) return RFM22B_EVENT_ERROR; // RX FIFO almost full, it needs emptying if (rfm22b_dev->int_status1 & RFM22_is1_irxffafull) { // read data from the rf chips FIFO buffer // read the total length of the packet data uint16_t len = rfm22_read(RFM22_received_packet_length); // The received packet is going to be larger than the specified length if ((rfm22b_dev->rx_buffer_wr + RX_FIFO_HI_WATERMARK) > len) return RFM22B_EVENT_ERROR; // Another packet length error. if (((rfm22b_dev->rx_buffer_wr + RX_FIFO_HI_WATERMARK) >= len) && !(rfm22b_dev->int_status1 & RFM22_is1_ipkvalid)) return RFM22B_EVENT_ERROR; // Fetch the data from the RX FIFO rfm22_claimBus(); rfm22_assertCs(); PIOS_SPI_TransferByte(rfm22b_dev->spi_id,RFM22_fifo_access & 0x7F); rfm22b_dev->rx_buffer_wr += (PIOS_SPI_TransferBlock(rfm22b_dev->spi_id ,OUT_FF, (uint8_t *)&rx_buffer[rfm22b_dev->rx_buffer_wr], RX_FIFO_HI_WATERMARK, NULL) == 0) ? RX_FIFO_HI_WATERMARK : 0; rfm22_deassertCs(); rfm22_releaseBus(); } // CRC error .. discard the received data if (rfm22b_dev->int_status1 & RFM22_is1_icrerror) return RFM22B_EVENT_ERROR; // Valid packet received if (rfm22b_dev->int_status1 & RFM22_is1_ipkvalid) { // read the total length of the packet data uint32_t len = rfm22_read(RFM22_received_packet_length); // their must still be data in the RX FIFO we need to get if (rfm22b_dev->rx_buffer_wr < len) { int32_t bytes_to_read = len - rfm22b_dev->rx_buffer_wr; // Fetch the data from the RX FIFO rfm22_claimBus(); rfm22_assertCs(); PIOS_SPI_TransferByte(rfm22b_dev->spi_id,RFM22_fifo_access & 0x7F); rfm22b_dev->rx_buffer_wr += (PIOS_SPI_TransferBlock(rfm22b_dev->spi_id,OUT_FF, (uint8_t *)&rx_buffer[rfm22b_dev->rx_buffer_wr], bytes_to_read, NULL) == 0) ? bytes_to_read : 0; rfm22_deassertCs(); rfm22_releaseBus(); } if (rfm22b_dev->rx_buffer_wr != len) return RFM22B_EVENT_ERROR; // we have a valid received packet if (rfm22b_dev->rx_buffer_wr > 0) { // Add the rssi and afc to the end of the packet. rx_buffer[rfm22b_dev->rx_buffer_wr++] = rfm22b_dev->rssi_dBm; rx_buffer[rfm22b_dev->rx_buffer_wr++] = rfm22b_dev->rx_packet_start_afc_Hz; // Swap the Rx packets. if (rfm22b_dev->rx_packet_prev == NULL) { rfm22b_dev->rx_packet_prev = rfm22b_dev->rx_packet; rfm22b_dev->rx_packet = rfm22b_dev->rx_packet_next; rfm22b_dev->rx_packet_len = rfm22b_dev->rx_buffer_wr; // Signal the receive thread. xSemaphoreGive(rfm22b_dev->rxsem); } rfm22b_dev->rx_buffer_wr = 0; } // Start a new transaction rfm22b_dev->packet_start_time = 0; return RFM22B_EVENT_RX_COMPLETE; } return RFM22B_EVENT_NUM_EVENTS; } static enum pios_rfm22b_event rfm22_txData(struct pios_rfm22b_dev *rfm22b_dev) { // Read the device status registers if (!rfm22_readStatus(rfm22b_dev)) { // Free the tx packet PHReleaseTXPacket(pios_packet_handler, rfm22b_dev->tx_packet); rfm22b_dev->tx_packet = 0; rfm22b_dev->tx_data_wr = rfm22b_dev->tx_data_rd = 0; return RFM22B_EVENT_ERROR; } // FIFO under/over flow error. Back to RX mode. if (rfm22b_dev->device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl)) { // Free the tx packet PHReleaseTXPacket(pios_packet_handler, rfm22b_dev->tx_packet); rfm22b_dev->tx_packet = 0; rfm22b_dev->tx_data_wr = rfm22b_dev->tx_data_rd = 0; return RFM22B_EVENT_ERROR; } // TX FIFO almost empty, it needs filling up if (rfm22b_dev->int_status1 & RFM22_is1_ixtffaem) { // top-up the rf chips TX FIFO buffer uint8_t *tx_buffer = (uint8_t*)(rfm22b_dev->tx_packet); uint16_t max_bytes = FIFO_SIZE - TX_FIFO_LO_WATERMARK - 1; rfm22_claimBus(); rfm22_assertCs(); PIOS_SPI_TransferByte(g_rfm22b_dev->spi_id, RFM22_fifo_access | 0x80); int bytes_to_write = (rfm22b_dev->tx_data_wr - rfm22b_dev->tx_data_rd); bytes_to_write = (bytes_to_write > max_bytes) ? max_bytes: bytes_to_write; PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, &tx_buffer[rfm22b_dev->tx_data_rd], NULL, bytes_to_write, NULL); rfm22b_dev->tx_data_rd += bytes_to_write; rfm22_deassertCs(); rfm22_releaseBus(); } // Packet has been sent else if (rfm22b_dev->int_status1 & RFM22_is1_ipksent) { // Free the tx packet PHReleaseTXPacket(pios_packet_handler, rfm22b_dev->tx_packet); rfm22b_dev->tx_packet = 0; rfm22b_dev->tx_data_wr = rfm22b_dev->tx_data_rd = 0; // Start a new transaction rfm22b_dev->packet_start_time = 0; return RFM22B_EVENT_TX_COMPLETE; } return RFM22B_EVENT_NUM_EVENTS; } // ************************************ // return the current mode int8_t rfm22_currentMode(void) { return g_rfm22b_dev->state; } // return true if we are transmitting bool rfm22_transmitting(void) { return (g_rfm22b_dev->state == RFM22B_STATE_TX_DATA); } // return true if the channel is clear to transmit on bool rfm22_channelIsClear(void) { if (g_rfm22b_dev->state != RFM22B_STATE_RX_MODE && g_rfm22b_dev->state != RFM22B_STATE_WAIT_PREAMBLE && g_rfm22b_dev->state != RFM22B_STATE_WAIT_SYNC) // we are receiving something or we are transmitting or we are scanning the spectrum return false; return true; } // ************************************ // set/get the frequency calibration value void rfm22_setFreqCalibration(uint8_t value) { rfm22_write(RFM22_xtal_osc_load_cap, value); } // ************************************ // Initialise this hardware layer module and the rf module static enum pios_rfm22b_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev) { uint32_t id = rfm22b_dev->deviceID; uint32_t min_frequency_hz = rfm22b_dev->cfg.minFrequencyHz; uint32_t max_frequency_hz = rfm22b_dev->cfg.maxFrequencyHz; uint32_t freq_hop_step_size = 50000; // software reset the RF chip .. following procedure according to Si4x3x Errata (rev. B) rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_swres); // wait 26ms PIOS_DELAY_WaitmS(26); for (int i = 50; i > 0; i--) { // wait 1ms PIOS_DELAY_WaitmS(1); // read the status registers rfm22b_dev->int_status1 = rfm22_read(RFM22_interrupt_status1); rfm22b_dev->int_status2 = rfm22_read(RFM22_interrupt_status2); if (rfm22b_dev->int_status2 & RFM22_is2_ichiprdy) break; } // **************** // read status - clears interrupt rfm22b_dev->device_status = rfm22_read(RFM22_device_status); rfm22b_dev->int_status1 = rfm22_read(RFM22_interrupt_status1); rfm22b_dev->int_status2 = rfm22_read(RFM22_interrupt_status2); rfm22b_dev->ezmac_status = rfm22_read(RFM22_ezmac_status); // disable all interrupts rfm22_write(RFM22_interrupt_enable1, 0x00); rfm22_write(RFM22_interrupt_enable2, 0x00); // **************** rfm22b_dev->device_status = rfm22b_dev->int_status1 = rfm22b_dev->int_status2 = rfm22b_dev->ezmac_status = 0; rfm22b_dev->rx_buffer_wr = 0; rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0; rfm22b_dev->frequency_hop_channel = 0; rfm22b_dev->afc_correction_Hz = 0; rfm22b_dev->packet_start_time = 0; // **************** // read the RF chip ID bytes // read the device type uint8_t device_type = rfm22_read(RFM22_DEVICE_TYPE) & RFM22_DT_MASK; // read the device version uint8_t device_version = rfm22_read(RFM22_DEVICE_VERSION) & RFM22_DV_MASK; #if defined(RFM22_DEBUG) DEBUG_PRINTF(2, "rf device type: %d\n\r", device_type); DEBUG_PRINTF(2, "rf device version: %d\n\r", device_version); #endif if (device_type != 0x08) { #if defined(RFM22_DEBUG) DEBUG_PRINTF(2, "rf device type: INCORRECT - should be 0x08\n\r"); #endif // incorrect RF module type return