/** ****************************************************************************** * @addtogroup AHRS AHRS * @brief The AHRS Modules perform * * @{ * @addtogroup AHRS_ADC AHRS ADC * @brief Specialized ADC code for double buffered DMA for AHRS * @{ * * * @file ahrs.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief INSGPS Test Program * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "ahrs_adc.h" // Remap the ADC DMA handler to this one void DMA1_Channel1_IRQHandler() __attribute__ ((alias("AHRS_ADC_DMA_Handler"))); //! Where the raw data is stored volatile int16_t raw_data_buffer[MAX_SAMPLES]; // Double buffer that DMA just used //! Swapped by interrupt handler to achieve double buffering volatile int16_t *valid_data_buffer; volatile int32_t total_conversion_blocks; volatile int32_t ekf_too_slow; volatile uint8_t adc_oversample; volatile states ahrs_state; /* Local Variables */ static GPIO_TypeDef *ADC_GPIO_PORT[PIOS_ADC_NUM_PINS] = PIOS_ADC_PORTS; static const uint32_t ADC_GPIO_PIN[PIOS_ADC_NUM_PINS] = PIOS_ADC_PINS; static const uint32_t ADC_CHANNEL[PIOS_ADC_NUM_PINS] = PIOS_ADC_CHANNELS; static ADC_TypeDef *ADC_MAPPING[PIOS_ADC_NUM_PINS] = PIOS_ADC_MAPPING; static const uint32_t ADC_CHANNEL_MAPPING[PIOS_ADC_NUM_PINS] = PIOS_ADC_CHANNEL_MAPPING; /** * @brief Initialise the ADC Peripheral * @param[in] adc_oversample * @return * @arg 1 for success * @arg 0 for failure * Currently ignores rates and uses hardcoded values. Need a little logic to * map from sampling rates and such to ADC constants. */ uint8_t AHRS_ADC_Config(int32_t adc_oversample) { int32_t i; ADC_DeInit(ADC1); ADC_DeInit(ADC2); /* Setup analog pins */ GPIO_InitTypeDef GPIO_InitStructure; GPIO_StructInit(&GPIO_InitStructure); GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; /* Enable each ADC pin in the array */ for (i = 0; i < PIOS_ADC_NUM_PINS; i++) { GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN[i]; GPIO_Init(ADC_GPIO_PORT[i], &GPIO_InitStructure); } /* Enable ADC clocks */ PIOS_ADC_CLOCK_FUNCTION; /* Map channels to conversion slots depending on the channel selection mask */ for (i = 0; i < PIOS_ADC_NUM_PINS; i++) { ADC_RegularChannelConfig(ADC_MAPPING[i], ADC_CHANNEL[i], ADC_CHANNEL_MAPPING[i], PIOS_ADC_SAMPLE_TIME); } #if (PIOS_ADC_USE_TEMP_SENSOR) ADC_TempSensorVrefintCmd(ENABLE); ADC_RegularChannelConfig(PIOS_ADC_TEMP_SENSOR_ADC, ADC_Channel_14, PIOS_ADC_TEMP_SENSOR_ADC_CHANNEL, PIOS_ADC_SAMPLE_TIME); #endif // TODO: update ADC to continuous sampling, configure the sampling rate /* Configure ADCs */ ADC_InitTypeDef ADC_InitStructure; ADC_StructInit(&ADC_InitStructure); ADC_InitStructure.ADC_Mode = ADC_Mode_RegSimult; ADC_InitStructure.ADC_ScanConvMode = ENABLE; ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = ((PIOS_ADC_NUM_CHANNELS + 1) >> 1); ADC_Init(ADC1, &ADC_InitStructure); #if (PIOS_ADC_USE_ADC2) ADC_Init(ADC2, &ADC_InitStructure); /* Enable ADC2 external trigger conversion (to synch with ADC1) */ ADC_ExternalTrigConvCmd(ADC2, ENABLE); #endif RCC_ADCCLKConfig(PIOS_ADC_ADCCLK); RCC_PCLK2Config(RCC_HCLK_Div16); /* Enable ADC1->DMA request */ ADC_DMACmd(ADC1, ENABLE); /* ADC1 calibration */ ADC_Cmd(ADC1, ENABLE); ADC_ResetCalibration(ADC1); while (ADC_GetResetCalibrationStatus(ADC1)) ; ADC_StartCalibration(ADC1); while (ADC_GetCalibrationStatus(ADC1)) ; #if (PIOS_ADC_USE_ADC2) /* ADC2 calibration */ ADC_Cmd(ADC2, ENABLE); ADC_ResetCalibration(ADC2); while (ADC_GetResetCalibrationStatus(ADC2)) ; ADC_StartCalibration(ADC2); while (ADC_GetCalibrationStatus(ADC2)) ; #endif /* Enable DMA1 clock */ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); /* Configure DMA1 channel 1 to fetch data from ADC result register */ DMA_InitTypeDef DMA_InitStructure; DMA_StructInit(&DMA_InitStructure); DMA_DeInit(DMA1_Channel1); DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t) & ADC1->DR; DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t) & raw_data_buffer[0]; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; /* We are double buffering half words from the ADC. Make buffer appropriately sized */ DMA_InitStructure.DMA_BufferSize = (PIOS_ADC_NUM_CHANNELS * adc_oversample * 2) >> 1; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; /* Note: We read ADC1 and ADC2 in parallel making a word read, also hence the half buffer size */ DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_Init(DMA1_Channel1, &DMA_InitStructure); DMA_Cmd(DMA1_Channel1, ENABLE); /* Trigger interrupt when for half conversions too to indicate double buffer */ DMA_ITConfig(DMA1_Channel1, DMA_IT_TC, ENABLE); DMA_ITConfig(DMA1_Channel1, DMA_IT_HT, ENABLE); /* Configure and enable DMA interrupt */ NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = PIOS_ADC_IRQ_PRIO; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); /* Finally start initial conversion */ ADC_SoftwareStartConvCmd(ADC1, ENABLE); return 1; } /** * @brief Interrupt for half and full buffer transfer * * This interrupt handler swaps between the two halfs of the double buffer to make * sure the ahrs uses the most recent data. Only swaps data when AHRS is idle, but * really this is a pretense of a sanity check since the DMA engine is consantly * running in the background. Keep an eye on the ekf_too_slow variable to make sure * it's keeping up. */ void AHRS_ADC_DMA_Handler(void) { if (ahrs_state == AHRS_IDLE) { // Ideally this would have a mutex, but I think we can avoid it (and don't have RTOS features) if (DMA_GetFlagStatus(DMA1_IT_TC1)) // whole double buffer filled valid_data_buffer = &raw_data_buffer[1 * PIOS_ADC_NUM_CHANNELS * adc_oversample]; else if (DMA_GetFlagStatus(DMA1_IT_HT1)) valid_data_buffer = &raw_data_buffer[0 * PIOS_ADC_NUM_CHANNELS * adc_oversample]; else { // lets cause a seg fault and catch whatever is going on valid_data_buffer = 0; } ahrs_state = AHRS_DATA_READY; } else { // Track how many times an interrupt occurred before EKF finished processing ekf_too_slow++; } total_conversion_blocks++; // Clear all interrupt from DMA 1 - regardless if buffer swapped DMA_ClearFlag(DMA1_IT_GL1); }