RFM22B_EVENT_FATAL_ERROR; } if (device_version != RFM22_DEVICE_VERSION_B1) { #if defined(RFM22_DEBUG) DEBUG_PRINTF(2, "rf device version: INCORRECT\n\r"); #endif // incorrect RF module version return RFM22B_EVENT_FATAL_ERROR; } // **************** // set the minimum and maximum carrier frequency allowed if (min_frequency_hz < RFM22_MIN_CARRIER_FREQUENCY_HZ) min_frequency_hz = RFM22_MIN_CARRIER_FREQUENCY_HZ; else if (min_frequency_hz > RFM22_MAX_CARRIER_FREQUENCY_HZ) min_frequency_hz = RFM22_MAX_CARRIER_FREQUENCY_HZ; if (max_frequency_hz < RFM22_MIN_CARRIER_FREQUENCY_HZ) max_frequency_hz = RFM22_MIN_CARRIER_FREQUENCY_HZ; else if (max_frequency_hz > RFM22_MAX_CARRIER_FREQUENCY_HZ) max_frequency_hz = RFM22_MAX_CARRIER_FREQUENCY_HZ; if (min_frequency_hz > max_frequency_hz) { // swap them over uint32_t tmp = min_frequency_hz; min_frequency_hz = max_frequency_hz; max_frequency_hz = tmp; } // **************** // calibrate our RF module to be exactly on frequency .. different for every module rfm22_write(RFM22_xtal_osc_load_cap, OSC_LOAD_CAP); // **************** // disable Low Duty Cycle Mode rfm22_write(RFM22_op_and_func_ctrl2, 0x00); // 1MHz clock output rfm22_write(RFM22_cpu_output_clk, RFM22_coc_1MHz); // READY mode rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton); // choose the 3 GPIO pin functions // GPIO port use default value rfm22_write(RFM22_io_port_config, RFM22_io_port_default); if (rfm22b_dev->cfg.gpio_direction == GPIO0_TX_GPIO1_RX) { rfm22_write(RFM22_gpio0_config, RFM22_gpio0_config_drv3 | RFM22_gpio0_config_txstate); // GPIO0 = TX State (to control RF Switch) rfm22_write(RFM22_gpio1_config, RFM22_gpio1_config_drv3 | RFM22_gpio1_config_rxstate); // GPIO1 = RX State (to control RF Switch) } else { rfm22_write(RFM22_gpio0_config, RFM22_gpio0_config_drv3 | RFM22_gpio0_config_rxstate); // GPIO0 = TX State (to control RF Switch) rfm22_write(RFM22_gpio1_config, RFM22_gpio1_config_drv3 | RFM22_gpio1_config_txstate); // GPIO1 = RX State (to control RF Switch) } rfm22_write(RFM22_gpio2_config, RFM22_gpio2_config_drv3 | RFM22_gpio2_config_cca); // GPIO2 = Clear Channel Assessment // **************** // initialize the frequency hopping step size freq_hop_step_size /= 10000; // in 10kHz increments if (freq_hop_step_size > 255) freq_hop_step_size = 255; rfm22b_dev->frequency_hop_step_size_reg = freq_hop_step_size; // set the RF datarate rfm22_setDatarate(RFM22_DEFAULT_RF_DATARATE, true); // FIFO mode, GFSK modulation uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd; rfm22_write(RFM22_modulation_mode_control2, RFM22_mmc2_trclk_clk_none | RFM22_mmc2_dtmod_fifo | fd_bit | RFM22_mmc2_modtyp_gfsk); // setup to read the internal temperature sensor // ADC used to sample the temperature sensor uint8_t adc_config = RFM22_ac_adcsel_temp_sensor | RFM22_ac_adcref_bg; rfm22_write(RFM22_adc_config, adc_config); // adc offset rfm22_write(RFM22_adc_sensor_amp_offset, 0); // temp sensor calibration .. �40C to +64C 0.5C resolution rfm22_write(RFM22_temp_sensor_calib, RFM22_tsc_tsrange0 | RFM22_tsc_entsoffs); // temp sensor offset rfm22_write(RFM22_temp_value_offset, 0); // start an ADC conversion rfm22_write(RFM22_adc_config, adc_config | RFM22_ac_adcstartbusy); // set the RSSI threshold interrupt to about -90dBm rfm22_write(RFM22_rssi_threshold_clear_chan_indicator, (-90 + 122) * 2); // enable the internal Tx & Rx packet handlers (without CRC) rfm22_write(RFM22_data_access_control, RFM22_dac_enpacrx | RFM22_dac_enpactx); // x-nibbles tx preamble rfm22_write(RFM22_preamble_length, TX_PREAMBLE_NIBBLES); // x-nibbles rx preamble detection rfm22_write(RFM22_preamble_detection_ctrl1, RX_PREAMBLE_NIBBLES << 3); #ifdef PIOS_RFM22_NO_HEADER // header control - we are not using the header rfm22_write(RFM22_header_control1, RFM22_header_cntl1_bcen_none | RFM22_header_cntl1_hdch_none); // no header bytes, synchronization word length 3, 2, 1 & 0 used, packet length included in header. rfm22_write(RFM22_header_control2, RFM22_header_cntl2_hdlen_none | RFM22_header_cntl2_synclen_3210 | ((TX_PREAMBLE_NIBBLES >> 8) & 0x01)); #else // header control - using a 4 by header with broadcast of 0xffffffff rfm22_write(RFM22_header_control1, RFM22_header_cntl1_bcen_0 | RFM22_header_cntl1_bcen_1 | RFM22_header_cntl1_bcen_2 | RFM22_header_cntl1_bcen_3 | RFM22_header_cntl1_hdch_0 | RFM22_header_cntl1_hdch_1 | RFM22_header_cntl1_hdch_2 | RFM22_header_cntl1_hdch_3); // Check all bit of all bytes of the header rfm22_write(RFM22_header_enable0, 0xff); rfm22_write(RFM22_header_enable1, 0xff); rfm22_write(RFM22_header_enable2, 0xff); rfm22_write(RFM22_header_enable3, 0xff); // Set the ID to be checked rfm22_write(RFM22_check_header0, id & 0xff); rfm22_write(RFM22_check_header1, (id >> 8) & 0xff); rfm22_write(RFM22_check_header2, (id >> 16) & 0xff); rfm22_write(RFM22_check_header3, (id >> 24) & 0xff); // 4 header bytes, synchronization word length 3, 2, 1 & 0 used, packet length included in header. rfm22_write(RFM22_header_control2, RFM22_header_cntl2_hdlen_3210 | RFM22_header_cntl2_synclen_3210 | ((TX_PREAMBLE_NIBBLES >> 8) & 0x01)); #endif // sync word rfm22_write(RFM22_sync_word3, SYNC_BYTE_1); rfm22_write(RFM22_sync_word2, SYNC_BYTE_2); rfm22_write(RFM22_sync_word1, SYNC_BYTE_3); rfm22_write(RFM22_sync_word0, SYNC_BYTE_4); rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_agcen); // set frequency hopping channel step size (multiples of 10kHz) rfm22_write(RFM22_frequency_hopping_step_size, rfm22b_dev->frequency_hop_step_size_reg); // set our nominal carrier frequency rfm22_setNominalCarrierFrequency(rfm22b_dev, (min_frequency_hz + max_frequency_hz) / 2); // set the tx power rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | rfm22b_dev->tx_power); // TX FIFO Almost Full Threshold (0 - 63) rfm22_write(RFM22_tx_fifo_control1, TX_FIFO_HI_WATERMARK); // TX FIFO Almost Empty Threshold (0 - 63) rfm22_write(RFM22_tx_fifo_control2, TX_FIFO_LO_WATERMARK); // RX FIFO Almost Full Threshold (0 - 63) rfm22_write(RFM22_rx_fifo_control, RX_FIFO_HI_WATERMARK); rfm22_setFreqCalibration(rfm22b_dev->cfg.RFXtalCap); rfm22_setNominalCarrierFrequency(rfm22b_dev, rfm22b_dev->cfg.frequencyHz); rfm22_setDatarate(rfm22b_dev->cfg.maxRFBandwidth, true); return RFM22B_EVENT_INITIALIZED; } static enum pios_rfm22b_event rfm22_timeout(struct pios_rfm22b_dev *rfm22b_dev) { rfm22b_dev->resets++; rfm22b_dev->packet_start_time = 0; return RFM22B_EVENT_TX_START; } static enum pios_rfm22b_event rfm22_error(struct pios_rfm22b_dev *rfm22b_dev) { rfm22b_dev->resets++; rfm22b_dev->packet_start_time = 0; return RFM22B_EVENT_INITIALIZE; } /** * A fatal error has occured in the state machine. * this should not happen. * \parem [in] rfm22b_dev The device structure * \return enum pios_rfm22b_event The next event to inject */ static enum pios_rfm22b_event rfm22_fatal_error(struct pios_rfm22b_dev *rfm22b_dev) { // RF module error .. flash the LED's for(unsigned int j = 0; j < 16; j++) { USB_LED_ON; LINK_LED_ON; RX_LED_OFF; TX_LED_OFF; PIOS_DELAY_WaitmS(200); USB_LED_OFF; LINK_LED_OFF; RX_LED_ON; TX_LED_ON; PIOS_DELAY_WaitmS(200); } PIOS_DELAY_WaitmS(1000); PIOS_Assert(0); return RFM22B_EVENT_FATAL_ERROR; } // ************************************ #endif /** * @} * @} */